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Abstract A complete graph is the graph in which every two vertices are adja-
cent. For a graph G = (V,E), the complete width of G is the minimum k such
that there exist k independent sets Ni ⊆ V , 1 ≤ i ≤ k, such that the graph
G′ obtained from G by adding some new edges between certain vertices inside
the sets Ni, 1 ≤ i ≤ k, is a complete graph. The complete width problem is to
decide whether the complete width of a given graph is at most k or not. In
this paper we study the complete width problem. We show that the complete
width problem is NP-complete on 3K2-free bipartite graphs and polynomi-
ally solvable on 2K2-free bipartite graphs and on (2K2, C4)-free graphs. As a
by-product, we obtain the following new results: the edge clique cover prob-
lem is NP-complete on 3K2-free co-bipartite graphs and polynomially solvable
on C4-free co-bipartite graphs and on (2K2, C4)-free graphs. We also give a
characterization for k-probe complete graphs which implies that the complete
width problem admits a kernel of at most 2k vertices. This provides another
proof for the known fact that the edge clique cover problem admits a kernel of
at most 2k vertices. Finally we determine all graphs of small complete width
k ≤ 3.
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1 Introduction

Let G = (V,E) be a simple and undirected graph. A subset U ⊆ V is an
independent set, respectively, a clique if no two, respectively, every two vertices
of U are adjacent. The complete graph with n vertices is denoted by Kn. The
path and cycle with n vertices of length n − 1, respectively, of length n, is
denoted by Pn, respectively, Cn. For a vertex v ∈ V we write N(v) for the set
of its neighbors in G. A universal vertex v is one such that N(v) ∪ {v} = V .
For a subset U ⊆ V we write G[U ] for the subgraph of G induced by U and
G−U for the graph G[V \U ]; for a vertex v we write G−v rather than G−{v}.

Given a graph class C, a graph G = (V,E) is called a probe C graph (or C
probe graphs) if there exists an independent set N ⊆ V (i.e., a set of nonprobes)
and a set of new edges E′ ⊆

(

N

2

)

between certain nonprobe vertices such that

the graph G′ = (V,E ∪ E′) is in the class C, where
(

N

2

)

stands for the set of
all 2-element subsets of N. A graph G = (V,E) with a given independent set
N ⊆ V is said to be a partitioned probe C graph if there exists a set E′ ⊆

(

N

2

)

such that the graph G′ = (V,E ∪ E′) is in the class C. In both cases, G′ is
called a C embedding of G. Thus, a graph is a (partitioned) probe C graph
if and only if it admits a C embedding. The most popular case is the class
C of interval graphs. The study of probe interval graphs was motivated from
certain problems in physical mapping of DNA in the computational biology;
see, e.g., [3,12].

Recently, the concept of probe graphs has been generalized as a width
parameter of graph class in [4]. Let C be a class of graphs. The C-width of a
graph G is the minimum number k of independent sets N1, . . . , Nk in G such
that there exists an embedding G′ ∈ C of G such that for every edge xy in
G′ which is not an edge of G there exists an i with x, y ∈ Ni. A collection of
such k independent sets Ni, i = 1, . . . , k, is called a C witness for G. In the case
k = 1, G is a probe C-graph. The C-width problem asks for a given graph G

and an integer k if the C-width of G is at most k. Graphs of C-width k are also
called k-probe C-graph. Note that graphs in C are, by convenience, 0-probe
C-graphs.

In [4], the complete width and block-graph width have been investigated.
The authors proved that, for fixed k, graphs of complete width k can be charac-
terized by finitely many forbidden induced graphs. Their proof is however not
constructive. They also showed, implicitly, that complete width k graphs and
block-graph width k graphs can be recognized in cubic time. The case k = 1,
e.g., probe complete graphs and probe block graphs, has been discussed in
depth in [20]. The case k = 2 is discussed in [21].

Graphs that do not contain an induced subgraph isomorphic to a graph H

are called H-free. More generally, a graph is (H1, . . . , Ht)-free if it does not
contain an induced subgraph isomorphic to one of the graphs H1, . . . , Ht. For
two graphs G and H , we write G+H for the disjoint union of G and H , and
for an integer t ≥ 2, tG stands for the disjoint union of t copies of G. The
complete k-partite with ni vertices in color class i is denoted by Kn1,...,nk

. For
graph classes not defined here see, for example, [2,3,11].



On the complete width and edge clique cover problems 3

In this paper we study the complete width problem (given G and k, is
the complete width of G at most k?). We show that

– complete width is NP-complete, even on 3K2-free bipartite graphs, and
– computing the complete width of a 2K2-free bipartite graph (chain graph),

and more generally, of a (2K2,K3)-free graph can be done in polynomial
time,

– computing the complete width of a 2K2-free chordal graph (split graph),
and more generally, of a (2K2, C4)-free graph can be done in polynomial
time,

– complete width admits a kernel with at most 2k vertices. That is, any
instance (G, k) of complete width can be reduced in polynomial time
to an equivalent instance (G′, k′) of complete width with k′ ≤ k and G′

has at most 2k vertices. In particular, complete width is fixed-parameter
tractable with respect to parameter k.

