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Abstract

The main topic of this paper is “gerrymandering”, namely the curse of deliberate creations of district
maps with highly asymmetric electoral outcomes to disenfranchise voters, and it has a long legal history
going back as early as 1812. Measuring and eliminating gerrymandering has enormous far-reaching
implications to sustain the backbone of democratic principles of a country or society.

Although there is no dearth of legal briefs filed in courts involving many aspects of gerrymandering
over many years in the past, it is only more recently that mathematicians and applied computational
researchers have started to investigate this topic. However, it has received relatively little attention so far
from the computational complexity researchers (where by “computational complexity researchers” we
mean researchers dealing with theoretical analysis of computational complexity issues of these problems,
such as polynomial-time solvabilities, approximability issues, etc.). There could be several reasons for
this, such as descriptions of these problem non-CS non-math (often legal or political) journals that are not
very easy for theoretical CS (TCS) people to follow, or the lack of effective collaboration between TCS
researchers and other (perhaps non-CS) researchers that work on these problems accentuated by the lack
of coverage of these topics in TCS publication venues. One of our modest goals in writing this article is
to improve upon this situation by stimulating further interactions between the science of gerrymandering
and the TCS researchers. To this effect, our main contributions in this article are twofold:

. We provide formalization of several models, related concepts, and corresponding problem state-
ments using TCS frameworks from the descriptions of these problems as available in existing
non-CS-theory (perhaps legal) venues.

. We also provide computational complexity analysis of some versions of these problems, leaving
other versions for future research.

The goal of writing article is not to have the final word on gerrymandering, but to introduce a series
of concepts, models and problems to the TCS community and to show that science of gerrymandering
involves an intriguing set of partitioning problems involving geometric and combinatorial optimization.

Keywords: Gerrymandering, geometric partitioning, computational hardness, efficient algorithms.

Disclaimer: The authors were not supported, financially or otherwise, by any political party. The research results
reported in this paper are purely scientific and reported as they are without any regard to which political party they
may be of help (if at all).
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1 Introduction

Figure 1: [37]“Gerry”
and “salamander”
districts, 1812 state
senate election, Mas-
sachusetts.

Gerrymandering, namely deliberate creations of district maps with highly asym-
metric electoral outcomes to disenfranchise voters, has continued to be a curse to
fairness of electoral systems in USA for a long time in spite of general public dis-
dain for it. There is a long history of this type of voter disenfranchisement going
back as early as 1812 when the specific term “gerrymandering” was coined after a
redistricting of the senate election map of the state of Massachusetts resulted in a
South Essex district taking a shape that resembled a salamander (see Fig. 1). There
is an elaborate history of litigations involving gerrymandering as well. In 1986 the
US Supreme Court (SCOTUS) ruled that gerrymandering is justiciable [10], but
they could not agree on an effective way of estimating it. In 2006, SCOTUS opined
that a measure of partisan symmetry may be a helpful tool to understand and rem-
edy gerrymandering [18], but again a precise quantification of partisan symmetry
that will be acceptable to the courts was left undecided. Indeed, formulating pre-
cise and computationally efficient measures for partisan bias (i.e., lack of partisan
symmetry) that will be acceptable in courts may be considered critical to removal of gerrymandering1,2.

Although there is no dearth of legal briefs filed in courts involving gerrymandering over many years in
the past, it is only more recently that mathematicians and applied computational researchers have started
to investigate this topic, perhaps due to the tremendous progress in high-speed computation in the last two
decades. For example, researchers in [1, 4, 5, 15, 16, 22, 23, 31, 32] have made conceptual or empirical at-
tempts at quantifying gerrymandering and devising redistricting methods to optimize such quantifications
using well-known notions such as compactness and symmetry, whereas researchers in [1, 6–8, 19, 31] have
investigated designing efficient heuristic approach and other computer simulation approaches for this pur-
pose. Two recent research directions deserve specific mentions here. In the first direction, researchers
Stephanopoulos and McGhee in several papers such as [21, 30] introduced a new gerrymandering measure
called the efficiency gap that attempts to minimize the absolute difference of total wasted votes between
the parties in a two-party electoral system, and very importantly, at least from a legal point of view, this
measure was found legally convincing in a US appeals court in a case that claims that the legislative map
of the state of Wisconsin is gerrymandered. In another direction, and perhaps of considerable interest to the
algorithmic game theory researchers, the authors in a recent paper [25] formulated the redistricting process
as a two-person game and analyzed the performances of two kinds of protocols for such games.

1.1 Why write this article and why theoretical computer science researchers should care?

Somewhat unfortunately, even though the science of gerrymandering have received varying degrees of atten-
tion from legal researchers, mathematicians and applied computational researchers, it has received relatively
little attention so far from the theoretical computer science (TCS) researchers (where by “TCS researchers”
we mean researchers dealing with theoretical analysis of computational complexity issues of these prob-
lems, such as polynomial-time solvabilities, fixed-parameter tractabilities, approximability issues, etc.), ex-
cept few recent results such as [6]. In our opinion there are several reasons for this. Often, some of these
problems are described in “non-CS non-math” journals in a way that may not be very precise and may not

1Even though measuring partisan bias is a non-trivial issue, it has nonetheless been observed that two frequent indicators
for partisan bias are cracking [26] (dividing supporters of a specific party between two or more districts when they could be a
majority in a single district) and packing [26] (filling a district with more supporters of a specific party as long as this does not
make this specific party the winner in that district). Other partisan bias indicators include hijacking [26] (re-districting to force
two incumbents to run against each other in one district) and kidnapping [26] (moving an incumbent’s home address into another
district).

2See Section 1.2 regarding the impact of the SCOTUS gerrymandering ruling on 06/27/2019 on future gerrymandering studies.
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be very easy for TCS researchers to follow. Another possible reason is the lack of effective collaboration
between TCS researchers and other (perhaps non-CS) researchers working on these problems, perhaps ac-
centuated by the lack of coverage of these topics in TCS publication venues. One of our goals in writing
this article is to improve upon this situation. To this effect, the article is motivated by the following two
high-level aims:

(I) Formalization of models and problem statements: Our formal definitions and descriptions need to
satisfy two (perhaps mutually conflicting) goals. The levels of abstraction should be as close to their
real-world applications as possible but should still make the problems sufficiently interesting so as to to
attract the attention of the TCS researchers.

(II) Computational complexity analysis: We provide computational complexity analysis of some versions
of these problems, leaving other versions for future research.

