
Efficient Algorithms for Measuring the Funnel-likeness of

DAGs

Marcelo Garlet Millani∗1, Hendrik Molter1, Rolf Niedermeier1, and
Manuel Sorge†2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
Germany,

{m.garletmillani. h.molter, rolf.niedermeier}@tu-berlin.de
2Dept. Industrial Engineering and Management, Ben-Gurion University of the

Negev, Beer Sheva, Israel,
sorge@post.bgu.ac.il

February 1, 2018

Abstract

Funnels are a new natural subclass of DAGs. Intuitively, a DAG is a funnel
if every source-sink path can be uniquely identified by one of its arcs. Funnels
are an analog to trees for directed graphs that is more restrictive than DAGs
but more expressive than in-/out-trees. Computational problems such as find-
ing vertex-disjoint paths or tracking the origin of memes remain NP-hard on
DAGs while on funnels they become solvable in polynomial time. Our main fo-
cus is the algorithmic complexity of finding out how funnel-like a given DAG
is. To this end, we study the NP-hard problem of computing the arc-deletion
distance to a funnel of a given DAG. We develop efficient exact and approxima-
tion algorithms for the problem and test them on synthetic random graphs and
real-world graphs.

1 Introduction

Directed acyclic graphs (DAGs) are finite directed graphs (digraphs) without
directed cycles and appear in many applications, including the representation of
precedence constraints in scheduling, data processing networks, causal structures, or

∗Partially supported by DFG project “FPTinP” NI 369/16-1.
†Supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh

Framework Programme (FP7/2007-2013) under REA grant agreement number 631163.11 and Israel
Science Foundation (grant no. 551145/14).

1

ar
X

iv
:1

80
1.

10
40

1v
1

 [
cs

.D
S]

 3
1

Ja
n

20
18

1 INTRODUCTION 2

inference in proofs. From a more graph-theoretic point of view, DAGs can be seen
as a directed analog of trees; however, their combinatorial structure is much richer.
Thus a number of directed graph problems remain NP-hard even when restricted to
DAGs. This motivates the study of subclasses of DAGs. We study funnels which
are DAGs where each source-sink path has at least one private arc, that is, no other
source-sink path contains this arc. In independent work, Lehmann [Lehmann, 2017]
studied essentially the same graph class.

Funnels are both of combinatorial and graph-theoretic as well as of practical in-
terest: First, funnels are a natural compromise between DAGs and trees as, similarly
to in- or out-trees, the private-arc property guarantees that the overall number of
source-sink paths is upper-bounded linearly by its number of arcs, yet multiple paths
connecting two vertices are possible. Second, in Section 2 we show that funnels, in
a divide & conquer spirit, allow for a vertex partition into a set of forking vertices
with indegree one and possibly large outdegree and a set of merging vertices with
outdegree one and possibly large indegree. This partitioning helps in designing our
algorithms. Third, in terms of applications, due to the simpler structure of funnels,
problems such as DAG Partitioning [Leskovec et al., 2009, van Bevern et al., 2017]
or Vertex Disjoint Paths, (also known as k-Linkage) [Bang-Jensen and Gutin,
2008, Fortune et al., 1980] become tractable on funnels while they are NP-hard on
DAGs. Lehmann [Lehmann, 2017] showed that a variation of the problem Network
Inhibition, which is NP-hard on DAGs, can be solved in polynomial time on funnels.
Altogether, we feel that funnels are one of so far few natural subclasses of DAGs.

The focus of this paper is on investigating the complexity of turning a given
DAG into a funnel by a minimum number of arc deletions. The motivation for
this is twofold. First, due to the noisy nature of real-world data, we expect that
graphs from practice are not pure funnels, even though they may adhere to some
form of funnel-like structure. To test this hypothesis we need efficient algorithms
to determine funnel-likeness. Second, as mentioned above, natural computational
problems become tractable on funnels (e.g., k-Linkage [Millani, 2017a]). Thus it
is promising to try and develop fixed-parameter algorithms for such NP-hard DAG
problems with respect to distance parameters to funnels. This approach is known as
exploiting the “distance from triviality” [Cai, 2003, Guo et al., 2004, Niedermeier,
2010]. A natural way to measure the distance of a given DAG D to a funnel is
the arc-deletion distance to a funnel, the minimum number of arcs that need to be
deleted from D to obtain a funnel. The problem of computing this distance parallels
the well-studied NP-hard Feedback Arc-Set problem where the task is to turn a
given digraph into a DAG by a minimum number of arc deletions. Even Feedback
Arc-Set on tournaments is NP-hard and it received considerable interest over the
last years [Ailon and Alon, 2007, Bessy et al., 2011, Charbit et al., 2007, Kenyon-
Mathieu and Schudy, 2007].

Formally, we study the Arc-Deletion Distance to a Funnel (ADDF) prob-
lem, where, given a DAG D, we want to find its arc-deletion distance d to a funnel.

2 FUNNELS: DEFINITION AND PROPERTIES 3

t

s1

s2 t

s1

s2

Figure 1: Example of a funnel (left) and a DAG which is not a funnel (right). Private
arcs are marked as dashed lines. The DAG on the right is not a funnel because all
arcs in an (s1, t)-path are shared. Removing one arc from it turns it into a funnel.
A forbidden subgraph for funnels is marked in bold.

We show that ADDF is NP-hard and that it admits a linear-time factor-two approx-
imation algorithm and a fixed-parameter algorithm with linear running time for con-
stant d.1 In experiments we demonstrate that our algorithms are useful in practice.

2 Funnels: Definition and Properties

In this section we formally define funnels. We provide several equivalent charac-
terizations, summarized in Theorem 1, and analyze some basic properties of funnels.
We use standard terminology from graph theory.

To define funnels as a proper subclass of DAGs, we limit the number of paths
that may exist between two vertices (which can be exponential in DAGs but is one
in trees). Requiring every path between two vertices to be unique would possibly
be too restrictive, and in the case of a single source such DAGs would simply be so-
called out-trees. Instead, we require each path going from a source to a sink to be
uniquely identified by one of its private arcs. We say that an arc is private if there
is only one source-sink path which goes through that arc. An example of a funnel
can be seen in Figure 1.

Definition 1 (Funnel). A DAG D is a funnel if every source-sink path has at least
one private arc.

From this definition it is clear that the number of source-sink paths in a funnel
is linearly upper-bounded in its number of arcs.

Different characterizations of funnels reveal certain interesting properties which
these digraphs have, and are used in subsequent proofs and algorithms. We summa-
rize these characterizations in the theorem below. In the following, out∗(v) denotes
the set of vertices that can be reached from v in a given DAG, out(v) denotes the
set of neighbors of v and outdeg(v) denotes v’s outdegree; in∗(v), in(v) and indeg(v)
are defined analogously.

1There is also a simple O(5d · |V | · |A|)-time algorithm for general digraphs [Millani, 2017a].

2 FUNNELS: DEFINITION AND PROPERTIES 4

tywxvus

Figure 2: Illustration of the vertices used in the proof of statment (2) Theorem 1.
We argue that the arc (x,w) is private.

