
Improving Robustness of Next-Hop Routing∗

Glencora Borradaile, W. Sean Kennedy, Gordon Wilfong, Lisa Zhang

July 13, 2021

Abstract

A weakness of next-hop routing is that following a link or router failure there may be no routes between
some source-destination pairs, or packets may get stuck in a routing loop as the protocol operates to
establish new routes. In this article, we address these weaknesses by describing mechanisms to choose
alternate next hops.

Our first contribution is to model the scenario as the following tree augmentation problem. Con-
sider a mixed graph where some edges are directed and some undirected. The directed edges form a
spanning tree pointing towards the common destination node. Each directed edge represents the unique
next hop in the routing protocol. Our goal is to direct the undirected edges so that the resulting graph re-
mains acyclic and the number of nodes with outdegree two or more is maximized. These nodes represent
those with alternative next hops in their routing paths.

We show that tree augmentation is NP-hard in general and present a simple 1
2
-approximation

algorithm. We also study 3 special cases. We give exact polynomial-time algorithms for when the input
spanning tree consists of exactly 2 directed paths or when the input graph has bounded treewidth. For
planar graphs, we present a polynomial-time approximation scheme when the input tree is a breadth-first
search tree. To the best of our knowledge, tree augmentation has not been previously studied.

1 Introduction

In an Internet Protocol (IP) network the header of each packet contains the intended destination for that
packet. Each router in the network has a forwarding table in which, for each destination, there is a cor-
responding entry stating which port through which to send out packets. This type of routing is called
next-hop routing. Since the routings for different destinations are independent, without loss of generality,
we will herein talk about routing to one particular destination d. A number of different routing protocols
are available for populating routing tables with destination-port pairs. These protocols are called interior
gateway protocols (IGPs); see References [8, 9, 10] for detailed operations of various of these IGPs.

For our purposes, an IP network is modeled as a graph, each node representing a router and each edge
representing a link between routers. The entry in the routing table for destination d at router v is a pair
(d, vw) where vw is a directed edge to a neighboring router w of v. The goal of an IGP is to design routing
tables so that the union of these edges is a tree directed towards d; we call such a table valid. The unique
directed path from a router v to destination d in this tree implies a route for a message from v to d.

A weakness of next-hop routing is that following a link or router failure there may be no route from
some source router to d. While a routing protocol operates to establish new routes (by way of new router
table entries), packets may get stuck in a routing loop. The speed of convergence, i.e. the time required to
recover from such a failure in the network topology, is of fundamental importance in modern IGPs. Indeed,
real-time applications such as voice-over IP require quick failure recovery.

There have been many different methods proposed to recover from failures; see References [7] and [11] for
surveys. We address a requirement for one such method, Permutation Routing [12]. In permutation routing,

∗This material is based upon work supported by the National Science Foundation, under Grant No. CCF-0964037. Sean
Kennedy is partially supported by a postdoctoral fellowship from the Natrual Sciences and Engineering Research Council of
Canada.

1

ar
X

iv
:1

41
1.

28
73

v1
 [

cs
.D

S]
 1

1
N

ov
 2

01
4

there may be multiple entries for destination d at router v. The route used by a message will use the first
entry that corresponds to a link or neighbor that is not currently in failure. To avoid routing loops, the union
of the edges given by these entries should be a directed acyclic graph with d as the only sink. So long as all
the neighbors or edges listed in a routers table do not all fail, the tables will imply at least one route to d.
In order to implement permutation routing, we start with a network of communication connections between
routers and single-entry routing tables corresponding to a tree, often a shortest-path or breadth-first-search
(BFS) tree of the graph. We use the edges of the network to add entries to the router tables, thus adding
the resiliency required for permutation routing. As we show in this paper, it is the choice of how to add
these entries that proves to be challenging.

In this paper, we study a graph theoretic problem which exactly models this issue. Our contribution is
two-fold. From the networking perspective, we are the first to offer a rigorous treatment of this approach for
improving next-hop routing robustness. From the graph theoretic perspective, we introduce a crisply-stated
graph problem that appears to be novel.

1.1 The tree augmentation problem

We formally define the problem in graph terms. The input is a mixed graph G = (V,E ∪
−→
T), where V

is the set of nodes, E is a set of undirected edges and
−→
T is a set of directed edges that form a directed

spanning tree pointing towards the destination node d. (Such a rooted, directed spanning tree is in fact an

arborescence; we use the term tree for convenience.) The edges of
−→
T give the unique next-hop for the initial

routing paths. Our goal is to find an orientation of the undirected edges E so that the resulting directed
graph is acyclic and maximizes the number of nodes with outdegree at least two. Those nodes that, in the
resulting orientation, have outdegree at least two represent those routers with an alternate next hop when a
failure occurs. We refer to this problem as tree augmentation.