Task (I) may not necessarily be as straightforward as it seems, especially since descriptions of some of
the problem variations may come from non-CS-theory (perhaps legal) venues. Regarding Task (II), one
may wonder why computational complexity analysis (including computational hardness results) may of be
practical interest at all. To this, we point out a few reasons.

. When a particular type of gerrymandering solution is found acceptable in courts, one would eventually
need to develop and implement a software for this solution, especially for large US states such as Cali-
fornia and Texas where manual calculations may take too long or may not provide the best result. Any
exact or approximation algorithms designed by TCS researchers would be a valuable asset in that respect.
Conversely, appropriate computational hardness results can be used to convince a court to not apply that
measure for specific US states due to practical infeasibility.

. Beyond scientific implications, TCS research works may also be expected to have a beneficial impact
on the US judicial system. Some justices, whether at the Supreme Court level or in lower courts, seem
to have a reluctance to taking mathematics, statistics and computing seriously [12, 29]. TCS research
may be able to help showing that the theoretical methods, whether complicated or not (depending on
one’s background), can in fact yield fast accurate computational methods that can be applied to “un-
gerrymander” the currently gerrymandered maps.

1.2 Remarks on the impact of the SCOTUS gerrymandering ruling

As this article was being written, SCOTUS issued a ruling on 06/27/2019 on two gerrymandering cases [28].
However, the ruling does not eliminate the need for future gerrymandering studies. While SCOTUS agreed
that gerrymandering was anti-democratic, it decided that it is best settled at the legislative and political
level, and it encouraged solving the problem at the state court level and delegating legislative redistricting
to independent commissions via referendums. Both of the last two remedies do require further scientific
studies on gerrymandering. It is also possible that a future SCOTUS may overturn this recent ruling.

2 Precise formulations of several gerrymandering problems

We assume for the rest of the paper that our political system consists of two parties only, namely Party A
and Party B. This means that we ignore negligible third-party votes as is commonly done by researchers
interested in two-party systems. Although some of our concepts can be extended for three or more major
parties, we urge caution since gerrymandering for multi-party systems may need different definitions.
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Figure 2: (a) A rectilinear polygon map P of size 15 placed on a grid of size 6 × 4; the cell v2,1 is shown.
(b) An arbitrary polygon map P of size 7. The corresponding planar graph is shown in gray.

2.1 Input data and its granularity levels

The topological part of an input is generically referred to a “map” P which is partitioned into atomic el-
ements or cells (e.g., subdivisions of counties or voting tabulation districts in legal gerrymandering litera-
tures). The following two types of maps may be considered.

Rectilinear polygonPPP without holes (Fig. 2(a)): For this case, P is placed on a unit grid of size m × n.
Then, the atomic elements (cells) of P are identified with individual unit squares of the grid inside P .
We will refer to the cell on the ith row and jth column by vi,j for 0 ≤ i < m and 0 ≤ j < n.

Arbitrary polygonPPP without holes (Fig. 2(b)): For this case, P is an arbitrary simple polygon, and the
atomic elements (cells) of P are arbitrary sub-polygons (without holes) inside P . Such a map can also be
thought of a planar graph G(P) whose nodes are the cells, and an edge connects two cells if they share a
portion of the boundary of non-zero measure. Note that although the planar graph for a given polygonal
map is unique, for a given planar graph there are many polygonal maps.

In either case, the size |P| of the map is the number of cells (resp., nodes) in it and, for a cell (resp., a node)
y and a sub-polygon P ′ inside the polygonal map P (resp., a sub-graph G′ of G(P)) the notation y ∈ P ′
will indicate that y is inside P ′ (resp., y is a node of G′). Every cell or node y of a map has the following
numbers associated with it (see Fig. 2(b)):

I A strictly positive integer Pop(y) > 0 indicating the “total population” inside y.

I Two non-negative integers PartyA(y),PartyB(y) ≥ 0 such that PartyA(y) + PartyB(y) = Pop(y).
PartyA(y) and PartyB(y) denotes the total number of voters for Party A and Party B, respectively.

In addition to the above numbers, we are also given a positive integer 1 < κ < |P| that denotes the required
(legally mandated) number of districts3. Based on existing literatures, three types of granularities of these
numbers in the input data can be formalized:

Course granularity: For this case, the Pop(y)’s are numbers of arbitrary size, and thus the total number of
bits needed to represent the Pop(y)’s (i.e.,

∑
ydlog2(1 + Pop(y))e) contributes to the size of the input.

3This is a hard constraint since a map with a different value of κ would be illegal. This precludes one from designing an
approximation algorithm in which the value of κ changes even by just ±1, and conversely a computational hardness result for a
value of κ does not necessarily imply a similar result for another value of κ.
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This kind of data is obtained, for example, when one uses data at the “county” level [6] or “census block
group” level [9, 11].

Fine granularity: For this case, for every cell or node y we have 0 < Pop(y) ≤ c for some fixed constant
c > 0. This kind of data is obtained, for example, when one uses data at the “Voting Tabulation District”
(VTD) level4 or at the “census block” level.

Ultra-fine granularity: For this case, Pop(y) = c for some fixed constant c > 0 for every cell or node
y. If the different Pop(y)’s in the fine granularity case do not differ from each other too much then
depending on the optimization objective it may be possible to approximate the fine granularity by an
ultra-fine granularity.

2.2 Legal requirements for valid re-districting plans

Let S denote the set of all cells (resp., all nodes) in the given polygonal map P (resp., the planar graph
G(P)). A districting scheme is a partition of S into κ subsets of cells (resp., nodes), say S1, . . . ,Sκ. One
absolutely legally required condition is the following:

“every Sj must be a connected polygon5 (resp., a connected subgraph)”.

For convenience, we define the following quantities for each Sj :

Party affiliations in Sj: PartyA(Sj) =
∑

y∈Sj PartyA(y) and PartyB(Sj) =
∑

y∈Sj PartyB(y).

Population of Sj: Pop(Sj) = PartyA(Sj) + PartyB(Sj).

Then, another legally mandated condition in its two forms can be stated as follows.

Strict partitioning criteria: Ideally, one would like {S1, . . . ,Sκ} to be a (exact) κ-equipartition of S , i.e.,

∀ j : Pop(Sj) ∈ {bPop(S)/κc, dPop(S)/κe}

Approximately strict partitioning criteria: In practice, it is nearly impossible to satisfy the strict parti-
tioning criteria. To alleviate this difficulty, the exactness of equipartition is relaxed by allowing Pop(S1),
. . . , Pop(Sκ) to differ from each other within an acceptable range. To this effect, we define an ε-

approximate κ-equipartition of S for a given ε > 0 to be one that satisfies
max1≤j≤κ {Pop(Sj)}
min1≤j≤κ {Pop(Sj)}

≤ 1+ε.

