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Abstract

Power domination in graphs arises from the problem of monitoring an electric power
system by placing as few measurement devices in the system as possible. A power
dominating set of a graph is a set of vertices that observes every vertex in the graph,
following a set of rules for power system monitoring. A practical problem of interest
is to determine the minimum number of additional measurement devices needed to
monitor a power network when the network is expanded and the existing devices remain
in place. In this paper, we study the problem of finding the smallest power dominating
set that contains a given set of vertices X. We also study the related problem of finding
the smallest zero forcing set that contains a given set of vertices X. The sizes of such
sets in a graph G are respectively called the restricted power domination number and
restricted zero forcing number of G subject to X. We derive several tight bounds on the
restricted power domination and zero forcing numbers of graphs, and relate them to
other graph parameters. We also present exact and algorithmic results for computing
the restricted power domination number, including integer programs for general graphs
and a linear time algorithm for graphs with bounded treewidth. We also use restricted
power domination to obtain a parallel algorithm for finding minimum power dominating
sets in trees.
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1 Introduction

The study of the power domination number of a graph arose from the question of how
to monitor electric power networks at minimum cost, and was recast in graph theoretical
terms by Haynes et al. in [17]. In this model, vertices represent electric nodes and edges
represent connections via transmission lines. Electric power companies need to continuously
monitor their networks, and one method to do this is to place Phase Measurement Units
(PMUs) at selected locations in the system. Because of the cost of a PMU, it is important
to minimize the number of PMUs used while maintaining the ability to observe the entire
system. The physical laws by which PMUs can observe the network give rise to propagation
rules governing power domination; see Section 2 for formal definitions.

Electric networks are frequently modified, sometimes by building an extension with new
nodes and lines. The labor to install a PMU and the (non-portable) infrastructure that must
be put at the node to support the PMU are significant parts of the total cost of installing a
PMU at a given node. Thus it seems useful to determine the minimum number of additional
PMUs needed (and the locations where they should be placed) when an existing network is
expanded and the existing PMUs remain in place. In this paper we consider the problem
of finding a power dominating set that contains a given set of vertices X (locations of the
existing PMUs) and minimizes the number of additional PMUs needed, or equivalently, that
minimizes the total number of PMUs used subject to the constraint that the vertices in X
are included in the solution.

The process of zero forcing was introduced independently in combinatorial matrix theory
(where it refers to forcing zero entries in a null vector of a matrix) [1], and in mathematical
physics in the control of quantum systems [6]. Zero forcing is closely related to power
domination, because power domination can be described as a domination step followed by
the zero forcing process (or, since power domination came first, zero forcing can be described
as power domination without the domination step). The problem of finding a zero forcing
set that is minimum subject to containing a set X of vertices is also considered here. Zero
forcing sets containing specific vertices have been used in [3] to show the correctness of
the Wavefront algorithm for zero forcing (which is implemented in [7]), and explicitly or
implicitly in certain other zero forcing proofs [4, 22]. This concept may also have application
to control of quantum systems where certain controls are automatically available.

This paper is organized as follows. In the next section, we recall some graph theoretic
notions, specifically those related to power domination and zero forcing, and define restricted
power domination and zero forcing. Additionally, we show that our study of restricted power
domination falls under the general study of restricted domination parameters initiated by
Goddard and Henning [15] as a generalization of the work by Sanchis [23]. In Section 3,
we present structural results and bounds for restricted power domination and restricted
zero forcing. In Section 4, we give exact results and algorithms for the restricted power
domination and restricted zero forcing numbers of certain families of graphs. We conclude
with some final remarks and open questions in Section 5.
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2 Preliminaries

A graphG = (V,E) is an ordered pair consisting of a finite nonempty set of vertices V = V (G)
and a set of edges E = E(G) containing unordered pairs of distinct vertices (all graphs
discussed in this paper are simple, undirected, and finite). The order of G is denoted by
n = |V (G)|. Two vertices u and v are adjacent, or neighbors, if {u, v} ∈ E. For v ∈ V , the
neighborhood of v is N(v) = {u ∈ V : {u, v} ∈ E} (or NG(v) if G is needed for clarity), and
the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. Similarly, for a set of vertices S,
N [S] = ∪v∈SN [v]. The degree of a vertex v, denoted deg v, is the cardinality of the set N(v).

In a graph G, a vertex v dominates all vertices in NG[v], a set of vertices S dominates
all vertices in NG[S], and in particular, when NG[S] = V (G) we say that S is a dominating
set of G. A minimum dominating set is a dominating set of minimum cardinality, and its
cardinality is the domination number of G, denoted γ(G).

In [17] the authors introduced the related concept of power domination by presenting
propagation rules in terms of vertices and edges in a graph. Here we use a simplified version
of the propagation rules that is equivalent to the original (see [5]). For a set S ⊆ V in a
graph G = (V,E), define PD(S) ⊆ V recursively:

1. PD(S) = N [S].

2. While there exists v ∈ PD(S) such that |N(v)\PD(S)| = 1: PD(S) = PD(S)∪N(v).

A set S ⊆ V (G) is a power dominating set of a graph G if PD(S) = V (G) at the
conclusion of the process above. A minimum power dominating set is a power dominating
set of minimum cardinality, and the power domination number of G, denoted by γP (G), is
the cardinality of a minimum power dominating set.

We recall the following well-known upper bounds on the domination and power domina-
tion numbers of a graph that will be used throughout.

Theorem 2.1 (Ore’s Theorem). [18, Theorem 2.1] If G is a graph on n ≥ 2 vertices and G
has no isolated vertices, then γ(G) ≤ n

2
.

Theorem 2.2. [5, 27] If G is a connected graph on n ≥ 3 vertices, then γP (G) ≤ n
3
.

Zero forcing can be described as a coloring game on the vertices of G. The color change
rule is: If u is a blue vertex and exactly one neighbor w of u is white, then change the color
of w to blue. We say u forces w and denote this by u → w. Given a set B of blue vertices
(all other vertices being white), the closure of B, denoted cl(B), is the set of blue vertices
obtained after the color change rule is applied until no new vertex can be forced; it can be
shown that cl(B) is uniquely determined by B (see [1]). A zero forcing set is a set for which
cl(B) = V (G); a minimum zero forcing set is a zero forcing set of minimum cardinality, and
the zero forcing number of G, denoted Z(G), is the cardinality of a minimum zero forcing
set.

A chronological list of forces F associated with a zero forcing set B is a sequence of forces
applied to obtain cl(B) in the order they are applied. A forcing chain for a chronological
list of forces is a maximal sequence of vertices (v1, . . . , vk) such that the force vi → vi+1 is
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in F for 1 ≤ i ≤ k − 1; we say the forcing chains are associated with B. Each forcing chain
produces a distinct path in G, one of whose endpoints is in B; the other is called a terminal
(and the two can coincide).