Moreover, we give structural characterizations for graphs of complete width
at most 3.

In the next section we point out a relation between complete width and the
more popular notion of edge clique cover of graphs. Then we prove our results
in the last four sections. As we will see, it follows from our results on complete
width that edge clique cover is NP-complete on 3K2-free co-bipartite graphs
and is polynomially solvable on C4-free co-bipartite graphs.

2 Complete width and edge clique cover

An edge clique cover of a graph G is a family of cliques (complete subgraphs)
such that each edge of G is in at least one member of the family. The minimal
cardinality of an edge clique cover is the edge clique cover number, denoted by
θe(G).

The edge clique cover problem, the problem of deciding if θe(G) ≤ k,
for a given graph G and an integer k, is NP-complete [16,19,27], even when
restricted to graphs with maximum degree at most six [17], or planar graphs
[6]. edge clique cover is polynomially solvable for graphs with maximum
degree at most five [17], for line graphs [27,28], for chordal graphs [23,29], and
for circular-arc graphs [18].

In [19] it is shown that approximating the edge clique covering number
within a constant factor smaller than two is NP-hard. In [13], it is shown that
edge clique cover is fixed-parameter tractable with respect to parameter
k; see also [8,9] for more recent discussions on the parameterized complexity
aspects.

We write cow(G) to denote the complete width of the graph G. As usual,
G denotes the complement of G. In [4], the authors showed that complete

width is NP-complete on general graphs, by observing that

Proposition 1 ([4]) For any graph G, cow(G) = θe(G)
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Proposition 1 and the known results about edge clique cover imply:

Theorem 1 (1) Computing the complete width is NP-hard, and remains NP-
hard when restricted to graphs of minimum degree at least n − 7, and to
co-planar graphs.

(2) Computing the complete width of graphs of minimum degree at least n− 6
and of co-chordal graphs can be done in polynomial time.

In [5], it is conjectured that edge clique cover, and thus complete

width, is NP-complete for P4-free graphs (also called cographs).

We close this section by the following basic facts about complete width,
which will be useful later.

Proposition 2 Let G be a graph.

(1) If v is a universal vertex in G, then cow(G) = cow(G − v).
(2) Let G have no universal vertices. Suppose u and v are two vertices in G

with N(u) = N(v). Then

cow(G) =

{

cow(G − u) + 1, if v is universal in G− u

cow(G − u), otherwise

Proof (1): This is obvious.
(2): Assume first that v is universal in G− u. Then, clearly, the independent
set {u, v} belongs to any complete witness for G. Since G has no universal
vertices, G − u − v is not a complete graph, i.e., cow(G − u − v) ≥ 1. Hence
cow(G)− 1 = cow(G−u− v) = cow(G−u), where the second equality follows
from (1).

Suppose now that v is not universal in G − u, and let N1, . . . , Nk be a
complete witness for G − u with k = cow(G − u). Set N

′
i = Ni if v 6∈ Ni

and N
′
i = Ni ∪ {u} if v ∈ Ni. Clearly, N

′
1, . . . , N

′
k are independent sets in G.

Furthermore, N′1, . . . , N
′
k form a complete witness for G: Consider two non-

adjacent vertices x 6= y in G. If u 6∈ {x, y}, then x and y belong to some Ni,
hence to some N

′
i. So, let u = x, say. If v 6= y, then v and y are non-adjacent

in G − u (as N(u) = N(v)), hence v and y belong to some Ni. Hence u = x

and y belong to N
′
i = Ni ∪ {u}. If v = y, then, as v is not universal in G− u, v

is non-adjacent to some z ∈ G− u− v. Hence v = y and z belong to some Ni,
and so, u = x and y belong to N

′
i = Ni ∪ {u}.

Thus, N′1, . . . , N
′
k form a complete witness for G, as claimed. Therefore,

cow(G) ≤ cow(G− u), hence cow(G) = cow(G − u). ⊓⊔

Thus, by Proposition 2, we often assume that, when discussing complete
width, all graphs in question have no universal vertices and N(u) 6= N(v) for
any non-adjacent vertices u, v.

3 Computing complete width is hard for 3K2-free bipartite graphs

A bipartite graph G = (V,E) is a graph whose vertex set V can be partitioned
into two sets X and Y such that for any edge xy ∈ E, x ∈ X and y ∈
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Y . Bipartite graphs without induced cycles of length at least six are called
chordal bipartite. A biclique cover of a graphG is a family of complete bipartite
subgraphs of G whose edges cover the edges of G. The biclique cover number,
also called the bipartite dimension, of G is the minimum number of bicliques
needed to cover all edges of G.

Given a graph G and a positive integer k, the biclique cover problem
of G asks whether the edges of G can be covered by at most k bicliques. The
following theorem is well known.

Theorem 2 ([26,27]) biclique cover is NP-complete on bipartite graphs,
and remains NP-complete on chordal bipartite graphs.

For convenience, a bipartite graphG = (V,E) with a bipartition V = X∪Y
into independent sets X and Y is denoted as G = (X + Y,E). Let BC(G) =
(X + Y, F ), where F = {xy | x ∈ X, y ∈ Y, and xy 6∈ E}. We call BC(G)
the bipartite complement of G = (X + Y,E). Note that BC(C6) = 3K2 and
BC(C8) = C8. Hence if G is chordal bipartite, then BC(G) is (3K2, C8)-free
bipartite.