Theorem 1. Let D be a DAG. The following statements are equivalent:
1. D is a funnel.
2. For each vertex v ∈ V : indeg(v) > 1⇒ ∀u ∈ out∗(v) : outdeg(u) ≤ 1.
3. No subgraph of D is contained in F = {Di}∞i=0, where

• Dk = (Vk, Ak),
• Vk = {u1, u2, v0, w1, w2} ∪ {vi}ki=1, and
• Ak = {(u1, v0), (u2, v0), (vk, w1), (vk, w2)} ∪ {(vi, vi+1)}k−1i=1 .

4. D does not contain D0 or D1 (defined above) as a topological minor.2

Proof. We first prove that (1) ⇔ (2), that is, we show that a DAG D = (V,A) is a
funnel if and only if

∀v ∈ V : indeg(v) > 1⇒ ∀u ∈ out∗(v) : outdeg(u) ≤ 1. (i)

The idea is to identify the private arcs and to argue that each path must contain
at least one of those arcs. Refer to Figure 2 while reading the proof. We start by
showing that a DAG satisfying (i) is a funnel.

Let D = (V,A) be a DAG which satisfies (i), let s ∈ V be a source and t ∈ V
be a sink such that some (s, t)-path exists, and let v be the first vertex in out∗(s)
with outdeg(v) > 1. If no such vertex v exists, then there is only one (s, t)-path in D
and all outgoing arcs from s are private. Otherwise, due to (i) we know that ∀u ∈
in∗(v) \ {s} : indeg(u) = 1. This means that there is exactly one (s, v)-path. Let P
be some (s, t)-path that goes through v and let w be the first vertex in this path with
indeg(w) > 1. If no such w exists, then there is only one (v, t)-path and all arcs after
v are private, as required. Otherwise, we consider a vertex x such that the arc (x,w)
is in P . We know indeg(x) = 1, which implies that there is only one (v, x)-path. Since
the (v, x)-path as well as the (s, v)-path are unique and ∀y ∈ out∗(w) : outdeg(y) = 1,
the arc (x,w) is private for the (s, t)-path that contains it. Thus, D is a funnel.

We next show that every funnel satisfies (i). We do this by contraposition, show-
ing that every arc of some (s, t)-path is present in at least one other source-sink path
if (i) does not hold.

Let D = (V,A) be DAG where (i) is not true. This means that there is some
vertex u ∈ V with indeg(u) > 1 and that there is some other vertex w ∈ out∗(u) with

2A graph H is called a topological minor of a graph G if a subgraph of G can be obtained from
H by subdividing edges (that is, replacing arcs by directed paths).

2 FUNNELS: DEFINITION AND PROPERTIES 5

outdeg(w) > 1. Let w be the first such vertex. Then there are at least indeg(u) many
paths from some source to u, and outdeg(w) many from w to some sink. Since
there is at least one (u,w)-path (possibly without arcs), this implies that every
arc in the induced subgraph in∗[u] is shared by outdeg(w) many paths, every arc
in out∗[w] is shared by indeg(u) many paths, and all arcs in a (u,w)-path are shared
by indeg(u) ·outdeg(w) many paths. Hence, all arcs in a source-sink path which goes
through u and w are shared, implying that D is not a funnel.

Next, we prove that (2) ⇔ (3) by contraposition. That is, we show that ∃C ⊆
D : C ∈ F if and only if D does not satisfy (i).

Let C ⊆ D be a subgraph of D such that C ∈ F . By definition of C it
contains some vertex v0 with indegC(v0) = 2 and another vertex vk ∈ out∗C(v0)
with outdegC(vk) = 2. This implies indegD(v0) > 1 and outdegD(vk) > 1, violat-
ing (i).

Now assume D is does not satisfy (i). That is, there is some vertex v with
indegD(v) > 1 and another vertex u ∈ out∗D(v) with outdegD(u) > 1. Let u1, u2 ∈
inD(v) and w1, w2 ∈ outD(u) be four distinct vertices. Let v, v1, v2, . . . , vk−1, u be
a (v, u)-path. We set v0 := v and vk := u, obtaining the forbidden subgraph Dk

if u 6= v, and D0 otherwise. Hence, D contains a subgraph from F .
Finally, we show that (3) ⇔ (4). It is enough to show that any Di ∈ F can be

obtained by subdividing D0 or D1 multiple times, and that any subdivision of D0

and D1 contains some digraph of F as a subgraph.
We first show that we can generate F by subdividing D0 and D1. Let Di ∈ F .

If i ≤ 1, then Di obviously contains itself as a topological minor. If i > 1, then by
subdividing the arc (v0, v1) from D1 a total of i− 1 times, we obtain Di. Hence all
digraphs in F can be generated by D0 and D1 through subdivisions.

Now we show that any subdivision of D0 and D1 contains some digraph from F .
Since subdividing arcs does not change the degrees of the affected vertices, the degree
of v0 remains the same. Hence, any subdivision of D0 contains D0 ∈ F as a subgraph.

For any subdivision D′1 of D1 we know that indegD′
1
(v0) = 2, outdegD′

1
(v1) = 2

and v1 ∈ out∗D′
1
(v0). If we subdivide incoming arcs of v0 or outgoing arcs of v1, the

resulting DAG will contain D1 as a subgraph. If we subdivide k times the arc (v0, v1),
we obtain Dk+1 ∈ F as a subgraph.

We showed that (1) ⇔ (2) ⇔ (3) ⇔ (4), thus proving that all four statements
are equivalent.

Definition 1 does not give us a very efficient way of checking whether a given DAG
is a funnel or not. A simple algorithm which counts how many paths go through
each arc would take O(|A|2) time. Using the characterization in Theorem 1(2) we
can follow some topological ordering of the vertices of a DAG and check in linear
time whether it is a funnel.

The degree characterization in Theorem 1(2) provides some additional insight
about the structure of a funnel. We can see that a funnel can be partitioned into two
induced subgraphs: One is an out-forest and the other is an in-forest. Note that this

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 6

partition is not necessarily unique. For use below, a FM-labeling for given a DAG
with vertex set V is a function L : V → {Fork,Merge} which gives a label to each
vertex. An FM-labeling for a funnel is called funnel labeling if the vertices in the
out-forest of the funnel are assigned the label Fork and vertices in the in-forest are
assigned the label Merge. The following holds.

Observation 1. Let D = (V,A) be a funnel and L be a funnel labeling for D. Then
there is no (v, u) ∈ A with L(v) = Merge and L(u) = Fork.

With a simple counting argument it is also possible to give an upper bound on the
number of arcs in a funnel. This bound is sharp.

Observation 2. Let D = (V,A) be a funnel. Then |A| ≤ |V |2 /4 + |V | − 2.

Proof. Let L be a funnel labeling for D. Let V = X]Y where ∀v ∈ X : L(v) = Fork
and ∀v ∈ Y : L(v) = Merge. Clearly, the vertices in X form an out-forest, while
those in Y form an in-forest. This gives us at most |X|−1 arcs between vertices in X,
and at most |Y |−1 arcs between vertices in Y . Furthermore, there are at most |X|·|Y |
arcs from vertices in X to vertices in Y and we know from the construction that there
are no arcs from Y to X. Hence, |A| ≤ |X|·|Y |+|X|+|Y |−2. This value is maximized
when |X| = |Y | = |V | /2, which gives us the bound |A| ≤ |V |2 /4 + |V | − 2.

Considering that a DAG has at most |V | (|V | − 1)/2 arcs, Observation 2 implies
that a funnel can have roughly half as many arcs as a DAG. This means that funnels
are not necessarily sparse (unlike forests).