Definition 2.3. Let G = (V,E) be a graph and let X ⊆ V . A set S ⊆ V (G) is a power
dominating set of G subject to X if S is a power dominating set of G and X ⊆ S. The
restricted power domination number of G subject to X is the minimum number of vertices
in a power dominating set that contains X , and is denoted by γP (G;X).

A set S ⊆ V (G) is a zero forcing set of G subject to X if S is a zero forcing set of G and
X ⊆ S. The restricted zero forcing number of G subject to X is the minimum number of
vertices in a zero forcing set that contains X , and is denoted by Z(G;X).

Observation 2.4. For any graph G, γP (G; ∅) = γP (G) and Z(G; ∅) = Z(G).

Example 2.5. For a path Pn and any nonempty set X , γP (Pn;X) = |X|, because any
nonempty set of vertices is a power dominating set of a path. If X = {x} and x is an
endpoint of the path, then Z(G;X) = 1 = Z(G); if x is not an endpoint of the path, then
Z(G;X) = 2.

The study of restricted power domination and restricted zero forcing fit into the general
study of restricted domination parameters initiated by Goddard and Henning in [15] as a
generalization of the work of Sanchis [23] and Henning [19] that investigated the restricted
version of standard graph domination. One motivation for Sanchis’ study of restricted dom-
ination was a problem in resource allocation in distributed computer systems. We follow
the notation introduced by Henning (to avoid a conflict with an existing notation) and gen-
eralized by Goddard and Henning: Let G be a graph, and X ⊆ V (G). Define r(G,X, γ)
to be the cardinality of a smallest dominating set of G that contains X . The k-restricted
domination number of G is rk(G, γ) = max{r(G,X, γ) : X ⊆ V (G), |X| = k}.

Returning to the more general setting and using the terminology of [15], let π be a
property of sets, such as being a dominating, power dominating, or zero forcing set and
denote the minimum cardinality of a π-set by fπ. Given a set of vertices X , define r(G,X, fπ)
to be the minimum cardinality of a π-set containing X . Thus, γP (G;X) = r(G,X, γP ) and
Z(G;X) = r(G,X,Z). Given a non-negative integer k, the k-restricted π-number of G is
rk(G, fπ) = max{r(G,X, fπ) : X ⊆ V (G), |X| = k}.

Remark 2.6. Since for any graph G, γP (G) ≤ γ(G), it follows that r(G,X, γP ) ≤ r(G,X, γ)
for any X ⊆ V (G). As a consequence, rk(G, γP ) ≤ rk(G, γ) and r(G,X, γP ) ≤ rk(G, γ) for
k = |X|.

Other generalizations and extensions of power domination and zero forcing have also been
explored; for example, variants of the problems obtained by modifying the color change rules
have received significant attention [8, 9, 14, 26], as has the problem of studying the number
of timesteps involved in the process of zero forcing or power dominating a graph [13, 20, 21].

Algorithmically, given a graph G = (V,E) and sets X ⊆ V and S ⊆ V , deciding if S is a
power dominating set of G subject toX is simply a matter of determining whether S contains
X and whether S is a power dominating set. As a consequence, given an arbitrary graph
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G = (V,E), an arbitrary set of vertices X ⊆ V , and an integer k ≥ |X|, the computational
complexity of deciding if a graph G has a power dominating set of cardinality k is equivalent
to that of determining if G has a power dominating set of cardinality k that also contains X .
The former problem has been proven to be NP -complete for bipartite graphs [17, Theorem
5], chordal graphs [17, Theorem 5], circle and planar graphs [16, Theorem 1].

3 Structural results and bounds

In this section, we present a number of structural results and bounds on the restricted power
domination and restricted zero forcing numbers of a graph. We begin with the following
simple bounds.

Proposition 3.1. For any graph G = (V,E) and any set X ⊆ V ,

γP (G) ≤ γP (G;X) ≤ γP (G) + |X|,

Z(G) ≤ Z(G;X) ≤ Z(G) + |X|,

|X| ≤ γP (G;X) ≤ Z(G;X),

and all bounds are tight.

Proof. The lower bounds are all immediate from the definitions. The first two upper bounds
follow by adding the vertices of X into a power dominating or zero forcing set, and the last
follows from the fact that any zero forcing set is a power dominating set. For tightness: Let
X consist of s leaves in K1,p where 1 ≤ s ≤ p − 2, and note that γP (K1,p;X) = 1 + s =
γP (K1,p) + |X|. Various choices of X in the path can be used to show the remaining bounds
are tight; see Example 2.5.

By a similar reasoning, the following more general bounds hold.

Proposition 3.2. For any graph G = (V,E) and any sets Y ⊆ X ⊆ V ,

γP (G; Y ) ≤ γP (G;X) ≤ γP (G; Y ) + |X\Y |,

Z(G; Y ) ≤ Z(G;X) ≤ Z(G; Y ) + |X\Y |,

and all bounds are tight.

In the next section, we give structural results related to the restricted power dominating
sets of a graph. These lead to improved bounds on the restricted power domination and zero
forcing numbers in Sections 3.2 and 3.3. In Section 3.4 we establish a relationship between
the restricted power domination number and the restricted zero forcing number.
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3.1 Structural results for power domination

The next lemma states well-known results about mandatory vertices in power dominating
sets; we include the brief proof for completeness (and because it has sometimes been mis-
stated in the literature without proof). A leaf is a vertex of degree one.

Lemma 3.3. Let G = (V,E) be a graph.

(1) If v ∈ V is incident to three or more leaves, then v is contained in every minimum power
dominating set of G.

(2) If v ∈ V is incident to exactly two leaves, then every minimum power dominating set
contains either v or one of its two leaf neighbors.

(3) There is a minimum power dominating set of G that contains every vertex v that is
incident to exactly two leaves.

Proof. First let v ∈ V be incident to at least three leaves and suppose there is a minimum
power dominating set S of G that does not contain v. If S excludes two or more of the leaves
of G incident to v, then those leaves cannot be dominated or forced at any step. Thus, S
excludes at most one leaf incident to v, which means S contains at least two leaves ℓ1 and
ℓ2 incident to v. Then, (S\{ℓ1, ℓ2}) ∪ {v} is a smaller power dominating set than S, which
is a contradiction.

Now consider the case in which v ∈ V is incident to exactly two leaves, ℓ1 and ℓ2, and
suppose there is a minimum power dominating set S of G such that {v, ℓ1, ℓ2}∩S = ∅. Then
neither ℓ1 nor ℓ2 can be dominated or forced at any step, contradicting the assumption that
S is a power dominating set. If S is a power dominating set that contains ℓ1 or ℓ2, say ℓ1,
then (S\{ℓ1}) ∪ {v} is also a power dominating set and has the same cardinality. Applying
this to every vertex incident to exactly two leaves produces the minimum power dominating
set required by (3).