Herein, an edge uv refers to an undirected edge between nodes u and v and −→uv and ←−uv refer to directed

edges, or arcs, from u to v and v to u, respectively. For E′ ⊆ E we use
−→
E′ to denote the set of arcs

corresponding to some orientation of E′; the details of that orientation will be given by context. We say a

node u ∈ V is covered by an orientation if there is an arc −→uv ∈
−→
E′. Our objective is to maximize the number

of covered nodes over all possible orientations of subsets E′ of E such that (V,
−→
E′ ∪

−→
T) is an acyclic graph.

Note that the problem statement does not require every edge in E be directed in the solution. However, we
will see that it never hurts to direct every edge in E.

We also consider a weighted version of tree augmentation, for which some nodes may be viewed as
more important to be covered. Here, a positive weight w(v) is given for each node v and the objective
becomes maximizing the total weight of covered nodes.

1.2 Organization

In Section 2 we present two observations and give simple a 1
2 -approximation for tree augmentation. In

Section 3 we prove the NP-hardness of tree augmentation via a reduction from the set cover problem.
The remainder of the paper gives positive results for some interesting special cases. In Section 4, we describe
a polynomial-time algorithm for graphs of bounded treewidth. In Section 5, we describe a polynomial-time
approximation scheme for planar graphs when T is a BFS tree. In Section 6, we describe a polynomial-time
algorithm for the special case in which the spanning tree consists of exactly two directed paths. We point
out that all our algorithmic results generalize to the weighted case.

2 Observations and a simple approximation

We first note that, algorithmically, the acyclicity constraint is what makes this problem challenging. Consider
the connected components of the graph G = (V,E). In each component we want to orient the edges so that
each node is covered. If a connected component is a tree, root this tree at an arbitrary node and orient every

2

edge towards the chosen root. In this way, every node except the root is covered. Further, it is not possible
for every node in a tree to be covered. If a connected component is not a tree, we begin with an arbitrary
spanning tree S. There must exist one node incident to an edge not in S. We root the spanning tree S at
this node and orient every edge in S towards the root. Since the root is incident to an edge outside S, we
orient this edge away from the root. All other edges outside S can be oriented arbitrarily. In this way, every
node of the connected component is covered. Since all these operations are no more difficult that depth-first
search, we get:

Observation 1. Finding an orientation of E to maximize the number of covered vertices can be done in
linear time.

However, our guiding application requires that we find an acyclic orientation. Suppose we have oriented

E′ ⊆ E such that (V,
−→
T ∪
−→
E′) is acyclic. Consider a topological ordering of the vertices of this acyclic graph

and consider any edge uv ∈ E \ E′ in which, without loss of generality, u is before v in the topological

ordering. Then (V,
−→
T ∪
−→
E′∪−→uv) is also acyclic. Augmenting (V,

−→
T ∪
−→
E′) in this way ensures that u is covered

while not affecting the coverage of any other vertex. Repeating this for every edge of E \ E′ gives:

Observation 2. Given an orientation of a subset of E′ of the non-tree edges E, one can always orient the
remaining edges E \ E′ while maintaining acyclicity and without decreasing the objective.

Consider the bipartition of E into the set of back edges B (edges uv ∈ E such that u is a descendent of

v in
−→
T) and the cross edges C (edges uv in E such that u and v have no ancestor/descendent relationship).

Each edge of B can only be oriented in one way, from descendent to ancestor, without introducing a cycle.

We let
−→
B denote this orientation. Consider two orientations of C: let

−→
C be the orientation such that each

edge uv ∈ C is oriented from low to high pre-order (the order given by the first time a vertex is visited by a

depth-first search) and let
←−
C be the reverse of this orientation (it is, in fact, the order such that each edge

uv ∈ C is oriented from low to high post-order).

Lemma 3. (V,
−→
T ∪
−→
B ∪

−→
C) and (V,

−→
T ∪
−→
B ∪

←−
C) are acyclic.

Proof. Trivially, (V,
−→
T ∪
−→
B) is acyclic.

For a contradiction, suppose there is a directed cycle
−→
D in (V,

−→
T ∪
−→
B ∪
−→
C). Let

−→
D ′ be the cycle obtained

from
−→
D by contracting the edges in

−→
D that are not in

−→
C (i.e.

−→
D ′ ⊆

−→
C . Let u1, u2, . . . , u` be the vertices

of
−→
D ′ in order, starting from an arbitrary vertex u1 of

−→
D ′; we have that ` ≥ 2 for otherwise the edges of

−→
D

could not have a consistent direction.
By the definition of the orientation of −−−−→uiui+1, ui must appear before ui+1 in the pre-order used for each

i = 1, . . . , ` − 1. Likewise, by the definition of the orientation of −−→u`u1, u` must appear before u1 in the
pre-order used, hence a contradiction.

Likewise, reversing the direction of the edges in
−→
C results in an acyclic graph (V,

−→
T ∪
−→
B ∪

←−
C).