In [4], the authors showed that the complete width problem is NP-complete
on general graphs. We now establish our main theorem for sharpening that
result of [4].

Theorem 3 complete width is NP-complete on bipartite graphs, and re-
mains NP-complete on (3K2, C8)-free bipartite graphs.

Proof We prove this theorem by reducing biclique cover to complete

width.
Let (G, k) be an input instance of the biclique cover problem, where G =

(X +Y,E) is a bipartite graph. We construct an input instance (G′, k′) of the
complete width problem as follows.

– G′ is the bipartite graph obtained from the bipartite complement BC(G) =
(X + Y, F ) of G by adding two new vertices x and y and adding all edges
between x and vertices in Y ∪ {y} and between y and vertices in X ∪ {x}.
More formally, G′ = (X ′ + Y ′, F ′) with X ′ = X ∪ {x}, Y ′ = Y ∪ {y}, and
F ′ = F ∪ {xu | u ∈ Y ∪ {y}} ∪ {yv | v ∈ X ∪ {x}}.

– Set k′ := k + 2.

We claim that the biclique cover number of G is at most k if and only if
the complete width of G′ is at most k′ = k + 2.

First, let {Bi | 1 ≤ i ≤ k} be a biclique cover of G, where Bi = (Xi+Yi, Ei)
with Xi ⊆ X,Yi ⊆ Y . Then, as each Bi is a biclique in G, each Ni = Xi ∪Yi is
an independent set in G′. Set Nk+1 := X ′ and Nk+2 := Y ′. Then it is easy to
check that the k′ = k + 2 independent sets Ni, 1 ≤ i ≤ k + 2, form a complete
witness for G. That is, cow(G′) ≤ k′.

Conversely, let {Ni | 1 ≤ i ≤ k + 2} be a complete witness for G′. Then we
may assume that

x, y 6∈ Ni, 1 ≤ i ≤ k.
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(To see this, consider a vertex u ∈ X . As {Ni | 1 ≤ i ≤ k + 2} is a complete
witness for G′, u and xmust belong to Nt for some t ∈ {1, . . . , k+2}. Therefore,
Nt ⊆ X ∪ {x} = X ′ because x is adjacent to all vertices in Y ′. Clearly, we can
replace Nt by X ′ and, if x ∈ Ni for some i 6= t, replace Ni by Ni \ {x} to obtain
a new witness such that Nt = X ′ and x is contained only in Nt. Similarly, there
is some s such that Ns = Y ′ and y is contained only in Ns. By re-numbering if
necessary, we may assume that t = k + 1 and s = k + 2.)

Thus, by construction of G′, N1, . . . , Nk are independent sets in BC(G) and
form a complete witness for BC(G). Therefore, Bi = G[Ni], 1 ≤ i ≤ k, are
bicliques in G forming a biclique cover of G. That is, θe(G) ≤ k.

Note that if G is chordal bipartite, then the bipartite graph G′ cannot
contain 3K2 and C8 as induced subgraphs. ⊓⊔

Theorem 3 and Proposition 1 imply the following new NP-completeness
result for edge clique cover.

Corollary 1 edge clique cover is NP-complete on (3K2, C8)-free co-bipar-
tite graphs.

4 Polynomially solvable cases

In this section we establish some cases in which complete width can be
solved in polynomial time. Actually, in each of these cases we will show that
the complete width of the graphs under consideration can be computed in
polynomial time.

4.1 2K2-free bipartite graphs

Bipartite graphs without induced 2K2 are known in literature under the name
chain graphs ([31]) or difference graphs ([15]). They can be characterized as
follows.

Proposition 3 (see [25]) A bipartite graph G = (X+Y,E) is a chain graph
if and only if for all vertices u, v ∈ X, N(u) ⊆ N(v) or N(v) ⊆ N(u).

Theorem 4 The complete width of a chain graph can be computed in polyno-
mial time.

Proof Let G = (X + Y,E) be a 2K2-free bipartite graph with at least three
vertices. By Proposition 2, we may assume that for any pair of vertices u, v of
G, N(u) 6= N(v). Thus, |X | ≥ 2, |Y | ≥ 2, and G has at most one non-trivial
connected component and at most one trivial component which is then the
unique isolated vertex of G. Let us also assume that the isolated vertex (if
any) of G belongs to X . By Proposition 3, the vertices of X can be numbered
v1, v2, . . . , v|X| such that N(v1) ⊂ N(v2) ⊂ · · · ⊂ N(v|X|) = Y . Thus, G
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is disconnected if and only if v1 is the isolated vertex of G if and only if
N(v1) = ∅. Clearly, such a numbering can be computed in polynomial time.

Write Ni = {v1, . . . , vi} ∪ (Y \ N(vi)), 1 ≤ i ≤ |X |. Since N(vj) ⊂ N(vi)
for j < i, Ni is an independent set, and since N(v|X|) = Y , N|X| = X . In case
N(v1) 6= ∅, let N|X|+1 = Y . Note that in the case that N(v1) = ∅, i.e., v1 is
the isolated vertex of G, N1 = Y ∪ {v1}.

