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1 Introduction

Resource allocation problems in large-scale scenarios such as networks often cannot
be solved as a single optimization problem. The size of the problem, the distributed
nature of information, or control preclude a centralized approach. As a consequence,
decisions are delegated to local actors or players. This gives rise to strategic behavior as
these players often have economic interests. Game theory has studied the effect of such
strategic interaction in various models of resource allocation and scheduling. One of
the most prominent ones is the class of atomic congestion games (Rosenthal 1973), in
which players choose sets of resources. The cost of a resource depends on the number
of players allocating it. The cost of a player is the sum of the costs of her allocated
resources. The appeal of this model stems not only from its applicability to prominent
problems like scheduling, routing and load balancing, but also from desirable game
theoretic properties. Congestion games always possess pure Nash equilibria and the
natural improvement dynamics converge to a pure Nash equilibrium since these games
are potential games. In fact, the class of congestion games is isomorphic to the class
of potential games (Monderer and Shapley 1996), which shows their expressiveness.
When modeling network routing with congestion games and most of its variants like
weighted (Fotakis et al. 2005) or player-specific congestion games (Milchtaich 1996)
one faces deficiency due to the nature of the players’ cost functions. As a player’s cost
is determined by the sum of the resource costs, congestion games are not well suited to
model effects like bandwidth allocation, as here the cost of a player is determined only
by the bottleneck resource. Hence, Banner and Orda (2007) introduced bottleneck
congestion games where the cost of a player is the maximum cost of her chosen
resources. Again, due to the nature of the cost functions, this class of games and most
of its variants (Harks et al. 2009, 2016) only model the bottleneck effects and are
unable to describe latency effects. It is not difficult to envision scenarios in which both
effects, latency and bandwidth, are relevant to decision makers - especially in today’s
IT infrastructures where we find techniques with shared resources, for example in
the context of cloud computing or in software-defined networking. Many users with
lots of different applications and therefore different objectives interact in one network
and compete for the same resources. Consider, for example, on the one hand media
streaming and on the other hand video gaming. In one application, bandwidth is the
most important property, in the other it is latency.

1.1 Our contribution

We study a game theoreticmodel in which playersmay have heterogeneous objectives.
We introduce the model of congestion games with mixed objectives. In this model,
resources have two types of costs, latency cost and bottleneck cost, where the latter
corresponds to the inverse of bandwidth. The players’ costs may depend on both types
of cost, where we allow different players to have different preferences regarding the
two cost types. The convex combination of the two cost functions as the new objective
is the simplest extension which contains both standard games and introduces new
degrees of freedom to model more complex scenarios.
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Table 1 Existence of pure Nash equilibria for different restricted classes

Unrestricted α-uniform Pure preferences Dependence

Singleton � (Thm. 1, Cor. 1)

Matroid - (Thm. 2, 3) � (Thm. 1, Cor. 1) � (Thm. 1, 8)

unrestricted - (Thm. 4, 6, 5)

Table 2 Approximation factorsβ for different restricted classes depending on the size of the largest strategy
d

Unrestricted α-uniform �r = er α-uniform & �r = er
Matroid d (Thm. 12)

Linear ed (Thm. 2) d (Thm. 12)
√
d (Thm. 12) d

α(d−1)+1 (Thm. 12)

Polynomial edg (Thm. 3)

Unrestricted

We give an almost complete characterization of themodel of congestion gameswith
mixed objectives. For different restrictions on the strategy sets (singleton, matroid and
unrestricted games) and on the new properties of our model regarding the preferences
values and the dependence of the two cost functions, we show the (non-)existence of
pure Nash equilibria (see Table 1). We show that pure Nash equilibria exist and can be
computed in polynomial time in singleton games and in somematroid games.However,
we show that thematroid property alone is not sufficient for the existence.Additionally,
it is necessary that either the players are only interested in latency or bottleneck cost,
or that the cost functions have a monotone dependence. For the latter case, we show
convergence of best-response dynamics while the remaining cases are only weakly
acyclic. For matroid and unrestricted games that do not satisfy one of the additional
properties, we show that pure equilibriamight not exist and it is evenNP-hard to decide
whether one exists. This yields even for α-uniform games, in which all players use the
same constant in the linear combination of their costs. Additionally, we characterize
the quality of the equilibria using the Price of Anarchy and the Price of Stability.

To overcome these non-existence results, we consider approximate pure Nash
equilibria. For the general casewe show that the existence is not guaranteed for approx-
imation factors β ≤ 3 and we show that the decision problem whether they exist is
NP-hard. On the positive side, we can show for several classes of games that there exist
β-approximate pure Nash equilibria where β depends on the size of the largest strategy
(see Table 2). In the table, �r and er represent both types of cost functions (latency
respectively bottleneck costs) and g is the maximal degree of all cots functions.

1.2 Related work

Milchtaich (1996) studies the concept of player-specific congestion games and shows
that in the singleton case these games always admit pure Nash equilibria. Ackermann
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et al. (2009) generalize these results to matroid strategy spaces and show that the
result also holds for weighted congestion games. Furthermore, they point out that
in a natural sense the matroid property is maximal for the guaranteed existence of
pure Nash equilibria in player-specific and weighted congestion games. Moreover,
Milchtaich (1996) examines congestion games in which players are both weighted
and have player-specific cost functions. By constructing a game with three players, he
shows that these games do not necessarily possess pure Nash equilibria, even in the
case of singleton strategies.

Mavronicolas et al. (2007) study a special case of these games in which cost func-
tions are not entirely player-specific. Instead, the player-specific resource costs are
derived by combining the general resource cost function and a player-specific con-
stant via a specified operation (e. g. addition or multiplication). They show that this
restriction is sufficient to guarantee the existence of pure Nash equilibria in gameswith
three players. Dunkel and Schulz (2008) show that the decision problem of whether
a weighted network congestion game possesses a pure Nash equilibrium is NP-hard.
The equivalent result is achieved for player-specific congestion games by Ackermann
and Skopalik (2008).

Banner and Orda (2007) study the applicability of game-theoretic concepts in net-
work routing scenarios. In particular, they derive bounds on the price of anarchy in
network bottleneck congestion games with restricted cost functions and show that
a pure Nash equilibrium which is socially optimal always exists. Cole et al. (2012)
further investigate the non-atomic case, they especially consider the impacts of vari-
able traffic rates. In contrast, Harks et al. (2009) concentrate on the atomic case and
study the lexicographical improvement property, which guarantees the existence of
pure Nash equilibria through a potential function argument. They show that bottleneck
congestion games fulfill this property and, hence, they are potential games. Harks et al.
(2013) consider the complexity of computing pure Nash equilibria and strong equi-
libria in bottleneck congestion games. Moreover, they show this property in matroid
bottleneck congestion games.

Chien and Sinclair (2011) study the convergence towards approximate pure Nash
equilibria in symmetric congestion games. Skopalik and Vöcking (2008) show
inapproximability in asymmetric congestion games, which is complemented by
approximation algorithms for linear and polynomial delay functions (Caragiannis et al.
2011; Feldotto et al. 2014), even for weighted games (Caragiannis et al. 2015). Han-
sknecht et al. (2014) use the concept of approximate potential functions to examine
of approximate pure Nash equilibria in weighted congestion games under different
restrictions on the cost functions.