We can view these orientations in the following way: embed
−→
T in a non-crossing way with the root at

the top and all edges directed upward; consider a DFS traversal that explores the branches from left to

right;
−→
C is the orientation in which all the edges of C are oriented from left to right in this embedding and←−

C is the orientation in which all the edges of C are oriented from right to left in this embedding. These
orientations are illustrated in Figure 1(c) and (d), respectively. We use this observation to design a simple
1
2 -approximation to the tree augmentation problem; that is, the algorithm is guaranteed to return an
orientation that covers at least a half of the number of vertices that can be covered in an optimal orientation.

Theorem 4. The better of the two orientations
−→
B ∪

−→
C and

−→
B ∪

←−
C gives a 1

2 -approximation to the tree
augmentation problem.

3

(b)(a) (c) (d)

Figure 1: The optimal solution (b) to the input problem (a) covers n − 2 vertices whereas the left-to-right
(c) and right-to-left (d) orientations cover n−1

2 vertices each.

Proof. Let VB be the subset of vertices that are covered by
−→
B . Let VX be the subset of vertices that cannot

be covered by any orientation (namely, those vertices that are not endpoints of edges in E). The remaining

vertices VC = V \ (VB ∪ VX) are the endpoints of the edges in C. Each vertex in VC is covered either by
−→
C

or
←−
C (or both). Let x(

−→
C) and x(

←−
C), be the number of vertices covered by

−→
C and

←−
C , respectively. We have

x(
−→
C) + x(

←−
C) ≥ |VC |. It follows that the number of vertices covered by the better of these two orientations

has value:

max
{
|VB |+ x(

−→
C), |VB |+ x(

←−
C)
}
≥ 1

2

(
2|VB |+ x(

−→
C) + x(

←−
C)
)

≥ |VB |+
1

2
|VC | ≥

1

2
|V \ VX |

Since the maximum number of vertices that any orientation can cover is |V \ VX |, the better of the two

orientations
−→
B ∪

−→
C and

−→
B ∪

←−
C is a 1

2 -approximation to the tree augmentation problem. The example
in Figure 1 (b) illustrates that this analysis is asymptotically tight.

The 1
2 -approximation algorithm generalizes to the weighted case, for which each node v carries a weight

w(v). In the above proof we can simply replace the size of a node set with the total weight from the set.

Corollary 5. Weighted Tree Augmentation admits a 1
2 -approximation.

3 Tree Augmentation is NP-hard

In this section, we prove the following.

Theorem 6. Tree Augmentation is NP hard.

Our reduction is from the well-known NP-hard set cover problem [6]. An instance of set cover
consists of a set of elements X = {x1, x2, . . . , xn}, a collection of subsets of X, C = {S1, S2, . . . , Sm} and an
integer 0 < k ≤ m. The set cover problem asks: Is there a subcollection C′ ⊆ C such that |C′| ≤ k and
∪Si∈C′Si = X?

We prove Theorem 6 in three steps. First, we start by describing the gadget which models set cover
as an instance of tree augmentation. Second, we describe the intuition behind our result. Finally, we
give the formal details of correctness.

The Reduction

We build an instance G = (V,E ∪
−→
T) of tree augmentation corresponding to an instance of set cover

as follows. The construction is illustrated in Figure 2.

4

Vertices V : The root vertex is u. For each set Sj (j = 1, . . . ,m) we define 5 vertices rj , sj , tj , `j , pj . We
call the vertices {s1, . . . , sm} the set vertices. For each element xi (i = 1, . . . , n) we define a set of k + 1
element vertices Xi = {x1i , . . . , x

k+1
i }.

Tree arcs
−→
T : The tree

−→
T consists of the following arcs.

1. There is a directed path in
−→
T consisting of the arcs −−−−→pipi+1 for 1 ≤ i < m, followed by the arc −−→pmu. We

call this path the collection path.

2. For each set Sj , there is a directed path in
−→
T through the vertices rj , sj , tj , u in order. We call these

the set paths.

3. For each element xi, there is a directed path in
−→
T consisting of the arcs

−−−−→
xhi x

h+1
i for 1 ≤ i < k+ 1. We

call these the element paths.

4. The arc
−−−−→
xk+1
n p1 is in

−→
T .

5. For each j = 1, ...,m,
−→
T contains the arc

−−→
`jx

1
1.

Non-tree edges E: For each set Sj , we connect every element vertex (corresponding to the elements in
Sj) to the corresponding set vertex with non-tree edges {sjx1i , . . . , sjx

k+1
i : xi ∈ Sj}. For each set Sj there

are 4 additional non-tree edges: {`ju, rju, `jtj , pjrj}.

........

u

pmpj

xk+1
n

p1

xk+1
ix1

ix1
2 xk+1

2x1
1

`j

sj

tj

rj

edge in E

arc in
−→
T

Sj = {x2, xi}

Figure 2: NP-hardness construction. The vertices `j , pj , rj , sj , tj (and adjacent edges) are only shown for
one set Sj .

The Idea

We start by noting that the orientation of 2m of the non-tree edges are forced in any acyclic orientation.

