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Abstract

Consider the problem of choosing a set of actions to optimize an objective func-

tion that is a real-valued polymatroid function subject to matroid constraints.

The greedy strategy provides an approximate solution to the optimization prob-

lem, and it is known to satisfy some performance bounds in terms of the total

curvature. The total curvature depends on the value of objective function on

sets outside the constraint matroid. If we are given a function defined only on

the matroid, the problem still makes sense, but the existing bounds involving

the total curvature do not apply. This is puzzling: If the optimization problem

is perfectly well defined, why should the bounds no longer apply? This moti-

vates an alternative formulation of such bounding techniques. The first question

that comes to mind is whether it is possible to extend a polymatroid function

defined on a matroid to one on the entire power set. This was recently shown

to be negative in general. Here, we provide necessary and sufficient conditions

for the existence of an incremental extension of a polymatroid function defined

on the uniform matroid of rank k to one defined on the uniform matroid of

rank k + 1, together with an algorithm for constructing the extension. When-

ever a polymatroid objective function defined on a matroid can be extended

to the entire power set, the greedy approximation bounds involving the total
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curvature of the extension apply. However, these bounds still depend on sets

outside the constraint matroid. Motivated by this, we define a new notion of

curvature called partial curvature, involving only sets in the matroid. We derive

necessary and sufficient conditions for an extension of the function to have a

total curvature that is equal to the partial curvature. Moreover, we prove that

the bounds in terms of the partial curvature are in general improved over the

previous ones.

To illustrate our results, we first present a task scheduling problem to show

that a polymatroid function defined on the matroid can be extended to one

defined on the entire power set, and we also derive bounds in terms of the

partial curvature, which is demonstrably better than the bound in terms of

the total curvature. As a counterpoint, we then provide an adaptive sensing

problem where the total curvature of its extension cannot be made equal to the

partial curvature. Nonetheless, for our specific extension, our result gives rise

to a stronger bound.

Keywords: curvature, greedy, matroid, polymatroid, submodular

1. Introduction

1.1. Background

Consider the problem of optimally choosing a set of actions to maximize

an objective function. Let X be a finite ground set of all possible actions and

f : 2X → R be an objective function defined on the power set 2X of X . The

set function f is said to be a polymatroid function [1] if it is submodular, mono-

tone, and f(∅) = 0 (definitions of being submodular and monotone are given

in Section 2). Let I be a non-empty collection of subsets of the ground set X .

The pair (X, I) is called a matroid if I satisfies the hereditary and augmenta-

tion properties (definitions of hereditary and augmentation are introduced in

Section 2). The aim is to find a set in I to maximize the objective function f :

maximize f(M)

subject to M ∈ I.
(1)
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The pair (X, I) is said to be a uniform matroid of rank K (K ≤ |X |) when

I = {S ⊆ X : |S| ≤ K}, where | · | denotes cardinality. A uniform matroid is a

special matroid, so any result for a matroid constraint also applies to a uniform

matroid constraint.

Finding the optimal solution to problem (1) in general is NP-hard. The

greedy strategy provides a computationally feasible approach to finding an ap-

proximate solution to (1). It starts with the empty set, and then iteratively

adds to the current solution set one element that results in the largest gain

in the objective function, while satisfying the matroid constraints. A detailed

definition of the greedy strategy is given in Section 2. The performance of the

greedy strategy has attracted the attention of many researchers, and some key

developments will be reviewed in the following section.

1.2. Review of Previous Work

Nemhauser et al. [2], [3] proved that, when f is a polymatroid function, the

greedy strategy yields a 1/2-approximation1 for a general matroid and a (1 −
e−1)-approximation for a uniform matroid. By introducing the total curvature

c(f),2

c(f) = max
j∈X,f({j}) 6=f(∅)

{

1− f(X)− f(X \ {j})
f({j})− f(∅)

}

,

Conforti and Cornuéjols [4] showed that, when f is a polymatroid function, the

greedy strategy achieves a 1/(1+ c)-approximation for a general matroid and a

(1−(1−c/K)K)/c-approximation for a uniform matroid, where K is the rank of

the uniform matroid. When K tends to infinity, the bound (1− (1− c/K)K)/c

tends to (1−e−c)/c from above. For a polymatroid function, the total curvature

c takes values on the interval (0, 1]. In this case, we have 1/(1 + c) ≥ 1/2 and

(1 − (1 − c/K)K)/c > (1 − e−c)/c ≥ (1 − e−1), which implies that the bounds

1/(1+c) and (1−(1−c/K)K)/c are stronger than the bounds 1/2 and (1−e−1) in

1The term β-approximation means that f(G)/f(O) ≥ β, where G and O denote a greedy

solution and an optimal solution, respectively.
2When there is no ambiguity, we simply write c to denote c(f).
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[2] and [3], respectively. Vondrák [5] proved that for a polymatroid function, the

continuous greedy strategy gives a (1− e−c)/c-approximation for any matroid.

Sviridenko et al. [6] proved that, a modified continuous greedy strategy gives a

(1−ce−1)-approximation for any matroid, the first improvement over the greedy

(1− e−c)/c-approximation of Conforti and Cornuéjols from [4].

Suppose that the objective function f in problem (1) is a polymatroid func-

tion and the rank of the matroid (X, I) is K. By the augmentation property

of a matroid and the monotoneity of f , any optimal solution can be extended

to a set of size K. By the definition of the greedy strategy (see Section 2), any

greedy solution is of size K. For the greedy strategy, under a general matroid

constraint and a uniform matroid constraint, the performance bounds 1/(1+ c)

and (1 − (1 − c/K)K)/c from [4] are the best so far, respectively, in terms of

the total curvature c. However, the total curvature c, by definition, depends

on the function values on sets outside the matroid (X, I). This gives rise to

two possible issues when applying existing bounding results involving the total

curvature c:

1. If we are given a function f defined only on I, then problem (1) still makes

sense, but the total curvature is no longer well defined. This means that

the existing results involving the total curvature do not apply. But this

surely is puzzling: if the optimization problem (1) is perfectly well defined,

why should the bounds no longer apply?

2. Even if the function f is defined on the entire 2X , the fact that the total

curvature c involves sets outside the matroid is puzzling. Specifically, if

the optimization problem (1) involves only sets in the matroid, why should

the bounding results rely on a quantity c that depends on sets outside the

matroid?

The two reasons above motivate us to investigate more applicable bounds in-

volving only sets in the matroid.
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1.3. Contributions

In this paper, we provide necessary and sufficient conditions for the existence

of an incremental extension of a polymatroid function defined on the uniform

matroid of rank k to one defined on the uniform matroid of rank k+1, together

with an algorithm for constructing the extension. Then, it follows that for

problem (1), provided that the polymatroid objective function defined on a

matroid can be extended to the entire power set, the greedy strategy satisfies

the bounds 1/(1+d) and (1−(1−d/K)K)/d for a general matroid and a uniform

matroid, respectively, where d = infg∈Ωf
c(g) and Ωf is the set of all polymatroid

functions g on 2X that agree with f on I (i.e., the set of all extensions of f

to 2X). When the objective function f is defined on the entire power set, it is

clear that d ≤ c(f), which implies that the bounds are improved. However, the

bounds still depend on sets outside the matroid, because of the way d is defined.