We claim that

cow(G) =

{

|X |, if N(v1) = ∅

|X |+ 1, otherwise

Moreover, N1, . . . , N|X| and N|X|+1 (if N(v1) 6= ∅) together form a complete
witness for G.
Proof of the Claim: First, to see that the collection of the independent sets

N1, . . . , N|X| and N|X|+1 (if N(v1) 6= ∅) is a complete witness for G, let u, v be
two non-adjacent vertices of G. If u, v ∈ X , say u = vi and v = vj for some
1 ≤ i < j ≤ |X |, then u, v ∈ Nj . If u ∈ X and v ∈ Y , say u = vi for some
1 ≤ i ≤ |X |, then u, v ∈ Ni. So let u, v ∈ Y . In this case, let i ≤ j be the
smallest integers such that u ∈ N(vi), v ∈ N(vj). If i > 1 then u, v 6∈ N(v1),
hence u, v ∈ N1. Thus, let u ∈ N(v1). Then, in particular N(v1) 6= ∅ and hence
u, v ∈ N|X|+1 = Y .

In particular, cow(G) is at most the right hand side stated in the claim.

Next, observe that the claim is clearly true in case |X | = 2. So, let |X | ≥ 3.
Note that in G − v1, N(v2) is not empty, hence by induction, cow(G − v1) =
|X \ {v1}|+ 1 = |X | and N

′
1 = N2 \ {v1}, . . . , N′|X|−1

= N|X| \ {v1} and N
′
|X| =

N|X|+1 = Y form a complete witness for G − v1. Now, if N(v1) = ∅ then
cow(G) ≥ cow(G − v1) = |X |, hence cow(G) = |X |. So, let N(v1) 6= ∅. In
this case, for any u ∈ N(v2) \ N(v1) and any maximal independent set I of
G containing v1 and u, N′i 6⊆ I. Thus, cow(G) ≥ cow(G − v1) + 1 = |X | + 1,
hence cow(G) = |X |+ 1.

The proof of the claim is completed, hence Theorem 4. ⊓⊔

Theorem 4 and Proposition 1 imply the following corollary.

Corollary 2 The edge clique cover number of a C4-free co-bipartite graph can
be computed in polynomial time.

4.2 (2K2,K3)-free graphs

We extend Theorem 4 on K2-free bipartite graphs by showing that complete
width is polynomially solvable for large class of 2K2-free triangle-free graphs.

Theorem 5 The complete width of a (2K2,K3)-free graph can be computed
in polynomial time.
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Proof Let G be a (2K2,K3)-free graph. If G has no induced C5, then G is
2K2-free bipartite, hence we are done by Theorem 4.

So let G contain an induced C5, say C = v1v2v3v4v5v1. By Proposition 2,
we may assume that N(u) 6= N(v) for any non-adjacent vertices u and v of G.
We will see that C is a connected component of G. Let H be the connected
component of G containing C. If H 6= C, then there is some vertex v ∈ H −C

adjacent to some vertex in C, say v1. Since G is (2K2,K3)-free, v is non-
adjacent to v2, v5 and adjacent to v3 or v4 but not both. Let v be adjacent to v3,
say. Now, as N(v) 6= N(v2), there is a vertex u adjacent to v and non-adjacent
to v2, say. But then G[C + u + v] has a K3 or a 2K2, a contradiction. Thus
H = C and as G is 2K2-free, C is the only non-trivial connected component
of G, hence cow(G) = 5. ⊓⊔

4.3 Split graphs

A split graph is one whose vertex set can be partitioned into a clique Q and an
independent set S. For convenience, a split graph is denoted as G = (Q+S,E).
It is well known that split graphs can be characterized as follows.

Proposition 4 ([10]) The following statements are equivalent for any graph
G.

(i) G a split graph;
(ii) G is a (2K2, C4, C5)-free graph;
(iii) G is a 2K2-free chordal graph;
(iv) G and G are chordal.

In particular, split graphs are complements of chordal graphs. Hence, by
Theorem 1 (2), computing the complete width of split graphs can be done in
polynomial time. Below, however, we give a simple and direct way for doing
this. Moreover, our solution will be useful for computing the complete width
of pseudo split graphs. The class of pseudo split graphs are not necessarily
co-chordal and properly contains all split graphs.

In the following, by Proposition 2, we may consider the split graphs G =
(Q+ S,E) with no universal vertex.

Theorem 6 For a split graph G = (Q + S,E) with no universal vertex, the
complete width of G is either |Q| or |Q|+ 1.

Proof Assume that the complete width of G is k. That is, there is an em-
bedding G′ of G such that for every edge xy in G′ but not in G there are
independent sets N1, . . . , Nk in G such that {x, y} ⊆ Ni for some i. By the defi-
nition, G[Q] is a clique. Thus it is impossible that there are two vertices of Q
in the same Ni for 1 ≤ i ≤ k. That is, each Ni contains at most one vertex in
Q. Therefore, the complete width of G is at least |Q|.