While the degree characterization is useful for algorithms, the characterizations
by forbidden subgraphs and minors (Theorem 1(3 and 4)) help us to understand the
local structure of a funnel and of graphs that are not funnels. These characterizations
also imply that being a funnel is a hereditary graph property, that is, deleting vertices
does not destroy the funnel property.

3 Computing the Arc-Deletion Distance to a Funnel

In this section we show ADDF is NP-hard, and present a linear-time factor-2
approximation algorithm and an exact fixed-parameter algorithm. Our algorithms
also compute the set of arcs to be deleted. We remark that the corresponding vertex-
deletion distance minimization problem is also NP-hard and that it can be solved in
O(6d |V | · |A|) time, where d is the number of vertices to delete [Millani, 2017a]. The
following result can be shown by a reduction from 3-SAT.

Theorem 2. ADDF is NP-hard.

Proof. We present a reduction from 3-SAT. Recall that in 3-SAT we are asked to
decide the satisfiability of given a Boolean formula φ in conjunctive normal form
where every clause has exactly three distinct literals. Given a 3-SAT formula φ with

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 7

x1 x3x2 y1 y2 y3 z1 z2 z3

y0x0 z0

ztxt ytxf zfyf

c0

c1 c3c2 c4

Figure 3: Example of the reduction for the formula (x ∨ ¬y ∨ z). Dashed arcs
correspond to a solution for ADDF on the reduced instance.

n variables and m clauses, we create a DAG D consisting of the following variable
gadgets and clause gadgets. Figure 3 illustrates the construction. For each variable x
we create the following variable gadget introducing the vertex set Vx and edge set Ax:

• Vx = {x0, xt, xf , x1, x2, x3},
• Ax = {(xt, x0), (xf , x0)} ∪ {(x0, xi) | 1 ≤ i ≤ 3}.

We call x0 the center of the variable gadget for x. For each clause c, we create the
following clause gadget, introducing the vertex set Vc and edge set Ac:

• Vc = {c0, c1, . . . , c4},
• Ac = {(ci, c0) | 1 ≤ i ≤ 4}.

We call c0 the center of the clause gadget for c. Furthermore, if variable x appears
non-negated in clause c, then we add the arc (c0, xt), and if variable x appears negated
in clause c, then we add the arc (c0, xf). This completes the construction. It is easy
to see that the DAG D can be constructed in polynomial time. We claim that D has
an arc-deletion distance to funnel of k = 2m+ n if and only if φ is satisfiable.

(⇐): Assume φ has a satisfying assignment. Then we construct an arc-deletion
set of size k = 2m + n as follows: If a variable x is set to true, we delete the arc
(xt, x0), otherwise we delete the arc (xf , x0). For each clause c we delete two of the
three outgoing arcs of c0, where we choose the remaining arc to be one that points
to a literal that causes the clause to be satisfied by the assignment. This arc deletion
set clearly has the correct size, it remains to show that it destroys all forbidden
subgraphs of funnels in the constructed DAG. Note that after the arcs are deleted,
there are only two types of vertices with indegree greater than one: The centers
of clause gadgets and potentially vertices xt or xf from variable gadgets. The only
vertices with outdegree greater than one remaining are the centers of variable gadgets.
Because the outgoing arcs of clause gadgets point to literals that cause the clause
to be satisfied, we have that all paths from clause gadget centers to vertex gadget
centers are destroyed. By the same argument, there are no paths between vertices
xt or xf from variable gadgets that have indegree greater than one and centers of
variable gadgets. Hence, there is no path from a vertex with indegree greater than

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 8

one to a vertex with outdegree greater than one.
(⇒): First, note that all variable and clause gadgets are pair-wise arc-disjoint.

It is easy to check that for each variable gadget at least one arc needs to be deleted
and for each clause gadget at least two arcs need to be deleted. Since the number of
arc deletions has to be at most k = 2m+n, the arc deletion set contains exactly one
arc from each variable gadget and exactly two arcs from each clause gadget. This
implies that for clause gadgets, the two of the outgoings arcs of the center need to be
deleted and for variable gadgets, one of the incoming arcs of the center needs to be
deleted. We claim that the arcs deleted from the variable gadgets induce a satisfying
assignment in a straightforward manner: if the arc (xt, x0) is deleted, set variable x
to true, otherwise to false. Take any clause c of φ, one of the outgoing arcs from the
center of the clause gadget of c remains, and this arc has to point to a vertex with
outdegree zero, otherwise there is a path from a center of a clause gadget to a center
of a variable gadget and hence a forbidden subgraph. This means that clause c is
satisfied. This completes the proof.

A Factor-2 Approximation Algorithm.

We now give a linear-time factor-2 approximation algorithm for ADDF. We
mention in passing that on tournament DAGs the algorithm always finds an optimal
solution and on real-world DAGs, the approximation factor is typically close to one
(see Section 4). The approximation algorithm works in three phases and makes
extensive use of FM-labelings (defined in Section 2). First, we greedily compute an
FM-labeling which we call La for the input graph (assigning each vertex v a Fork
or a Merge label). The labeling will be a funnel labeling of the output funnel
indicating for each vertex whether it can have indegree or outdegree greater than
one. To construct La, we try to minimize the number of arcs to be removed when
only considering v. This strategy guarantees that, if the approximation algorithm
assigns the wrong label to v, in the optimal solution many arcs incident to v need to
be removed. This allows us to derive the approximation factor. Formally, we assign
a label to a vertex v using the following rule.

La(v) :=

Fork, if outdegD(v) > indegD(v),

Fork, if outdegD(v) = indegD(v) ∧
∃u ∈ in(v) : La(u) = Fork,

Merge, otherwise.

Since we can assign a label whenever we know the labels of all incoming neighbors,
the label of each vertex can be computed, in linear time, by following a topological
ordering of the DAG.

In the second phase, after assigning labels to all vertices, we satisfy the labels by
removing arcs. That is, for each Fork vertex v, we choose an arbitrary inneighbor u
with L(u) = Fork (if it exists) and remove all arcs incoming to v from vertices other

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 9

Algorithm 1 Satisfying an FM-labeling.

1: function ArcDeletionSet(DAG D = (V,A), L : V → {Fork,Merge})
2: B := ∅
3: for all v ∈ V do
4: if L(v) = Merge then
5: Choose an arbitrary u ∈ out(v) with L(u) = Merge (if it exists)
6: B := B ∪ {(v, w) | w 6= u ∧ w ∈ out(v)}
7: else if L(v) = Fork then
8: Choose an arbitrary u ∈ in(v) with L(u) = Fork (if it exists)
9: B := B ∪ {(w, v) | w 6= u ∧ w ∈ in(v)}

10: return B

than u. Similarly, for each Merge vertex v we choose an arbitrary outneighbor u
with L(u) = Merge (if it exists) and remove all arcs outgoing from v to vertices
other than u. See Algorithm 1 for the pseudocode of the second phase. For use below
we call the second-phase algorithm ArcDeletionSet.

In the third phase, we greedily relabel vertices, that is, we iterate over each ver-
tex v (in an arbitrary order), changing v’s label if the change immediately leads to
an improvement in the solution size. To check if there is an improvement, we only
need to consider the incident arcs of v and the labels of its endpoints. This com-
pletes the description of our approximation algorithm.