Next, we define a new notion of curvature, called partial curvature and

denoted by b, involving only sets in the matroid, and we prove that b(f) ≤ c(g),

where g is any extension of f to the entire power set. We derive necessary

and sufficient conditions for the existence of an extended polymatroid function

g such that c(g) = b(f). This gives rise to improved bounds 1/(1 + b(f))

and (1 − (1 − b(f)/K)K)/b(f) for a general matroid and a uniform matroid,

respectively.

Finally, we present two examples. We first present a task scheduling problem

to show that a polymatroid function defined on the matroid can be extended

to one defined on the entire power set, and we also derive bounds in terms of

the partial curvature, which is demonstrably better than the bound in terms

of the total curvature. As a counterpoint, we then provide an adaptive sensing

problem where the total curvature of its extension cannot be made equal to the

partial curvature. Nonetheless, for our specific extension, our result gives rise

to a stronger bound.
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1.4. Organization

In Section 2, we first introduce definitions of polymatroid functions, ma-

troids, and curvature, and then we review performance bounds in terms of the

total curvature from [4]. In Section 3.1, we prove that any monotone set function

defined on the matroid can be extended to one defined on the entire power set

and the extended function can be expressed in a certain form. In Section 3.2, we

provide necessary and sufficient conditions for the existence of an incremental

extension of a polymatroid function defined on the uniform matroid of rank k to

one defined on the uniform matroid of rank k + 1. In Section 3.3, we introduce

a particular extension we call the majorizing extension and explore what kinds

of polymatroid functions can be majorizingly extended to ones defined on the

whole power set. In Section 3.4, we provide an algorithm for constructing the

extension of a polymatroid function defined on a matroid to the entire power

set. In Section 4, we define the partial curvature involving only sets in the ma-

troid and obtain improved bounds in terms of the partial curvature subject to

certain necessary and sufficient conditions. In Section 5, we illustrate our results

by considering a task scheduling problem and an adaptive sensing problem. In

Section 6, we conclude with a discussion of open issues.

2. Preliminaries

2.1. Polymatroid Functions and Curvature

The definitions and terminology in this paragraph are standard (see, e.g.,

[7], [8]), but are included for completeness. Let X be a finite ground set of

actions, and I be a non-empty collection of subsets of X . Given a pair (X, I),
the collection I is said to be hereditary if it satisfies property i below and has

the augmentation property if it satisfies property ii below:

i. (Hereditary) For all B ∈ I, any set A ⊆ B is also in I.

ii. (Augmentation) For any A,B ∈ I, if |B| > |A|, then there exists j ∈ B\A
such that A ∪ {j} ∈ I.
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The pair (X, I) is called a matroid if it satisfies both properties i and ii. The

pair (X, I) is called a uniform matroid when I = {S ⊆ X : |S| ≤ K} for a

given K, called the rank of (X, I). In general, the rank of a matroid (X, I) is
the cardinality of its maximal set.

Let 2X denote the power set of X , and define a set function f : 2X → R. The

set function f is said to be monotone and submodular if it satisfies properties 1

and 2 below, respectively:

1. (Monotone) For any A ⊆ B ⊆ X , f(A) ≤ f(B).

2. (Submodular) For any A ⊆ B ⊆ X and j ∈ X \ B, f(A ∪ {j})− f(A) ≥
f(B ∪ {j})− f(B).

A set function f : 2X → R is called a polymatroid function [1] if it is monotone,

submodular, and f(∅) = 0, where ∅ denotes the empty set. The submodularity

in property 2 means that the additional value accruing from an extra action

decreases as the size of the input set increases. This property is also called the

diminishing-return property in economics.

The total curvature [4] of a set function f is defined as

c(f) = max
j∈X

f({j}) 6=f(∅)

{

1− f(X)− f(X \ {j})
f({j})− f(∅)

}

. (2)

For convenience, we use c to denote c(f) when there is no ambiguity. Note that

0 ≤ c ≤ 1 when f is a polymatroid function, and c = 0 if and only if f is

additive, i.e., for any set A ⊆ X , f(A) =
∑

i∈A f({i}). When c = 0, it is easy

to check that the greedy strategy coincides with the optimal strategy. So in the

rest of the paper, when we assume that f is a polymatroid function, we only

consider c ∈ (0, 1].

2.2. Performance Bounds in Terms of Total Curvature

In this section, we review two theorems from [4], which bound the perfor-

mance of the greedy strategy using the total curvature c for general matroid

constraints and uniform matroid constraints. We will use these two theorems

to derive bounds in Section 4.
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We first define optimal and greedy solutions for (1) as follows:

Optimal solution: A set O is called an optimal solution of (1) if

O ∈ argmax
M∈I

f(M),

where the right-hand side denotes the collection of arguments that maximize f(·)
on I. Note that there may exist more than one optimal solution for problem (1).

When (X, I) is a matroid of rank K, then any optimal solution can be extended

to a set of size K because of the augmentation property of the matroid and the

monotoneity of the set function f .

Greedy solution: A set G = {g1, g2, . . . , gK} is called a greedy solution of (1)

if

g1 ∈ argmax
{g}∈I

f({g}),

and for i = 2, . . . ,K,

gi ∈ argmax
g∈X

{g1,...,gi−1,g}∈I

f({g1, g2, . . . , gi−1, g}).

Note that there may exist more than one greedy solution for problem (1).

Theorem 1. [4] Let (X, I) be a matroid and f : 2X → R be a polymatroid

function with total curvature c. Then, any greedy solution G satisfies

f(G)

f(O)
≥ 1

1 + c
.

When f is a polymatroid function, we have c ∈ (0, 1], and therefore 1/(1 +

c) ∈ [1/2, 1). Theorem 1 applies to any matroid. This means that the bound

1/(1 + c) holds for a uniform matroid too. Theorem 2 below provides a tighter

bound when (X, I) is a uniform matroid.

Theorem 2. [4] Let (X, I) be a uniform matroid of rank K and f : 2X → R

be a polymatroid function with total curvature c. Then, any greedy solution G

satisfies

f(G)

f(O)
≥ 1

c

(

1−
(

1− c

K

)K
)

>
1

c

(

1− e−c
)

.
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The function (1 − (1 − c/K)K)/c is nonincreasing in K for c ∈ (0, 1] and

(1−(1−c/K)K)/cց (1−e−c)/c when K →∞; therefore, (1−(1−c/K)K)/c >

(1− e−c)/c when f is a polymatroid function. Also it is easy to check that (1−
e−c)/c > 1/(1+c) for c ∈ (0, 1], which implies that the bound (1−(1−c/K)K)/c

is stronger than the bound 1/(1 + c) in Theorem 1.