Observation 7. In any feasible solution, i.e., any acyclic orientation, each edge rju must be oriented as
−→rju since otherwise urjsjtj would form a directed cycle. Similarly, in any feasible solution, each edge `ju

must be oriented as
−→
`ju since otherwise u`jtj would form a directed cycle.

Hence, in any feasible solution the 2m vertices r1, ..., rm and `1, ..., `m are covered. So, the only remaining
uncovered vertices are tj , sj , pj for each j and the element vertices, x1i , ..., x

k+1
i for each i.

Notice that if tj`j is oriented as
−−→
tj`j then no vertex xhi can be covered for any xi ∈ Sj , 1 ≤ h ≤ k + 1

without forming a cycle. However if `jtj is oriented as
−−→
`jtj then each of those element vertices xhi can be

covered by
−−→
xhi sj and so we “equate” this case with choosing the set Sj as part of a solution to the set cover

problem. Thus minimizing the number of subsets Sj whose union is X will be seen to be equivalent to
maximizing the number of tj ’s that are not covered. This is the basic idea of our proof.

5

The Proof

We show that there is a solution to the constructed instance of tree augmentation that covers at least
(k + 1)n+ 4m− k vertices if and only if there is a solution to the instance of set cover.

Solutions to set cover imply solutions to tree augmentation: Suppose there is a solution C′ ⊆ C
to the set cover instance, that is, |C′| ≤ k and ∪Sj∈C′Sj = X. Note that if |C′| < k we can always add
subsets to the solution and it will still cover all the elements. So, without loss of generality, we will assume
that |C′| = k. We orient a subset E′ ⊂ E so that it covers (k+1)n+4m−k vertices. Observation 2 then says
that the orientation of E′ can be extended to an orientation of all of E that covers at least (k+ 1)n+ 4m−k
vertices and hence is a solution to the tree augmentation instance.

E′1: Forced edges As discussed earlier, the edges `ju and rju are back edges and so must be oriented

toward the root:
−→
`ju,
−→rju. These arcs then cover the 2m vertices `j and rj for 1 ≤ j ≤ m.

E′2: Sj ∈ C′ For each Sj ∈ C′, orient `jtj and pjrj as
−−→
`jtj ,

−−→pjrj respectively. These arcs then cover the k pj ’s
where Sj ∈ C. Also for each xi ∈ Sj , orient the edges {sjx1i , . . . , sjx

k+1
i } toward sj . Since C′ covers the

elements, each xhi will have at least one non-tree edge oriented away from it, and hence this covers all

of the (k + 1)n, xji vertices. Therefore the orientation of the edges of E′2 cover (k + 1)n+ k additional

vertices. Note that adding the edges of E′2 to
−→
T ∪ E′1 does not introduce any cycles because it only

directs edges from the element paths to the set paths.

E′3: Sj 6∈ C′ For each Sj 6∈ C′, we orient the edge tj`j as
−−→
tj`j and orient all the edges {sjx1i , . . . , sjx

k+1
i }

away from sj . The edges of E′2 cover the 2(m− k) additional vertices tj and sj where Sj 6∈ C. Notice
the solution is still acyclic, since for each Sj 6∈ C′, there is no arc directed into any vertex in the set
{rj , sj , tj}.

It follows E′ = E′1 ∪ E′2 ∪ E′3 is a feasible solution of size (k + 1)n+ 4m− k as desired.

No solution to set cover implies no solution to tree augmentation: Suppose there is no subcol-
lection of C of size at most k that covers all the elements of X. We will show that any feasible orientation

of the non-tree edges
−→
E will cover less than (k + 1)n+ 4m− k vertices.

We have two facts resulting from the existence of the set paths to the root in
−→
T and directed paths from

`j through all the element vertices and through the collection path to the root. Since we assume all the
non-tree edges are oriented (w.l.o.g. by Observation 2), the following facts must hold or else there would be
a directed cycle.

Fact 1 If sj is covered, then pj is not covered.

Fact 2 If
−−→
xhi sj ∈

−→
E for some h (1 ≤ h ≤ k + 1), then

−−→
`jtj ∈

−→
E and tj cannot be covered.

We have two cases: either some representative vertex xhi of each element xi is covered or there is some
element xi all of whose representatives x1i , x

2
i , . . . , x

k+1
i are not covered.

We start with the former case. Suppose that for each i ∈ [1, . . . , n] there is some h(i) ∈ [1, . . . , k + 1]

such that x
h(i)
i is covered. Let J be the subset of indices [1, . . . ,m] such that the x

h(i)
i ’s are covered by edges

oriented to sj for j ∈ J . As we assume that the best set cover requires more than k sets, |J | > k. By Fact 2,
tj is not covered for any j ∈ J . Then, by Fact 1, it follows that for j ∈ J at most 3 of {`j , rj , sj , tj , pj} are

covered. Also note by Facts 1 and 2, at most 4 of {`j , rj , sj , tj , pj} can be covered for j 6∈ J . Therefore,
−→
E

can cover at most 4m− |J |+ (k + 1)n < 4m− k + (k + 1)n vertices.
We now prove the latter case. Suppose that for some i ∈ [1, . . . , n], xhi is not covered for any h ∈

[1, . . . , k+ 1]. By Fact 1, it follows that at most 4 of {`j , rj , sj , tj , pj} are covered. Therefore
−→
E can cover at

most 4m+ (k + 1)(n− 1) = 4m+ (k + 1)n− k − 1 vertices.