On the other hand, for each vertex v ∈ Q, let Nv = V (G)\N(v). Then, each
Nv, v ∈ Q, is an independent set. Further, for each Nv, we can fill edges vu,
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u ∈ Nv−v. Finally, for the final set S, we make G[S] a clique by filling edge xy
for any two vertices x, y ∈ S. The resulting graph is a complete graph. That
is, the complete width of G is at most |Q|+ 1. This completes the proof. ⊓⊔

By Theorem 6, there are only two cases for determining the complete width
of a split graph. For the split graph G = (Q+ S,E), let Nv = V (G) \N(v) for
v ∈ Q. We have the following lemma.

Lemma 1 For a split graph G = (Q + S,E) with no universal vertex, if for
any two vertices x, y ∈ S, there is an Nv, v ∈ Q, such that x, y ∈ Nv, then the
complete width of G is |Q|; otherwise it is |Q|+ 1.

Proof Assume that for any two vertices x, y ∈ S, there is an Nv, v ∈ Q such
that x, y ∈ Nv. We show that the complete width of G is |Q|. Without loss of
generality, we assume all the Nv’s are ordered as the sequence of N1, N2, . . . , N|Q|.
For completing G into Kn, for each Nv, we fill the edges vu, u ∈ (Nv ∩ S).
Furthermore, assume that Ni is the last set that contains x and y for any two
vertices x, y ∈ S. That is, {x, y} ⊆ Ni but {x, y} 6⊆ Nj for each j > i. Then the
edge xy is filled in Ni. By assumption, every edge in G[S] can be filled in some
Ni. Thus the complete width of G is |Q|.

On the other hand, if no Ni contains x and y for some x, y ∈ S, then there
is no way to fill x, y in N1, N2, . . . , N|Q|. Therefore the complete width of G is
|Q|+ 1. ⊓⊔

By Lemma 1, for any two vertices x, y ∈ S, we can check whether there is
a vertex v ∈ Q such that both xv and yv are in E or not. By using adjacency
matrix of G, all the work can be done in O(n3) time. Thus, we have the
following theorem.

Theorem 7 The complete width of a split graph can be computed in polyno-
mial time.

4.4 Pseudo-split graphs

Graphs without induced 2K2 and C4 are called pseudo-split graphs. By Propo-
sition 4, the class of pseudo-split graphs properly contains the class of split
graphs. Note that a pseudo-split graph may contain an induced C5, hence it
might not be co-chordal. Pseudo-split graphs can be characterized as follows.

Theorem 8 ([1,24]) A graph is pseudo-split if and only if its vertex set can be
partitioned into three sets Q,S,C such that Q is a clique, S is an independent
set, C induces a C5 or is empty, xy is an edge for each x ∈ Q and each y ∈ C,
and there are no edges between S and C.

Note that it can be recognized in linear time if a graph is a pseudo split graph,
and if so, a partition stated in Theorem 8 can be found in linear time [24].

Theorem 9 The complete width of a pseudo-split graph can be computed in
polynomial time.
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Proof Let G = (V,E) be a pseudo-split graph without universal vertices. Let
V = Q + S + C be a partition as in Theorem 8. We may assume that C 6= ∅
otherwise we are done by Theorem 7.

So let C be the induced C5 = v1v2v3v4v5v1. Then, clearly, the |Q| + 5
independent sets V − N(v), v ∈ Q, and S ∪ {vi, vi+2} (indices are taken
modulo 5), 1 ≤ i ≤ 5, can be used for completing G. Thus, by Theorem 6, and
by noting that cow(C5) = 5, we have cow(G) = |Q|+ 5. ⊓⊔

Theorem 9 and Proposition 1 imply the following corollary (note that the
complement of a pseudo-split is also a pseudo-split graph).

Corollary 3 The edge clique cover number of a pseudo-split graph can be
computed in polynomial time.

5 Problem kernel

Parameterized complexity deals with NP-hard problems whose instances come
equipped with an additional integer parameter k. The objective is to design
algorithms whose running time is f(k) · poly(n) for some computable function
f depending only on k and some polynomial poly(·). Problems admitting such
algorithms are called fixed-parameter tractable. See, e.g., [7] for more infor-
mation. It is well known that fixed-parameter tractable problems are exactly
those problems having a kernel. Here, a kernel is an algorithm that, given an
instance (x, k) of the problem with a fixed parameter k, outputs in polynomial
time in |x|+ k an ‘equivalent’ instance (x′, k′) of the same problem such that
|x′|, k′ ≤ g(k) for some computable function g depending only on k.

As mentioned, complete width and edge clique cover are NP-comp-
lete in general and fixed parameter tractable with respect to k. In [4], an
fpt-algorithm for complete width was given, based on the monadic second
order logic. In [13], it was shown that edge clique cover admits a problem
kernel of at most g(k) = 2k vertices.

In this section, we give a characterization of k-probe complete graphs,
which will imply that complete width admits a problem kernel of at most
2k vertices. With Proposition 1, this provides an alternative way to see that
edge clique cover admits a problem kernel of at most 2k vertices ([13]).