Rulings such as [33] seem to suggest that the courts may allow a maximum value of ε in the range of
0.05 to 0.1. Another possibility is to have an additive δ-approximation to the strict partitioning criterion
by allowing max1≤j≤κ {Pop(Sj)} ≤ min1≤j≤κ {Pop(Sj)} + δ.

2.3 Optimization objectives to eliminate partisan bias

We describe a few objective functions for optimization to remove partisan bias (in TCS frameworks) that
have been proposed in existing literatures or court documents6. Let S1, . . . ,Sκ be the set of κ districts
(partitions) of the set of all cells (resp., nodes) S in the given polygonal (resp., planar graph) map. We first
define a few related useful notations and concepts.

4VTDs are often the smallest units in a US state for which the election data are available.
5For our purpose, two polygon sharing a single point is assumed to be disconnected from each other.
6We remind the reader that there is no one single objective function that has been universally accepted in all or most court

cases, and it is likely that new objectives will be proposed in the coming years.
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Winner of a district Sj: Clearly if PartyA(Sj) > Pop(Sj)/2 then Party A should be the winner and if
PartyB(Sj) > Pop(Sj)/2 then Party B should be the winner. What if PartyA(Sj) = PartyB(Sj) =
Pop(Sj)/2 ? Most existing research works assigned the district to a specific preferred party (e.g., Party A)
always for this case, so we will assume this by default. However, in reality, a (fair) coin-toss is often used
to decide the outcome7.

Normalized seat counts and seat margins of the two parties:

N-Seat-C(Party A) =
∣∣ {Sj : Party A wins Sj}

∣∣/κ, N-Seat-M(Party A) = N-Seat-C(Party A) − 1/2

N-Seat-C(Party B) = 1 − N-Seat-C(Party A), N-Seat-M(Party B) = N-Seat-C(Party B) − 1/2

Normalized vote counts and vote margins of the two parties:

N-Vote-C(Party A) = PartyA(S)/Pop(S), N-Vote-M(Party A) = N-Vote-C(Party A)− 1/2,

N-Vote-C(Party B) = PartyB(S)/Pop(S), N-Vote-M(Party B) = N-Vote-C(Party B)− 1/2

Wasted votes: For a district Sj , the wasted votes (i.e., the votes whose absence would not have altered the
election) for the two parties are defined as follows [21, 30]:

Wasted-Votes(Sj ,Party A) =

{
PartyA(Sj)− (Pop(Sj)/2), if Party A is the winner of Sj

PartyA(Sj), otherwise

Wasted-Votes(Sj ,Party B) =

{
PartyB(Sj)− (Pop(Sj)/2), if Party B is the winner of Sj

PartyB(Sj), otherwise

Without loss of generality, assume that PartyA(S) ≥ PartyB(S). Based on the above notions, we can now
describe a few optimization objectives:

Seat-vote equation: For the decision version of this problem, we are required to produce a re-districting
plan that exactly satisfies a relationship between between normalized seat counts and normalized vote
counts between the two parties. The relationship was stated by [32] as

N-Seat-C(Party A) /N-Seat-C(Party B) ≈
(
PartyA(S) /PartyB(S)

)ρ (1)

where ρ is a positive number and ≈ denotes almost equality. Kendall and Stuart in [17] argued in favor
of ρ = 3 using some stochastic models. Some special cases of Equation (1) are as follows:

Proportional representation: ρ = 1, Winner-take-all: ρ =∞.

In practice, a value of ρ ∈ [1, 3] is considered to be a reasonable choice. For an optimization version of
this problem, assuming N-Seat-C(Party B) > 0N-Seat-C(Party B) > 0N-Seat-C(Party B) > 0 and assuming Party A has the responsibility to do
the re-districting8, we define an (asymptotic) ε-approximation (ε ≥ 1) as a solution that satisfies

ε−1 lim
Pop(S)→∞

(
PartyA(S)
PartyB(S)

)ρ
≤ lim

κ→∞

(
N-Seat-C(Party A)
N-Seat-C(Party B)

)
≤ ε lim

Pop(S)→∞

(
PartyA(S)
PartyB(S)

)ρ
(2)

7Please do not underestimate the power of a coin toss. The 2017 election for the 94th district for house of delegates in the
state of Virginia was decided by a coin toss, and in fact this also decided the legislative control of one of the chambers of the state.

8In other words, Party A chooses the districts in an attempt to his/her desirable value for N-Seat-C (Party A).
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Equation (2) is obviously ill-defined when N-Seat-C(Party B) = 0, which may indeed happen in prac-
tice for smaller values of κ such as κ = 2. We introduce appropriate modifications to Equation (2) to
avoid this in the following manner. If N-Seat-C(Party B) = 0 then N-Seat-C(Party A)/κ = 1 and thus
an exact version of the seat-vote equation would intuitively want PartyA(S)/Pop(S) = 1 no matter what
ρ is. Thus, when N-Seat-C(Party B) = 0, we consider such a solution as an ε-approximation where

ε = limPop(S)→∞ (PartyA(S)/Pop(S))−1 (2)′

Efficiency gap: The goal here is to minimize the absolute difference of total wasted votes between the
parties, i.e., we need to find a partition that minimizes

Effgapκ(S,S1, . . . ,Sκ) =
∣∣∣∑κ

j=1

(
Wasted-Votes(Sj ,Party A) − Wasted-Votes(Sj ,Party B)

) ∣∣∣
Partisan bias: Partisan bias is a deviation from bipartisan symmetry that favors one party over the other.

The underlying assumption in using this very popular measure is that both the parties should expect to re-
ceive the same number of seats given the same vote proportion, i.e., for example, if N-Vote-C(Party A) =
0.7 and the redistricting plan results in N-Seat-C(Party A) = 0.4 then assuming N-Vote-C(Party A) =
1−0.7 = 0.3 the same redistricting plan should result in N-Seat-C(Party A) = 1−0.4 = 0.6. However,
since the precise distribution of voters when N-Vote-C(Party A) = 0.3 is not known, the distribution is
generated artificially possibly based on some assumptions (which may not always be acceptable to court).
Mathematically, a measure of partisan bias can be computed in the following manner.

1. Let α = N-Vote-C(Party A)− N-Vote-C(Party B). Note that α ∈ [0, 1].

2. Select β1, . . . , βκ ∈ [0, 1] such that β1 + · · ·+ βκ = α. These choices depend upon the population
shift model being used.