The bounds in Theorems 1 and 2 involve sets not in the matroid, so as

stated they do not apply to optimization problems whose objective function is

only defined for sets in the matroid. In the following section, we will explore

the extension of polymatroid functions that yield to the bounds in Theorems 1

and 2.

3. Function Extension

3.1. Monotone Extension

The following proposition states that any monotone set function defined on

the matroid (X, I) can be extended to one defined on the entire power set 2X ,

and the extended function can be expressed in a certain form.

Proposition 1. Let (X, I) be a matroid of rank K and f : I → R be a monotone

set function. Then there exists a monotone set function g : 2X → R satisfying

the following conditions:

a. g(A) = f(A) for all A ∈ I.

b. g is monotone on 2X.

Moreover, any function g : 2X → R satisfying the above two conditions can be

expressed as

g(A) =











f(A), A ∈ I,

g(B∗) + dA, A /∈ I,
(3)

where

B∗ ∈ argmax
B:B⊂A

|B|=|A|−1

g(B) (4)

and dA is a nonnegative number.
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Proof. Condition a can be satisfied by construction: first set

g(A) = f(A) (5)

for all A ∈ I. To prove that there exists a monotone set function g defined

on the entire power set 2X satisfying both conditions a and b, we prove the

following statement by induction: There exists a set function g of the form

g(A) =











f(A), A ∈ I,

g(B∗) + dA, A /∈ I,
(6)

such that g is monotone for sets of size up to l (l ≤ K), where B∗ is given in

(4) and dA is a nonnegative number.

First, we prove that the above statement holds for l = 1. For g to be

monotone for sets of size up to 1, it suffices to have that g(A) ≥ 0 for any set

A ∈ 2X with |A| = 1. For A ∈ I, by (5) we have that g(A) = f(A) ≥ 0.

For A /∈ I, it suffices to set g(A) = dA, where dA is any nonnegaative number.

Therefore, the above statement holds for l = 1.

Assume that the above statement holds for l = k. We prove that it also

holds for l = k + 1. For this, it suffices to prove that for any A ∈ 2X with

|A| = k + 1 and any B ⊂ A, we have that g(A) ≥ g(B).

Consider any set A ∈ I with |A| = k+1. By (5) we have that g(A) = f(A).

For any set B ⊂ A, by the hereditary property of a matroid, we have that

B ∈ I, which implies that g(B) = f(B). So for any set A ∈ I with |A| = k + 1

and any set B ⊂ A, by the condition that f is monotone on I, we have that

g(A) ≥ g(B).

Consider any set A /∈ I with |A| = k + 1. By the induction hypothesis for

l = k, we have that for any set B ⊂ A with |B| = k, g(B) is well defined. Set

dA ≥ 0 and

B∗ ∈ argmax
B:B⊂A

|B|=|A|−1

g(B),

and then define

g(A) = g(B∗) + dA.

10



We have that

g(A) ≥ g(B) (7)

for any set B ⊂ A with |B| = k. For any set B ⊂ A with |B| < k, there

must exist a set Ak with |Ak| = k such that B ⊂ Ak ⊂ A. By the induction

hypothesis l = k and (7), we have that

g(A) ≥ g(Ak) ≥ g(B). (8)

Combining (7) and (8), for any set A /∈ I with |A| = k + 1 and any set B ⊂ A,

we have that g(A) ≥ g(B). Therefore, (6)) holds for l = k + 1.

We have so far shown that there exists a monotone set function g : 2X → R

satisfying conditions a and b. Next we prove that any monotone set function

g : 2X → R satisfying conditions a and b can be expressed as in (3).

If g satisfies condition a, then we have that

g(A) = f(A), ∀A ∈ I. (9)

If g satisfies condition b, then for any set A /∈ I, we have that

g(A) ≥ g(B∗),

which implies that there exists a nonnegative number dA such that

g(A) = g(B∗) + dA, ∀A /∈ I. (10)

Combining (9) and (10), we have that any monotone set function g : 2X → R

satisfying conditions a and b can be expressed by (3).

In Proposition 1, when A /∈ I, we define g(A) using B∗ as defined in (4).

But we are not restricted to using B∗ as the following lemma shows.

Lemma 1. Assume that g is a monotone set function defined on the uniform

matroid of rank k. Then, for any set A with |A| = k+1, there exist nonnegative

numbers d1, d2, . . . , dM such that

g(A) = g(A1) + d1 = g(A2) + d2 = · · · = g(AM ) + dM ,
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where M = 2k+1 − 2 and A1, A2, . . . , AM denote all nonempty strict subsets of

A.

Proof. Without loss of generality, let

AM ∈ argmax
B:B⊂A,|B|=|A|−1

g(B).

By Proposition 1, we have that there exist dM ≥ 0 such that g(A) = g(AM )+dM .

Then, for any i = 1, . . . ,M − 1, setting di = dM + g(AM )− g(Ai) results in

g(A) = g(A1) + d1 = g(A2) + d2 = · · · = g(AM ) + dM ,

where di ≥ 0, because dM ≥ 0 and g(AM ) ≥ g(Ai) for i = 1, · · · ,M − 1.

3.2. Polymatroid Extension: From Uniform Matroid to Power Set

We now turn our attension to extending polymatroid functions. The authors

of [9] pointed out that there are cases where a polymatroid function defined on

a matroid cannot be extended to one that is defined on the entire power set. In

the theorem below, we give necessary and sufficient conditions for the existence

of an extension of a polymatroid function defined on the uniform matroid of

rank k to the uniform matroid of rank k + 1.

Theorem 3. Let f : I → R be a polymatroid function defined on the uniform

matroid of rank k. Then f can be extended to a polymatroid function g defined on

the uniform matroid of rank k+1 if and only if for any A ⊆ X with |A| = k+1,

any B ⊂ A with |B| = k, and any a ∈ B,

f(B)− f(B \ {a}) ≥ f(B∗)− f(A \ {a}), (11)

where

B∗ ∈ argmax
B:B⊂A,|B|=k

f(B). (12)

Proof. →
In this direction, we need to prove that (11) holds if g is an extended polyma-

troid function defined on the uniform matroid of rank k+1. If g is a polymatroid
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function, we have that g is monotone and submodular. If g is monotone, then

for any set A /∈ I with |A| = k + 1, we have

g(A) ≥ g(B∗). (13)

If g is submodular, then for any set A , any set B ⊂ A with |B| = k, and any

action a ∈ B, we have

g(B)− g(B \ {a}) ≥ g(A)− g(A \ {a}). (14)

Combining (13) and (14), we have

g(B)− g(B \ {a}) ≥ g(B∗)− g(A \ {a}).