1.3 Preliminaries

A congestion game with mixed objectives is defined by a tuple � = (N , R,

(�i )i∈N , (αi )i∈N , (�r )r∈R , (er )r∈R
)
, where N = {1, . . . , n} denotes the set of play-

ers and R denotes the set of resources. For each player i let �i ⊆ 2R denote the
strategy space of player i and αi ∈ [0, 1] the preference value of player i . For each
resource r let �r : N → R denote the non-decreasing latency cost function associated
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to resource r , and let er : N → R denote the non-decreasing bottleneck cost function
associated to resource r . For a state S = (S1, . . . , Sn) ∈ S = �1 × . . . × �n , we
define for each resource r ∈ R by nr (S) = |{i ∈ N | r ∈ Si }| the congestion of r . The
latency cost of r in state S is given by �r (S) = �r (nr (S)), and the bottleneck cost by
er (S) = er (nr (S)). The total cost of player i in state S depends on αi and is defined
as ci (S) = αi · ∑

r∈Si �r (S) + (1 − αi ) · maxr∈Si er (S). The social cost of a state is
given by C(S) = ∑

i∈N ci (S).
For a state S = (S1, ..., Si , ..., Sn), we denote by

(
S′
i , S−i

)
the state that is reached

if player i plays strategy S′
i while all other strategies remain unchanged. A state

S = (S1, . . . , Sn) is called a pure Nash equilibrium (PNE) if for all i ∈ N and all
S′
i ∈ �i it holds that ci (S) ≤ ci (S′

i , S−i ) and a β-approximate pure Nash equilibrium
for a β ≥ 1, if for all i ∈ N and all S′

i ∈ �i it holds that ci (S) ≤ β · ci (S′
i , S−i ). For a

given game �, let PNE ⊆ S denote the set of all pure Nash equilibria of �. The Price
of Anarchy is defined as the ratio between the social costs at the worst equilibria and
the social optimum of the game, formally PoA = maxS∈PNE C(S)/minŜ∈P C(S),
while the Price of Stability gives the ratio between the social costs at the best equilibria
and the social optimum, formally PoS = minS∈PNE C(S)/minŜ∈P C(S).

A singleton congestion gamewithmixed objectives is a congestion gamewithmixed
objectives � with the additional restriction that all strategies are singletons, i. e., for
all i ∈ N and all Si ∈ �i we have that |Si | = 1. A matroid congestion game with
mixed objectives is a congestion game with mixed objectives in which the strategy
spaces of all players form the bases of a matroid on the set of resources. A network
congestion game with mixed objectives is a congestion game with mixed objectives
in which the strategy space of a player i corresponds to the set of paths between a
source si and a destination ti in an underlying graph. We say that the cost functions
of a congestion game with mixed objectives have a monotone dependence if there is
a monotone non-decreasing function f : R → R, such that er (x) = f (�r (x)) for all
r ∈ R. We call the players α-uniform if there is an α ∈ [0, 1] such that αi = α for all
players i ∈ N . We say the players have pure preferences if αi ∈ {0, 1} for all players
i ∈ N . Furthermore, we assume non-negative coefficients in the cost functions in the
whole paper to not compromise the monotonicity and convexity of the functions.

2 Existence of pure Nash equilibria

Congestion games with mixed objectives are more expressive than standard or bot-
tleneck congestion games. Consequently, the existence of pure Nash equilibria is
guaranteed only for special cases. Unlike, e. g., player-specific congestion games, the
matroid property is not sufficient for the existence of PNE. We show that we have the
existence of PNE in singleton games or for matroid games with players that have pure
preferences or cost functions that have a monotone dependence.

Theorem 1 A congestion game with mixed objectives � contains a pure Nash equi-
librium if � is a

1. singleton congestion game, or
2. matroid congestion game and the players have pure preferences, or
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3. matroid congestion game and the cost functions have a monotone dependence.

A pure Nash equilibrium of � can be computed in polynomial time if one of the above
three conditions is satisfied.

Proof We prove the theorem by reducing the existence problem of a pure Nash equi-
librium in a congestion game with mixed objectives to the existence problem of a
PNE in a congestion game with player-specific cost functions. The existence of PNE
is guaranteed in singleton (Milchtaich 1996) and matroid (Ackermann et al. 2009)
player-specific congestion games and polynomial time complexity immediately fol-
lows (Ackermann et al. 2008; Ackermann et al. 2009).

We will utilize the following lemma which states that an optimal basis with respect
to sum costs is also optimal w. r. t. maximum costs. 	

Lemma 1 Let M be a matroid, and let B = {b1, . . . , bm} be a basis of M which
minimizes the sum of the element costs. Then for any other basis B ′ = {b′

1, . . . , b
′
m}

it holds that max1≤i≤m bi ≤ max1≤i≤m b′
i .

Proof of Lemma Let B = {b1, . . . , bm} be an optimal basis, and assume by contra-
diction that there is a different basis B ′ = {b′

1, . . . , b
′
m} with b′

m < bm (w. l. o. g.
assume that bm and b′

m are the most expensive resources in B and B ′, respectively).
Since B and B ′ are both bases and bm /∈ B ′, there is an element b′

i ∈ B ′ such that
B ′′ = B \ {bm} ∪ {b′

i } is a basis of M . By assumption we have b′
i ≤ b′

m < bm , which
implies that B ′′ has a smaller total cost than B. Therefore, B cannot be optimal, which
gives a contradiction. 	

We now proceed to prove Theorem 1 and consider the three different cases:

1. The cost of player i in a state Swith Si = {r} is ci (S) = αi ·�r (S)+(1 − αi )·er (S).
By defining the player-specific cost functions cir (x) = αi ·�r (x)+ (1 − αi ) · er (x)
for every i ∈ N and r ∈ R, we obtain an equivalent singleton player-specific
congestion game.

2. UsingLemma 1,we can treat all the playerswho strive tominimize their bottleneck
costs as if they were striving to minimize the sum of the bottleneck costs of their
resources. Hence, we can construct a player-specific congestion game in which the
player-specific cost functions correspond to the latency functions for those players
with preference value 1, and to the bottleneck cost functions for those players with
preference value 0.

3. A player i who chooses the resources {r1, . . . , rk}, where w. l. o. g. rk is the most
expensive one, in a state S, incurs a total cost of ci (S) = αi · ∑k

j=1 �r j (S) +
(1 − αi ) · erk (S) . Due to Lemma 1, we know that �rk (S) is minimized if∑k

j=1 �r j (S) is minimized. The monotonicity of f with er (x) = f (�r (x)) implies
that erk is also minimized. Observe that monotonicity also ensures that rk is the
bottleneck resource. Hence, a PNE of a congestion game with cost functions �r
for every r ∈ R is a PNE of �. 	

We show that the matroid property is not sufficient for the existence of PNE. Even

for linear cost functions and uniform players, there are games without PNE.
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Theorem 2 There is a matroid congestion game with mixed objectives � with linear
cost functions and α-uniform players which does not possess a pure Nash equilibrium.

Proof We construct a two-player game with linear cost functions and αi = 0.5 for
both players. The set of resources is R = {r1, . . . , r7}. The strategies for player
1 are �1 = {{

ri , r j , rk
} | i, j, k ∈ {1, . . . , 6}} and the strategies for player 2 are

�2 = {{
ri , r j

} | i, j ∈ {4, . . . , 7}}. The latency and bottleneck cost functions for
the first three resources are �r1(x) = �r2(x) = �r3(x) = 0 and er1(x) = er2(x) =
er3(x) = 200 · x , respectively. For resource r4 and r5 the cost functions are �r4(x) =
�r5(x) = 20 · x and er4(x) = er5(x) = 50 · x . For resource r6 the cost functions are
�r6(x) = 8 · x and er6(x) = 80 · x . For resource r7 the cost functions are �r7(x) = 0
and er7(x) = 160 · x .