3. For every district Sj , we create a district S̃j that corresponds to the same region (sub-polygon or
sub-graph) but with the following parameters changes:

PartyA(S̃j) = PartyA(Sj) − βjPop(S), PartyB(S̃j) = PartyB(Sj) + βjPop(S)

Note that S̃1, . . . , S̃κ is another legally valid re-districting plan for S but for this new plan the
normalized vote count for Party A is given by

∑κ
j=1 PartyA(S̃j)

Pop(S) =
∑κ
j=1

(
PartyA(Sj)−βjPop(S)

)
Pop(S) =

PartyA(S)−αPop(S)
)

Pop(S) = N-Vote-C(Party B)

4. Recalculate the normalized seat count ˜N-Seat-C(Party A) for Party A for this new partition S̃1, . . . , S̃κ.

5. Define the measure of bias as Biasκ(S,S1, . . . ,Sκ) =
∣∣ ˜N-Seat-C(Party A)−N-Seat-C(Party A)

∣∣.
The goal is then to find a partition S1, . . . ,Sκ to minimize Biasκ(S,S1, . . . ,Sκ).

Geometric compactness of a polygonal district Sj: The primary goal of using this measure is to ensure
that polygonal districts do not have “unusually weird” shapes (cf. Fig. 1). A most commonly used
compactness measure is the so-called “Polsby-Popper compactness measure” [27] given by C (Sj) =
cA/B2 where A is the area and B is the length of the perimeter of Sj , and c > 0 is a suitable constant
(c = 4π was used in [24]). The computational problem is then to find a re-districting plan such that
L1 ≤ C (Sj) ≤ L2 for all j for two given bounds L1 and L2.

6



In addition to what is discussed above, there are other constraints and optimization criteria, such as respon-
siveness (also called swing ratio), equal vote weight and declination, that we did not discuss; the reader is
referred to references such as [3, 20, 34] for informal discussions on them.

2.4 Prior relevant computational complexity research

To our knowledge, the most relevant prior non-trivial computational complexity (i.e., approximation hard-
ness, approximation algorithms, etc.) article regarding gerrymandering is [6]. The article [6] exclusively
dealt with the efficiency gap measure, and provided some non-trivial approximation hardness and approxi-
mation algorithms in addition to designing and implementing a practical algorithm for this case which works
well on real maps. In the terminologies of this article, [6] showed that minimization of the efficiency gap
measure for rectilinear polygonal maps with coarse grain inputs and strict partitioning criteria does not admit
any non-trivial polynomial-time approximation in the worst case, but does admit polynomial-time approxi-
mation algorithms when further constraints are added to the problem. In addition, [6] and [30, p. 853] also
observed that Effgapκ(S,S1, . . . ,Sκ)/Pop(S) = | 2 × N-Vote-M(Party A) − N-Seat-M(Party A) |.

3 Our computational complexity results

Before stating our technical results, we remind the reader about the following obvious but important
observations. Consider the following combinations for a pair (X,Y ):

. X is rectilinear polygonal input and Y is arbitrary polygonal input (equivalently, a planar graph), or

. X is fine or ultra-fine granular input and Y is coarse input, or

Then, the following statements hold:

I Any computational hardness result for X also implies the same result for Y .

I Any approximation or exact algorithmic result for Y also implies the same result for X .

In the statements of our theorems or lemmas, we will use the following convention. κ > 1 will denote the
number of districts. For polygonal maps (resp., planar graph maps) S ((resp., G = (V,E)) will denote the
polygon as a collection of all cells (resp., the graph), and S1, . . . ,Sκ ⊂ S ((resp., V1, . . . , Vκ ⊂ V ) will
denote an arbitrary valid (not necessarily optimal) solution. Since every state of USA has a valid current
districting partition (sometimes subject to litigation), we assume that our problem has already at
least one valid (but not necessarily optimal) solution that can be found in polynomial time (thus, for
example, for our computational hardness results we are required to exhibit a polynomial-time valid
solution).

In the following two sub-sections, we state our two computational complexity results and some relevant
discussions on them, leaving the actual proofs later in Sections 4–6.

3.1 Rectilinear polygonal course granularity input

Theorem 1 (Hardness of seat-vote equation computation). Let ρ > 0, ε ≥ 1 be two arbitrary finite
rational numbers, and c > 1, δ > 0 be any two constants arbitrarily close to 1 and 0, respectively. Suppose
that we are allowed a (reasonably loose) additive |S|c-approximate strict partitioning criteria (i.e., the
partitioning satisfies max1≤j≤κ {Pop(Sj)} ≤ min1≤j≤κ {Pop(Sj)}+ |S|c).
(a) (Hardness when N-Vote-C(Party A) < 1/2). It is NP-hard to compute an ε-approximation of the
seat-vote-equation optimization problem.

7



(b) (Hardness when N-Vote-C(Party A) ≥ 1/2). Let κ = 3α + r for some two integers α ≥ 1 and
r ∈ {−1, 0, 1}. Then, it is NP-hard to distinguish between the following two cases:

. if the seat-vote-equation has an (εlow − δ)-approximation where εlow ≤
{

2, if κ ∈ {2, 3}
κ

α+1 − 1, otherwise

. or, if the seat-vote-equation has an (εhigh + δ)-approximation where εhigh ≥ κ− 1.

Moreover, a valid solution that is a (κ− 1)-approximation always exists irrespective of what definition of of
an approximately strict partitioning criterion is used.

Remark 1. The hardness result in (b) is tight if κ = 2 since a we have a 2-approximation. For κ > 2 there is
a factor gap between the two bounds that may be worthy of further investigation. Note that limκ→∞ εlow =
2.

Chatterjee et al. [6] showed that the efficiency gap computation does not admit any non-trivial ap-
proximation at all using the strict partitioning criterion if the input is given at rectilinear polygonal course
granularity level. The following theorem shows that the same result holds even if the strict partitioning
criteria is relaxed arbitrarily.

Theorem 2 (Hardness of efficiency gap computation). Let δ ≥ 0, ε ≥ 1 be any two numbers. Then,
it is NP-hard to compute an ε-approximation of Effgapκ(S,S1, . . . ,Sκ) even when we are allowed to use
δ-approximate κ-equipartition of S .

3.2 Arbitrary polygonal fine granularity input

For this case, it is clearer to present our proofs if we assume that the planar graph format of our input, i.e.,
our input is planar graph whose nodes are the cells, and whose edges connect pairs of cells if they share a
portion of the boundary of non-zero measure.

Chatterjee et al. [6] left open the complexity of the efficiency gap computation at the fine granularity
level of inputs using either exact or approximate partitioning criteria. Here we show that computing the
efficiency gap is NP-complete for arbitrary polygonal fine granularity input even under approximately strict
partitioning criteria.