Because g is an extended function of f , we have that g(B) = f(B), g(B∗) =

f(B∗), g(B \ {a}) = f(B \ {a}), and g(A \ {a}) = f(A \ {a}). Then the above

inequality becomes

f(B)− f(B \ {a}) ≥ f(B∗)− f(A \ {a}).

which means that (11) holds.

←
In this direction, we prove that if (11) holds, then there exists a polymatroid

function g defined on the uniform matroid of rank k + 1 that agrees with f on

the uniform matroid of rank k.

By Proposition 1, we have that there exists an extended monotone set func-

tion g of the following form defined on the uniform matroid of rank k + 1:

g(A) =











f(A), |A| ≤ k,

f(B∗) + dA, |A| = k + 1,

(15)

where B∗ is defined as in (12) and dA is nonnegative.

We will prove that there exists dA for any A ⊂ X with |A| = k+1 such that

g defined in (15) satisfies g(∅) = 0 and g is submodular on 2X .

Because f is a polymatroid function on the uniform matroid of k and g(A) =

f(A) for any A ⊆ X with |A| ≤ k, we have that g(∅) = f(∅) = 0. For g to be

13



submodular on the uniform matroid of rank k + 1, it suffices to have that for

any A ⊆ X with |A| = k + 1, any B ⊂ A with |B| = k, and any a ∈ B

g(B)− g(B \ {a}) ≥ g(A)− g(A \ {a}). (16)

For any A ⊆ X with |A| = k+1, by (15), we have that g(A) = f(B∗)+dA, where

dA ≥ 0. The inequality (11) implies that f(B)−f(B∗)+f(A\{a})−f(B\{a})≥
0. So only if we set dA to satisfy

0 ≤ dA ≤ min
B:B⊂A,|B|=k and a:a∈B

{f(B)−f(B∗)+f(A\{a})−f(B \{a})}, (17)

we have that g(A) ≤ f(B) − f(B \ {a}) + f(A \ {a}), which implies that (16)

holds.

This completes the proof.

Remark 1. Theorem 3 provides necessary and sufficient conditions for the ex-

istence of an extension of a polymatroid function defined on the uniform matroid

of rank k to the uniform matroid of rank k+ 1. We will show that the function

in the following example, taken from [9], does not have an extension because

(11) is not satisfied.

Example 1: Let X = {1, 2, 3} and I = {A : A ∈ X and |A| ≤ 2}. Define

f : I → R as follows:

f(∅) = 0,

f({1}) = f({2}) = f({3}) = 1,

f({1, 2}) = f({1, 3}) = 1, and f({2, 3}) = 2.

It is easy to show that the above function f is a polymatroid function on

the uniform matroid of rank 2. But as we now show, f cannot be extended to a

polymatroid function g on the uniform matroid of rank 3 which is also the power

set.

Setting A = X, by (15), it is easy to see that B∗ = {2, 3}. Then we have

g(X) = f({2, 3}) + dX , where dX ≥ 0. If (11) holds for A = X, B = {1, 2},
and {a} = {2}, we have the following inequality:

f({1, 2})− f({2, 3}) + f({1, 3})− f({1}) ≥ 0.

14



However,

f({1, 2})− f({2, 3}) + f({1, 3})− f({1}) = −1 < 0.

We conclude that (11) does not hold always. Then by Theorem 3, we have that

the polymatroid function f defined above does not have an extended polymatroid

function defined on the whole power set.

3.3. Majorizing Extension

Theorem 3 and Proposition 1 together provide us an algorithm to extend a

polymatroid function f defined on the uniform matroid of rank k to a polyma-

troid function g defined on the uniform matroid of rank k + 1. The procedure

is to construct g as in (15) with dA satisfying (17). By (17), if for any A with

|A| = k + 1,

min
B:B⊂A,|B|=k and a:a∈B

{f(B)− f(B∗) + f(A \ {a})− f(B \ {a})} ≥ 0,

then f can be extended to g. We say that f is majorizingly extended to g if for

any A with |A| = k + 1, we set

dA = min
B:B⊂A,|B|=k and a:a∈B

{f(B)− f(B∗) + f(A \ {a})− f(B \ {a})}. (18)

Remark 2. The reason we are calling this particular construction of g a ma-

jorizing extension is that the sequence {dA} (indexed by A) majorizes any other

sequence {d′A} whose elements satisfy (17), because dA ≥ d′A for any A ⊆ X.

We just introduced the definition of a majorizing extension. We wish to

explore what kind of polymatroid functions can be majorizingly extended to ones

defined on the whole power set. The following theorem states that a polymatroid

function defined on the uniform matroid of rank 1 can be majorizingly extended

to one defined on the power set, and the extended function is additive.

Theorem 4. Let X be a ground set and f a polymatroid function defined on

the uniform matroid of rank 1. Then f can be majorizingly extended to a poly-

matroid function g defined on the power set 2X with

g({x1, x2, . . . , xk}) =
k
∑

j=1

f({xj})
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for any set {x1, x2, . . . , xk} ⊆ X.

Proof. We will prove the theorem by induction on k. Without loss of generality,

we assume for convenience that X = {1, 2, . . . , N} and f({1}) ≤ f({2}) ≤ · · · ≤
f({N}).

First, we prove the claim for k = 2, i.e., g({x1, x2}) = f({x1})+ f({x2}) for
any {x1, x2} ⊆ X (x1 < x2). By the assumption above and (15), we have that

g({x1, x2}) = f({x2}) + d{x1,x2}.

By (18), we have that d{x1,x2} = f({x1}), which results in g({x1, x2}) =

f({x1}) + f({x2}).
Now assume that the claim holds for k ≤ l (l > 2). Then we prove that

it also holds for k = l + 1 (l > 2). Without loss of generality, we assume that

x1 < x2 < · · · < xl+1. Then by (15) and the induction hypothesis for k ≤ l, we

have that

g({x1, x2, . . . , xl+1}) = g({x2, . . . , xl+1}) + d =

l+1
∑

j=2

f({xj}) + d.

For any B = {x1, x2, . . . , xl+1} \ {xm} and a = xn ∈ B, by (18), we have that

d = min
m,n







l+1
∑

j=1

f({xj})− f({xm})−
l+1
∑

j=2

f({xj}) +
l+1
∑

j=1

f({xj})− f({xn})

−





l+1
∑

j=1

f({xj})− f({xm})− f({xn})











= f({x1}),

which results in

g({x1, x2, . . . , xl+1}) =
l+1
∑

j=1

f({xj}).

This completes the proof.

Theorem 4 shows that any polymatroid function defined on the uniform

matroid of rank 1 can be majorizingly extended to one defined on the whole

16



power set. The following counterexample shows that the same is not the case

for a uniform matroid of rank 2.