Definition 3.4. Given a graph G = (V,E) and a set X ⊆ V , define ℓr(G,X) as the graph
obtained by attaching r leaves to each vertex in X . If X = {v1, . . . , vk}, we denote the r
leaves attached to vertex vi as ℓ

1
i , . . . , ℓ

r
i for each i = 1, . . . , k, so that V (ℓr(G,X)) = V ∪{ℓji :

1 ≤ i ≤ k, 1 ≤ j ≤ r} and E(ℓr(G,X)) = E ∪ {viℓ
j
i : 1 ≤ i ≤ k, 1 ≤ j ≤ r}.

We will now establish a relationship between γP (G;X) and ℓ2(G,X) using Lemma 3.3.

Proposition 3.5. For any graph G = (V,E) and any set X ⊆ V , γP (G;X) = γP (ℓ2(G,X)).

Proof. First note that any power dominating set of G that contains X is also a power
dominating set of ℓ2(G,X). Thus, γP (ℓ2(G,X)) ≤ γP (G;X).

By Lemma 3.3, there exists a minimum power dominating set S of ℓ2(G,X) that contains
all vertices in X . Clearly S is a power dominating set of G containing X , and this implies
γP (G;X) ≤ γP (ℓ2(G,X)).
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Since the motivation for studying the power domination number subject to a given set
stems from the problem of optimizing PMU placement when the electric grid is expanded, we
sometimes assume that all graphs are connected and have at least three vertices (however,
subgraphs of a given graph are allowed to be disconnected). This can make the statements
of some of the following results cleaner, and they are easy to adapt to disconnected graphs
that may have small components: Since K1 and K2 each have a power domination number
of one,

γP (G;X) =
∑

{i:|Ci|≥3}

γP (Ci;X ∩ Ci) +
∑

{i:|Ci|≤2}

max{|X ∩ Ci|, 1}

where C1, . . . , Cr are the connected components of G.

Corollary 3.6. Let G be a connected graph of order n ≥ 3 and X ⊆ V (G). Then γP (G;X) ≤
⌊

n+2|X|
3

⌋

and this bound is tight.

Proof. By Proposition 3.5, γP (G;X) = γP (ℓ2(G,X)). Since |V (ℓ2(G,X))| = n + 2|X| ≥ 3,

it follows from Theorem 2.2 that γP (ℓ2(G,X)) ≤
⌊

n+2|X|
3

⌋

.

To see that this bound is tight, let G = (V,E) and X ⊆ V and construct G′ = (V ′, E ′) by
attaching two leaves to each vertex in V \X , that is, let G′ = ℓ2(G, V \X). Then γP (G

′;X) =

|V | =
⌊

|V ′|+2|X|
3

⌋

.

As noted in Remark 2.6, γP (G;X) ≤ rk(G, γ) for X ⊆ V (G) and k = |X|. Let G be
a connected graph of order n and minimum degree at least 2. It was shown in [19] that
rk(G, γ) ≤ 2n+3k

5
for every integer k such that 1 ≤ k ≤ n. As a consequence, for every

nonempty set X ⊆ V (G), γP (G;X) ≤ 2n+3|X|
5

. However, Corollary 3.6 gives a better bound.
Lemma 3.3 ensures that X is contained in some but not every minimum power dominat-

ing set of ℓ2(G,X). For example, in Figure 3.1 let G be the path with vertex set {3, 4, 5},
let X = {3, 5}, and note that {1, 5} is a minimum power dominating set of ℓ2(G,X) that
does not contain X .

1

3

2

4

7

5

6

Figure 3.1: A graph used in several examples.

The next result shows that X is contained in every minimum power dominating set of
ℓ3(G,X). The proof is analogous to the proof of Proposition 3.5 and is omitted.

Proposition 3.7. For any graph G = (V,E) and any set X ⊆ V , a set S is a minimum
power dominating set of G subject to X if and only if S is a minimum power dominating set
of ℓ3(G,X).
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Lemma 3.8. Let G be any graph and let u be a leaf vertex of G. Then the following are
equivalent:

1. γP (G; {u}) = γP (G− u) + 1.

2. There is some minimum power dominating set of G subject to {u} in which u does not
need to perform a dominating step or a force.

3. There is some minimum power dominating set of G subject to {u} of the form S ∪{u}
where S is a minimum power dominating set of G− u.

Furthermore, γP (G; {u}) = γP (G − u) if and only if u needs to perform a dominating step
or a force for any minimum power dominating set of G subject to {u}.

Proof. Since u is a leaf, a dominating step is the same as a force for u. Furthermore,
γP (G − u) ≤ γP (G) ≤ γP (G − u) + 1 and γP (G) ≤ γP (G; {u}) ≤ γP (G− u) + 1. We show
that (2) ⇒ (3) ⇒ (1) ⇒ (2). Then the last statement follows from (1) ⇔ (2).

If there is some minimum power dominating set S ′ of G subject to {u} in which u does
not need to perform a dominating step or a force, then S = S ′ \ {u} is a power dominating
set of G− u, and S is minimum since γP (G)− 1 ≤ γP (G− u).

If there is some minimum power dominating set of G subject to {u} of the form S ∪ {u}
where S is a minimum power dominating set of G− u, then γP (G; {u}) = γP (G− u) + 1.

Now suppose that γP (G; {u}) = γP (G− u) + 1. Let w be the neighbor of u in G. Then
γP (G− u) + 1 = γP (G− uw) = γP (G− uw; {u}). Since γP (G− uw; {u}) = γP (G; {u}), the
presence of the edge incident to u does not affect the restricted power domination number, so
u does not need to perform a force in some minimum power dominating set S ′ of G subject
to {u}.

3.2 Bounds for restricted power domination

If W is a subset of the vertices of a graph H , the subgraph of H induced by W is denoted
by H [W ].

Proposition 3.9. Let G′ = (V ′, E ′) be a graph, V ⊂ V ′, G = G′[V ], and S be a power
dominating set of G. Let t be the number of isolated vertices of G′[V ′\V ]. Then,

γP (G
′;S) ≤ |S|+

|V ′\V |

2
+

t

2

and this bound is tight.