Theorem 3 (Hardness of efficiency gap computation). Computing Effgapκ(S,S1, . . . ,Sκ) is NP-complete
even when we are allowed to use ε-approximate κ-equipartition of S for any constant 0 < ε < 1/2.

Remark 2. The NP-hardness reduction in Theorem 3 does not provide any non-trivial inapproximability
ratio. In fact, for the specific hard instances of the gerrymandering problem constructed in the proof of
Theorem 3, it is possible to design a polynomial-time approximation scheme (PTAS) for the efficiency gap
computation using the approach in [2] (the proof of such a PTAS is relatively straightforward and
therefore we do not provide an explicit proof).

3.3 What do results and proofs in Theorem 1 and Theorem 3 imply in the context of gerry-
mandering in US?

Our results are computational hardness result, so one obvious question is about the implications of these
results and associated proofs for gerrymandering in US. To this effect, we offer the following motivations
and insights that might be of independent interest.
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On following the seat-vote equation: Theorem 1 indicates that efficient computation of even a modest
approximation to the seat-vote equation may be difficult. Thus, unless further research works indicate
otherwise, it may not be a good idea to closely follow the seat-vote equation for computationally efficient
elimination of gerrymandering (fortunately, many courts also do not recommend on following the seat-vote
proportion too closely, though not for computational complexity reasons).

On relaxing the exact equipartition criteria: Relaxing the exact equipartition criteria even beyond the
∼10% margin that has traditionally been allowed by courts does not seem to make removal of gerryman-
dering computationally any easier.

On accurate census data at the fine granularity level: Accurate census data at the fine granularity level
may make a difference to an independent commission seeking fair districts (such as in California). As
stated in Remark 2, while it is difficult to even approximately optimize the absolute difference of the
wasted votes at a course granularity level of inputs, the situation at the fine granularity level of inputs may
be not so hopeless.

On cracking and packing, how far one can push? It is well-known that cracking and packing may result
in large partisan bias. For example, based on 2012 election data for election of the (federal) house of
representatives for the states of Virginia, the Democratic party had a normalized vote count of about 52%
but due to cracking/packing held only 4 of the 11 house seats [35, 36]. This observation, coupled with the
knowledge that Virginia is one of the most gerrymandered states in US both on the congressional and state
levels [38], leads to the following natural question: “could the Virginia lawmakers have disadvantaged
the Democratic party more by even more careful execution of cracking and packing approaches”?
As one lawmaker put it quite bluntly, they would have liked to gerrymander more if only they could.

We believe a partial answer to this is provided by the proof structures for Theorems 2 and 3. A
careful inspection of the proofs of Theorems 2 and 3 reveal that they do use cracking and packing9

to create hard instances of the efficiency gap minimization problem that are computationally intractable
to solve optimally certainly at the course granularity input level and even at the fine granularity input
level10. Perhaps the computational complexity issues did save the Democratic party from further electoral
disadvantages.

4 Proof of Theorem 1

(a) We reduce from the NP-complete PARTITION problem [13] which is defined as follows:

given a set of n positive integers A = {a0, . . . , an−1}, decide if there exists a subset A′ ⊂ A
such that

∑
ai∈A′

ai =
∑

aj /∈A′
aj = W

2 where W =
n−1∑
j=0

aj is an even number.

Note that we can assume without loss of generality that n is sufficiently large, n and each of a0, . . . , an−1
is a multiple of any fixed positive integer (in particular, multiple of 2), maxj{aj} < W/2, no two integers
in A are equal and W > n2c.

Proof for κ = 2.
Multiplying a0, . . . , an−1 and W by n2+2c, and denoting them by the same notations we can therefore

assume that the minimum absolute difference between any two distinct numbers in A is at least n2+2c and
9For example, packing is used in the proof of Theorem 3 when a node v3i with 4δ extra supporters for Party A is packed in the

same district with the three nodes vi,p, vi,q and vi,r each having δ extra supporters for Party B (see Fig. 4).
10The proofs of Theorems 2 and 3 however do not make much use of hijacking or kidnapping.
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Figure 3: (a) An illustration of the construction in the proof of Theorem 1 for κ = 2 when the instance of
the PARTITION problem is A = {100, 7100, 5000, 2900, 4900} (and thus W = 20000). (b) An optimal
solution of the redistricting problem when a solution of the PARTITION problem exists. (c) A trivial valid
solution which is not optimal. (d) Generalization of the reduction for arbitrary κ ≥ 2.

W > n2+4c. Our rectilinear polygon is a rectangle S = {pi,j | 0 ≤ i ≤ n, 0 ≤ j ≤ 2} of size 3 × (n + 1)
(see Fig. 3 (a)) with the following numbers for various cells:

Popi,j =


ai, if 0 ≤ i < n and j = 1

W/2, if i = n, j = 0,
or if i = n, j = 2

2, otherwise

PartyAi,j =


(ai/2)− 1, if 0 ≤ i < n and j = 1

(W/4) + 50n, if i = n, j = 0
(W/4)− 100n, if i = n, j = 2

1, otherwise

Note that:

. Pop(S) = 2× (W/2) +
∑n−1

j=0 aj + 2× (2n+ 1)− 2 = 2W + 4n.

. PartyA(S) = 2× (W/4) + 50n− 100n+
∑n−1

j=0 ((aj/2)− 1) + (2n+ 1) = W − 47n− 1.

. N-Vote-C(Party A) = (W − 47n− 1)/(2W + 4n) < 1/2.

First, as required, we show that S has a valid solution satisfying all the constraints. Consider the following
solution (refer to Fig. 3 (b)):

S1 = {pi,1 | ai ∈ A} , S2 = C \ S1
We can now verify the following:

Pop(S1) =
∑
ai∈A

ai = W, Pop(S2) = Pop(S)− Pop(S1) = W + 4n,
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and thus the partitioning constraint is satisfied since 4n < (3n+ 3)c. Since lim
Pop(S)→∞

(
PartyA(S)
PartyB(S)

)
= 1, the

proof is complete once the following claims are shown.

(completeness) If the PARTITION problem has a solution then N-Seat-C(Party A) = 1.

(soundness) If the PARTITION problem does not have a solution then N-Seat-C(Party A) = 0.