To argue about optimal solutions and for use in a search-tree algorithm below,
we now show that if the input FM-labeling L corresponds to an optimal solution,
then ArcDeletionSet outputs an optimal arc set: Say that an FM-labeling L of a
DAG D is optimal if it is a funnel labeling for some funnel D − A′, A′ ⊆ A, such
that A′ has minimum size among all arc sets whose deletion makes D a funnel.

Proposition 1. Let D = (V,A) be a DAG, let A′ ⊆ A be a minimum arc set
such that D′ = D − A′ is a funnel, and let L∗ be an optimal labeling for D′. Then
|ArcDeletionSet(D,L∗)| = |A′|.

Proof. Let (v, u) ∈ A. We distinguish the possible cases of the labeling of u and v.
First, we treat two simple cases in which we can argue that A′ and ArcDeletionSet

either both contain (v, u) or both do not contain (v, u).
The first case is when L∗(v) = Merge and L∗(u) = Fork. Then (v, u) has to

be both in A′ as well as in the solution given by ArcDeletionSet, which we call
from now on B. It is clearly in B since it was added to the solution on Line 6 of
Algorithm 1. Due to Observation 1, we know that (v, u) is also in A′.

The second case is when L∗(v) = Fork and L∗(u) = Merge. In this case,
clearly, removing (v, u) will not destroy any forbidden subgraph, since ∀w ∈ in∗D′(v) :
L∗(w) = Fork. Since ArcDeletionSet does not remove the arc, it is neither present
in B nor in A′.

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 10

MFFF M

F M

F MF MF

Figure 4: Example of the execution of ArcDeletionSet. Vertices with an F received
the label Fork, and those with an M received the label Merge. The approximation
algorithm returns the four dashed arcs, while there is an optimal solution (dotted
arcs) of size two. Note that changing any single label will not improve the approxi-
mate solution.

For the remaining cases we cannot guarantee that exactly the same decision
was taken with respect to (v, u). We instead argue about the total number of arcs
removed between vertices with the same label. From Theorem 1(2) we know that
Fork vertices form an induced outforest in D, while Merge vertices form an induced
inforest. The number of arcs in an in- or outforest is given by the number of vertices
minus the number of roots (i.e. sources or sinks). All incoming arcs of a Fork vertex
v are removed by ArcDeletionSet only if v has no inneighbors labeled with Fork.
Hence, v is a source in D − B if and only if it is a source in D − A′. This implies
that the number of arcs in the outforest composed of Fork vertices is the same
in D − B as in D − A′. An analogous argument holds for the inforest induced by
Merge vertices. Hence, the total number of arcs between equally labeled vertices is
the same in B and A′. Since these were all cases and in all of them ArcDeletionSet

deletes as many arcs as the optimal solution, we conclude that |B| = |A′|.

We now give a guarantee of the approximation factor. A DAG where the ap-
proximation algorithms removes twice as many arcs as an optimal solution is given
in Figure 4.

Theorem 3. There is a linear-time factor-two approximation for ADDF.

Proof. After computing B = ArcDeletionSet(D,La), the approximation algorithm
iterates over D − B, flipping labels whenever the flip leads to an improvement in
the solution. This implies that, if we remove all incoming arcs of a vertex v with
La(v) = Merge, then we set the label of v to Fork instead. Analogously, we flip
the label of v if all of its outgoing arcs have been removed and La(v) = Fork.

Let B = ArcDeletionSet(D,La) and let A′ be a minimum arc set such that
D−A′ is a funnel. Let L∗ be an optimal FM-labeling for the input DAG D = (V,A)
such that A′ = ArcDeletionSet(D,L∗). We define two functions b : V → P(B)
and a : V → P(A′) such that

⊎
v∈V b(v) = B and

⊎
v∈V a(v) = A′, where

⊎
is a

disjoint union and P(X) denotes the family of all subsets of a set X. Our goal is to
assign each arc in A′ and B to one of its endpoints via a and b, respectively, such

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 11

MMFF FMMF

FM

FF FMMM MF

MMFF FMMF

MF

FF FMMM MF

Figure 5: Graphical representation of a and b. Vertices are identified with their
type. Arcs are assigned to the vertex in the middle. Dashed arcs correspond to arcs
counted in b, while dotted arcs are counted in a.

that |b(v)| ≤ 2 |a(v)| for every v ∈ V . We say that a vertex v has type T (v) = FM
if La(v) = Fork and L∗(v) = Merge. The types FF, MM and MF are defined
analogously. A vertex v is correctly labeled if La(v) = L∗(v).

We define a and b in such a way that |b(v)| = |a(v)| if v is correctly labeled. To
this end, we only assign a removed arc to a correctly labeled vertex v if both endpoints
are correctly labeled. For an incorrectly labeled vertex, we assign the arcs which are
potentially removed by ArcDeletionSet when considering v, together with those of
correctly labeled vertices. We additionally need to define a and b in such a way that
no arc is assigned to both endpoints. Refer to Figure 5 for a graphical representation
of a and b.

b(v) :=

B ∩ {(u, v) | T (u) = FF}, T (v) = FF,

B ∩ {(v, u) | T (u) = FF ∨ T (u) = MM}, T (v) = MM,

B ∩ ({(u, v) | u ∈ in(v)} ∪ {(v, u) | T (u) = FF}), T (v) = FM,

B ∩ ({(u, v) | T (u) = MM} ∪ {(v, u) | T (u) 6= FM}), T (v) = MF.

a(v) :=

A′ ∩ {(u, v) | T (u) = FF}, T (v) = FF,

A′ ∩ {(v, u) | T (u) = FF ∨ T (u) = MM}, T (v) = MM,

A′ ∩ ({(v, u) | u ∈ out(v)} ∪ {(u, v) | T (u) = MM}), T (v) = FM,

A′ ∩ ({(v, u) | T (u) = FF} ∪ {(u, v) | T (u) 6= FM}), T (v) = MF.

We now consider each vertex type t and argue that |b(v)| ≤ 2 |a(v)| for every
vertex v with T (v) = t. By construction of a and b, this is easy to prove for correctly
labeled vertices. Further, induced paths of any length behave just like an induced
with three vertices, and so we only need to consider the latter case.

Lemma 1. If La(v) = L∗(v) or indeg(v) = outdeg(v) = 1, then |b(v)| = |a(v)|.

Proof. When deciding which incident arc of a vertex v is kept, ArcDeletionSet

makes an arbitrary choice among the valid possibilities. However, all choices lead to
a solution of the same size. Hence, we can assume, without loss of generality, that
if ArcDeletionSet can keep an arc from a correctly labeled neighbor, then it does

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 12

so. This allows us to assume, for the sake of this analysis, that, if an arc between
two correctly labeled vertices is removed by the approximation algorithm, then it
is also removed in an optimal solution. Formally, we can assume the following for
any v ∈ V which is correctly labeled. If L∗(v) = Fork and there is some correctly
labeled u ∈ in(v) with L∗(u) = Fork, then (w, v) ∈ A′∩B for all incorrectly labeled
w ∈ in(v). If L∗(v) = Merge and there is some correctly labeled u ∈ out(v) with
L∗(u) = Merge, then (v, w) ∈ A′ ∩B for all incorrectly labeled w ∈ out(v).

We now show for every correctly labeled v that |b(v)| = |a(v)|. We first define
variables which count how many neighbors of each type v has. Let iFM be the
number of inneighbors of v with type FM. The variables iFF, iMM and iMF are
defined analogously, and oFM, oFF, oMM and oMF are defined analogously for the
outneighbors of v.