Example 2: Let X = {1, 2, 3, 4} and I = {A : A ∈ X and |A| ≤ 2}. Define

f : I → R as follows:

f(∅) = 0,

f({1}) = 1, f({2}) = 2, f({3}) = 3, f({4}) = 4,

f({1, 2}) = 2.0760, f({1, 3}) = 3.2399, f({2, 3}) = 3.3678,

f({1, 4}) = 4.1233, f({2, 4}) = 4.4799, f({3, 4}) = 5.2518.

It is easy to check that f is a polymatroid function on the uniform matroid

of rank 2. Now we show that f can not be majorizingly extended to one on

the whole power set. Let g denote the function obtained by the majorizing

extension.

By (15) and (18), we have that g({1, 2, 3}) = f({2, 3}) + d1, and

d1 = min{f({1, 2} − f({2}), f({1, 2})− f({2, 3}+ f({1, 3} − f({1}),

f({1, 3})− f({3})}

= 0.0760,

which results in g({1, 2, 3}) = f({2, 3}) + d1 = 3.4438.

Similarly, we have that g({1, 2, 4}) = f({2, 4})+d2, g({1, 3, 4}) = f({3, 4})+
d3, and g({2, 3, 4}) = f({3, 4}) + d4, where

d2 = min{f({1, 2})− f({2}), f({1, 2})− f({2, 4}) + f({1, 4})− f({1}),

f({1, 4})− f({4})}

= 0.0760,

d3 = min{f({1, 3} − f({3}), f({1, 3})− f({3, 4}) + f({1, 4})− f({1}),

f({1, 4})− f({4})}

= 0.1233,
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and

d4 = min{f({2, 3} − f({3}), f({2, 3})− f({3, 4}) + f({2, 4})− f({2}),

f({2, 4})− f({4})}

= 0.3678.

Hence, we have g({1, 2, 4}) = f({2, 4}) + d2 = 4.5559, g({1, 3, 4}) = f({3, 4})+
d3 = 5.3751, and g({2, 3, 4}) = f({3, 4}) + d4 = 5.6196.

Now majorizingly construct g({1, 2, 3, 4}). By (15) and (18), we have that

g({1, 2, 3, 4}) = g({2, 3, 4}) + d5, and

d5 = min{g({1, 2, 3})− g({2, 3, 4}+ g({1, 3, 4})− f({1, 3}),

g({1, 2, 3})− g({2, 3, 4}) + g({1, 2, 4})− f({1, 2}),

g({1, 2, 4})− g({2, 3, 4}) + g({1, 3, 4})− f({1, 4}),

g({1, 2, 3} − f({2, 3}), g({1, 2, 4})− f({2, 4}), g({1, 3, 4})− f({3, 4})}

= −0.0406 < 0.

Therefore, g defined as above is not a polymatroid function. However, there are

some polymatroid functions defined on the uniform matroid of rank 2 that can

be majorizingly extended to ones defined on the entire power set. In Section 5,

we present two canonical examples that frequently arise in task scheduling and

adaptive sensing and show that the objective functions in the two examples can

be both majorizingly extended to polymatroid functions defined on the entire

power set. Theorem 4 implies that any monotone additive function defined on

the uniform matroid of rank k (k > 1) can be majorizingly extended to one

defined on the entire power set.

3.4. Polymatroid Extension: From General Matroid to Power Set

Theorem 3 and Proposition 1 together provide an iterative algorithm for us to

extend a polymatroid function f defined on the matroid (X, I) to a polymatroid

function g defined on the entire power set. We use gk to denote a polymatroid

function defined on the uniform matroid of rank k satisfying gk(A) = f(A) for
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A ∈ I with |A| ≤ k. The idea is that we first define g1(A) = f(A) for A ∈ I
with |A| ≤ 1 and g1(A) ≥ 0 for A /∈ I with |A| = 1. Then, iteratively extend

gk defined on the uniform matroid of rank k to gk+1 defined on the uniform

matroid of rank k + 1 using (15) and (17) for k = 1, 2, . . . , |X | − 1. Finally, set

g = g|X|. This results in

gk+1(A) =



















gk(A), |A| ≤ k

f(A), A ∈ I with |A| = k + 1

gk(B
∗) + dA, A /∈ I with |A| = k + 1.

The specific process is given as follows:

• First define

g1(A) =







f(A), A ∈ I with |A| ≤ 1

dA, A /∈ I with |A| = 1

where dA ≥ 0.

• Then iteratively define gk+1(A) for k = 1, . . . , |X | − 1 using the following

method:

Assume that gk(A) is well defined for |A| ≤ k. For A ⊆ X with |A| ≤ k,

set gk+1(A) = gk(A). For A ∈ I with |A| = k + 1, set gk+1(A) = f(A).

For A /∈ I with |A| = k + 1, let B∗ ∈ argmax
B:B⊆A,|B|=k

gk(B). If

d∗ = min
a∈B⊆A

{[gk(B)− gk(B \ {a})]− [gk(B
∗)− gk(A \ {a})]} ≥ 0,

then set gk+1(A) = gk(B
∗) + dA, where 0 ≤ dA ≤ d∗; else, extension fails.

• If g|X| exists, set g = g|X|.

In the algorithm above, we do not specify the exact dA value. Of course,

as before, we can choose dA = d∗, leading to a majorizing extension. As we

have seen before, the majorizing extension might not be a polymatroid function

even if a polymatroid extension exists. Nonetheless, if indeed a polymatroid

extension exists, then there always exist choices of dA that produce the extension
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via the algorithm above. But the problem of finding an appropriate sequence

of dA values can be reduced to that of finding a feasible path in a shortest-

path problem (where shortest here could be defined in terms of the smallest

total curvature of the extension). Solving this problem is tantamount to solving

a problem of the form (1); in general, we would need to resort to something

like dynamic programming. This implies that in general, finding a polymatroid

function extension is nontrivial.

4. Improved Bounds

Let f : 2X → R be a polymatroid function. Note that f : 2X → R is itself

an extension of f from I to the entire 2X , and the extended f : 2X → R is a

polymatroid function on the entire 2X . Therefore, Theorem 3 gives rise in a

straightforward way to the following result, stated without proof.

Proposition 1. Let (X, I) be a matroid and f : 2X → R a polymatroid func-

tion on 2X . Then c(f) ≥ infg∈Ωf
c(g), where Ωf is the set of all polymatroid

functions g on 2X that agree with f on I.

In this section, we will prove that for problem (1), if we set d = infg∈Ωf
c(g),

then the greedy strategy yields a 1/(1 + d)-approximation and a (1 − e−d)/d-

approximation under a general matroid and a uniform matroid constraint, re-

spectively. Some proofs in this section are straightforward, but are included for

completeness.