Proof of completeness (refer to Fig. 3 (c))

Suppose that there is a valid solution of A′ ⊂ A of PARTITION and consider the two polygons

S1 = {pi,0 | 0 ≤ i ≤ n} ∪
{
pi,1 | ai ∈ A′

}
∪ {pn,1} , S2 = C \ S1

One can now verify the following:

. Pop(S1) = 2(n+ 1) +
(∑

ai∈A′ ai
)

+ W
2 = W + 2n+ 2, Pop(S2) = Pop(S)−Pop(S1) = W + 2n−2,

and thus the partitioning constraint is satisfied since Pop(S1)− Pop(S2) = 4 < (3n+ 3)c.

. PartyA(S1) = (n + 1) +
∑

ai∈A′
(
ai
2 − 1

)
+ W

4 + 50n = W
2 + (51n + 1) − |A′|, PartyB(S1) =

Pop(S1)− PartyA(S1) = W
2 − 49n+ 1 + |A′|, and thus PartyA(S1) > PartyB(S1) since |A′| < n− 1.

. PartyA(S2) = PartyA(S)−PartyA(S1) = W
2 −98n−2+ |A′|, PartyB(S2) = Pop(S2)−PartyA(S2) =

W
2 + 100n− |A′|, and thus PartyA(S2) < PartyB(S2) since |A′| < n− 1.

Proof of soundness
Let S1 and S2 = S \ S1 be the two partitions in any valid solution of the redistricting problem. For

convenience, let us define the following sets:

SS1 = { pi,1 | 0 ≤ i < n} ∩ S1, SS2 = { pi,1 | 0 ≤ i < n} ∩ S2
Sheavy = {pn,0, pn,2} , Slight = S \ (Sheavy ∪ SS1 ∪ SS2)

The following chain of arguments prove the desired claim.

(i) Both the cells in Sheavy cannot be together in the same partition, say S1, with any cell, say pi,1, from
SS1 ∪ SS2 since in that case

Pop(S1) ≥W + ai & Pop(S2) = Pop(S)− Pop(S1) ≤W + 4n− ai
⇒ Pop(S1)− Pop(S2) ≥ 2ai − 4n > 2n2+2c − 4n > n2+2c > |S|c = (3n+ 3)c

(ii) At least one of SS1 and SS2 must be empty. To see this, assume that both are non-empty. By (i), we
may suppose that pn,0 ∈ S1 and pn,2 ∈ S1. Since the PARTITION problem does not have a solution,
L =

∑
pi,1∈SS1

ai 6= M =
∑

pi,1∈SS2

ai. Assume, without loss of generality, that L > M . Then, L −M ≥

min
0≤i<n

{ai} ≥ n2+2c, and therefore |Pop(S1)− Pop(S2) | ≥ | (L−M)− Pop(Slight) | > n1+2c > |S|c,
thus violating the partitioning constraints.

(iii) Since both SS1 and SS2 cannot be empty, by (ii) assume that SS1 = ∅ but SS2 6= ∅. Then, by (i), both
pn,0 and pn,2 are in S1. We can now verify that N-Seat-C(Party A) = 0 as follows:

• PartyA(S1) ≤ W
4 +50n+W

4 −100n+2n+1 = W
2 −48n+1, PartyB(S2) ≥ W

4 −50n+W
4 +100n =

W
2 + 50n, and thus PartyA(S1) < PartyB(S1).
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• PartyA(S2) ≤
∑n−1

j=0

(aj
2 − 1

)
+ n = W

4 , PartyB(S2) ≥
∑n−1

j=0

(aj
2 + 1

)
W
4 + n, and thus

PartyA(S1) < PartyB(S1).

Proof for κ ≥ 2.

Let κ = 3α + r for some two integers α ≥ 1 and r ∈ {−1, 0, 1}. For this case, we will use α copies,
say S(1),S(2), . . . ,S(α), of the 3 × (n + 1) rectangle S used for the previous case connected via α − 1
connector cells, say C(1), C(2), . . . , C(α−1), plus additional one or two cells, say C(α) and C(α+1), depending
on whether the value of r is 0 or 1, respectively (refer to Fig. 3 (d)). We now multiply a0, . . . , an−1 and
W by n3+2cκ2, and again denoting them by the same notations we can therefore assume that the minimum
absolute difference between any two distinct numbers inA is at least n3+2cκ2 andW > n3+4cκ2. We assign
the required numbers to the connector and additional cells as follows: Pop(C(j)) = W and PartyA(C(j)) =
W
2 −50n for all j. Letting β = α+r denote the actual number of connector cells, we now have the following

updated calculations:

Pop(S) = α(2W + 4n) + βW, PartyA(S) = α(W − 47n− 1) + β

(
W

2
− 50n

)
|S| = 3α (n+ 1) + (α+ r) = 3αn+ 4α+ r ≤ (κ+ 1)n+

4κ

3
+

7

3
< 2κn

N-Vote-C(Party A) =
PartyA(S)

Pop(S)
< 1/2, as required

Claim 1. Any of the connector or additional cells cannot appear in the same partition with a cell from
S(j)heavy =

{
pjn+(j−1)+r,0, pjn+(j−1)+r,2

}
for any j.

Proof. Suppose that the connector cell C(i) is together with at least one of two cells from S(j)heavy in a
partition, say Sp. Then, Pop(Sp) = W

2 +W = 3W
2 . Note that

Pop(S)

κ
=
α(2W + 4n) + βW

κ
=

(2α+ β)W + 4αn

κ
=

(3α+ r)W + 4αn

κ

=
κW + 4αn

κ
W +

4n

3
× κ− r

κ
< W +

5n

3

and thus there exists a partition Sq, q 6= p, such that Pop(Sq) < W + 5n
3 . Consequently, it follows that

Pop(Sp)− Pop(Sq) >
3W

2
−W +

5n

3
>

4W

3
>

4

3
n3+4cκ2 > |S|c

which violates the partitioning constraint. q

It is possible to generalize the proof for κ = 2 to κ > 2. Intuitively, if there is a solution to the
PARTITION problem then one of the two seats in each copy S(j) is won by Party A but otherwise Party A
wins no seat at all. The correspondingly modified completeness and soundness claims are as follows:

(completeness for κ > 2) If the PARTITION problem has a solution then N-Seat-C(Party A) = α.

(soundness for κ > 2) If the PARTITION problem does not have a solution then N-Seat-C(Party A) = 0.