To this end, we first construct, for a given integer k, a prototype for graphs
with complete width k. Write [k] = {1, . . . , k} and let P [k] be the set of all
subsets of [k]. We define the graph G[k] as follows: V (G[k]) = P [k], E(G[k]) =
{{M,L} | M ∩L = ∅}. Thus, the vertices of G[k] are the subsets of {1, . . . , k}
and two subsets are adjacent in G[k] whenever they are disjoint. Let G ⋆ H

be the join of G and H obtained from G + H by adding all possible edges
xy between any vertex x ∈ G and any vertex y ∈ H . Then, G[1] is the clique
K2, G[2] = (K2 +K1) ⋆ K1, G[3] = (Net +K1) ⋆ K1, where Net is the graph
consisting of six vertices a, b, c, a′, b′ and c′ and six edges ab, bc, ca, aa′, bb′ and
cc′ (see Figure 1).

Proposition 5 cow(G[k]) = k.
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G[2] G[3]

Fig. 1 The graph G[2] = (K2 +K1) ⋆ K1 and G[3] = (Net +K1) ⋆ K1. The black vertices
in G[3] induce the Net.

Proof The claim is obvious in case k = 1. So, let k ≥ 2. Note first that
{{i} | 1 ≤ i ≤ k} is a clique in G[k] and the vertex [k] is non-adjacent to
all vertices in this clique. Thus, for each 1 ≤ i ≤ k, any complete witness for
G[k] must contain an independent set containing the two vertices [k] and {i}.
Therefore, any complete witness forG[k] must have at least k independent sets,
hence cow(G[k]) ≥ k. On the other hand, the k independent sets Ni := {M ⊆
[k] | i ∈ M}, 1 ≤ i ≤ k, form a complete witness for G[k]: if M 6= L ⊆ [k]
are two non-adjacent vertices in G[k], i.e., M ∩L 6= ∅, then M,L ∈ Ni for any
i ∈ M ∩ L. Hence cow(G[k]) ≤ k. ⊓⊔

Note that in case of k ≥ 2, the empty set is the unique universal vertex
of G[k]. For technical reason, we say that G[1] = K2 has only one universal
vertex. Substituting a vertex v in a graph G by a graph H results in the graph
obtained from (G− v)∪H by adding all edges between vertices in NG(v) and
vertices in H . We now are able to characterize k-probe complete graphs as
follows.

Lemma 2 A graph is a k-probe complete graph if and only if it is obtained
from G[k] by substituting the universal vertex by a (possibly empty) clique and
other vertices by (possibly empty) independent sets.

Proof First, assume that G is a k-probe complete graph, and let Q be the set of
all universal vertices of G (possibly Q = ∅). By Proposition 2, G−Q is k-probe
complete. Let N1, . . . , Nk be a complete witness for G − Q with k = cow(G).
For each M ⊆ [k], M 6= ∅, let

IM = {v ∈ V (G) | v ∈
⋂

i∈M

Ni \
⋃

j 6∈M

Nj}.

Then, as G−Q has no universal vertex, V (G) \Q =
⋃

M IM is a partition in
pairwise disjoint (possible empty) independent sets IM . Observe that, for any
non-empty M,L ⊆ [k],

M ∩ L 6= ∅ ⇔ no vertex in IM is adjacent to a vertex in IL and vice versa.

Moreover, as N1, . . . , Nk form a complete witness for G, we have

M ∩ L =∅ ⇔

every vertex in IM is adjacent to every vertex in IL and vice versa.
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Now, set I∅ := Q and let G∗ be obtained from G by shrinking each IM to a
single vertex vM , M ⊆ [k]. Then the facts above show that G∗ is isomorphic
to G[k] via the bijection vM 7→ M , and thus, G is obtained from G[k] by
substituting the universal vertex ∅ by the clique Q and other vertices M by
the independent sets IM .

For the other direction, suppose that G is obtained from G[k] by substitut-
ing the universal vertex by a (possibly empty) clique and other vertices v by
(possibly empty) independent sets Iv. Then G is a k-probe complete graph.
Indeed, by Proposition 5, G[k] is a k-probe complete graph. Let N1, . . . , Nk be a
complete witness forG[k]. Then the independent sets N′i :=

⋃

v∈Ni
Iv, 1 ≤ i ≤ k,

form a complete witness for G. Consider two arbitrary non-adjacent vertices
x 6= y of G. If x, y ∈ Iv for some v ∈ V (G[k]), then v is not the universal vertex
of G[k], hence v ∈ Ni for some 1 ≤ i ≤ k and therefore x, y ∈ N

′
i. If x ∈ Iu

and y ∈ Iv for some u 6= v ∈ V (G[k]), then, as x and y are non-adjacent in
G, u and v are non-adjacent in G[k]. Hence u, v ∈ Ni for some 1 ≤ i ≤ k and
therefore x, y ∈ N

′
i. ⊓⊔

Theorem 10 complete width (and hence edge clique cover) admits a
problem kernel of at most 2k vertices.