Theorem 5. Let (X, I) be a matroid of rank K and f : I → R a polymatroid

function. If there exists an extension of f to the entire power set, then any

greedy solution G to problem (1) satisfies

f(G)

f(O)
≥ 1

1 + d
, (19)

where d = infg∈Ωf
c(g). In particular, when (X, I) is a uniform matroid, any

greedy solution G to problem (1) satisfies

f(G)

f(O)
≥ 1

d

(

1−
(

1− d

K

)K
)

>
1

d

(

1− e−d
)

. (20)
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Proof. By Theorems 1 and 2, for any extension g of f to the entire power set,

we have the following inequalities

g(G)

g(O)
≥ 1

1 + c(g)

and
g(G)

g(O)
≥ 1

c(g)

(

1−
(

1− c(g)

K

)K
)

>
1

c(g)

(

1− e−c(g)
)

.

Because f and g agree on I, we have that f(G) = g(G) and f(O) = g(O). Thus,

(19) and (20) hold for problem (1).

Remark 3. Because the functions 1/(1 + x), (1 − (1 − x/K)K)/x, and (1 −
e−x)/x are all nonincreasing in x for x ∈ (0, 1] and from Proposition 1 we have

0 < d ≤ c(f) ≤ 1 when f is defined on the entire power set, we have that

1/(1 + d) ≥ 1/(1 + c(f)), ((1 − (1 − d/K)K)/d ≥ (1 − (1 − c(f)/K)K)/c(f),

and (1 − e−d)/d ≥ (1 − e−c(f))/c(f). This implies that our new bounds are, in

general, stronger than the previous bounds.

Remark 4. The bounds 1/(1+ d) and (1− e−d)/d apply to problems where the

objective function is a polymatroid function defined only for sets in the matroid

and can be extended to one defined on the entire power set. However, these

bounds still depend on sets not in the matroid, because of the way d is defined.

Now we define a notion of partial curvature that only involves sets in the

matroid. Let h : I → R be a set function. We define the partial curvature b(h)

as follows:

b(h) = max
j,A:j∈A∈I
h({j}) 6=h(∅)

{

1− h(A)− h(A \ {j})
h({j})− h(∅)

}

. (21)

For convenience, we use b to denote b(h) when there is no ambiguity. Note

that 0 ≤ b ≤ 1 when h is a polymatroid function on the matroid (X, I), and
b = 0 if and only if h is additive for sets in I. When b = 0, the greedy solution

to problem (1) coincides with the optimal solution, so we only consider b ∈ (0, 1]

in the rest of the paper. For any extension of f : I → R to g : 2X → R , we

have that c(g) ≥ b(f), which will be proved in the following theorem.
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Theorem 6. Let (X, I) be a matroid and f : I → R a polymatroid function.

Assume that a polymatroid extension g : 2X → R of f exists. Then b(f) ≤ c(g).

Proof. By submodularity of g and g(A) = f(A) for any j ∈ A ∈ I, we have that

f(A)− f(A \ {j}) ≥ g(X)− g(X \ {j}),

which implies that for any j ∈ A ∈ I,

1− f(A)− f(A \ {j})
f({j})− f(∅) ≤ 1− g(X)− g(X \ {j})

g({j})− g(∅) .

Hence, combining the above with (2) and (21) gives b(f) ≤ c(g).

Remark 5. As mentioned earlier, the improved bounds involving d in Theo-

rem 5 still depend on sets not in the matroid. In contrast, by definition, the

partial curvature b(f) depends on sets in the matroid. So if there exists an ex-

tension of f to g such that c(g) = b(f), then we can derive bounds that are

not influenced by sets outside the matroid. However, it turns out that there

does not always exist a g such that c(g) = b(f); we will give an example in

Section 4.2 to show this. In the following theorem, we provide necessary and

sufficient conditions for c(g) = b(f).

Theorem 7. Let (X, I) be a matroid and f : I → R a polymatroid function. Let

g : 2X → R be a polymatroid function that agrees with f on I. Then c(g) = b(f)

if and only if

g(X)− g(X \ {a}) ≥ (1 − b(f))g({a}) (22)

for any a ∈ X, and equality holds for some a ∈ X.

Proof. →
In this direction, we assume that c(g) = b(f) and then to prove that g(X)−

g(X \ {a}) ≥ (1 − b(f))g({a}) for any a ∈ X and that equality holds for some

a ∈ X . By the definition of the total curvature c of g and c(g) = b(f), we have

for any a ∈ X ,

g(X)− g(X \ {a}) ≥ (1− b(f))g({a}),

and equality holds for some a ∈ X .
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←
Now we assume that g(X) − g(X \ {a}) ≥ (1 − b(f))g({a}) for any a ∈ X

and that equality holds for some a ∈ X , and then prove that c(g) = b(f). By

the assumptions, we have

1− g(X)− g(X \ {a})
g({a})− g(∅) ≤ b(f)

for any a ∈ X , and equality holds for some a ∈ X . By the definition of the total

curvature c of g, we have

c(g) = max
a∈X

g({a}) 6=g(∅)

{

1− g(X)− g(X \ {a})
g({a})− g(∅)

}

= b(f).

This completes the proof.

Remark 6. In Section 5, we will provide a task scheduling example to show

that there exists a polymatroid function g : 2X → R that agrees with f : I → R

such that c(g) = b(f). We also provide a contrasting example from an adaptive

sensing problem where such an extension does not exist.

Combining Theorems 5 and 7, we have the following corollary.

Corollary 1. Let (X, I) be a matroid of rank K. Let g : 2X → R be a polyma-

troid function that agrees with f on I and g(X)−g(X \{a}) ≥ (1− b(f))g({a})
for any a ∈ X with equality holding for some a ∈ X. Then, any greedy solution

G to problem (1) satisfies
f(G)

f(O)
≥ 1

1 + b(f)
. (23)

In particular, when (X, I) is a uniform matroid, any greedy solution G to prob-

lem (1) satisfies

f(G)

f(O)
≥ 1

b(f)

(

1−
(

1− b(f)

K

)K
)

>
1

b(f)

(

1− e−b(f)
)

. (24)

The bounds 1/(1 + b(f)) and (1 − (1− b(f)/K)K)/b(f) do not depend on

sets outside the matroid, so they apply to problems where the objective func-

tion is only defined on the matroid, provided that an extension that satisfies
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the assumptions in Theorem 7 exists. When f is defined on the entire power

set, from Theorem 6, we have b(f) ≤ c(f), which implies that the bounds are

stronger than those from [4].

5. Examples

We first provide a task scheduling example where we majorizingly extend

f : I → R to a polymatroid function g1 : 2X → R with c(g1) > b(f). We

also extend f : I → R to another polymatroid function g2 : 2X → R with

c(g2) = b(f). The two extensions both result in stronger bounds than the

previous bound from [4]. Then we provide an adaptive sensing example to

majorizingly extend f : I → R to a polymatroid function g1 : 2X → R and

show that there does not exist any extension of f to g such that c(g) = b(f)

holds. However, in this example, it turns out that for our majorizing extension

g1, c(g1) is very close to b(f) and is much smaller than c(f).