We note that for player 1 only the strategies S1,1 := {r1, r2, r3} and S1,2 :=
{r4, r5, r6} can be best-response strategies in any state, since {r1, r2, r3} strictly dom-
inates all remaining strategies. Hence, with respect to the existence of pure Nash
equilibria, we can restrict player 1 to these two strategies. In the analogous way, we
can restrict player 2 to the strategies S2,1 := {r4, r5} and S2,2 := {r6, r7}. This yields a
game with only four states and, as we can easily verify, a best-response improvement
step sequence starting from any of these states runs in cycles:

(
100 45
S1,1 S2,1

)
1−→

(
94 90
S1,2 S2,1

)
2−→

(
108 88
S1,2 S2,2

)
1−→

(
100 84
S1,1 S2,2

)
2−→

(
100 45
S1,1 S2,1

)

The numbers above the strategies give the costs of the respective player in the
described state, and the numbers on the arrows indicate which player changes her
strategy from one state to the next one. 	


Note that the nature of the existence proofs of Theorem 1 implies that a PNE can
be computed in polynomial time assuming the satisfaction of the condition of the
theorem. However, if existence is not guaranteed, the decision problem whether a
matroid game has a pure Nash equilibrium is NP-hard:

Theorem 3 It is NP-hard to decide whether a matroid congestion game with mixed
objectives possesses at least one pure Nash equilibrium even if the players are α-
uniform.

Proof We reduce from Independent Set (IS), which is known to be NP-complete
(Garey and Johnson 1979). Let the graph G = (V, E) and k ∈ N be an instance of
IS. We construct a matroid congestion game � that has a pure Nash equilibrium if and
only if G has an independent set of size at least k.

We begin by describing the structure of �. The game contains the following groups
of players:

• For each node v ∈ V , there is one player who can choose all edges incident with
v, but has a profitable deviation to a special strategy if and only if a player of a
neighboring node chooses one of the incident edges.

• There are two players who play a game that is equivalent to the game in the proof
of Theorem 2 if an additional player chooses a certain resource r7, but possesses
a PNE otherwise.
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• Finally, there is one connection player for whom it is profitable to choose r7 if and
only if at least n − k + 1 of the node players deviate from their “edge strategy”.

Clearly, if we can achieve this dynamic, the existence of a PNE in � is equivalent
to the existence of an independent set in G. Let V = {v1, . . . , vn}, and for every
vi ∈ V we denote by Evi = {e ∈ E | vi ∈ e} the set of edges incident to vi , and by
d(vi ) = |Evi | the degree of vi in G. Let � = maxv∈V d(v) be the maximum degree
in G. We can assume that � ≥ 2.

We now give a formal definition of � = (N , R, (�i )i∈N , (αi )i∈N , (�r )r∈R ,

(er )r∈R). The set of players is N = {v1, . . . , vn, c, 1, 2} and the set of resources
is R = {re | e ∈ E} ∪ {r j

i | i ∈ {1, . . . , n}, j ∈ {1, . . . , d(vi ) − 1}} ∪ {rc, r1, . . . , r7}.
The strategies for the node players vi are all subsets of size d(vi ) from a set con-
sisting of the incident edge resources, some alternative resources, and resource rc:

�vi =
{
{X | X ⊆

(
{re | e ∈ Evi } ∪ {q1i , . . . , qd(vi )−1

i , rc}) and |X | = d(vi )}.
Our choice of cost functions will ensure that in an equilibrium every node player vi

either chooses all resources re that belong to her incident edges e ∈ Evi or the resources
qi and rc. The two strategies of the connection player are �c = {{rc}, {r7}}. Finally,
there are the players 1 and 2 with strategies �1 = {{

ri , r j , rk
} | i, j, k ∈ {1, . . . , 6}}

and, �2 = {{
ri , r j

} | i, j ∈ {4, . . . , 7}}, respectively.
The cost functions for the edge resources are �re (x) = 1000 · x and ere (x) = 0 for

all e ∈ E , for the alternative resources �
q j
i
(x) = 0 and e

q j
i
(x) = 1000 · d(vi ) + 1

for all 1 ≤ i ≤ n and 1 ≤ j ≤ �, and for the connection resource �rc (x) = 0 and
erc (x) = 0 for x ≤ n − k + 1, erc (x) = 1000 for x > n − k + 1. The cost functions
of the resources r1, . . . , r7 are �r1(x) = �r2(x) = �r3(x) = 0, er1(x) = er2(x) =
er3(x) = 200 · x, �r4(x) = �r5(x) = 20 · x, er4(x) = er5(x) = 50 · x, �r6(x) =
8 · x, er6(x) = 80 · x, �r7(x) = 0, er7(x) = 80 · x . We choose the value αi = 0.5 for
all players.

It remains to show that this game has a pure Nash equilibrium if and only ifG has an
independent set of size k. If there is an independent set, we can construct an equilibrium
as follows: Each node player that corresponds to a node in the independent set chooses
the strategy that contains all her edge resources. Each remaining node player chooses a
strategy that contains only her q-resources and the resource rc. The connection player
chooses resource rc. Player 1 chooses {r1, r2, r3} and player 2 chooses {r6, r7}. It is
easy to verify that this is indeed a pure Nash equilibrium.

If there is no independent set of size at least k, we argue that in an equilibrium
there are more than n − k of the node players on resource rc. Observe that for a node
player that chooses at least one of the q-resources it is the best response to choose
the remaining q-resources and the resource rc for no additional cost. Furthermore,
if two node players choose the same edge resource, their best response is to choose
the q-resources and rc. Hence, the best response of the connection player is {r7} and
players 1 and 2 will play the subgame defined in Theorem 2 that does not have a pure
Nash equilibrium. 	


In Theorem 1 we investigated restrictions on the preference values and cost func-
tions that guarantee the existence of PNE in congestion games with mixed objectives,
when combined with the matroid property of strategy spaces. The following theorem
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shows that the matroid property is necessary even if we impose the additional con-
straint that bottleneck and latency cost functions are identical and linear and consider
only small games with two players.

Theorem 4 There exists a congestion game with mixed objectives with linear cost
functions �r = er for all resources r ∈ R, and either

1. pure preferences, or
2. α-uniform players

which does not possess a pure Nash equilibrium.

Proof We show the correctness of the statement by constructing two games which
fulfill the preconditions stated in the two cases of the theorem and which do not have
a pure Nash equilibrium.

1. We define the game with two players with α1 = 0 and α2 = 1. The game has
six resources R = {r1, r2, . . . , r6}. Each player has two strategies, thus �1 =
{{r1}, {r2, r3, r4, r5}} and �2 = {{r2, r3, r4}, {r5, r6}}. The latency and bottleneck
costs are given by �r1(x) = 6 · x , �r2(x) = �r3(x) = �r4(x) = 2 · x , �r5(x) = 4 · x ,
�r6(x) = 3 · x with er (x) = �r (x) for all r ∈ R We utilize the fact that bottleneck
players prefer to choose many cheap resources, while players who are interested
in latency are more willing to share a single expensive resource.
Let S1,1 and S1,2 denote the strategies of player 1, and S2,1 and S2,2 the strategies
of player 2. Then we have the following cycle of improvement steps which visits
all four states:
(

6 6
S1,1 S2,1

)
1−→

(
4 12
S1,2 S2,1

)
2−→

(
8 11
S1,2 S2,2

)
1−→

(
6 7
S1,1 S2,2

)
2−→

(
6 6
S1,1 S2,1

)

The numbers above the strategies give the cost of the respective player in the
associated state, and the numbers on the arrows indicate which player has to
change her strategy in order to get to the next state. As we see, every change in
strategy decreases the cost of the player performing it. Hence, none of the four
states is a pure Nash equilibrium.