(b) We can use a proof similar to that in (a) for κ ≥ 2, but we need to change some of the numbers. More
precisely, the cell pn+r,0 ∈ S(1)heavy in the very first copy S(1) has the following new number (instead of the
previous value of (W/4)−100n) corresponding to the total number of voters for Party A: PartyA(pn+r,0) =
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(W/4) + q α2n2 where q ≥ 0 is the smallest integer such that qα2n2 + 100n − 49αn − α − 50nβ ≥ 0.
Note that PartyB(pn+r,0) = (W/2)− PartyA(pn+r,0) > 0 since W > n3+4cκ2. A relevant calculation is:

PartyA(S)−Pop(S)

2
=

[
α(W − 47n− 1) + 100n+ qα2n2 + β

(
W

2
− 50n

)]
−
[
α(W + 2n) + β

W

2

]
= qα2n2 + 100n− 49αn− α− 50nβ ≥ 0

and therefore N-Vote-C(Party A) = PartyA(S)
Pop(S) ≥ 1/2, as required. The only difference in the proofs come

from the fact that now in the first copy S(1) Party A always wine one seat by default but wins two seats
if PARTITION has a solution. The correspondingly modified completeness and soundness claims are as
follows:

(modified completeness claim for N-Vote-C(Party A) > 1/2) If the PARTITION problem has a solu-
tion then N-Seat-C(Party A) = α+ 1.

(modified soundness claim for N-Vote-C(Party A) > 1/2) If the PARTITION problem does not have
a solution then N-Seat-C(Party A) = 1.

To see that these completeness and soundness claims indeed prove the desired bounds, note the following:

. a = lim
Pop(S)→∞

(
PartyA(S)
PartyB(S)

)
= 1 and b = lim

Pop(S)→∞

(
PartyA(S)
Pop(S)

)
= 1/2.

. If κ = 2 and N-Seat-C(Party A) = α + 1 = 2, then N-Seat-C(Party B) = 0, and thus this gives a
2-approximation since 1/b = 2.

. If κ = 3 and N-Seat-C(Party A) = α + 1 = 2, then N-Seat-C(Party B) = 1, and thus this gives a

2-approximation since N-Seat-C(Party A)

N-Seat-C(Party B)
= 2.

. For any κ ≥ 2, if N-Seat-C(Party A) = 1 then N-Seat-C(Party B) = κ − 1 and thus this gives a
(κ− 1)-approximation.

For the existence of a κ-approximation when N-Vote-C(Party A) ≥ 1/2, note that for any valid solution

S1, . . . ,Sκ for S, N-Vote-C(Party A) =
PartyA(S)

Pop(S)
=

∑κ
i=1 PartyA(Si)∑κ
i=1 Pop(Si)

≥ 1/2, and thus there must exists

a district Sj such that PartyA(Sj) ≥ Pop(Sj)/2.

5 Proof sketch of Theorem 2

The proof is obtained by carefully modifying the proof of Theorem 4 in [6] in the following manner:

. We remove all cells with zero population. As a result, the rectangle in [6] now becomes a rectilinear
polygon (without holes).

. We multiply all the non-zero values of Pop(·)’s and PartyA(·)’s by 1 + 2δ. It is possible to verify that as
a result the following claim holds:

for any two districts Si and Sj , Pop(Si) 6= Pop(Sj) implies either Pop(Si) > (1 + ε)Pop(Sj)
or Pop(Sj) > (1 + ε)Pop(Si).

This ensures that Pop(S1) = · · · = Pop(Sκ) for any valid partition of the rectilinear polygon.
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. The new soundness and completeness claims now become as follows:

(soundness) If the PARTITION problem does not have a solution then Effgapκ(S,S1, . . . ,Sκ) =
δ∆.

(completeness) If the PARTITION problem has a solution then Effgapκ(S,S1, . . . ,Sκ) = 0.

where ∆ is exactly as defined in [6]

6 Proof of Theorem 3

The problem is trivially in NP, so will concentrate on the NP-hardness reduction. Our reduction is from the
maximum independent set problem for planar cubic graphs (MISPC) which is defined as follows:

“given a cubic (i.e., 3-regular) planar graph G = (V,E) and an integer ν, does there exist an
independent set for G with ν nodes ?”

MISPC is known to be NP-complete [14] but there exists a PTAS for it [2]. Note the value of
Effgapκ(S,S1, . . . ,Sκ) remains the same if we divide (or multiply) the values of all PartyA(Sj)’s and
PartyB(Sj)’s by t for any integer t > 0. Thus, to simplify notation, we assume that we have re-scaled the
numbers such that min1≤j≤κ {Pop(Sj)} = 1 and therefore our approximately strict partitioning criteria is
satisfied by ensuring that 1 ≤ Pop(Sj) ≤ 1 + ε for all j = 1, . . . , κ with Pop(Sj) = 1 for at least one j.
Thus, each PartyA(Sj), PartyB(Sj) and Pop(Sj) may be positive rational constant numbers such that, if
needed, we can ensure that all these numbers are integers at the end of the reduction by multiplying them by
a suitable positive integer of polynomial size.
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Figure 4: The sub-graph gadgets used in the proof of Theorem 3.

Let G = (V,E) and ν be the given instance of MISPC with V = {v1, . . . , vn} and |E| = 3n/2. Note
that, since G is cubic, we can always greedily find an independent set of at least n/4 nodes and moreover
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there does not exist any independent set of more than n/2 nodes; thus we can assume n/4 < ν ≤ n/2. Let
δ = n−3/100 > 0 be a rational number of polynomial size that is sufficiently small compared to ε. We
describe an instance of our map G1 = (V1, E1) (a planar graph with all required numbers) constructed from
G as follows.

Node gadgets: Every node vi ∈ V with its three adjacent nodes as vp, vq, vr is replaced a sub-graph of 8
new nodes v0i , v

1
i , v

2
i , v

3
i , v

4
i , vi,p, vi,q, vi,r ∈ V1 and 7 new edges along with their Pop(·) and PartyA(·)

values as shown in Fig. 4 (a). The requirement “1 ≤ Pop(Sj) ≤ 1 + ε for all j” and the fact that
0 < ε < 1/2 ensure that these nodes can be covered only in the two possible ways as shown in Fig. 4
(b):

. For the top case in Fig. 4 (b), all the 8 nodes are covered by 3 districts. Intuitively, this corresponds
to the case when vi is not selected in an independent set for G. We informally refer to this as the
the “vi is not selected” case.

. For the bottom case in Fig. 4 (b), 5 of the 8 nodes are covered by 3 districts, leaving the remaining 3
nodes (nodes vi,p, vi,q, vi,r) to be covered with some other nodes inG1. Intuitively, this corresponds
to the case when vi is selected in an independent set for G. We informally refer to this as the the
“vi is selected” case.

Note that this step in all introduces 8n new nodes and 7n new edges in G1.