6

4 Bounded treewidth tree augmentation

We show in this section that for G of bounded treewidth, tree augmentation can be solved optimally via
dynamic programming. Treewidth is a measure of how far a graph is from being a tree. It is known that
many NP-hard graph problems become tractable in graphs of bounded treewidth [5]. Formally, G = (V,E)
has treewidth w if there is a tree decomposition (Υ,Γ) of G where each node ν ∈ Υ corresponds to a subset
Sν of V , and Γ is a tree on Υ, satisfying the following four properties.

1. No more than w + 1 vertices of V are mapped to any one node of Γ, i.e. |Sν | ≤ w + 1 for ν ∈ Υ.

2. The union of Sν is V , i.e. every vertex of V is mapped to some node of Γ.

3. For every edge uv in E, u and v are mapped to some common node of Γ.

4. If, for ν1 ∈ Υ and ν2 ∈ Υ, Sν1 and Sν2 contain a common vertex of V , then for all nodes ν of in the
(unique) path between ν1 and ν2 in Γ, Sν contains v as well.

We may assume without loss of generality that Γ is a rooted binary tree with O(|V |) nodes [3]. Note that
given a graph G and an integer k it is NP-hard to determine if the treewidth of G is at most k [1]. However, for
any fixed constant k, Bodlaender gives a linear time algorithm which determines if a graph G has treewidth
at most k, and if so, finds a tree-decomposition of G with treewidth at most k in linear time [4].

In this section, we prove:

Theorem 8. For any constant k, and any graph G of treewidth at most k, Tree augmentation can be
solved in linear time using dynamic programming.

Proof. Let (Υ,Γ) be a tree decomposition of G of treewidth at most k. Since Γ is rooted, for each node
ν ∈ Γ, we can define Γν as the subtree of Γ rooted at ν. For a tree node ν of Γ, let Gν be the subgraph of
G whose vertex set is {v ∈ G | v ∈ Sν s.t. ν ∈ Γν} and edge set is {uv ∈ E(G) | u, v ∈ Sν s.t ν ∈ Γν}.

For each tree node ν of Γ, each permutation P of the vertices of Sν and each subset C of Sν , we determine

two tables,
−−→
Tabν [P,C] and Tabν [P,C]:

(i)
−−→
Tabν [P,C] is an optimal orientation of the edges Gν that is consistent with permutation P and covers

exactly the vertices C, such that the number of vertices covered by
−−→
Tabν [P,C] is maximized.

(ii) Tabν [P,C] is the number of vertices covered by
−−→
Tabν [P,C]

If a permutation P contradicts the partial order on the vertices enforced by
−→
T , then we set Tabν [P,C] = −∞

and
−−→
Tabν [P,C] = ∅ for all C ⊆ Sν . Likewise, if no orientation of Gν can cover C, we set Tabν [P,C] = −∞

and
−−→
Tabν [P,C] = ∅ for all permutations P of Sν . For simplicity of presentation, we assume that all entries

of Tab are initialized to −∞ and all entries of
−−→
Tab are initialized to ∅.

For the root r of Γ, it follows that the maximum of Tabr[P,C] taken over all permutations P and subsets

C of Sr is the value of an optimal solution and the corresponding
−−→
Tabν [P,C] is an optimal solution. Hence,

to complete the proof of Theorem 8, it is enough to show how to determine the entries of our dynamic
programming table. We do so in two steps. First, we determine the entries of Tabν for each leaf ν ∈ Γ.
Second, we determine the entries of Tabν for each non-leaf node ν ∈ Γ given that the entries of Tabν1 and
Tabν2 for its associated child nodes, ν1 and ν2, have already been determined.

Assume ν ∈ Γ is a leaf node. For each permutation P that is consistent with
−→
T ,
−→
Eν be the orientation of

the edges of Gν implied by P and let C? be the subset of Sν covered by
−→
Eν . By construction, Tabν contains

the desired entries.
Assume ν is an internal node such that the Tab entries associated with the children of ν, namely ν1 and

ν2, have been computed. We consider all permutations P1 of Sν1 and P2 of Sν2 together with all subsets
C1 ⊆ Sν1 and C2 ⊆ Sν2 . We use the entries of Tabν1 [P1, C1] and Tabν2 [P2, C2] to construct Tabν [P,C].
Now, not all choices of P1, P2, C1 and C2 lead to valid solutions. Indeed, the partial order given by the

7

permutation P1 must be consistent with P ; analogously P2 must be consistent with P . Additionally, if v is
in C1 and v ∈ Sν then v must also be C; the analogous condition holds for C2. For i ∈ {1, 2}, we call Pi and
Ci good if they satisfy these conditions. We now show that

Tabν [P,C] = |C| + max
good P1,C1

{Tabν1 [P1, C1]− |C1 ∩ C|} (1)

+ max
good P2,C2

{Tabν2 [P2, C2]− |C2 ∩ C|} ,

and
−−→
Tabν [P,C] can be determined from the entries of Tabν1 and Tabν2 .