2. We prove the theorem for the example α = 0.5. However, it is easily generalizable
to arbitrary values between 0 and 1. The idea is to construct a game with two
players in which one player always chooses an expensive resource. In addition to
this, both players choose two resources and share exactly one of these resources.
In detail we have the resources R = {r1, r2, . . . , r5} and the strategy sets �1 =
{{r1, r2, r4}, {r1, r3, r5}} and �2 = {{r2, r5}, {r3, r4}}. The latency and bottleneck
costs are given by �r1(x) = 32 · x , �r2(x) = �r3(x) = 14 · x and �r4(x) = �r5(x) =
12 · x + 8 with er (x) = �r (x) for all r ∈ R. Depending on which resource is
shared, the players choose either two resources with medium costs or one cheap
and one expensive resource, where the sum of the two resource costs is slightly
smaller in the latter case.
The second player prefers the first alternative, since she has to pay an additional
price for her most expensive resource. On the other hand, the first player always
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chooses an expensive resource, hence she incurs no additional costswhen choosing
a cheap and an expensive resource.
The strategy spaces are constructed in such a way that in every state the players
share exactly one of the resources {r2, . . . , r5}. Let S1 denote a state in which r2
or r3 is shared, and S2 a state in which r4 or r5 is shared. Then the players incur
the following costs: c1(S1) = 56, c2(S1) = 38, c1(S2) = 55, c2(S2) = 39.
As we see, player 1 prefers the state S2, while player 2 prefers S1. Since both
players always have the possibility to deviate to the other state, there is no state in
which none of the players can decrease her costs, and hence � possesses no pure
Nash equilibrium. 	

Also here, if existence is not guaranteed, we can show that it is NP-hard to decide

whether a pure Nash equilibrium exists.

Theorem 5 It isNP-hard to decide whether a congestion game with mixed objectives
with linear cost functions �r = er for all resources r ∈ R possesses at least one pure
Nash equilibrium even with either

1. pure preferences, or
2. α-uniform players.

Proof We reduce from Independent Set (IS), which is known to be NP-complete
(Garey and Johnson 1979). Let the graph G = (V, E) and k ∈ N be an instance of IS.
Let V = {v1, . . . , vn}, and for every vi ∈ V we denote by Evi = {e ∈ E | vi ∈ e} the
set of edges incident to vi . For both cases, we construct a congestion game � that has
a pure Nash equilibrium if and only if G has an independent set of size at least k. For
the construction we use the games defined in the proof of Theorem 4.

1. We define � with the set of players N = {1, . . . , k, c, k + 1, k + 2} and the set of
resources R = {re | e ∈ E}∪ {rc, r1, . . . , r6}. The strategies for the k node players
1, . . . , k are either all incident edges of a node v or the connection resource rc:
�i = {{re | e ∈ Ev} | v ∈ V } ∪ {{rc}} for 1 ≤ i ≤ k. The two strategies of the
connection player are�c = {{rc}, {r1}}. Finally, there are the players k+1 and k+2
with strategies �k+1 = {{r1} , {r2, r3, r4, r5}} and, �k+2 = {{r2, r3, r4} , {r5, r6}},
respectively. The cost functions for the edge resources are �re (x) = ere (x) =
6 · x for all e ∈ E and for the connection resource �rc (x) = erc (x) = 5 · x .
The cost functions of the other resources are given by �r1(x) = 3x, �r2(x) =
�r3(x) = �r4(x) = 2x, �r5(x) = 4x, �r6(x) = 3x with er (x) = �r (x) for all
r ∈ {r1, . . . , r6}. We choose the values α1 = · · · = αk = αc = αk+1 = 0 and
αk+2 = 1 for the players.
It remains to show that this game has a pure Nash equilibrium if and only if G
has an independent set of size k. If there is an independent set, we can construct
an equilibrium as follows: Each node player chooses the strategy that contains
all the edge resources which are incident to the node in the independent set. The
connection player chooses resource rc. Player k + 1 chooses {r1} and player k + 2
chooses {r2, r3, r4}. It is easy to verify that this is indeed a pureNash equilibrium. If
there is no independent set of size at least k, then at least one edge resource has to be
used bymore than one node player if all node players only use their edge resources.
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Therefore, there exists at least one node players who could improve by choosing
the strategy that contains the connection resource. Hence, in an equilibrium at least
one of the node players chooses this strategy. However, the best response of the
connection player is {r1} and players k+1 and k+2 will play the sub game defined
in Theorem 4 that does not have a pure Nash equilibrium.

2. Weagaindefine thegame�with the set of players N = {1, . . . , k, c, k + 1, k + 2}.
The set of resources is given by R = {re | e ∈ E} ∪ {rv | v ∈ V } ∪
{rc, r1, . . . , r5}. The strategies for the k node players are defined by �i =
{{re | e ∈ Ev} ∪ {rv} | v ∈ V }∪{{rc}} for 1 ≤ i ≤ k. The two strategies of the con-
nection player are �c = {{rc}, {r1}}. Finally, there are the players k + 1 and k + 2
with strategies �k+1 = {{r1, r2, r4} , {r1, r3, r5}} and, �k+2 = {{r2, r5} , {r3, r4}},
respectively.
Let the maximum degree of the nodes be � = maxu∈V |Eu |. The cost functions
for the edge resources are �re (x) = ere (x) = 1

�
· 20 · x for all e ∈ E , �rv (x) =

erv (x) = 1
�

· 20 · (� − |Ev|) for all v ∈ V and for the connection resource
�rc (x) = erc (x) = 18 · x . The cost functions of the other resources are given
by �r1(x) = 16x, �r2(x) = �r3(x) = 14x, �r4(x) = �r5(x) = 12x + 8 with
er (x) = �r (x) for all r ∈ {r1, . . . , r5}. We choose the values αi = 0.5 for all
players i ∈ N . The rest of the proof follows with the same arguments as in the first
case and using properties of the second game of in the proof of Theorem 4. 	

If we limit our game class to network congestion games, we can even prove the

NP-hardness for network congestion games with only two players.

Theorem 6 It is NP-hard to decide whether a network congestion game with mixed
objectives possesses at least one pure Nash equilibrium even if there are only two
players with pure preferences.

Proof We prove the theorem for the case of asymmetric network games in directed
graphs. We reduce from the two edge-disjoint paths problem. This problem consists in
deciding, given a graph G and two node pairs (s1, t1) and (s2, t2), whether there exist
paths from s1 to t1 and s2 to t2 without a common edge. It is known to be NP-complete
for directed graphs (Fortune et al. 1980). Given a directed graph G = (V, E) and
two source-sink pairs (s1, t1) and (s2, t2), we construct a congestion game with mixed
objectives � as follows:

– For every edge (u, v) ∈ E we create a gadget of six nodes and eight edges as
shown in Figure 1, yielding the graph G ′ = (V ′, E ′). The edges correspond to the
eight resources r1, . . . r8.

– There are two players with α1 = 1 and α2 = 0. The strategy set �i of player i
corresponds to all cycle-free paths from si to ti in G ′, for i ∈ {1, 2}.