Proof Let (G, k) be an instance of complete width. By Proposition 2, we
may assume that G has no universal vertices and N(u) 6= N(v) for any non-
adjacent vertices u, v. Thus, by Lemma 2, G is (isomorphic to) an induced
subgraph of G[k], whenever G is a k-probe complete graph. Since G[k] has 2k

vertices, Theorem 10 follows. ⊓⊔

We remark that it was shown in [8] that edge clique cover, hence
complete width, has no kernel of polynomial size, unless certain complexity
assumption fails.

6 Graphs of small complete width

We describe in this section graphs of small complete width k ≤ 3. These are
particularly 2K2-free and our descriptions are good in the sense that they
imply polynomial-time recognition for these graph classes.

6.1 Complete width-1 and complete width-2 graphs

A complete split graph is a split graph G = (Q+ S,E) such that every vertex
in the clique Q is adjacent to every vertex in the independent set S. Such a
partition is also called a complete split partition of a split graph. Note that if
the complete split graph G = (Q + S,E) is not a clique, then G has exactly
one complete split partition V = Q∪S. Furthermore, each vertex in Q, if any,
is a universal vertex.

Graphs of complete width one can be characterized as follows.



On the complete width and edge clique cover problems 13

Theorem 11 The following statements are equivalent.

(i) G is a probe complete graph;
(ii) G is a (K2 +K1, C4)-free graph;
(iii) G is a complete split graph;
(iv) G is obtained from a K2 by substituting one vertex by a clique and the

other vertex by an independent set.

Proof The equivalence of (i), (ii) and (iii) has been shown in [20]. The equiv-
alence of (i) and (iv) follows from Lemma 2. ⊓⊔

Graphs of complete width at most two can be characterized as follows.

Theorem 12 The following statements are equivalent.

(i) G is a 2-probe complete graph;
(ii) G is (2K2, P4,K3 +K1, (K2 +K1) ⋆ 2K1, C4 ⋆ 2K1)-free; see Fig. 2;
(iii) G is obtained from G[2] = (K2 + K1) ⋆ K1 by substituting the universal

vertex by a clique and the other vertices by independent sets.

2K2 P4 K3 +K1 (K2 +K1) ⋆ 2K1 C4 ⋆ 2K1

Fig. 2 Forbidden induced subgraphs for 2-probe complete graphs.

Proof The equivalence of (i) and (iii) has been shown in [21]. The equivalence
of (i) and (iii) follows from Lemma 2. ⊓⊔

6.2 Complete width-3 graphs

Graphs of complete width at most 3 can be characterized as follows.

Theorem 13 The following statements are equivalent.

(i) G is a 3-probe complete graph;
(ii) G is (F1, . . . , F14)-free; see Fig. 3;
(iii) G is obtained from G[3] = (Net + K1) ⋆ K1 by substituting the universal

vertex by a clique and the other vertices by independent sets.
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F1 = 2K2 F2 = C5 F3 = P5 F4 = K4 +K1

F5 F6 F7

F8 = (P4 ⋆ K1) +K1 F9 F10 F11 = (K3 +K1) ⋆ 2K1

F12 = P3 ⋆ P3 F13 = (K2 +K1) ⋆ C4 F14 = C4 ⋆ C4

Fig. 3 Forbidden induced subgraphs for 3-probe complete graphs.

Proof By Lemma 2 it remains to prove the equivalence of (i) and (ii).

(i) ⇒ (ii): By inspection one can easily see that none of the graphs depicted in
Fig.3 is a 3-probe complete graph. Thus, no 3-probe complete graph contains
any of these graphs as an induced subgraph.

(ii) ⇒ (i): Let G be a (F1, . . . , F14)-free graph. Let Q be the set of all universal
vertices of G. As G is F1-free, G − Q has at most one non-trivial connected
component. Let H be the non-trivial connected component of G − Q (if H
does not exist, G is a 1-probe complete graph and we are done), and let I be
the set of all isolated vertices of G−Q.

We distinguish two cases; note that, as G is F1-free, G is particularly P5-
free.

Case 1. H contains an induced P4. Let P = v1v2v3v4 be an induced P4 in H

with edges v1v2, v2v3 and v3v4. For each S ⊆ {1, 2, 3, 4} write

MS = {v | v ∈ V (H) \ V (P ), N(v) ∩ V (P ) = {vi | i ∈ S}} ,

that is, MS consists of all vertices of H outside P adjacent exactly to vi, i ∈ S.
By definition, MS ∩MS′ = ∅ whenever S 6= S′. To simplify the notion, we also
write M0 for M∅, M3 for M{3} and M124 for M{1,2,4} and so on. We have the
following facts.

– M1 = M4 = M12 = M34 = M14 = ∅. This is because G is (F1, F2)-free.
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– M124 = M134 = M123 = M234 = ∅. This is because G is (F3, F5)-free.
– M1234 = ∅. Assume that M1234 6= ∅. Then M1234 is a clique (as G is

F10-free), and every vertex in M1234 is adjacent to all vertices in M2 ∪
M3 ∪M13 ∪M24 ∪M23 ∪ M0 ∪ I (as G is (F5, F3, F9, F8)-free). But then
M1234 ⊆ Q, a contradiction.

Thus, V (H) = M0 ∪M2 ∪M3 ∪M13 ∪M24 ∪M23. Moreover,

– M0,M2,M3,M13,M24 and M23 are independent sets. This is because G is
(F1, F5, F7)-free.