Fix a permutation P and subset C of Sν . Let
−→
O be any orientation of Gν that is valid with respect

to P and C. Let A1 be the vertices covered in Gν1 and A2 be the vertices covered in Gν2 . By the fourth

property of tree decompositions, the number of vertices covered by
−→
O is exactly |C| + |A1 \ C| + |A2 \ C|.

Letting
−→
O 1 be the restriction of

−→
O to Gν1 , for any good P1 and C1 we have |A1| ≤ Tabν1 [P1, C1]. Hence,

|A1| ≤ maxgood P1,C1 Tabν1 [P1, C1], and so, |A1 \ C| ≤ maxgood P1,C1(Tabν1 [P1, C1] − |C1 ∩ C|). Similarly,
|A2 \ C| ≤ maxgood P2,C2(Tabν2 [P2, C2] − |C2 ∩ C|). Hence, Tabν [P,C] is at most the righthand side of
Equation 2.

To complete the proof it is enough to show there exists good P1, C1 and good P2, C2 such that the

corresponding entries of
−−→
Tabν1 [P1, C1] and

−−→
Tabν2 [P2, C2] can be used to give an acyclic orientation of value

equal to the righthand side of Equation 2. Let good P1, C1 be chosen to maximize Tabν1 [P1, C1]− |C1 ∩C|,
and let good P2, C2 be chosen to maximize Tabν2 [P2, C2] − |C2 ∩ C|. We first orient the edges Sν by the
permutation P . By the fourth property of tree decompositions, every remaining edge is completely contained

in either Gν1 or completed contained in Gν2 . For these edges we use the orientations of
−−→
Tabν1 [P1, C1] and

−−→
Tabν2 [P2, C2], respectively. Clearly, this orientation covers the desired number of nodes; it only remains to
show it is acyclic.

For the purpose of contradiction, let u, v ∈ Sν be such that the permutation P places u before v but
Pathvu, a directed path from v to u, already exists. If there are multiple such paths, we choose the shortest
path. If Pathvu contains an internal node x ∈ Sν , then Pathvx and Pathxu are also directed paths. Since
Pathvu is the shortest, the permutation P must ensure that v is before x and x is before u. However, P
also enforces u is before v, which is a contraction. Therefore, none of the internal nodes in Pathvu can be
in Sν . By properties 3 and 4 of the tree decomposition, every internal node of Pathvu must be contained
entirely in one of the subtrees, say the one rooted at ν1. In addition, u and v must be contained in Sν1 .
If a permutation P1 ensures v is before u then P1 and P2 would be inconsistent; if P1 ensures u is before

v then ν1 would be a earlier node in which a cycle appears. It now follows that
−−→
Tabν [P,C] is the desired

orientation. Moreover, since we can compute it by considering the O((k!)4) possible choices for P1, P2, C1

and C2, it follows that it follows that constructing Tab can be done in linear time.

The above dynamic programming argument generalizes to the weighted case, if we keep track of the node
weights rather than the number of nodes.

Corollary 9. For any constant k, and any graph G of treewidth at most k, Weighted Tree augmenta-
tion can be solved using dynamic programming.

5 A PTAS for BFS tree augmentation in planar graphs

In this section we consider a special case in which the input graph G = (V,
−→
T ∪ E) is planar and

−→
T is

the breath-first-search (BFS) tree of G. (Specifically, the T is a BFS tree of the undirected version of
(V, T ∪ E).) We show that Baker’s technique, described in a moment, can be used to design a polynomial-
time approximation scheme (PTAS) for this special case. A PTAS is, for a fixed integer d, a polynomial (in
|G|) time algorithm that finds a solution of value achieving at least a 1− 1

d fraction of the optimal solution’s
value.

8

Baker’s technique is a shifting technique for designing PTASes for planar graph instances of problems [2].
Baker introduced this technique to solve NP-hard problems such as independent set and vertex cover;
the constraints for these problems are defined locally, for neighborhoods of vertices. Usually, Baker’s tech-
nique cannot be used to solve problems with a global constraints, such as our acyclicity constraint. However,

the technique involves separating the graph at BFS layers; when
−→
T is a BFS tree, we can guarantee acyclicity

across the separators. We show how to use Baker’s technique here to prove:

Theorem 10. There is a PTAS for Tree augmentation when the input is a planar graph G = (V,E∪
−→
T)

such that
−→
T is a BFS tree of G.