– For every gadget of eight resources, we define the following cost functions:

�r1(x) = �r2(x) = �r5(x) = �r6(x) = er3(x) = er4(x) = er7(x) = er8(x) = 0

er1(x) = er2(x) = �r7(x) = �r8(x) =
{
0, x ≤ 1

1, x > 1

�r3(x) = �r4(x) = er5(x) = er6(x) = |E | + 1
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Fig. 1 Gadget for one edge
(u, v)

Only the bottleneck costs of the two edges from u and the latency costs of the edges
leading to v change when they are used by both players. The cost functions of the four
middle edges are constructed in such a way that player 1 cannot use the resources r3
and r4, and player 2 cannot use r5 and r6 without incurring very high costs. Hence,
player 1 has the two possible strategies {r1, r5, r7} and {r2, r6, r8}, while player 2 has
the strategies {r1, r3, r8} and {r2, r4, r7} for each gadget. As we see, for every gadget
used by both players they have to share exactly one resource. This implies that one of
them has a cost of 0 and the other one a cost of 1 on this gadget. On the other hand, if
the players do not share any gadget at all, both have a cost of 0.

Summarizing this, we get three different types of states S = (S1, S2) (ignoring the
irrelevant states in which at least one of the players has a cost of |E | + 1):

– If ci (S) = 0 for i ∈ {1, 2}, it must hold that S1 and S2 correspond to disjoint paths
from s1 to t1 and s2 to t2 in G.

– If c1(S) > 0, then player 1 can decrease her cost on at least one gadget from 1 to
0 by switching the strategy. Hence, S can not be a PNE.

– If c1(S) = 0 and c2(S) = 1, both players share at least one gadget and player
2 incurs a cost of 1 on all shared gadgets (since player 1 has a cost of 0). Then
player 2 can decrease her cost to 0 by deviating to the other strategy on all shared
gadgets. Hence, S can not be a PNE.

We get that � possesses a pure Nash equilibrium if and only if there exist two disjoint
(s1, t1) and (s2, t2)-paths in G. Since it is NP-hard to decide whether these paths exist,
it is also NP-hard to decide whether � contains a pure Nash equilibrium. 	


3 Convergence and quality of equilibria

In this section we investigate in which games convergence of best-response improve-
ment sequences to a pure Nash equilibrium can be guaranteed and how good the
equilibria are. Perhaps surprisingly, there are singleton games in which best-response
improvement sequences may run in cycles. This is even true for games with pure
preferences.

Theorem 7 There are singleton congestion games with mixed objectives and pure
preferences in which best-response improvement sequences may run in cycles.
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Proof We prove the theorem by constructing a singleton game with three players
and showing that there exists a cyclic best-response improvement sequence in certain
states. The game consists of three resources R = {r1, r2, r3} and the players have the
strategy sets �1 = {{r1}, {r2}}, �2 = {{r1}, {r3}} and �3 = {{r2}, {r3}}. Two players
prefer the latency costs α1 = α2 = 1, one the bottleneck costs α3 = 0. The latency and
bottleneck costs are given by �r1 = (2, 5), �r2 = (3, 4), �r3 = (1, 6) and er2 = (1, 4),
er3 = (2, 3). The first number in the cost functions gives the cost if the resource is used
by one player, the second number gives the cost if two players use it. The bottleneck
cost function of r1 is irrelevant since it is only used by players 1 and 2.

In this game, the following cycling best-response improvement sequence can occur
(set braces omitted for better readability):

(
5 5 1
r1 r1 r2

)
1−→

(
4 2 4
r2 r1 r2

)
2−→

(
4 1 4
r2 r3 r2

)
3−→

(
3 6 3
r2 r3 r3

)
1−→

(
2 6 3
r1 r3 r3

)

2−→
(
5 5 2
r1 r1 r3

)
3−→

(
5 5 1
r1 r1 r2

)

The numbers on the arrows indicate which player has to change her strategy in
order to reach the next state. The variable ri denotes the resource which is used by
the corresponding player and the number on top gives the cost value for this player.
We can verify that each change in strategy is beneficial for the player performing it
(since every player has only two strategies, every improving strategy is a best-response
strategy).

Hence, we have a cycle of six states that are visited during this best-response
improvement sequence. The pure Nash equilibria (r1, r3, r2) and (r2, r1, r3) are never
reached. 	


Note that due to our reduction in the proof of Theorem 1, we know that there exists
a sequence of best-response moves that leads to an equilibrium (Ackermann et al.
2009).

Corollary 1 1. Singleton congestion games with mixed objectives are weakly
acyclic.

2. Matroid congestion games with mixed objectives that have pure preferences are
weakly acyclic.

We now turn to matroid games with a monotone dependence and show that they
converge quickly to a PNE if the players perform lazy best-response moves. That is,
if players perform a best response move, they choose the best-response strategy that
has as many resources in common with the previous strategy as possible.

Theorem 8 Let � be a matroid congestion game with mixed objectives with cost
functions that have a monotone dependence. Then any sequence of lazy best-response
improvement steps starting from an arbitrary state in � converges to a pure Nash
equilibrium after a polynomial number of steps.

Proof The proof idea is based on the proof by Ackermann et al. (2008) which shows
that matroid congestion games guarantee polynomial convergence to PNE.
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We consider an increasingly ordered enumeration of all latency values that can
occur in � (an enumeration of the values {�r (x) | r ∈ R, x ∈ N }). Let �′

r (x) denote
the position of the respective cost value in the enumeration.

We define the following variant of Rosenthal’s potential function: �(S) =∑
r∈R

∑nr (S)
i=1 �′

r (i). If n = |N | denotes the number of players, and m = |R| the
number of resources in �, then there are at most n · m different cost values in the
game. Hence, the value of � is upper bounded by n2 · m2. Thus, it suffices to show
that every lazy best-response improvement step decreases the value of � by at least 1.

If a player replaces a single resource r by another resource r ′ in a lazy best-response
withαi ·�r ′(S′)+(1−αi )·er ′(S′) < αi ·�r (S)+(1−αi )·er (S), then due to themonotone
dependence, we have �r ′(S′) < �r (S). Hence �r ′(S′) must occur before �r (S) in the
increasingly ordered enumeration of the cost values and we have �′

r ′(S′) < �′
r (S).

Thus, every sequence of lazy best-response improvement steps in � terminates after
a polynomial number of steps. 	


We remark that the only reason to restrict the players to lazy instead of arbitrary
best-response strategies is that the players may have a preference value of exactly
0. If a player’s cost is determined solely by her most expensive resource, she might
be playing a best-response strategy by replacing her most expensive resource by a
cheaper one and additionally replace another resource by a more expensive one. This
additional exchange does not necessarily increase her costs, but it could lead to an
increase in the value of the potential function. However, if all players have preference
values different from 0, the theorem holds for arbitrary best-response improvement
steps.

We now study the quality of equilibria compared to optimal states.

Proposition 1 Let� be a congestion gamewithmixed objectiveswith linear cost func-
tions without negative coefficients which contains at least one pure Nash equilibrium.
Then the Price of Anarchy in � is at most n.

Proof Assume by contradiction that � contains a pure Nash equilibrium S =
(S1, . . . , Sn), and that there is a different state S∗ = (S∗

1 , . . . , S
∗
n ) such that

n · ∑
i∈N ci (S∗) <

∑
i∈N ci (S). This implies that there is at least one player j s.t.

c j (S) > n · c j (S∗). Since all cost functions are linear without negative coefficients,
the cost of strategy S∗

j in any state can be at most n · c j (S∗) < c j (S). Thus, we get
that c j (S∗

j , S− j ) < c j (S), which implies that j has a profitable deviation from strat-
egy S j in state S. Hence, S can not be a pure Nash equilibrium, which establishes a
contradiction. 	