5.1. Task Scheduling

As a canonical example of problem (1), we will consider the task assignment

problem that was posed in [10], and was further analyzed in [11]–[13]. In this

problem, there are n subtasks and a set X of N agents aj (j = 1, . . . , N). At

each stage, a subtask i is assigned to an agent aj , who successfully accomplishes

the task with probability pi(aj). Let Xi(a1, a2, . . . , ak) denote the Bernoulli

random variable that describes whether or not subtask i has been accomplished

after performing the sequence of actions a1, a2, . . . , ak over k stages. Then

1
n

∑n

i=1 Xi(a1, a2, . . . , ak) is the fraction of subtasks accomplished after k stages

by employing agents a1, a2, . . . , ak. The objective function f for this problem is

the expected value of this fraction, which can be written as

f({a1, . . . , ak}) =
1

n

n
∑

i=1



1−
k
∏

j=1

(1− pi(aj))



 .

Assume that pi(a) > 0 for any a ∈ X ; then it is easy to check that f is

non-decreasing. Therefore, when I = {S ⊆ X : |S| ≤ K}, the solution to this
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problem should be of size K. Also, it is easy to check that the function f has

the submodular property.

For convenience, we only consider the special case n = 1; our analysis can

be generalized to any n ≥ 2. In this case, we have

f({a1, . . . , ak}) = 1−
k
∏

j=1

(1− p(aj)), (25)

where p(·) = p1(·).
Let X = {a1, a2, a3, a4}, p(a1) = 0.4, p(a2) = 0.6, p(a3) = 0.8, and p(a4) =

0.9. Then, f(A) is defined as in (25) for any A = {ai, . . . , ak} ⊆ X . Consider

K = 2, then I = {S ⊆ X : |S| ≤ 2}. It is easy to show that f : I → R is a

polymatroid function.

We first majorizingly extend f : I → R to a polymatroid function g1 : 2X →
R using (15) and (18). By (15), we have that g1({a1, a2, a3}) = f({a2, a3}) +
d{a1,a2,a3}, g1({a1, a2, a4}) = f({a2, a4}) + d{a1,a2,a4}, g1({a1, a3, a4}) =

f({a3, a4})+d{a1,a3,a4}, and g1({a2, a3, a4}) = f({a3, a4})+d{a2,a3,a4}. By (18),

we have that

d{a1,a2,a3} = min{f({1, 2} − f({2}), f({1, 2})− f({2, 3}+ f({1, 3} − f({1}),

f({1, 3})− f({3})} = 0.08,

d{a1,a2,a4} = min{f({1, 2})− f({2}), f({1, 2})− f({2, 4}) + f({1, 4})− f({1}),

f({1, 4})− f({4})} = 0.04,

d{a1,a3,a4} = min{f({1, 3} − f({3}), f({1, 3})− f({3, 4}) + f({1, 4})− f({1}),

f({1, 4})− f({4})} = 0.04,

d{a2,a3,a4} = min{f({2, 3} − f({3}), f({2, 3})− f({3, 4}) + f({2, 4})− f({2}),

f({2, 4})− f({4})} = 0.06.

Hence, g1({a1, a2, a3}) = 1, g1({a1, a2, a4}) = 1, g1({a1, a3, a4}) = 1.02, and

g1({a2, a3, a4}) = 1.04.
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We now construct g1(X). By (15), we have that g1(X) = g1({a2, a3, a4}) +
dX . By (18), we have that

dX = min{g1({1, 2, 3})− g1({2, 3, 4}+ g1({1, 3, 4})− f({1, 3}),

g1({1, 2, 3})− g1({2, 3, 4}) + g1({1, 2, 4})− f({1, 2}),

g1({1, 2, 4})− g1({2, 3, 4}) + g1({1, 3, 4})− f({1, 4})

g1({1, 2, 3} − f({2, 3}), g1({1, 2, 4})− f({2, 4}),

g1({1, 3, 4})− f({3, 4})} = 0.04,

Hence, g1(X) = g1({a2, a3, a4}) + dX = 1.08. Therefore, g1 defined as above is

a majorizing extension of f from I to the whole power set.

The total curvature c of g1 : 2X → R is

c(g1) = max
ai∈X

{

1− g(X)− g(X \ {ai})
g({ai})− g(∅)

}

= 0.911.

In contrast, the total curvature c of f is

c(f) = max
ai∈X

{

1− f(X)− f(X \ {ai})
f({ai})− f(∅)

}

= max
ai,aj ,ak∈X

{1− (1− p({ai})) (1 − p({aj}))(1 − p({ak}))}

= 0.992.

By the definition of the partial curvature b of f , we have

b(f) = max
j∈A⊆X,|A|=2,

f({j}) 6=0

{

1− f(A)− f(A \ {j})
f({j})− f(∅)

}

= max
{ai,aj}⊆X

{

1− f({ai, aj})− f({ai})
f({aj})

}

= max
ai∈X

{p({ai})} = 0.9.

We can see that c(g1) is close to b(f) and smaller than c(f) though c(g1) 6=
b(f).

Next, we give another extension g2 which satisfies that c(g2) = b(f). By

(15), we have that g2({a1, a2, a3}) = f({a2, a3})+ d{a1,a2,a3}, g2({a1, a2, a4}) =
f({a2, a4}) + d{a1,a2,a4}, g2({a1, a3, a4}) = f({a3, a4}) + d{a1,a3,a4}, and
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g2({a2, a3, a4}) = f({a3, a4}) + d{a2,a3,a4}. First, we will define d{a1,a2,a3}. By

(17), we have that

d{a1,a2,a3} ≤ min{f({a1, a2})− f({a2}), f({a1, a3})− f({a3}),

f({a1, a2})− f({a2, a3}) + f({a1, a3})− f({a1})} = 0.08.

By (22), it suffices to have that

d{a1,a2,a3} ≥ max{(1 − b)f({a1}),

f({a1, a3})− f({a2, a3}) + (1− b)f({a2}),

f({a1, a2})− f({a2, a3}) + (1− b)f({a3})} = 0.04.

Setting d{a1,a2,a3} = 0.04 to satisfy the above two inequalities gives that

g2({a1, a2, a3}) = f({a2, a3}) + d{a1,a2,a3} = 0.96. Similarly, we set

g2({a1, a2, a4}) = f({a2, a4}) + d{a1,a2,a4} = 1,

g2({a1, a3, a4}) = f({a3, a4}) + d{a1,a3,a4} = 1.02,

g2({a2, a3, a4}) = f({a3, a4}) + d{a2,a3,a4} = 1.04.

We now define g2(X). By (15), we have that g2(X) = g2({a2, a3, a4}) + dX .