Let L∗(v) = Merge, then oFF ≤ |b(v)| ≤ oMM + oFF and oFF ≤ |a(v)| ≤
oMM + oFF. If oMM = 0, then |b(v)| = oFF = |a(v)|. Otherwise, due to the initial
assumption, |b(v)| = oFF + oMM − 1 = |a(v)|. Hence, |b(v)| = |a(v)|. The case where
L∗(v) = Fork follows analogously.

For any path v1, v2 . . . vk where all vertices have in- and outdegree one, the ap-
proximation assigns the same label to all vertices. Furthermore, it removes at most
two arcs in such a path. The decision of whether to remove an arc or not depends
only on the label of the predecessor of v1 and of the successor of vk, and not on the
length of the path. Hence, we can treat this case by contracting the path into a sin-
gle vertex v. Let u ∈ indeg(v) and w ∈ outdeg(v) be the unique neighbors of v. Note
that, by definition, La(v) = La(u).

If both incident arcs of v are in B, we flip the label of v in the greedy relabeling
phase. Either before or after the flip v is correctly labeled. Since flipping the label of
v does not worsen the solution, it follows from the previous case that |b(v)| = |a(v)|.

If only one arc of v was removed, the path uvw behaves as a single arc (u,w),
and the removed arc can be assigned to a vertex by considering the types of u and
w, taking the same decision as if we were assigning the arc (u,w) to a vertex. Hence,
|b(v)| = 0 = |a(v)| in this case.

We are now ready to prove an approximation factor of two.

Lemma 2. |B| ≤ 2 · |A′|

Proof. We first define variables which count the number of neighbors of v for each
type. Let iFM be the number of inneighbors of v with type FM. The variables
iFF, iMM and iMF are defined analogously, and oFM, oFF, oMM and oMF are defined
analogously for the outneighbors of v. Next, we show for every incorrectly labeled
vertex v (with in- or outdegree greater than one) that |b(v)| + oMF ≤ 2 |a(v)| (if
T (v) = FM) and |b(v)|−iFM ≤ 2 |a(v)| (if T (v) = MF). Note that the sum of all oMF

equals the sum of all iFM. Hence, we also show that
∣∣⊎

v∈X b(v)
∣∣ ≤ 2

∣∣⊎
v∈X a(v)

∣∣,
where X is the set of all incorrectly labeled vertices.

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 13

Case 1. T (v) = FM. By definition, |b(v)| ≤ c + oFF, where c ≤ indeg(v) is the
number of incoming arcs removed from v by B. Since L∗(v) = Merge, any arc
(v, u) with L∗(u) = Fork must be in A′. Furthermore, we need to remove at
least outdeg(v) − 1 many arcs from v in order to satisfy its label. Hence, |a(v)| ≥
d + oMF + oFF ≥ outdeg(v) − 1 for some 0 ≤ d ≤ outdeg(v). Thus, |b(v)| + oMF ≤
2 |a(v)| ⇐ c+ oFF + oMF ≤ 2(d+ oFF + oMF)⇐ c ≤ d+ outdeg(v)− 1.

If indeg(v) = outdeg(v), we know (from the definition of La) that some inneighbor
of v is labeled Fork by La. In this case, c ≤ indeg(v) − 1 = outdeg(v) − 1. If
indeg(v) < outdeg(v), then c ≤ indeg(v) ≤ outdeg(v) − 1. In both cases, c ≤
d+ outdeg(v)− 1 and so |b(v)|+ oMF ≤ 2 |a(v)|.

Case 2. T (v) = MF. By definition, |b(v)| ≤ c + iMM, where c ≤ outdeg(v) is
the number of outneighbors of v of type different from FM contained in B. Since
L∗(v) = Fork, all incoming arcs (u, v) with T (u) = MM must be contained in A′.
If T (u) = FM, then the arc (v, u) is assigned by a to u and not to v (if it is in
A′). Furthermore, we need to remove at least indeg(v) − 1 arcs, whereas arcs from
inneighbors with type FM are not counted in a(v). Hence, |a(v)| ≥ d + iMM ≥
indeg(v) − 1 − iFM, where 0 ≤ d ≤ indeg(v). It suffices to show that |b(v)| − iFM ≤
2 |a(v)| ⇐ c+ iMM − iFM ≤ 2d+ 2iMM ⇐ c ≤ d+ indeg(v)− 1.

If indeg(v) = outdeg(v) ≥ 2, then iFM = 0 since La(v) = Merge. This implies
that |a(v)| = d + iMM ≥ indeg(v) − 1 = outdeg(v) − 1. If iMM = 0, then |b(v)| ≤
c ≤ outdeg(v) ≤ 2(outdeg(v)− 1) = 2(indeg(v)− 1) ≤ 2 |a(v)|. If iMM > 0, then we
argue that at least one incoming arc of v was not removed, since otherwise the label
of v would be changed in the greedy relabeling phase of the approximation. Hence,
|b(v)| ≤ 2 |a(v)| ⇐ c + iMM − 1 ≤ 2d + 2iMM ⇐ c ≤ d + indeg(v) = d + outdeg(v).
If indeg(v) > outdeg(v), then c ≤ outdeg(v) ≤ indeg(v) − 1. In both cases, we have
|b(v)| − iFM ≤ 2 |a(v)|.

Thus, |b(v)| ≤ 2 |a(v)| for any incorrectly labeled vertex v. The same holds for
correctly labeled vertices by Lemma 1. By definition we know that

⊎
v∈V b(v) = B

and
⊎

v∈V a(v) = A′. Hence,
∣∣⊎

v∈V b(v)
∣∣ = |B| ≤ 2 |A′| = 2

∣∣⊎
v∈V a(v)

∣∣.
Algorithm 1 clearly runs in linear time, as computing the topological ordering of

a DAG can be done in linear time. The third phase of the algorithm, where labels
are changed, can also be executed in linear time by following any ordering of the
vertices. We only change the label of a vertex if this leads to a better solution. To
check if we have a better solution we only need to consider all incident arcs of a
vertex and the labels of their endpoints. Since Lemmas 1 and 2 consider all cases
for all vertices v ∈ V , we conclude that ADDF can be approximated in linear time
within a factor of two.

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 14

A Fixed-Parameter Algorithm.

Using the forbidden subgraph characterization (Theorem 1(3)), we can compute
a digraph’s arc-deletion distance d to a funnel in O(5d · (|V |2 + |V | · |A|)) time: After
contracting the arcs on each vertex with in- and outdegree one into a single arc, it
is enough to destroy all subgraphs D0 or D1 as in Theorem 1(3). The optimal arc-
deletion set to destroy all these subgraphs can be found by branching into the at
most five possibilities for each subgraph D0 or D1.

In this section, we show that, if the input is a DAG, we can solve ADDF in
O(3d · (|V | + |A|)) time instead; thus, in particular, we have linear running time if
d ∈ O(1). Moreover, the resulting algorithm has also better running time in practice.
As in the approximation algorithm, we again label the vertices. Proposition 1 shows
that, after the vertices are correctly labeled with either Merge or Fork, solving
ADDF can be done in linear time on DAGs. Hence, the complicated part of the
problem lies in finding such a labeling.