We remark that the propositionmakes a statement about the properties of pure Nash
equilibria which are not guaranteed to exist. There are congestion games with mixed
objectives with linear cost functions that do not possess a PNE, but if a PNE exists, the
price of anarchy is guaranteed to be bounded by n. The result that the price of anarchy
is bounded by n seems almost trivial. However, we can show that this bound is tight
by constructing a game in which the price of anarchy is exactly n.

Theorem 9 For every n ∈ N with n ≥ 2, there is a singleton congestion game with
mixed objectives with linear cost functions without negative coefficients, which has n
players and a Price of Anarchy of n.
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Proof We prove the statement by constructing the following game for an arbitrary n:
Let � be a singleton game with n players and two resources r1 and r2. the strategy for
player 1 is �1 = {{r1}} and the strategies for every player i ≥ 2 are �i = {{r1}, {r2}}.
Player 1 has a preference value of α1 = 1, all other players i ≥ 2 have αi = 0.
The latency function for the first resource is �r1(x) = x and the other latency and
bottleneck functions are �r2(x) = er1(x) = er2(x) = 0.

Consider the state S∗ = ({r1}, {r2}, . . . , {r2}). In this state, player 1 has a cost of 1
since only she chooses resource r1, all other players have a cost of 0. Hence, the sum
of all costs in state S∗ is exactly 1. Now consider the state S = ({r1}, {r1}, . . . , {r1}).
In this state, player 1 has a cost of n, all other players have a cost of 0. Since player
1 cannot change her strategy, this state is a pure Nash equilibrium. Hence, we get as
price of anarchy

∑
i∈N ci (S)

∑
i∈N ci (S∗)

= n

1
= n.

	

We note that the game constructed in the proof is a “dummy game”, since the cost

of each player is independent of her strategy choice. However, by slightly modifying
the cost functions (setting er1(x) = ε ·x for some ε > 0) we achieve that the described
worst case equilibrium is the only PNE of the game. Then the price of anarchy (and
price of stability) of the game is given by

∑
i∈N ci (S)

∑
i∈N ci (S∗)

= n

1 + n · n · ε
.

Since we can chose ε arbitrarily small, there is no constant δ < 1 such that the price
of stability is smaller than δ · n. Hence, we get the following corollary:

Corollary 2 For every n ∈ N with n ≥ 2, and every ε > 0 there is a singleton
congestion game with mixed objectives with linear cost functions without negative
coefficients, which has n players and a Price of Stability of at least (1 − ε) · n.

4 Approximate pure Nash equilibria

As PNE do not exist in general, we study the existence of approximate equilibria.
However, in general we cannot achieve an approximation factor better than 3.

Theorem 10 There is a congestion game with mixed objectives, in which all cost
functions are linear, that does not contain a 3-approximate pure Nash equilibrium.

Proof We show the theorem by constructing a gamewith 10 players, in which in every
state there is at least one player who can decrease her costs by a factor of 3. A formal
definition of the game is given by:

� = (N , R, (�i )i∈N , (αi )i∈N , (�r )r∈R , (er )r∈R) with

N = {1, . . . , 10}, R =
{
r i1, r

i
2 | i ∈ N \ {5, 6}

}
∪
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×
{
r i, j1,1, r

i, j
1,2, r

i, j
2,1, r

i, j
2,2 | i < j and (i, j ∈ {1, 2, 3, 4} or i, j ∈ {7, 8, 9, 10})

}
,

�i =
{
{r i1} ∪ {r j,k

1,1 , r
j,k
2,1 | j = i or k = i},

{r i2} ∪ {r j,k
1,2 , r

j,k
2,2 | j = i or k = i}

}
for all i ∈ N \ {5, 6}

�5 = {{r11 , . . . , r41 , r71 , . . . , r
10
1 , r i, j1,2, r

k,l
1,2 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}}

∪
{{

r12 , . . . , r
4
2 , r72 , . . . , r

10
2 , r i, j1,1, r

k,l
1,1 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

�6 =
{
{r11 , . . . , r41 , r72 , . . . , r

10
2 , r i, j2,2, r

k,l
2,1 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

∪
{
{r12 , . . . , r42 , r71 , . . . , r

10
1 , r i, j2,1, r

k,l
2,2 | i, j ∈ {1, . . . , 4}, k, l ∈ {7, . . . , 10}

}

αi = 1 for all i ∈ N \ {5, 6} and αi = 0 for i ∈ {5, 6},
�r (x) = x and er (x) = 0 for all r ∈

{
r ij | i ∈ N \ {5, 6}, j ∈ {1, 2}

}
,

�r (x) = 0 and er (x) = x for all r ∈
{
r i, jk,l | i, j ∈ N \ {5, 6}, k, l ∈ {1, 2}

}

The game contains three different groups of players and two different groups of
resources. Players 1 to 4 and 7 to 10 each have two personal resources r i1 and r

i
2 among

which they have to choose. These are the only resources on which they incur costs.
In addition to these resources, there are two times two resources corresponding to

each set consisting of two players from the same group (either 1 to 4 or 7 to 10). The
two resources represent the two strategies which are available to these players, and
exist distinctly for both players 5 and 6. If player i plays her first strategy, then she
also chooses all resources that correspond to sets in which i is contained and represent
the first strategy.

In every state, the players 5 and 6 choose one of the personal resources r ij for each
player i ∈ {1, . . . , 4} and i ∈ {7, . . . , 10}, where the j is the same for all players
among a group. Additionally, for both groups they have to choose a resource that
corresponds to one pair of players and represents the j that they are not using (e. g.,
if player 5 chooses resource r i1 for all players i ∈ {1, . . . , 4}, she must also choose a
resource that corresponds to a pair of players from {1, . . . , 4} and represents strategy
2, and an analogous resource for the players in {7, . . . , 10}).

These two additional resources are the ones on which players 5 and 6 incur costs.
Since they are interested in their bottleneck costs, their costs are equal to the more
expensive of the two.

We can analyze this game by considering an arbitrary state. The strategy sets of
players 5 and 6 are constructed in such a way that in every state they choose the same
personal resources of all players in {1, . . . , 4} or {7, . . . , 10}.

W. l. o. g. assume that they both choose the resources r11 , . . . , r
4
1 . This implies that

the players 1 to 4 have a cost of 3 if they use the first resource, and a cost of 1 if they
choose their second resource. Hence, this state cannot be a 3-approximate PNE if any
of them play their first strategy.

If, on the other hand, all these players play their second strategy, players 5 and6 incur
a cost of 3 on their resources r i, j1,2 and r

i, j
2,2, respectively, independent of which i and j
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they are using, since all players in {1, . . . , 4} choose the resources corresponding to
strategy 2. Both players 5 and 6 could decrease the cost of the resource corresponding
to the first group to 1 by switching the strategy. However, we have to take the other
group into account as well.

If player 5 switches her strategy, she chooses the resource rk,l1,1 for freely selectable
k and l in {7, . . . , 10}, which yields a cost of 1 if at least two players from {7, . . . , 10}
play the second strategy. Analogously, player 6 incurs a cost of 1 on the resource
corresponding to the second group if at least two players from this group play their
first strategy. One of the two cases must hold, which implies that either player 5 or
player 6 can decrease her cost from 3 to 1. Hence, in every state there is at least one
player who can decrease her cost by a factor of 3, and there exists no 3-approximate
pure Nash equilibrium. 	


Additionally, we can show that the decision problem whether a 3-approximate pure
Nash equilibrium exists is NP-hard.

Theorem 11 It isNP-hard to decidewhether a congestion gamewithmixed objectives
with linear cost functions �r = er for all resources r ∈ R possesses at least one 3-
approximate pure Nash equilibrium.