For two disjoint sets U,W of vertices, we write U 1©W , respectively U 0©W , to
describe the fact that every vertex in U is adjacent, respectively non-adjacent,
to every vertex in W and vice versa. We have the following facts.

– M0 0©(M2∪M3) and M0 0©(M13∪M24). These are because G is (F1, F6)-free.
– M0 1©M23. Since M0 is independent and M0 0©(M2 ∪M3 ∪M13 ∪M24), the

connectedness of H implies that each vertex in M0, if any, must have a
neighbor in M23. Since M23 is independent and G is F5-free, each vertex
in M0 therefore is adjacent to all vertices in M23.

– M2 0©M3,M2 1©M13 (as G is F6-free) andM2 0©(M23∪M24) (asG is (F5, F3)-
free).

– M3 1©M24 and M3 0©(M23 ∪M13). These are obtained by symmetry.
– M13 1©M24. This is because G is F1-free.

Thus, the three independent sets

N1 := M2 ∪ {v1} ∪M3 ∪ {v4} ∪M23 ∪ I,

N2 := M0 ∪M2 ∪ {v1} ∪M24 ∪ {v3} ∪ I,

N3 := M0 ∪M3 ∪ {v4} ∪M13 ∪ {v2} ∪ I,

form a complete witness for G, and Case 1 is settled.

Case 2. H is P4-free. That is, H is a cograph. It is a well-known fact that
any connected cograph is the join of two smaller cographs (see, e.g., [2]). This
fact immediately implies that any connected C4-free cograph has a universal
vertex.

Now, let H = H1 ⋆ H2. Then H1 or H2 is edgeless. To see this, suppose
the contrary that both H1 and H2 have some edges. Then I = ∅ (otherwise
G would have an F4), hence neither H1 nor H2 can have a universal vertex
(otherwise G − Q would have a universal vertex). Moreover, H1 or H2 must
be connected (otherwise both H1 and H2 would have a P3, and G would have
an F12). Let, say, H1 be connected. Then, as H1 has no universal vertex, H1

has a C4. Now, if H2 is disconnected, then G has an F13. If H1 is connected,
then, as H2 has no universal vertex, H2 has a C4. But then G has an F14. This
contradiction shows that H1 or H2 must be edgeless, as claimed. Say, without
loss of generality,

H1 is edgeless.

We distinguish two cases.



16 Van Bang Le, Sheng-Lung Peng

Case 2.1. I = ∅. Then the independent set V (H1) has at least two vertices
(otherwise the vertex of H1 would be a universal vertex of G). Hence H2 is

– (K3 +K1)-free (otherwise G would have an F11),
– (K2 +K1) ⋆ 2K1-free (otherwise G would have an F13), and
– (C4 ⋆ 2K1)-free (otherwise G would have an F14).

Thus, by Theorem 12,H2 is a 2-probe complete graph. Let N1, N2 be a complete
witness for H2. Then N1, N2 and N3 := V (H1) clearly from a complete witness
for G.

Case 2.2. I 6= ∅. Then H2 is K3-free (otherwise a K3 in H2, a vertex in
H1 and a vertex in I would induce an F4). By Theorem 12, H2 is a 2-probe
complete.

Suppose first that H2 has a universal vertex v. Then V (H2) \ {v} is an
independent set, and N1 := V (H1)∪I, N2 := (V (H2)\{v})∪I and N3 := I∪{v}
clearly form a complete witness for G.

Suppose next that H2 has no universal vertex. Recall that H2 is a 2-probe
complete graph, and consider a complete witness N1, N2 forH2. SinceH2 has no
universal vertex, any vertex of H2 must belong to N1 or N2. Thus, N

′
1 := N1∪ I,

N
′
2 := N2 ∪ I and N3 := V (H1) ∪ I clearly form a complete witness for G.

Case 2 is settled, and the proof of Theorem 13 is complete. ⊓⊔

We note that, by using modular decomposition (see, e.g., [14,30]), one can
recognize graphs obtained from the Net by substituting vertices by indepen-
dent sets in linear time. Hence Theorem 13 gives a linear time recognition for
3-probe complete graphs.

7 Conclusion

In this paper we have shown that complete width is NP-complete on 3K2-
free bipartite graphs (equivalently, edge clique cover is NP-complete on
3K2-free co-bipartite graphs). So, an obvious open question is: What is the
computational complexity of complete width on 2K2-free graphs? Equiv-
alently, what is the computational complexity of edge clique cover on
C4-free graphs? We have given partial results in this direction by showing
that complete width is polynomially solvable on (2K2,K3)-free graphs and
on (2K2, C4)-free graphs. (Equivalently, edge clique cover is polynomially
solvable on (C4, 3K1)-free graphs and on (C4, 2K2)-free graphs.)

Another interesting question is the following. The time complexities of
many problems coincide on split graphs and bipartite graphs, e.g., the domi-
nating set problem. However, for the complete width problem, they are differ-
ent, one is in P and the other is in NP-complete. Trees are a special class of
bipartite graphs. Many problems become easy on trees. However, we do not
know the hardness of the complete width problem on trees.
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