In the following, we describe a search-tree algorithm that receives a DAG D =
(V,A) and an upper bound d ∈ N on the size of the solution as input, and it main-
tains a partial labeling L : V → {Fork,Merge} of the vertices and a partial arc-
deletion set A′ that will constitute the solution in the end. Initially, A′ = ∅ and
L(v) is undefined for each v ∈ V , denoted by L(v) = ⊥. The algorithm exhaustively
and alternately applies the data reduction and branching rules described below and
aborts if |A′| > d. The rules either determine a label of a vertex (based on preex-
isting labels and on the degree of the vertex) or put some arcs into the solution A′.
Herein, when we say that an arc is put into the solution, we mean that it is deleted
from D and put into A′. To show that the algorithm finds a size-d arc deletion set
to a funnel if there is one, we ensure that the rules are correct, meaning that, if there
is a solution of size d that respects the labeling L and contains A′ before applying a
data reduction rule or branching rule, then there is also such a solution in at least
one of the resulting instances.

Reduction Rule 1 labels vertices of indegree (outdegree) at most one in a greedy
fashion, based on the label of the single predecessor (successor) if it exists.

Reduction Rule 1 (Set Label). Let v ∈ V be an unlabeled vertex.
Set L(v) := Fork if at least one of the following is true: I) indeg(v) = 0;

II) indeg(v) = 1 and ∃u ∈ in(v) : L(u) = Fork; III) outdeg(v) > 1, indeg(v) = 1
and ∀u ∈ out(v) : L(u) 6= ⊥.

Set L(v) := Merge if at least one of the following is true: I) outdeg(v) = 0;
II) outdeg(v) = 1 and ∃u ∈ out(v) : L(u) = Merge; III) outdeg(v) = 1, indeg(v) > 1
and ∀u ∈ in(v) : L(u) 6= ⊥.

Correctness of Reduction Rule 1. Clearly, in a funnel the function label attributes
every source a Fork label and every sink a Merge label. Since destroying sinks
and sources is not possible, Reduction Rule 1 labels these vertices optimally.

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 15

Let v be a vertex with indeg(v) = 1, let u ∈ in(v) be its only predecessor and as-
sume L(u) = Fork. If we set L(v) := Fork, then ArcDeletionSet will not remove
any arc when considering v. If some outgoing arc (v, w) is removed, then necessar-
ily L(w) = Fork. Hence, if we instead set L(v) := Merge we also need to remove
this arc, and potentially more. This implies that it is never worse to set L(v) :=
Fork in this case. An analogous argument holds for the case where outdeg(v) = 1
and L(u) = Merge for the only successor u of v.

Finally, let v be a vertex where outdeg(v) = 1, indeg(v) > 1, and ∀u ∈ in(v) :
L(u) 6= ⊥. Since, by assumption, all outneighbors of v already have their labels set
and satisfied, we only need to consider the label of v and of its only predecessor u.
If L(u) = Fork in an optimal solution, then we know by the previous case that it
is optimal to set L(v) := Fork. If L(u) = Merge in an optimal solution, then we
need to remove the arc (u, v) or some outgoing arc of v. That is, we need to remove
at least one arc of v. By setting L(v) := Fork, we know that we need to remove
exactly one arc of v. Hence, doing so is optimal. An analogous argument also holds
for the last case where we set L(v) := Merge.

Having labeled some vertices—whose labels will be as in an optimal labeling
in some branch of the search tree—we simulate in Satisfy Label the behavior of
ArcDeletionSet and remove arcs from labeled vertices.

Reduction Rule 2 (Satisfy Label). Let v be some vertex where L(v) = Fork
and indeg(v) > 1. If ∃u ∈ in(v) : L(u) = Fork, then put the arcs {(x, v) | x ∈
in(v)∧x 6= u} into the solution. Otherwise, put {(x, v) | x ∈ in(v)∧L(x) = Merge}
into the solution.

Let v be some vertex where L(v) = Merge and outdeg(v) > 1. If ∃u ∈ out(v) :
L(u) = Merge, then put the arcs {(v, x) | x ∈ out(v) ∧ x 6= u} into the solution.
Otherwise, put {(v, x) | x ∈ out(v) ∧ L(x) = Fork} into the solution.

Correctness of Reduction Rule 1. The arcs removed by Satisfy Label would also be
removed by ArcDeletionSet if all vertices had a label. Hence, if the labels are
correct, by Proposition 1, Satisfy Label only removes arcs that are present in some
optimal arc-deletion set.

To assign a label to each remaining vertex, we branch into assigning one of the
two possible labels. Key to an efficient running time is the observation that there is
always a vertex which, regardless of the label set, has some incident arc which then
has to be in the solution. This observation is exploited in Branching Rule 1.

Branching Rule 1 (Label Branch). If there is some vertex v such that ∀w ∈
in(v) : L(w) 6= ⊥ or ∃w ∈ in(v) : L(w) = Fork, then branch into two possibilities:
Set L(v) := Fork; Set L(v) := Merge.

If there is some vertex v such that ∀w ∈ out(v) : L(w) 6= ⊥ or ∃w ∈ out(v) :
L(w) = Merge, then branch into two possibilities: Set L(v) := Fork; Set L(v) :=
Merge.

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 16

F x v u M

F w F M F M

Figure 6: A DAG where Satisfy Label and Set Label are not applicable. The letter F
stands for a Fork label and M stands for Merge. Label Branch cannot be applied
to v since u does not have a label, yet it can be applied to x ∈ in∗(w).

The final Branching Rule 2 tries all possibilities of satisfying a label of a vertex.

Branching Rule 2 (Arc Branch). If there is a vertex v with L(v) = Fork and
indeg(v) > 1, then branch into all possibilities of removing all but one incoming arc
of v. If there is a vertex v with L(v) = Merge and outdeg(v) > 1, then branch into
all possibilities of removing all but one outgoing arc of v.

The correctness of Arc Branch follows from Proposition 1. To show the algo-
rithm’s correctness, it remains to show the following central lemma.

Lemma 3. Let D be a DAG. If Label Branch, Arc Branch, Set Label and Satisfy
Label are not applicable, then D is a funnel and all vertices have a label.

Proof. First, note that if the label of a vertex has been set, it will be satisfied by
either applying Satisfy Label or by branching with Arc Branch. Since satisfying all
labels turns D into a funnel (Theorem 1(2)), it is enough to show that all vertices
have a label if Label Branch, Set Label, and Satisfy Label are not applicable.

We first show that if there is some forbidden subgraph D′ = (V ′, A′) ⊆ D, that
is, D′ is isomorphic to some Di from Theorem 1(3), and if additionally Set Label
and Satisfy Label are not applicable, then Label Branch is applicable. Let D′ be the
forbidden subgraph in D with the smallest number of vertices. Let v, u ∈ V ′ be two
(not necessarily distinct) vertices in D′ such that indegD′(v) > 1, outdegD′(u) > 1.
Observe that all vertices between v and u in D′ (if any) have in- and outdegree one
in D, because D′ has the smallest number of vertices. We distinguish two cases.

Case 1: ∀w ∈ inD(v) : L(w) 6= ⊥. Then either outdegD(v) > 1, meaning that we
can apply Label Branch (as required), or L(v) = Merge due to Set Label. Since
all vertices between v and u have in- and outdegree one, we also know from the
latter case that there is some arc (x, y) in the (uniquely defined) (v, u)-path such
that L(x) = Merge and L(y) = ⊥. Note that it cannot happen that L(y) = Fork
since Satisfy Label is not applicable. We also know that outdegD(y) > 1 since Set
Label is not applicable. This implies Label Branch is applicable on y.