Proof. Let X1 be the set of isolated vertices of G′[V ′\V ]. By Theorem 2.1, the |V ′\V | − t

non-isolated vertices of G′[V ′\V ] can be dominated by a set X2 of size at most |V ′\V |−t

2
. Thus,

the set X1∪X2 can dominate all vertices in G′[V ′\V ] in the first time step, and then the rest

of G′ can be power dominated by S. Thus, γP (G
′;S) ≤ |S|+ |V ′\V |−t

2
+ t = |S|+ |V ′\V |

2
+ t

2
.
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To see that the bound is tight, consider G = Pn�P2 with n > 3, denote the vertices of G
by (i, j) for 1 ≤ i ≤ n and j = 1, 2, and let S = {(1, 1)}. Construct G′ from G by adding one
K2 with both vertices adjacent to (1, 2) and another K2 with both vertices adjacent to (n, 2)
(see Figure 3.2 for an example). Since for both ℓ = 1 and ℓ = n, one of (ℓ, 2) or a vertex from
NG′ [(ℓ, 2)] \V (G) must be in any power dominating set of G′, γP (G

′;S) = 3 = 1+ 4
2
+ 0

2
.

(1, 2) (5, 2)

(1, 1) (5, 1)

Figure 3.2: Graph G′ for Proposition 3.9.

The next proposition is a basic extension result.

Proposition 3.10. Let G′ = (V ′, E ′) be a graph, V ⊂ V ′, G = G′[V ], H1, . . . , Hk be
the components of G′[V ′\V ], and S be a power dominating set of G. For 1 ≤ i ≤ k, let
Ni = V (Hi) ∩NG′[V \NG[S]]. Then

γP (G
′;S) ≤

k
∑

i=1

γP (Hi;Ni) + |S|

and this bound is tight.

Proof. For i = 1, . . . , k, let Si be any power dominating set of Hi that contains Ni. We show
∪k
i=1Si ∪ S is a power dominating set of G′, so choosing minimum power dominating sets Si

subject to the restrictions establishes the inequality. Suppose y ∈ NG′ [Hi]∩V , which implies
y has a neighbor x ∈ V (Hi). If y 6∈ NG[S], then x ∈ Ni, so Si dominates y. If y ∈ NG[S],
then y is dominated by S. Since all neighbors of Hi that are not in Hi are dominated, all
the vertices of Hi can be power dominated by Si. Once all vertices not in G are power
dominated, S can power dominate G.

To see that the bound is tight, let G′ be the graph in Figure 3.1, G = G′[{1, 2, 3, 4}], and
S = {3}. Then γP (G

′;S) = 2 = 1 + 1 = γP (G
′[{5, 6, 7}]; {5}) + |S|. Larger examples may

be constructed by subdividing the edge between 3 and 4 repeatedly.

Remark 3.11. The statement of Proposition 3.10 remains valid when Ni is re-defined as
a subset of V (Hi) which is a minimum dominating set of V (Hi) ∩ (NG′[V ]\NG′[S]). The
proof for this modified statement is similar to the proof of Proposition 3.10, except that the
order is different: Since all the vertices in NG′[V ] \ V are dominated, the vertices in G can
be power dominated, followed by the vertices of Hi, i = 1, . . . , k.
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Proposition 3.12. Let G′ = (V ′, E ′) be a graph, V ⊂ V ′, G = G′[V ], and S be a power
dominating set of G. Suppose each component of G′[V ′\V ] has at least 3 vertices. Then,

γP (G
′;S) ≤ |S|+

|V ′\V |

3
+ |NG′[V \NG[S]] ∩ (V ′\V )|

and this bound is tight.

Proof. Let H1, . . . , Hk be the components of G′[V ′\V ]. For 1 ≤ i ≤ k, let Ni = V (Hi) ∩
NG′ [V \NG[S]]. From Proposition 3.10, γP (G

′;S) ≤
∑k

i=1 γP (Hi;Ni)+ |S|. From Proposition

3.1, γP (Hi;Ni) ≤ γP (Hi) + |Ni| for i = 1, . . . , k, and γP (Hi) ≤ |V (Hi)|
3

by Theorem 2.2.

Thus, we conclude γP (G
′;S) ≤

∑k

i=1
|V (Hi)|

3
+
∑k

i=1 |Ni|+ |S|. Since
∑k

i=1 |V (Hi)| = |V ′\V |

and
∑k

i=1 |Ni| = NG′ [V \NG[S]] ∩ (V ′\V ), we obtain γP (G
′;S) ≤ |V ′\V |

3
+ |NG′[V \NG[S]] ∩

(V ′\V )|+ |S|.
To see that the bound is tight, consider G = Kn with vertices V = {v1, . . . , vn}. For each

i = 1, . . . , n, add three vertices ai, bi and ci, and also add the edges viai, aibi and aici. Let
G′ be the resulting graph so |V ′| = 4n (see Figure 3.3 for an example). Then, G = G′[V ],
S = {v1} is a power dominating set of G, and the connected components of G[V ′ \ V ] are
the paths bi, ai, ci for i = 1, . . . , n. It is easily verified that S ∪ {bi : i = 1, . . . , n} is a power
dominating set and every S-restricted power dominating set must contain S and at least
one vertex in each component of V ′ \ V , so γP (G

′;S) = 1 + n. Since NG[S] = V , clearly
V \ NG[S] = ∅, so |NG′ [V \ NG[S]] ∩ (V ′ \ V )| = 0. Since |V ′ \ V | = 3n and |S| = 1, the

upper bound is |S|+ |V ′\V |
3

+ |NG′[V \NG[S]] ∩ (V ′ \ V )| = 1 + n+ 0 = γP (G
′;S).

Figure 3.3: Graphs G = K4 and G′ for Proposition 3.12.

Proposition 3.13. Let G = (V,E) be a graph, and V = V1 ∪ V2 be a partition of V . Let
N1 = N [V2] ∩ V1 and N2 = N [V1] ∩ V2, and let G1 = G[V1] and G2 = G[V2]. Let W1 ⊆ V1

and W2 ⊆ V2 be sets of vertices such that W1 ∪W2 dominates N1 ∪N2 in G. Then,

γP (G) ≤ γP (G;W1 ∪W2) ≤ γP (G1;W1) + γP (G2;W2)

and these bounds are tight.
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Proof. Let S1 and S2 be sets that realize γP (G1;W1) and γP (G2;W2), respectively. By
construction, S1 ∪ S2 contains W1 ∪ W2. Moreover, the vertices in S1 ∪ S2 can dominate
N1 ∪N2 in G in the first time step, and then S1 and S2, respectively, can force the vertices
of V1 and V2 in G independently, since the vertices in V1 (respectively, V2) are not adjacent
to any uncolored vertices outside V1 (respectively, V2). Thus, S1 ∪ S2 is a power dominating
set of G, so γP (G;W1 ∪W2) ≤ γP (G1;W1) + γP (G2;W2).