By (17), it suffices to have that

dX ≤ min{g2({a1, a2, a4})− f({a2, a4}),

g2({a1, a3, a4})− f({a3, a4}), g2({a1, a2, a3})− f({a2, a3}),

g2({a1, a2, a3})− g2({a2, a3, a4}) + g2({a1, a2, a4})− f({a1, a2}),

g2({a1, a3, a4})− g2({a2, a3, a4}) + g2({a1, a2, a4})− f({a1, a4}),

g2({a1, a3, a4})− g2({a2, a3, a4}) + g2({a1, a2, a3})− f({a1, a3})} = 0.04.

By (22), it suffices to have that

dX ≥ max{(1− b)f({a1}),

g2({a1, a3, a4})− g2({a2, a3, a4}) + (1 − b)f({a2}),

g2({a1, a2, a4})− g2({a2, a3, a4}) + (1 − b)f({a3}),

g2({a1, a2, a3})− g2({a2, a3, a4}) + (1 − b)f({a4})} = 0.04.
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Setting dX = 0.04 to satisfy the above two inequalities gives us g2(X) =

g2({a2, a3, a4}) + dX = 1.08.

The total curvature c of g2 : 2X → R is

c(g2) = max
ai∈X

{

1− g(X)− g(X \ {ai})
g({ai})− g(∅)

}

= 0.9 = b(f) < c(f) = 0.992.

By Corollary 1, we have that the greedy strategy for the task scheduling

problem satisfies the bound (1 − (1 − b(f)/2)2)/b(f) = 0.775, which is better

than the previous bound (1− (1− c(f)/2)2)/c(f) = 0.752.

5.2. Adaptive Sensing

For our second example, we consider the adaptive sensing design problem

posed in [11]–[13]. Consider a signal of interest x ∈ IR2 with normal prior

distribution N (0, I), where I is the 2 × 2 identity matrix; our analysis easily

generalizes to dimensions larger than 2. Let A = {Diag(
√
α,
√
1− α) : α ∈

{α1, . . . , αN}}, where α ∈ [0.5, 1] for 1 ≤ i ≤ N . At each stage i, we make a

measurement yi of the form

yi = aix+ wi,

where ai ∈ A and wi represents i.i.d. Gaussian measurement noise with mean

zero and covariance I, independent of x.

The objective function f for this problem is the information gain [14], which

can be written as

f({a1, . . . , ak}) = H0 −Hk. (26)

Here, H0 = N
2 log(2πe) is the entropy of the prior distribution of x and Hk is

the entropy of the posterior distribution of x given {yi}ki=1; that is,

Hk =
1

2
log det(Pk) +

N

2
log(2πe),

where Pk =
(

P−1
k−1 + aTk ak

)−1
is the posterior covariance of x given {yi}ki=1.

The objective is to choose a set of measurement matrices {a∗i }Ki=1, a
∗
i ∈ A,

to maximize the information gain f({a1, . . . , aK}) = H0 − HK . It is easy to

check that f is monotone, submodular, and f(∅) = 0; i.e., f is a polymatroid

function.
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Let X = {a1, a2, a3}, α1 = 0.5, α2 = 0.6, and α3 = 0.8. Then, f(A) is

defined as in (26) for any A = {ai, . . . , ak} ⊆ X . Consider K = 2, where

I = {S ⊆ X : |S| ≤ 2}.
The total curvature of f is

c(f) = max
ai∈X

{

1− f(X)− f(X \ {ai})
f({ai})− f(∅)

}

= 0.4509.

We first majorizingly extend f : I → R to a polymatroid function g1 defined

on the whole power set. Then we show that there does not exist a polymatroid

extension g2 such that c(g2) = b(f). However, for the majorizing extension g1,

it turns out that c(g1) is very close to b(f) and is much smaller than c(f).

We start by majorizingly extending f to g1. By (15) and (18), we have

g1(X) = f({a1, a2}) + dX , where

dX = min{f({a1, a3})− f({a1}), f({a2, a3})− f({a2}),

f({a1, a3})− f({a1, a2}) + f({a2, a3})− f({a3})} = log
√
1.6799.

Hence, g1(X) = log
√
6.7028.

The total curvature of g1 is

c(g1) = max
ai∈X

{

1− g1(X)− g1(X \ {ai})
g1({ai})− g1(∅)

}

= 0.3317.

By the definition of the partial curvature b of f , we have

b(f) = max
j∈A⊆X,|A|=2,

f({j}) 6=0

{

1− f(A)− f(A \ {j})
f({j})− f(∅)

}

= max
{ai,aj}⊆X

{

1− f({ai, aj})− f({ai})
f({aj})

}

= 0.3001.

Comparing the values of c(g1), c(f), and b(f), we have that c(g1) is much

smaller than c(f) and very close to b(f). By Theorem 5, we have that the
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greedy strategy for the adaptive sensing problem satisfies the bound (1 − (1 −
c(g1)/2)

2)/c(g1) = 0.9172, which is stronger than the previous bound (1− (1−
c(f)/2)2)/c(f) = 0.8873. Now we try to extend f to a polymatroid function g2

such that c(g2) = b(f). By (15), g2(X) = f({a1, a2}) + dX . By (17), it suffices

to have that

dX ≤ min{f({a1, a3})− f({a1}), f({a2, a3})− f({a2}),

f({a1, a3})− f({a1, a2}) + f({a2, a3})− f({a3})}

= log
√
1.6799.

By (22), it suffices to have that

dX ≥ max{(1− b(f))f({a3}),

f({a2, a3})− f({a1, a2}) + (1− b(f))f({a1}),

f({a1, a3})− f({a1, a2}) + (1− b(f))f({a2})},

= log
√
1.7232.

Comparing the above two inequalities, we see that there does not exist dX

such that g2 is a polymatroid function satisfying c(g2) = b(f).

6. Open Issues

Suppose that a function f defined on a matroid (X, I) is extendable to the

entire power set. We have shown that the majorizing extension algorithm does

not always successfully produce this extension. Next, we explored defining a

notion of curvature b(f) depending only on sets in the matroid (X, I), and we

asked if it is always possible to extend f to g in such a way that c(g) = b(f).

Here, again, we have shown that the answer is in general negative; we gave

necessary and sufficient conditions for c(g) = b(f). This leaves us with the

following ultimate question: What extension g of f has the best (smallest)

value of c(g)? Unfortunately, answering this question boils down to solving an

optimization problem that is in general as difficult as (1), solvable using only
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something like dynamic programming. This, of course, does not point to a

practical algorithm for finding an extension with the best curvature.
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[4] M. Conforti, G. Cornuéjols, Submodular set functions, matroids and the

greedy algorithm: Tight worst-case bounds and some generalizations of the

Rado-Edmonds theorem, Discrete Appl. Math. 7 (3) (1984) 251–274.
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