Case 2: ∃w ∈ inD(v) : L(w) = ⊥. This case is illustrated in Figure 6. We
show that we can find some vertex in in∗(w) to which we can apply Label Branch.
Consider the longest (x,w)-path that only contains vertices in in∗(w) which do not
have a label. Clearly, ∀y ∈ in(x) : L(y) 6= ⊥ and indeg(x) > 0 since all sources have
a label. Thus, we can apply Label Branch on x.

3 COMPUTING THE ARC-DELETION DISTANCE TO A FUNNEL 17

Since only these two cases are possible, and in both we can apply Label Branch,
it follows, by contraposition, that D is a funnel and all vertices have a label if Label
Branch, Set Label, and Satisfy Label are not applicable.

By combining the previous data reduction and branching rules, we obtain a
search-tree algorithm for ADDF on DAGs:

Theorem 4. ADDF can be solved in time O(3d · (|V | + |A|)), where d is the arc-
deletion distance to a funnel of a given DAG D = (V,A).

Proof. The algorithm is as follows. On input of a DAG D, budget d ∈ N, partial
labeling L, and partial solution A′ (initially, L does not label any vertex and A′ = ∅),
apply Set Label and Satisfy Label until they do not apply anymore. If |A′| > d,
then abort. Otherwise, apply Label Branch, if possible. In each of the two resulting
instances, apply Satisfy Label until it does not apply anymore, and then apply Arc
Branch, if possible. Make a recursive call for each of the resulting instances. If no
branching rule applies and |A′| ≤ d, return A′ as a solution.

By the correctness of the individual rules, the algorithm finds a solution if there
is one (and otherwise does not return anything): From Lemma 3 we know that the
algorithm turns the input into a funnel. It remains to prove the running time bound.
With some simple bookkeeping and auxiliary tables, we can apply Set Label and
Satisfy Label to all vertices of D in total running time of O(|V |+ |A|). In the same
running time we can find out whether Label Branch and Arc Branch is applicable.
Hence, we need at most O(|V |+ |A|) running time per recursive call.

It remains to bound the size of the search tree, that is, the outtree T whose ver-
tices are the calls of the algorithm and whose edges represent recursive calling rela-
tion. To ease the analysis, we instead bound the modified tree T ′ in which we re-
place the outneighbors of a vertex corresponding to the recursive calls resulting from
Arc Branch by a binary tree as follows. If Arc Branch branches into all possibilities
of putting into the solution a subset of size d′ − 1 from an arc set B of size d′, we
instead recursively choose two arcs and introduce two recursive calls in which one of
the two arcs is put into the solution until B has size 1. Clearly, the size of T is up-
per bounded by the size of T ′.

We claim that T ′ has maximum outdegree three. Consider the instances resulting
from Label Branch. Without loss of generality assume that the first portion of Label
Branch was applied. The proof for the second portion is analogous. If L(v) was set
to Fork, then after Satisfy Label has been applied exhaustively, Label Branch is not
applicable. Otherwise, if L(v) was set to Merge, the modified Label Branch with
two branches is applied. Hence, indeed, there are at most three recursive calls.

To bound the size of T ′, consider a path P from the root to a leaf. Whenever
Label Branch is applied, in each of the following recursive calls, at least one arc is put
into the solution: Without loss of generality, assume that the first portion of Label
Branch was applied. The proof for the second portion is analogous. If L(v) was set
to Fork, then Satisfy Label will put at least one arc into the solution (note that,

4 EMPIRICAL EVALUATION OF THE DEVELOPED ALGORITHMS 18

since Set Label is not applicable, v has indegree at least two). Otherwise, if L(v)
was set to Merge, then, since Set Label is not applicable, Arc Branch is applicable
and will put at least one outarc of v into the solution. Hence, P has length at most
d, since no further recursive calls are made if |A′| > d. Combining this with the fact
that T ′ has outdegree at most three, it follows that T ′ has size O(3d).

Hence, the running time of the search-tree algorithm is O(3d · (|V |+ |A|)).

To improve the running time of the search-tree algorithm in practice, we compute
a lower bound of the arc-deletion distance to a funnel of the input and we stop ex-
panding a branch of the search tree when the lower bound exceeds the available bud-
get. A simple method for computing a lower bound is to find arc-disjoint forbidden
subgraphs. Clearly, the sum of the arc-deletion distances to a funnel of the subgraphs
found is not larger than the distance of the input DAG. To find such subgraphs, we
first look for vertices with both in- and outdegree greater than one, which are not
allowed in funnels. Then we search for paths v1, v2, . . . , vk such that indeg(v1) > 1
and outdeg(vk) > 1. With some bookkeeping we can find a maximal set of arc-
disjoint forbidden subgraphs in linear time.

4 Empirical Evaluation of the Developed Algorithms

In this section, we empirically evaluate the approximation algorithm and the
fixed-parameter algorithm for ADDF described in Section 3. We used artificial data
sets and data based on publicly available real-world graphs. Our experiments show
that both our algorithms are efficient in practice.

We implemented the algorithms in Haskell 2010. All experiments were run on an
Intelr Xeonr E5-1620 3.6 GHz processor with 64 GB of RAM. The operating system
was GNU/Linux, with kernel version 4.4.0-67. For compiling the code, we used GHC
version 7.10.3. The code is released as free software [Millani, 2017b].

Experiments on Synthetic Funnel-like DAGs. We generated random funnel-
like DAGs through the following steps. (1) Choose the number of vertices, arc
density p ∈ [0, 1], and some s ∈ N. (2) Fix a topological ordering of the vertices.
(3) Uniformly at random assign a label Fork or Merge to each vertex. (4) Create
an out-forest with Fork vertices, and an in-forest with Merge vertices. (5) Add
random arcs from Fork to Merge vertices until a density of p (relative to the
maximum number of arcs allowed by the labeling) is achieved. (6) Add s random
arcs which respect the topological ordering. Steps (1) through (5) result in a funnel
which we call planted funnel below.

For a fixed labeling, the algorithm above generates funnels uniformly at random
from the input parameters. The labeling, however, is drawn uniformly at random
from all 2|V | possible labelings, without considering how many different funnels exist
with a given labeling. Hence, funnels with fewer arcs have a larger chance of being

4 EMPIRICAL EVALUATION OF THE DEVELOPED ALGORITHMS 19

0
25
50
75

100

0 10 20 30

Time (s)

S
ol

ve
d

(%
)

Arcs Added 125 150 175

(a) Percentage of instances solved exactly
within a time-range.

0
25
50
75

100

0 2 4 6

Approximation Error

In
st

a
n

ce
s

(%
)

Density 0.15 0.5 0.85

(b) Percentage of instances with an approxima-
tion error below a certain value.

Figure 7: Running time and approximation error.

generated than funnels with many arcs (when compared to the chances in a uniform
distribution). We consider this bias to be harmless for the experiments since, for the
exact algorithm, the number of arcs is not decisive for the running time, and for the
approximation algorithm the number of arcs should not have a big impact on the
solution quality.