Proof. Label each vertex with its BFS level from the root of
−→
T . Let Fi be the subset of arcs and edges

(
−→
T ∪ E) that have one endpoint in level i and one endpoint in level i + 1. Let F k = ∪i=k mod dFi for
k = 1, . . . d.

Let Sk be the connected components of (V, (T ∪ E) \ Fk). Consider a component S of Sk and attach all
the nodes at the smallest level in S to a newly created root node rS by arcs to create S′; these new arcs plus

the arcs of
−→
T ∩S forms a BFS spanning tree

−→
T S directed toward rS . Since

−→
T S has depth at most d, S′ has

treewidth at most 3d by way of:

Theorem 11 (Baker [2]). Given a planar graph G with rooted spanning tree of depth d a tree decomposition
of width at most 3d can be found in O(d|G|) time.

We are now able to describe the PTAS of Theorem 10. By the algorithm of Section 4, we can optimally
solve the tree augmentation problem in each of the components of Sk in polynomial time. For each

k = 1, ..., d, compute the optimal solutions corresponding to each component of Sk. Let
−→
E k be the orientation

given by the union of these solutions with the edges of F k ∩E oriented from high-to-low BFS level. Return

the best solutions of {
−→
E 1, . . . ,

−→
E d}. To complete the proof Theorem 10, it remains only to prove acyclicity

and near-optimality:

Acyclicity First notice that these orientations are acyclic. Any directed cycle in
−→
E k ∩

−→
T would have to

include arcs in multiple components of Sk and, in particular, would travel from a low BFS-level to a high
BFS-level and back, crossing Fi in each direction for some i = k mod d. However, since T is a BFS tree,

each arc in
−→
T ∩Fi is oriented from level i to level i+ 1. By design the edges of Fi ∩E are also oriented from

level i to level i+ 1. Therefore
−→
E k ∩

−→
T is acyclic.

Near-Optimality Let E? be a minimal subset of E such that an optimal solution
−→
E ? of G = (V,

−→
T ∪E?)

covers as many vertices as an optimal solution for G = (V,
−→
T ∪E). That is, every vertex is the starting point

for at most one arc of
−→
E ? and so the maximum number of vertices that can be covered is |E?|.

F k is a partition of a subset of
−→
T ∪ E. Therefore

min
k
|E? ∩ F k| ≤ 1

d

∑
k

|E? ∩ F k| ≤ 1

d
|E?| (2)

Consider the index k? that is the argument the above minimum. For each component S of Sk,
−→
E k?∩S covers

at least as many vertices as
−→
E ?, since

−→
E k? is optimal for S. Therefore

−→
E k? covers at least |E?| − |E? ∩F k? |

vertices. By Inequality 2,
−→
E k? covers at least (1− 1

d)|E?| vertices. This completes the proof.

Corollary 12. There is a PTAS for Weighted Tree augmentation when the input is a planar graph

G = (V,E ∪
−→
T) such that

−→
T is a BFS tree of G.

9

6 Two-Arm tree augmentation

We consider a special case in which the tree
−→
T consists of exactly two directed paths and give a polynomial-

time dynamic program for finding an optimal solution to tree augmentation.
−→
T has root `0 = r0 and

two directed paths to the root: the left arm with vertices in order from leaf to root `n`
, `n`−1, . . . , `1, `0 and

the right arm with vertices in order from leaf to root rnr
, rnr−1, . . . , r1, r0. We use inequalities to compare

the indices of these vertices (i.e., ri < rj if i < j).
Any edge in E with both endpoints in a single arm is a back edge and must be oriented toward the root;

we denote this orientation by
−→
B as in Section 2. Each cross edge e ∈ C ⊆ E has a left endpoint `(e) and a

right endpoint r(e). We let −→e =
−−−−−→
`(e)r(e) denote the left-to-right orientation and ←−e =

←−−−−−
`(e)r(e) denote the

right-to-left orientation of e.
We sort the cross edges first by left, then by right endpoint. Namely C = {e1, e2, . . . , em} such that i < j

only if either `(ei) < `(ej) or `(ei) = `(ej) and r(ei) < r(ej). (Note that we may assume that there are no
parallel edges as all parallel edges would need to be oriented consistently to maintain acyclicity.) For each
k = 0, 1, . . . ,m and each j = 1, . . . , nr + 1 we determine

the orientation
−−→
Cj,k of Cj,k = {ei : i ≤ k, r(ei) < rj} that maximizes

the number cj,k of endpoints of Cj,k covered by
−−→
Cj,k ∪

−→
B.

(The notation
−−→
Cj,k does not indicate orienting all the edges in Cj,k from left to right.) Clearly, the solution

to tree augmentation is
−−−→
Cnr,m ∪

−→
B .

Note that the sets Cj,0 are empty and so the values cj,0 denote the number of vertices covered by
−→
B . We

denote the coverage by
−→
B by:

δ(v) =

{
1 if v is not covered by

−→
B

0 otherwise

For any j and for k > 0, we determine
−−→
Cj,k from

−−→
Cj,t for t < k and

−−→
Ct,k for t < k. This allows us to compute

−−−→
Cnr,m via dynamic programming.