Proof We follow the same proof idea as in Theorem 5 in the first case and reduce from
Independent Set (IS), which is known to be NP-complete (Garey and Johnson 1979).
Let the graph G = (V, E) and k ∈ N be an instance of IS. Let V = {v1, . . . , vn}, and
for every vi ∈ V we denote by Evi = {e ∈ E | vi ∈ e} the set of edges incident to
vi . For both cases, we construct a congestion game � that has a β-approximate pure
Nash equilibrium if and only if G has an independent set of size at least k. For the
construction we reuse the game defined in the proof of Theorem 10.

Wedefine�with the set of players N = {1, . . . , k, c, k + 1, . . . , k + 10} and the set
of resources is R = {re | e ∈ E} ∪ {rc} ∪ {

r i1, r
i
2 | i ∈ {k + 1, . . . , k + 4, k + 7, . . . ,

k + 10}} ∪
{
r i, j1,1, r

i, j
1,2, r

i, j
2,1, r

i, j
2,2 | i < j and (i, j ∈ {k + 1, . . . , k + 4} or i, j ∈

{k + 7, . . . , k + 10})}. The strategies for the k node players 1, . . . , k are either all con-
nected edges of a node v or the connection resource rc:�i = {{re | e ∈ Ev} | v ∈ V }∪
{{rc}} for 1 ≤ i ≤ k. The two strategies of the connection player are

�c = {{rc}, {rk+1
1 , . . . , rk+4

1 , rk+7
1 , . . . , rk+10

1 , rk+1,k+2
1,2 , rk+7,k+8

1,2 }}.

Finally, there are the players k + 1, . . . , k + 10 with strategies

�i =
{
{r i1} ∪ {r j,k

1,1 , r
j,k
2,1 | j = i or k = i}, {r i2} ∪ {r j,k

1,2 , r
j,k
2,2 | j = i or k = i}

}

for all i ∈ {k + 1, . . . , k + 4, k + 7, . . . , k + 10}

123



J Comb Optim

�k+5 =
{
{rk+1
1 , . . . , rk+4

1 , rk+7
1 , . . . , rk+10

1 , r i, j1,2, r
k,l
1,2 |

i, j ∈ {k + 1, . . . , k + 4}, k, l ∈ {k + 7, . . . , k + 10}}
∪

{
{rk+1
2 , . . . , rk+4

2 , rk+7
2 , . . . , rk+10

2 , r i, j1,1, r
k,l
1,1 |

i, j ∈ {k + 1, . . . , k + 4}, k, l ∈ {k + 7, . . . , k + 10}}
�k+6 =

{
{rk+1
1 , . . . , rk+4

1 , rk+7
2 , . . . , rk+10

2 , r i, j2,2, r
k,l
2,1 |

i, j ∈ {k + 1, . . . , k + 4}, k, l ∈ {k + 7, . . . , k + 10}}
∪

{
{rk+1
2 , . . . , rk+4

2 , rk+7
1 , . . . , rk+10

1 , r i, j2,1, r
k,l
2,2 |

i, j ∈ {k + 1, . . . , k + 4}, k, l ∈ {k + 7, . . . , k + 10}}

The cost functions for the edge resources are �re (x) = ere (x) = x + 1
for all e ∈ E and for the connection resource �rc (x) = erc (x) = x . The
cost functions of the other resources are given by �r (x) = x and er (x) = 0

for all r ∈
{
r ij | i ∈ {k + 1, . . . , k + 4, k + 7, . . . , k + 10}, j ∈ {1, 2}

}
, �r (x) =

0 for all r ∈
{
r i, jk,l | i, j ∈ {k + 1, . . . , k + 4, k + 7, . . . , k + 10}, k, l ∈ {1, 2}

}
,

er (x) = x − 1 for rk+1,k+2
1,2 and rk+7,k+8

1,2 and er (x) = x for all other

r ∈
{
r i, jk,l | i, j ∈ {k + 1, . . . , k + 4, k + 7, . . . , k + 10}, k, l ∈ {1, 2}

}
\ {rk+1,k+2

1,2 ,

rk+7,k+8
1,2 }.We choose the values αi = 1 for all i ∈ {k+1, . . . , k+4, k+7, . . . , k+10}
and αi = 0 for i ∈ {1, . . . , k, c, k + 5, k + 6}.

It remains to show that this game has a 3-approximate pure Nash equilibrium
if and only if G has an independent set of size k. If there is an independent
set, we can construct an approximate equilibrium as follows: Each node player
chooses the strategy that contains all the edge resources which are connected
to the node in the independent set. The connection player chooses resource rc.
Player k + 5 chooses {rk+1

1 , . . . , rk+4
1 , rk+7

1 , . . . , rk+10
1 , rk+1,k+2

1,2 , rk+7,k+8
1,2 }. It is

easy to verify that this is indeed a 3-approximate pure Nash equilibrium. If there
is no independent set of size at least k, then at least one edge resource has to
be used by more than one node player (if all node players only use their edge
resources). Therefore this node player changes her strategy to choose the con-
nection resource because of the definition of the cost functions. Hence, the best
response of the connection player is {rk+1

1 , . . . , rk+4
1 , rk+7

1 , . . . , rk+10
1 , rk+1,k+2

1,2 ,

rk+7,k+8
1,2 } and players k + 1, . . . k + 10 will play the sub game defined in Theorem 10
that does not have a 3-approximate pure Nash equilibrium. 	


On the positive side we can show small approximation factors for small strategy
sets if we restrict the cost functions to linear and polynomial functions.

Proposition 2 Let � be a congestion game with mixed objectives with linear cost
functions without negative coefficients. Let d = maxi∈N ,Si∈�i |Si | be the maximal
number of resources a player can choose. Then � contains an ed-approximate pure
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Nash equilibrium and every sequence of ed-improvement steps starting from an arbi-
trary state in� reaches an ed-approximate pure Nash equilibrium after a finite number
of steps.

Proof Wewill prove the statement by analyzing the effect of an additional player on the
cost of a resource. In a game with linear cost functions without negative coefficients,
the cost of a resource which is currently used by m players is increased at most by a
factor of m+1

m . Using this, we can define the following approximate potential function
�(S), which decreases in every β-improvement step:

�(S) =
∏

i∈N
ci (S). (1)

Assume that a resource r is allocated by m players in state S, and is now allocated
by one more player, yielding the state S′. Then the costs of all m players who used r
before increase at most by a factor of m+1

m , and thus, the product of their costs by at

most
(m+1

m

)m
. We get

∏

i∈N | r∈Si
ci (S

′) ≤
(
m + 1

m

)m

·
∏

i∈N | r∈Si
ci (S) < e ·

∏

i∈N | r∈Si
ci (S),

since
(m+1

m

)m
converges to e from below for m → ∞.

If a player i chooses d additional resources, then repeating this argument yields that
the product of the costs of all players who use one of these resources increases by less
than a factor of ed . The costs of all other players do not increase. Hence, if i changes
her strategy from state S to S′, choosing at most d new resources and improving her
costs by at least a factor of β ≥ ed , we get:

�(S′) =
∏

i∈N
ci (S

′) < ed · 1
β

∏

i∈N
ci (S) ≤

∏

i∈N
ci (S) = �(S).

This implies that all β-improvement step sequences are finite. 	

We note that, though the approximation quality of ed is quite bad for large d, this
result also shows that every circling best-response sequence in a singleton game, such
as constructed in the proof of Theorem 7, must contain at least one step that decreases
the cost of the performing player by less than a factor of e, if the applied cost functions
are linear.