For n ∈ {250, 300, 500, 1000}, p ∈ {0.15, 0.5, 0.85} and s ∈ {125, 150, 175} we
generated 30 funnels with n vertices and density p, and then added s random arcs
as described above. This gives us a total of 1080 DAGs.

Our fixed-parameter algorithm was able to compute the arc-deletion distance to
funnel of 1059 instances (98%) within 10 minutes. The approximation algorithm fin-
ished on average in less than 72 ms. A cumulative curve with the percentage of in-
stances solved within a certain time range is depicted in Figure 7a. Most instances
were solved fairly quickly: Within 15 seconds 932 (86%) instances were solved opti-
mally. We can also observe that there were essentially two types of instances: Easy
ones which were solved within few seconds, and harder ones which often were not
solved within 10 minutes. That is, if we limit the running time to five seconds, then
we can solve 856 (79%) instances, and if we increase it to sixty seconds, we can solve
only 141 additional instances.

Figure 7b shows the relation between the error of the approximation algorithm
with the density of the planted funnel. The approximation algorithm found an op-
timal solution in 574 (54%) instances, and in 260 (25%) it removed only one more
arc than necessary. As the arc-deletion distance to a funnel of most instances was
greater than 100, this means that the approximation ratio is very close to one. Since
the DAGs used here are already close to funnels, most decisions of the approximation
algorithm are correct. Intuitively, having correct local information helps the approx-
imation make a globally optimal decision, and so it is unsurprising that the approxi-
mation factor in funnel-like DAGs is much better than the theoretical bound. This is
supported also by the fact that the approximation performed worse on sparse planted
funnels than on dense ones, since the proportion of “wrong” information regarding

5 CONCLUSION 20

the arcs is larger on sparse funnels (when adding the same number of random arcs).

Experiments on DAGs Based on Real-World Data Sets. We obtained ten
digraphs from the Konect database [Kunegis, 2013], containing food-chains, interac-
tions between animals, and source-code dependencies. We also downloaded the de-
pendency network of all packages in Arch Linux.3 Since most of the gathered di-
graphs contain cycles, we performed a pre-processing step turning them into DAGs:
we merged cycles into a single vertex, and then removed self-loops. For each of the
eleven DAGs we computed a lower bound and an approximation of its arc-deletion
distance to funnel. We also attempted to compute the real distance, stopping the
algorithm if no solution was found within four hours.

The dataset was divided into six small DAGs (≤ 156 vertices and ≤ 1197 arcs)
and five larger ones (≥ 5730 vertices and ≥ 26218 arcs). In the small ones, our
fixed-parameter algorithm solved ADDF within one second, and our approximation
algorithm found the correct distance in ≤ 2 ms. In two of the six small DAGs the
distance was 60 and 129, which means that the exact algorithm is in practice much
faster than what the worst-case upper bound predicts.

On the larger DAGs the fixed-parameter algorithm could not solve ADDF within
four hours. By computing a lower bound for the distance, we managed to give an
upper bound for the approximation factor, which was at most 1.16. This means that
the approximation algorithm is practical since it is fast (≤ 228 ms on average) and
yields a near-optimal solution. Relative to the number of arcs, the arc-deletion dis-
tance to a funnel parameter was small (9% on average).

5 Conclusion

We believe that our results add to the relatively small list of fixed-parameter
tractability results for directed graphs and introduce a novel interesting structural
parameter for directed (acyclic) graphs. In particular, our approximation and fixed-
parameter algorithms could help to establish the arc-deletion distance to a funnel as
a useful “distance-to-triviality measure” [Cai, 2003, Guo et al., 2004, Niedermeier,
2010] for designing fixed-parameter algorithms for NP-hard problems on DAGs. We
leave open whether computing the arc-deletion distance to funnel of a DAG is APX-
hard. Finally, funnels might provide a basis for defining some useful digraph width
or depth measures [Ganian et al., 2014, 2016, Millani, 2017a].

References

N. Ailon and N. Alon. Hardness of fully dense problems. Information and Compu-
tation, 205(8):1117–1129, 2007.

3Listed at https://www.archlinux.org/packages/ and obtained using pacman.

https://www.archlinux.org/packages/

REFERENCES 21

J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, 2008. ISBN 1848009976, 9781848009974.

S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé.
Kernels for feedback arc set in tournaments. Journal of Computer and System
Sciences, 77(6):1071–1078, 2011.

L. Cai. Parameterized complexity of vertex colouring. Discrete Appl. Math., 127(3):
415–429, 2003.

P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem is np-
hard for tournaments. Combinatorics, Probability and Computing, 16(1):1–4, 2007.

S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10(2):111–121, 1980. ISSN 0304-3975. doi: http:
//dx.doi.org/10.1016/0304-3975(80)90009-2.

R. Ganian, P. Hlinený, J. Kneis, A. Langer, J. Obdrzálek, and P. Rossmanith. Di-
graph width measures in parameterized algorithmics. Discrete Appl. Math., 168:
88–107, 2014.

R. Ganian, P. Hlinený, J. Kneis, D. Meister, J. Obdrzálek, P. Rossmanith, and
S. Sikdar. Are there any good digraph width measures? J. Comb. Theory, Ser. B,
116:250–286, 2016.

J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameterizing prob-
lems: Distance from triviality. In Proc. 1st IWPEC, pages 162–173. Springer, 2004.

C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of computing, pages 95–103.
ACM, 2007.

J. Kunegis. KONECT – The Koblenz Network Collection. In Proc. 22nd WWW,
pages 1343–1350. ACM, 2013.

J. Lehmann. The computational complexity of worst case flows in unreliable flow
networks. Bachelor thesis, Institut für Theoretische Informatik, Universität zu
Lübeck, Oct 2017.

J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of
the news cycle. In Proc. 15th ACM SIGKDD, pages 497–506. ACM, 2009. ISBN
978-1-60558-495-9. doi: 10.1145/1557019.1557077.

M. G. Millani. Funnels—algorithmic complexity of problems on special directed
acyclic graphs. Master thesis, Department of Electrical Engineering and Com-
puter Science, TU Berlin, Aug 2017a. URL http://fpt.akt.tu-berlin.de/

publications/theses/MA-marcelo-millani.pdf.

http://fpt.akt.tu-berlin.de/publications/theses/MA-marcelo-millani.pdf
http://fpt.akt.tu-berlin.de/publications/theses/MA-marcelo-millani.pdf

REFERENCES 22

M. G. Millani. Parfunn – Parameters for Funnels, Aug 2017b. URL https://

gitlab.tubit.tu-berlin.de/mgmillani1/parfunn.

R. Niedermeier. Reflections on multivariate algorithmics and problem parameteri-
zation. In Proc. 27th STACS, pages 17–32. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2010.

R. van Bevern, R. Bredereck, M. Chopin, S. Hartung, F. Hüffner, A. Nichterlein,
and O. Suchý. Fixed-parameter algorithms for DAG partitioning. Discrete Appl.
Math., 220:134–160, 2017. ISSN 0166-218X. doi: https://doi.org/10.1016/j.dam.
2016.12.002.

https://gitlab.tubit.tu-berlin.de/mgmillani1/parfunn
https://gitlab.tubit.tu-berlin.de/mgmillani1/parfunn

	1 Introduction
	2 Funnels: Definition and Properties
	3 Computing the Arc-Deletion Distance to a Funnel
	4 Empirical Evaluation of the Developed Algorithms
	5 Conclusion