To see that the bound is tight, let G1 = K1,p and G2 = K1,q with p, q ≥ 4. Label the
centers of the stars c1 and c2, respectively. Let u1 and v1 be two leaves of G1 and u2 and v2
be two leaves of G2. Let G be the graph formed from the disjoint union of G1 and G2 by
adding all possible edges between a vertex in {u1, v1} and a vertex in {u2, v2} (see Figure 3.4
for an example). For the obvious partition of the vertices into V (G1), V (G2), let W1 = {c1}
and W2 = {c2}. Then γP (G) = 2 = γP (G;W1 ∪W2) = γP (G[V1];W1) + γP (G[V2];W2).

c1

u1

v1

u2

v2

c2

Figure 3.4: Graph G for Proposition 3.13.

3.3 Bounds for restricted zero forcing

The next two results are the zero forcing versions of Remark 3.11 and Proposition 3.13.

Proposition 3.14. Let G′ = (V ′, E ′) be a graph, V ⊂ V ′, G = G′[V ], H1, . . . , Hk be the
components of G′[V ′\V ], and B be a zero forcing set of G. For 1 ≤ i ≤ k, let Ni =
NG′ [V ] ∩ V (Hi). Then,

Z(G′;B) ≤
k

∑

i=1

Z(Hi;Ni) + |B|

and this bound is tight.

Proof. For i = 1, . . . , k, let Bi be any zero forcing set of Hi that contains Ni. We show
∪k
i=1Bi ∪ B is a zero forcing set of G′, so choosing minimum zero forcing sets Bi subject to

the restrictions establishes the inequality. Since all vertices in NG′ [V ]\V are initially colored
blue, B can force all vertices of G. After this, since all vertices in NG′ [V (Hi)]\V (Hi) are
colored blue for each Hi, Bi will be able to force V (Hi) for 1 ≤ i ≤ k.

To see that the bound is tight, let G′ be the graph in Figure 3.1, G = G′[{1, 2, 3}], and
B = {1}. Then H1 = {4, 5, 6, 7}, N1 = {4}, and Z(G′;B) = 3 = Z(H1;N1) + |B|.
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Proposition 3.15. Let G = (V,E) be a graph, and V = V1 ∪ V2 be a partition of V . Let
N1 = N [V2] ∩ V1 and N2 = N [V1] ∩ V2, and let G1 = G[V1] and G2 = G[V2]. Then,

Z(G) ≤ min(Z(G1) + Z(G2;N2), Z(G1;N1) + Z(G2)),

and this bound is tight.

Proof. Without loss of generality, assume Z(G1) + Z(G2;N2) ≤ Z(G1;N1) + Z(G2). Start
with an initial set B = B1 ∪ B2 where B1 and B2 are minimum zero forcing sets of G1 and
G2, respectively, and N2 ⊆ B2. Given a vertex v in V1, its only white neighbors belong to
G1, hence B1 can force all of G1. Once G1 is colored blue, B2 is a zero forcing set of G2 and
will force the rest of the graph. To see that this bound is tight, consider the graph G shown
in Figure 3.5. Partition the vertices as V1 = {1, 2, 3} and V2 = {4, 5, 6, 7, 8}, so N1 = {2}
and N2 = {6, 7, 8}. Then Z(G) = 3 = 2 + 1 = Z(G1;N1) + Z(G2).

4 8

7

2

6 5

1 3

Figure 3.5: Graph G for Proposition 3.15.

We conclude this section by considering Z(G;X) when X consists of a single vertex v.
To this end, we recall the concept of zero forcing spread of a vertex, as defined in [11].
Let G be a graph and v be a vertex in G. The zero forcing spread of v is defined as
zv(G) = Z(G)− Z(G− v).

It is shown in [11] that for any vertex v in a graph G, −1 ≤ zv(G) ≤ 1, and that zv(G) = 1
if and only if there exists a minimum zero forcing set of G containing v such that v does not
perform a force. Furthermore, if zv(G) = −1, then v is not contained in any minimum zero
forcing set of G. Since Z(G) ≤ Z(G; {v}) ≤ Z(G) + 1, we have the following result.

Proposition 3.16. For a graph G and v ∈ V (G)

Z(G; {v}) =

{

Z(G) if zv(G) = 1

Z(G) + 1 if zv(G) = −1.

For a graph G and vertex v ∈ V (G) with zv(G) = 0, it may be that Z(G; {v}) = Z(G) or
Z(G; {v}) = Z(G)+1. In Figure 3.6, zv(G) = 0 and Z(G; {v}) = Z(G) = 2, while zu(G) = 0
and Z(G; {u}) = 3 = Z(G) + 1.

Note that by numbering the desired vertex v as the lowest number 0, the Bruteforce
algorithm implemented in the software [7] will return the desired vertex in a minimum zero
forcing set if this is possible. Thus the Bruteforce algorithm can be used to determine
whether Z(G; {v}) = Z(G) or Z(G; {v}) = Z(G) + 1.

12



u

v

Figure 3.6: Graph G in which zv(G) = 0 and Z(G; {v}) = Z(G), while zu(G) = 0 and
Z(G; {u}) = Z(G) + 1.

3.4 Connections between restricted power domination and restricted

zero forcing

Let the maximum degree of G be denoted by ∆(G).

Remark 3.17. If S is a power dominating set of G that contains X , then N [S] is a zero
forcing set of G that contains N [X ]. Since |N [S]| ≤ (∆(G) + 1)|S|, we have

Z(G;N [X ]) ≤ (∆(G) + 1)γP (G;X). (1)

The next results improve the bound in (1); their proofs use ideas from the proofs of [10,
Lemma 2] and [2, Theorem 3.2], but differ in ensuring that the set X is not inadvertently
discarded.

Lemma 3.18. Let G be a graph with no isolated vertices and let S = {u1, . . . , ut} be a power
dominating set for G that contains X. Then Z(G;X) ≤

∑t

i=1 deg ui and this bound is tight.

Proof. For i = 1, . . . , t, define

Ui =

{

N [ui] \ {vi} where vi ∈ N(ui) \ S if N(ui) \ S 6= ∅
{ui} if N(ui) \ S = ∅,

and B = ∪t
i=1Ui. Then |B| ≤

∑t

i=1 deg ui, because |N [ui] \ {vi}| ≤ deg ui + 1 − 1 = deg ui

when N(ui) \ S 6= ∅, and when N(ui) \ S = ∅, |{ui}| = 1 and deg ui ≥ 1.
We show that B is a zero forcing set of G. Since B ⊇ S ⊇ X , this implies Z(G;X) ≤

|B| ≤
∑t

i=1 deg ui. Color all the vertices in B blue and the vertices in V (G) \B white. Then
every vertex of S is colored blue, and for i = 1, . . . , t, at most one vertex in N [ui] is white
(vi is the only possibility). So ui can immediately force vi if necessary, and N [S] is colored
blue. Since S is a power dominating set of G, N [S] is a zero forcing set of G, and therefore
B is a zero forcing set of G.