Linear functions are a special case of general polynomial functions. Our results
can be extended to general polynomial cost functions of maximum degree g without
negative coefficients. The cost of a resource increases at most by a factor of

(m+1
m

)g
if

it is used by m + 1 instead of m players. Using this, we can generalize Proposition 2
to ed·g-improvement steps:

Corollary 3 Let � be a congestion game with mixed objectives with polynomial func-
tions of degree at most g without negative coefficients. Let d = maxi∈N ,Si∈�i |Si |
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be the maximal number of resources a player can choose. Then � contains an ed·g-
approximate pure Nash equilibrium and every sequence of ed·g-improvement steps
from an arbitrary state in � reaches an ed·g-approximate pure Nash equilibrium after
a finite number of steps.

As last step we remove the limitations on the cost functions: Besides matroid
games, we can show approximation factors which are independent of the structure of
the strategy sets, but depend on either α-uniform players or on equal cost functions:

Theorem 12 Let � be a congestion game with mixed objectives. Let d =
maxi∈N ,Si∈�i |Si | be the maximal number of resources a player can choose.

1. If � is a matroid congestion game, then � contains a d-approximate pure Nash
equilibrium.

2. If the players are α-uniform, then � contains a d-approximate pure Nash equilib-
rium.

3. If er = �r for all resources r ∈ R, then � contains a
√
d-approximate pure Nash

equilibrium.
4. If the players are α-uniform and er = �r for all resources r ∈ R, then � contains

a β-approximate pure Nash equilibrium for β = d
α·(d−1)+1 .

Proof 1. The proof relies on the fact that PNE always exist in player-specific matroid
congestion games (Ackermann et al. 2009).We define a player-specific congestion
game �′ with the following cost functions: cir (S) = αi · �r (S) + (1 − αi ) · er (S).
We show that every PNE in �′ is a d-approximate pure Nash equilibrium in �.
Since PNE always exist in matroid player-specific congestion games, the claim
follows. We denote by ci (S) the costs of player i in state S in �, and by cpi (S) the
costs in �′. Let Si be a best-response strategy w. r. t. S−i in �′. Then we get for
all strategies S′

i ∈ �i :

ci (S
′
i , S−i ) = αi ·

∑

r∈S′
i

�r (S
′
i , S−i ) + (1 − αi ) · max

r∈S′
i

er (S
′
i , S−i )

≥ αi ·
∑

r∈S′
i

�r (S
′
i , S−i ) + (1 − αi ) · 1

d
·
∑

r∈S′
i

er (S
′
i , S−i )

≥ 1

d
· cpi (S′

i , S−i ) ≥ 1

d
· cpi (Si , S−i ) ≥ 1

d
· ci (Si , S−i )

2. We show that the function �(S) = ∑
r∈R

∑nr (S)
i=1 (α · �r (i) + (1 − α) · er (i)) is a

d-approximate potential function, i. e., its value decreases in every d-improvement
step. Consider a state S and a player i who decreases her costs by a factor of more
than d by deviating to the strategy S′

i :

�(S′
i , S−i ) − �(S)

=
∑

r∈R

nr (S′)∑

i=1

(α · �r (i) + (1 − α) · er (i)) −
∑

r∈R

nr (S)∑

i=1

(α · �r (i) + (1 − α) · er (i))
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≤ α ·
∑

r∈S′
i

�r (S
′) + (1 − α) · max

r∈S′
i

er (S
′) + (1 − α)

·
∑

r∈S′
i

er (S
′) − (1 − α) · max

r∈S′
i

er (S
′)

−
⎛

⎝α ·
∑

r∈Si
�r (S) + (1 − α) · max

r∈Si
er (S)

⎞

⎠

≤ ci (S
′) − ci (S) +

∑

r∈S′
i

(1 − α) · er (S′) − (1 − α) · max
r∈S′

i

er (S
′)

≤ ci (S
′) − ci (S) + (d − 1) · ci (S′) < ci (S

′) − d · ci (S′) + (d − 1) · ci (S′) = 0

3. We show that �(S) = ∑
r∈R

∑nr (S)
i=1 �r (i)2 is a

√
d-approximate potential func-

tion. Consider a state S that is minimizing � and player i who deviates to the
strategy S′

i . Note that�(S)−�(S′
i , S−i) = ∑

r∈S �r (S)2−∑
r∈S′ �r (S′)2.Hence,∑

r∈S �r (S)2 ≤ ∑
r∈S′ �r (S′)2.

ci (S
′
i , S−i) =

∑

r∈S′
i

αi · �r (S
′) + (1 − αi )max

r∈S′
i

�r (S
′)

≥ αi ·
⎛

⎝
∑

r∈S′
i

�r (S
′)2

⎞

⎠

1
2

+ (1 − αi ) ·
(

max
r∈S′

i

�r (S
′)2

) 1
2

≥ αi ·
⎛

⎝ 1√
d

·
∑

r∈Si
�r (S)

⎞

⎠ + (1 − αi ) ·
⎛

⎝ 1

d
·
⎛

⎝
∑

r∈Si
�r (S)2

⎞

⎠

⎞

⎠

1
2

≥ αi√
d

·
∑

r∈Si
�r (S) + 1 − αi√

d
· max
r∈Si

�r (S) = 1√
d

· ci (S).

4. We argue that�(S) = ∑
r∈R

∑nr (S)
i=1 �r (i) is an approximate potential function. If

the latency and bottleneck cost functions are identical for each resource, we use the
fact that the cost of the bottleneck resource is at least as high as the average latency
cost, i. e., maxr∈Si er (S) ≥ 1

|Si |
∑

r∈Si �r (S) ≥ 1
d

∑
r∈Si �r (S), which implies

ci (S) = α · ∑
r∈Si �r (S) + (1 − α) · maxr∈Si �r (S) ≥ (

α + 1−α
d

) ∑
r∈Si �r (S).

Consider a state S and a player i who decreases her costs by a factor of more than
β = d

α·(d−1)+1 by deviating to the strategy S′
i .

�(S′
i , S−i ) − �(S) ≤ ci (S

′) − ci (S) +
∑

r∈S′
i

(1 − α) · �r (S
′) − (1 − α) · max

r∈S′
i

�r (S
′)

≤ ci (S
′) − ci (S) + (1 − α) ·

(
1 − 1

d

)
·
∑

r∈S′
i

�r (S
′)
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≤ ci (S
′) − ci (S) + (1 − α) ·

(
1 − 1

d

)
· ci (S′)
α + 1−α

d

=
(

1 + (1 − α) · d−1
d

α + 1−α
d

)

ci (S
′) − ci (S)

=
(
1 + d − 1

α · (d − 1) + 1
− 1 + 1

α · (d − 1) + 1

)
ci (S

′) − ci (S)

= d

α · (d − 1) + 1
ci (S

′) − ci (S) < 0

	

We remark that the β given in the fourth case of Theorem 12 is bounded from above

by 1
α
. However, if α is close to 0, the bound of

√
d derived for general games with

�r = er for all resources, but without restrictions on the preference values, may give
a better approximation guarantee.

5 Conclusions

We studied a new class of games in which players seek to minimize the sum of
latency costs, the maximum of bottleneck costs, or a combination thereof. The convex
combination of the two existing and well-studied models was the first step to introduce
a newmore generalmodel of congestion games. As a promising avenue for futurework
it would be interesting to consider other types of cost aggregation. Thiswould be useful
in scenarios with heterogeneous players with different interests in which the resources
represent not only links in a network but also servers, routers, or any network functions
in general.
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