If rj ≤ r(ek), then ek /∈ Cj,k and so Cj,k = Cj,k−1; therefore
−−→
Cj,k =

−−−−→
Cj,k−1. If rj > r(ek), then ek ∈ Cj,k

and we take the better of two options: −→ek or ←−ek . Refer to Figure 3.

ek

rj

rt

rj

rt

(a) (b)

ek

Figure 3: The case in which ek is oriented (a) −→ek , from left to right and (b) ←−ek , from right to left.

In the −→ek option, to ensure acyclicity, any edge in Cj,k that shares ek’s endpoint must also be oriented
from left to right. We define t such that et is the last edge of Cj,k with `(et) < `(ek). Any acyclic orientation
of Cj,t combined with this will also be acyclic as any introduced cycle would go through `(ek) which we have

prevented. The only additionally covered vertex is `(ek) if it is not already covered by
−→
B . Formally, letting

et be the last edge of Cj,k with `(et) < `(ek):

Option −→ek :

{ −−→
Cj,k =

−−→
Cj,t ∪ {−→e : `(e) = `(ek), e ∈ Cj,k}

cj,k = cj,t + δ(`(ek))

10

In the ←−ek option, to ensure acyclicity, any edge in Cj,k with right endpoint after r(ek) must also be
oriented from right to left. We define t such that rt = r(ek). Note that t < j since we are considering the
case rj > r(ek). Any acyclic orientation of Ct,k combined with this will also be acyclic as any introduced
cycle would have to go through r(ek), which we have prevented. The right endpoints of these newly oriented

edges may become covered if they were not already covered by
−→
B . Formally, letting rt = r(ek):

Option ←−ek :

{ −−→
Cj,k =

−−→
Ct,k ∪ {←−e : r(e) ≥ rt, e ∈ Cj,k}

cj,k = ct,k +
∑
←−e :r(e)≥rt,e∈Cj,k

δ(r(e))

It is not difficult to see that by storing these two options for each value of j and k, one can give a polynomial-
time implementation of the dynamic program.

Theorem 13. Tree augmentation in the special case of 2 arms can be solved optimally using dynamic
programming in polynomial time.

It is easy to see the following generalization to the weighted case. In the dynamic programming, instead
of having binary δ(v) we have δ(v) reflect the weight of node v.

Corollary 14. Weighted Tree augmentation in the special case of 2 arms can be solved optimally
using dynamic programming in polynomial time.

Conclusion

In this paper we study improving robustness in next-hop routing by modeling it as a graph theoretic problem
tree augmentation. This work leads to a number of open problems. For example, can the dynamic
programming approach be applied to more special cases? We note that the special case of multiple arms
is not immediately amenable to dynamic programming. More generally, what is the complexity when the
problem has a bounded number of leaves? Does the problem admit a better-than 1

2 -approximation in the
general case?

References

[1] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of Finding Embeddings in a k-tree. SIAM
Journal on Algebraic and Discrete Methods, 8, 1987.

[2] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of The ACM,
41:153–180, 1994.

[3] H. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11:1–23, 1993.

[4] H. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM
Journal on Computing, 25(6):1305–1317, 1996.

[5] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs. In
Gunther Schmidt and Rudolf Berghammer, editors, Graph-Theoretic Concepts in Computer Science,
volume 570 of Lecture Notes in Computer Science, pages 13–24. Springer Berlin / Heidelberg, 1992.

[6] M. Garey and D. Johnson. Computers and intractability: A guide to the theory of NP-completeness.
W. H. Freeman and Co., San Francisco, Calif., 1979.

[7] M. Goyal, M. Soperi, E. Baccelli, G. Choudhury, A. Shaikh, H. Hosseini, and K. Trivedi. Improving
Convergence Speed and Scalability in OSPF: A Survey. IEEE Communications Surveys and Tutorials,
14(2), 2012.

[8] C. Hedrick. Routing Information Protocol. RFC 1058, June 1988.

11

[9] J. Moy. OSPF Version 2. RFC 2178, April 1998.

[10] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142, February 1990.

[11] A. Raj and O. Ibe. A survey of IP and multiprotocol label switching fast reroute schemes. Computer
Networks, 51(8):1882–1907, 2007.

[12] H. Q. Vo, O. Lysne, and A. Kvalbein. Permutation Routing for Increased Robustness in IP Networks. In
Proceedings of the 11th international IFIP TC 6 conference on Networking - Volume I, pages 217–231,
2012.

12

	1 Introduction
	1.1 The tree augmentation problem
	1.2 Organization

	2 Observations and a simple approximation
	3 Tree Augmentation is NP-hard
	4 Bounded treewidth tree augmentation
	5 A PTAS for BFS tree augmentation in planar graphs
	6 Two-Arm tree augmentation