Whenever Z(G) ≤
∑t

i=1 deg ui is tight andX ⊆ S, then the bound Z(G;X) ≤
∑t

i=1 deg ui

is tight. A path with S = X consisting of an endpoint is an example.
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Theorem 3.19. Let G be a graph with ∆(G) ≥ 1. Then
⌈

Z(G;X)
∆(G)

⌉

≤ γP (G;X) and this

bound is tight.

Proof. Suppose G has connected components G1, . . . , Gh. Let Xj = X ∩ V (Gj) and sup-
pose Gi is a component that has an edge, so Gi does not have isolated vertices. Choose
a minimum power dominating set Si = {u

(i)
1 , . . . , u

(i)
ti
} ⊇ Xi for Gi, so ti = γP (Gi;Xi).

Then by Lemma 3.18, Z(Gi;Xi) ≤
∑ti

i=1 deg u
(i)
i ≤ ti∆(Gi) = γP (Gi;Xi)∆(Gi). Thus

γP (Gi;Xi) ≥
⌈

Z(Gi;Xi)
∆(Gi)

⌉

≥
⌈

Z(Gi;Xi)
∆(G)

⌉

.

Since ∆(G) ≥ 1, we have γP (Gj;Xj) ≥
⌈

Z(Gj ;Xj)

∆(G)

⌉

for every component Gj of G (including

isolated vertices). Thus,

γP (G;X) =
h

∑

j=1

γP (Gj;Xj) ≥
h

∑

j=1

⌈

Z(Gj;Xj)

∆(G)

⌉

≥

⌈

∑h

j=1Z(Gj ;Xj)

∆(G)

⌉

=

⌈

Z(G;X)

∆(G)

⌉

.

Whenever
⌈

Z(G)
∆(G)

⌉

≤ γP (G) is tight and X ⊆ S, then
⌈

Z(G;X)
∆(G)

⌉

≤ γP (G;X) is tight. An

example is Kn because Z(Kn) = ∆(Kn) = n− 1 and γP (Kn) = 1.

4 Exact and algorithmic results

In this section, we present exact results and algorithms for γP (G;X) and Z(G;X) for certain
families of graphs.

4.1 Graphs with bounded treewidth

Our first result uses Proposition 3.7 to show that the restricted power domination number
of any graph with bounded treewidth can be computed efficiently.

Theorem 4.1. For any graph G = (V,E) with bounded treewidth and any set X ⊆ V, a
minimum power dominating set of G subject to X can be computed in O(n) time.

Proof. The treewidth of G does not change when an arbitrary number of leaves are appended
to some or all of the vertices of G, so if G has treewidth at most k then ℓ3(G,X) also has
treewidth at most k. By Proposition 3.7, a set S is a minimum power dominating set
of G subject to X if and only if S is a minimum power dominating set of ℓ3(G,X). Since
|V (ℓ3(G,X))| ≤ 4|V (G)|, the linear time algorithm presented by Guo et al. in [16] applied to
ℓ3(G,X) yields a minimum power dominating set of ℓ3(G,X) in O(n) time. Thus, γP (G;X)
can also be obtained in O(n) time.

Next we use some results of Section 3 to design a parallel algorithm for computing the
power domination numbers of trees.
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Theorem 4.2. Let T be a tree, v be a vertex of T with deg v ≥ 2, V1, . . . , Vk be the vertex
sets of the components of T − v, and Ti = T [Vi ∪ {v}] for 1 ≤ i ≤ k. Partition the indices
1, . . . , k as follows:

I = {i : γP (Ti; {v}) = γP (Ti) and 1 + γP (Ti − v) 6= γP (Ti; {v})},

I ′ = {i : γP (Ti; {v}) = γP (Ti) and 1 + γP (Ti − v) = γP (Ti; {v})},

J = {i : γP (Ti; {v}) 6= γP (Ti)}.

Let g = −k +
∑k

i=1 γP (Ti; {v}). Then,

γP (T ) =

{

g + 1 if |I| ≥ 2 or |J | = 0

g if |I| ≤ 1 and |J | ≥ 1.

Proof. Note that v is a leaf in each Ti. If v is in a power dominating set of T , forcing can occur
independently in each Ti after v and its neighbors have been dominated, so γP (T ; {v}) = g+1.
Since γP (T ) ≤ γP (T ; {v}) ≤ γP (T ) + 1, it follows that g ≤ γP (T ) ≤ g + 1.

By Lemma 3.8, I is the index set of the subtrees of T for which it is beneficial to include
v in a power dominating set, and where v performs a dominating step or force; I ′ is the
index set of the subtrees of T for which it is beneficial to include v in a power dominating
set, but where v does not need to perform a dominating step or force; J is the index set of
the subtrees of T for which it is not beneficial to include v in a power dominating set.

For 1 ≤ i ≤ k, let Si be a set realizing γP (Ti; {vi}) in Ti. Note that by definition of J ,
for i ∈ J , Si can be chosen such that Si\{v} is a set realizing γP (Ti). By Lemma 3.8, for
i ∈ I ′, Si can be chosen such that v does not need to perform a force. Suppose first that
|I| ≤ 1 and |J | ≥ 1; we claim that

⋃k

i=1(Si\{v}) is a power dominating set of T . To see
why, note that for each i ∈ J , the set Si\{v} will force all of V (Ti) in T , including v. Then
for i ∈ I ′, all components Ti can be forced by the sets Si\{v}, i ∈ I ′, since v is colored but
does not need to perform a force in those components. Finally, if there is a component Ti∗ ,
i∗ ∈ I, v will have a single uncolored neighbor at this step of the forcing process (which is
in Ti∗), and it can force this neighbor; since v is a leaf in Ti∗ , this is the same as dominating
its neighbor. Thus, Si∗\{v} can power dominate Ti∗ after all other components are colored.
Since Si\{v}, 1 ≤ i ≤ k are pairwise disjoint, it follows that

∣

∣

∣

∣

∣

k
⋃

i=1

(Si\{v})

∣

∣

∣

∣

∣

=
k

∑

i=1

|Si\{v}| =
k

∑

i=1

(γP (Ti; {v})− 1) = g ≥ γP (T ) ≥ g.

Now suppose |I| ≥ 2; then, v is beneficial and forcing in at least 2 components, thus it
must be contained in some minimum power dominating set of T . Similarly, if |J | = 0 but v
is not in a minimum power dominating set of T , then none of the sets Si\{v} can force v.
In both cases, it follows that γP (T ) = g + 1.