Edge gadgets: For every edge ei,j = {vi, vj} ∈ E (with i < j), we introduce one new node (the “edge-
node”) ui,j and two new edges {vi,j , ui,j} and {vj,i, ui,j} as shown in Fig. 4 (c). Note that this step
in all introduces 3n/2 new nodes and 3n new edges in G1.

Thus, we have |V1| = 19n/2 and |E1| = 10n, and surely G1 is planar since G was a planar graph. Finally,
we set κ = 9n/2. Note that the instanceG1 is at the fine granularity level since the total population of every
node is between ε/3 and 1 + (2ε/3) for a constant ε.

To continue with the proof, we need to make a sequence of observations about the constructed graph G1

as follows:

(i) An edge-node ui,j can be in a partition just by itself, or with only one of either of the nodes vi,j and vj,i.

(ii) If vi is not selected then ui,j cannot be in the same partition as vi,j . On the other hand, if ui,j is in the
same partition as vi,j then vi must be selected.

(iii) By (i) and (ii), An edge-node ui,j is in a partition just by itself if and only if neither of its end-points,
namely nodes vi and vj , are selected in the corresponding independent set for G.

(iv) Consider any maximal independent set ∅ ⊂ V ′ ⊂ V forG (e.g., the one obtained by the obvious greedy
solution) having 0 < µ < n/2 nodes. Using (i), (ii) and (iii), the following calculations hold:

. For every node vi selected in V ′ with its adjacent nodes being vp, vq, vr, we cover the nodes v0i ,
v1i , v2i , v3i , v4i , vi,p, vi,q, vi,r, and the three edge-nodes corresponding to the three edges {vi, vp},
{vi, vq}, {vi, vr} ∈ E using 6 districts in G1.

. For every node vi not selected in V ′, we cover the nodes v0i , v1i , v2i , v3i , v4i , vi,p, vi,q, and vi,r
using 3 districts in G1.

. Let E′ ⊆ E be the set of edges such that neither end-points of these edges are selected in V ′.
Note that |E′| = (3n/2) − 3µ, and for every edge vi,j ∈ E′ we use one new district for the
edge-node ui,j .
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Lemma 4 (existence of valid solution). There is a trivial (not necessarily optimal) valid solution for G1.

Proof. By (iv), the total number of districts used in a maximal independent set is 6µ+3(n−µ)+((3n/2)−
3µ) = 9n/2 = κ, as required. q

Next, for calculations of the wasted votes and the corresponding efficiency gap, we remind the reader of
the following calculations for a district Sj (for any sufficiently small positive rational number x):

Wasted-Votes(Sj ,Party A) =

{
x, if PartyA(Sj) =

Pop(Sj)
2 + x

Pop(Sj)
2 − x, if PartyA(Sj) =

Pop(Sj)
2 − x

Wasted-Votes(Sj ,Party B) =

{
Pop(Sj)

2 − x, if PartyA(Sj) =
Pop(Sj

2 + x

x, if PartyA(Sj) =
Pop(Sj)

2 − x

Wasted-Votes(Sj ,Party A)−Wasted-Votes(Sj ,Party B)

=

{
2x− Pop(Sj)

2 , if PartyA(Sj) =
Pop(Sj)

2 + x
Pop(Sj)

2 − 2x, if PartyA(Sj) =
Pop(Sj)

2 − x

Consider any maximal independent set ∅ ⊂ V ′ ⊂ V for G having n/4 < µ ≤ n/2 nodes. Using (iv), the
following calculations hold:

. Every node vi selected in V ′ contributes the following amount to the total value of
κ∑
j=1

(Wasted-Votes(Sj ,Party A)−Wasted-Votes(Sj ,Party B)):

ξ =

(
8δ − 1

2

)
+

(
16δ − 1

2

)
+

(
16δ − 1 + ε

2

)
+ 3×

(
1

2
− 2δ

)
= 34δ − ε

2

. Every node vi not selected in V ′ contributes the following amount to the total value of
κ∑
j=1

(Wasted-Votes(Sj ,Party A)−Wasted-Votes(Sj ,Party B)):

ζ =

(
16δ − 1 + ε

2

)
+

(
16δ − 1 + ε

2

)
+

(
2δ − 1

2

)
= 34δ − ε− 3

2

. Every edge in E such that neither end-points of the edge are selected in V ′ contributes the following

amount to the total value of
κ∑
j=1

(Wasted-Votes(Sj ,Party A)−Wasted-Votes(Sj ,Party B)):

η = δ − 1 + 2ε
3

2
= δ − ε

3
− 1

2

. Consequently, adding all the contributions, we get the following value for
κ∑
j=1

(Wasted-Votes(Sj ,Party A)−

Wasted-Votes(Sj ,Party B)) corresponding to an independent set of µ nodes:

Υ(µ) = µξ + (n− µ)ζ +

(
3n

2
− 3µ

)
η
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=
(

34µδ − µε

2

)
+ (n− µ)

(
34δ − ε− 3

2

)
+

(
3n

2
− 3µ

)(
δ − ε

3
− 1

2

)
= 3µ+

(
3ε

2
− 3δ

)
µ+

(
71δ

2
− 3ε

2
− 9

4

)
n

Now we note the following properties of the quantity Υ(µ):

. Since δ = n−3/100 and n/4 < µ ≤ n/2, we have Υ(µ) < 0 and therefore |Υ(µ)| = −Υ(µ).

. Consequently, |Υ(µ)| − |Υ(µ− 1)| = Υ(µ− 1)−Υ(µ) = −3− 3ε
2 + 3δ

The last equality then leads to the following two statements that complete the proof for NP-hardness:

I If G has an independent set of ν nodes then Effgapκ(S,S1, . . . ,Sκ) = |Υ(ν)|.

I If every independent set of G has at most ν − 1 nodes then Effgapκ(S,S1, . . . ,Sκ) ≥ |Υ(ν − 1)| >
|Υ(ν)|+ 2.

7 Concluding remarks

The computational complexity results in this article (and also in [6]) may be considered as a beginning to
gerrymandering from a TCS point of view. While some computational complexity aspects of these prob-
lems are settled, a plethora of interesting TCS-related questions remaining. Some of these questions are as
follows.

. The computational complexity of optimizing the partisan bias measure remains wide open. Of special
interest is the uniform population shift model for which β1 = · · · = βκ = α/κ.

. Does introducing the additional constraint of geometric compactness render the computation of the
gerrymandering objectives more tractable? Theorem 11 of [6] provides a partial (affirmative) answer
to this question for restricted versions of efficiency gap calculation problem.

. Is there a constant factor approximation algorithm for computing the efficient gap measure for inputs
at a fine granularity level? We conjecture this to be true but have been unable to prove it yet.
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