Note that by Theorem 4.1, the parameter g and the index sets I and J in Theorem 4.2 can
be determined by computing the ordinary power domination numbers of several smaller trees.
If the vertex v is picked in a way that separates T into roughly equally-sized components,
Theorem 4.2 gives an efficient way to compute γP (T ) in parallel, since several processors can
be used to compute the power domination numbers of the smaller trees independently.
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4.2 Integer programming formulations

In this section, we present integer programming models for finding a minimum restricted
power dominating set of a graph. Some of the following definitions and models are adapted
from [3]. A fort of a graph G = (V,E) is a nonempty set F ⊂ V such that no vertex outside
F is adjacent to exactly one vertex in F .

Proposition 4.3. Let G = (V,E) be a graph and F be any fort of G.

1. If S is a power dominating set of G, then S ∩N [F ] 6= ∅.

2. If B is a zero forcing set of G, then S ∩ F 6= ∅.

Proof. We prove the first statement; the proof of the second is a simplified version of that
proof. Suppose to the contrary that S ∩N [F ] = ∅, and let v be the first vertex in F to be
observed by S. Since no neighbor of v is in S, v is not observed in the domination step.
Thus, v must be forced by some vertex w not in F . However, by definition of a fort, w is
adjacent to at least two vertices in F , so w cannot force v; this is a contradiction.

We now present an integer program which can be used to find a restricted power domi-
nating set subject to X . The binary variable pv indicates whether vertex v is in the restricted
power dominating set; S is the set of all forts of the given graph G = (V,E).

Model 4.4. IP model for restricted power domination based on forts

min
∑

v∈V

pv

s.t.:
∑

v∈N [F ]

pv ≥ 1 ∀F ∈ S (2)

pv = 1 ∀v ∈ X (3)

pv ∈ {0, 1} ∀v ∈ V

Theorem 4.5. The optimum of Model 4.4 is equal to γP (G;X).

Proof. Let p be an optimal solution of Model 4.4, and let S be the set of all vertices v for
which pv = 1. By constraint (3), S contains X . Suppose to the contrary that S is not a power
dominating set of G, which means cl(N [S]) 6= V . If any vertex u ∈ cl(N [S]) is adjacent
to exactly one vertex v ∈ V \cl(N [S]), then u could force v, contradicting the definition of
cl(N [S]). Thus, V \cl(N [S]) is a fort. Moreover, since V \cl(N [S]) does not contain any
vertices of N [S], N [V \cl(N [S])] does not contain any vertex of S. This means constraint (2)
is violated by the fort V \cl(N [S]), a contradiction. It follows that S is a restricted power
dominating set of G subject to X , and is minimum due to the objective function.

Next, let S be a minimum restricted power dominating set of G subject to X , and p be
the vector whose nonzero entries are indexed by the vertices in S. By Proposition 4.3, for
every F ∈ S, N [F ] contains an element of S; thus, p satisfies constraint (2). Moreover, S
contains X , so p satisfies constraint (3). Thus, p is a feasible solution of Model 4.4.
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By an argument similar to that given in the proof of Theorem 4.5, it follows that if
constraint (2) of Model 4.4 is replaced by

∑

v∈F pv ≥ 1 ∀F ∈ S, the optimum of the
modified integer program will be equal to Z(G;X).

Since a graph (e.g. Kn) could have an exponential number of forts, Model 4.4 must in
general be solved using constraint generation. This approach requires a practical method
for finding violated constraints; to this end, we present an auxiliary integer program for
generating violated fort constraints in Model 4.6. In this model, S is the set of all vertices
for which pv = 1 in the current optimal solution of Model 4.4; thus, S is constant in Model 4.6.
The binary variable fv indicates whether vertex v is in the fort.

Model 4.6. IP model for finding violated fort constraints

min
∑

v∈V

fv

s.t.:
∑

v∈V

fv ≥ 1 (4)

fw +
∑

u∈N(w)\{v}

fu ≥ fv ∀(v, w) with v ∈ V, w ∈ N(v) (5)

fv = 0 ∀v ∈ cl(N [S]) (6)

fv ∈ {0, 1} ∀v ∈ V

Theorem 4.7. Model 4.6 finds a minimum-size violated fort.

Proof. Let f be a solution of Model 4.6, and let F be the set of vertices of G for which fv = 1.
By constraint (4), F is not empty. By constraint (5), every neighbor of a vertex in F must
either be in F , or have at least two neighbors in F . Thus, F is a fort of G. Furthermore, by
constraint (6), no vertex in F is in cl(N [S]). Therefore F is a violated fort with respect to
the current solution S of Model 4.4, and is minimum due to the objective function.

Next, let F be a violated fort of G; let fv = 1 for v ∈ F , and fv = 0 for v /∈ F . Since
a fort is nonempty by definition, F must contain at least one vertex; therefore, constraint
(4) is satisfied. Also by definition, any neighbor w of a vertex v in F must either be in F
or have at least one other neighbor in F ; therefore, constraint (5) is satisfied. Since F is a
violated fort, no vertex of F can be in cl(N [S]); therefore, constraint (6) is satisfied. Thus,
f is a feasible solution to Model 4.6.

4.3 Graphs with polynomially-many terminals

In this section, we identify certain conditions that allow the restricted zero forcing number
of a graph to be computed efficiently, given a zero forcing set of a proper subgraph.

Proposition 4.8. Let X be a minimum zero forcing set of a graph G = (V,E) and let GT

be the graph obtained by adding a vertex v∗ to G and connecting it to all vertices in a set
T ⊂ V .
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1. If T is a set of terminals of forcing chains associated with X, then X is a zero forcing
set of GT , i.e., Z(GT ;X) = Z(G).

2. If X is a zero forcing set of GT , then at least one vertex in T is a terminal of a forcing
chain associated with X in G.

Proof. If T is a set of terminals of forcing chains associated with X for some chronological
list of forces, then any force performed in G can also be performed in GT at the same step,
since v∗ would not interfere with any forces performed between vertices of G. Then, v∗ could
be forced by any of its neighbors in GT in the last step. Thus, X is also a zero forcing set of
GT , so |X| ≥ Z(GT ;X) ≥ |X| = Z(G).

Now suppose X is a zero forcing set of GT . Let F be a chronological list of forces for
X in GT , and let u ∈ T be the vertex which forces v∗. If v∗ does not perform a force, then
F\(u → v∗) is a valid chronological list of forces for X in G, and u is a terminal of a forcing
chain since it does not force any vertex in G. If v∗ does perform a force in GT , say v∗ → w,
let F ′ ⊂ F be the subsequence of F beginning with the first force and ending with the force
directly before the force v∗ → w. Then the set of vertices in V (G) colored by F ′ is also a
zero forcing set of G. Let F ′′ be a chronological list of forces for this set in G, and note that
u does not perform a force in F ′′, since if it did, it could not have forced v∗ in GT ; moreover,
some other vertex in V (G) forces w. Then, combining F ′ and F ′′, we obtain a chronological
list of forces for G associated with X in which u is the terminal of a forcing chain.

Note that the necessary conditions in Proposition 4.8 are sometimes sufficient and the
sufficient conditions are sometimes necessary. Note also that while the conditions assure
that X is a zero forcing set of GT , they do not assure that X is a minimum zero forcing set
of GT . For example, let G be the star K1,4 and T be a set containing two leaves of G; then
Z(G) = 3, and any zero forcing set of G is a zero forcing set of GT , but GT also has a zero
forcing set of size 2.

Proposition 4.9. Let X be a minimum zero forcing set of G, {u1, . . . , uk} be a set of
terminals of forcing chains associated with X, and H1, . . . , Hk be disjoint connected graphs
with V (Hi) ∩ V (G) = {ui} for 1 ≤ i ≤ k. Let G′ = G ∪H1 ∪ · · · ∪Hk. Then

Z(G′;X) = |X| − k +
k

∑

i=1

Z(Hi; {ui}).

Proof. For 1 ≤ i ≤ k, let Xi be a minimum zero forcing of Hi containing ui. Then, the
set X ∪ ((X1 ∪ · · · ∪ Xk)\{u1, . . . , uk}) is a zero forcing set of G′, since X can force all
vertices in V (G) without any of the vertices in V (G′)\V (G) interfering in this forcing process,
and then each Hi can be forced independently by Xi. Thus, since X and each Xi\{ui}
are pairwise disjoint, and since |Xi\{ui}| = Z(Hi; {ui}) − 1, it follows that Z(G′;X) ≤
|X| − k +

∑k

i=1 Z(Hi; {ui}).
Now suppose that B′ is a minimum zero forcing set of G′ that contains X . If B′ contains

some ui /∈ X , then the set B′\{ui} is also a zero forcing set of G′, since it contains X and
can therefore force ui in some step of the forcing process. Thus, without loss of generality,
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B′ excludes all ui /∈ X . For i = 1, . . . , k, let Xi = B′∩V (Hi). If ui 6∈ B′, then X ′
i = Xi∪{ui}

is a zero forcing set of Hi, since no vertex other than ui can be forced by a vertex outside
V (Hi). Similarly, for each ui ∈ B′, X ′

i = Xi is a zero forcing set of Hi. Notice that ui ∈ X ′
i

for i = 1, . . . , k. Hence, Z(G′;X) = |B′| ≥ |X ∪
⋃k

i=1 (X
′
i\{ui}) | = |X|+

∑k

i=1(|X
′
i| − 1) ≥

|X| − k +
∑k

i=1 Z(Hi; {ui}).

In view of Proposition 4.9, given a graph with the structure of G′, with subgraph G
and a minimum zero forcing set X of G, one could determine whether Z(G′;X) is as in
the statement of the proposition in polynomial time, if there are polynomially-many sets
of vertices which are terminals of forcing chains associated with X (since then it could be
checked whether u1, . . . , uk belong to one of these sets). Graphs with this property include
paths, cycles, and complete graphs. However, the next result shows that in general, one
could not efficiently enumerate all sets which are terminals of forcing chains associated with
X .

Proposition 4.10. A graph with a fixed minimum zero forcing set or minimum power domi-
nating set X can have exponentially-many sets of vertices that are terminals of forcing chains
associated with X.

Proof. Let G′ = (V,E) be the disjoint union of k copies of C5, where the ith copy of C5 has
vertex set {ai, bi, ci, vi, ui} and edge set {aibi, bici, civi, viui, uiai}. Let G = (V ∪{x}, E∪{xvi :
1 ≤ i ≤ k} ∪ {xui : 1 ≤ i ≤ k}), and X = {x}. It is easy to see that X is a minimum power
dominating set of G. Initially x dominates {ui : 1 ≤ i ≤ k} ∪ {vi : 1 ≤ i ≤ k}. In each
copy of C5, possible forcing chains associated with ui and vi include {vi → ci → bi → ai},
{ui → ai, vi → ci → bi}, {ui → ai → bi, vi → ci}, and {ui → ai → bi → ci}, with sets of
terminals {ui, ai}, {ai, bi}, {bi, ci}, and {ci, vi}, respectively. Thus, there are Ω(4k) distinct
sets of vertices that are terminals of forcing chains associated with X .

Similarly, X = {a1} ∪ {ui : 1 ≤ i ≤ k} ∪ {vi : 3 ≤ i ≤ k} is a minimum zero forcing
set of G and there are Ω(4k−1) distinct sets of vertices which are terminals of forcing chains
associated with X .

Finally, we briefly discuss when the quantity characterized in Proposition 4.10 is polyno-
mial in the order of the graph. Trivially, if Z(G) = O(1) or Z(G) = n − O(1), then there
are polynomially-many sets of vertices which are terminals of forcing chains associated with
some fixed zero forcing set X . It could also happen that these cardinalities are bounded by
a polynomial even when Z(G) does not have an extremal value.

5 Concluding remarks

In this paper, we have studied the restricted power domination and restricted zero forcing
problems, which have practical applications in power network monitoring and control of
quantum systems. In particular, we have derived tight bounds on the restricted power
domination and restricted zero forcing numbers of graphs, and related them to their non-
restricted analogues as well as to other graph parameters. We also presented exact and
algorithmic results for computing the restricted power domination and restricted zero forcing
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numbers of several families of graphs, including graphs with bounded treewidth, and graphs
whose subgraphs have zero forcing sets with polynomially many sets of terminals. We used
the notion of restricted power domination to develop a parallel algorithm for the power
domination number of trees, whereby a tree is partitioned into smaller trees whose power
dominating sets can be computed independently.

We also presented integer programming formulations for computing the restricted power
domination numbers of arbitrary graphs; these models use a set cover framework with con-
straint generation, rather than a step-dependent formulation that is sometimes used in the
literature (see, e.g., [12] and the bibliography therein).

Future work can focus on deriving other bounds on the restricted power domination
and zero forcing numbers, and relating them to other restricted domination parameters in
the framework of the work of Sanchis, Goddard, and Henning [15, 23, 19]. The proposed
exact algorithms can also be extended to more general graphs. For instance, since the
power domination number of block graphs can be computed efficiently [24, 25], it may be
possible to extend Theorems 4.1 and 4.2 to block graphs, i.e., to compute the restricted power
domination number of a block graph in O(n) time, and to compute the power domination
number of a block graph in parallel using restricted power domination. Computational
results for general graphs and refinements of the integer programming Models 4.4 and 4.6
can also be pursued.

Acknowledgements

This research began at the American Institute of Mathematics workshop Zero forcing and
its applications with support from National Science Foundation, DMS-1128242. The work
of BB is supported in part by the National Science Foundation, Grant No. 1450681. The
authors thank AIM and NSF.

References

[1] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler,
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