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Abstract: For a graph G = (V,E) with vertex set V and edge set E, a subset F of E is called
an edge dominating set (resp. a total edge dominating set) if every edge in E\F (resp. in E) is
adjacent to at least one edge in F , the minimum cardinality of an edge dominating set (resp.
a total edge dominating set) of G is the edge domination number (resp. total edge domination
number) of G, denoted by γ

′
(G) (resp. γ

′
t(G)). In the present paper, we prove that the total

edge domination problem is NP-complete for bipartite graphs with maximum degree 3. We also
design a linear-time algorithm for solving this problem for trees. Finally, for a graph G, we give
the inequality γ

′
(G) 6 γ

′
t(G) 6 2γ

′
(G) and characterize the trees T which obtain the upper or

lower bounds in the inequality.
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1 Introduction

Dominating problems have been subject of many studies in graph theory, and have many
applications in operations research, e.g., in resource allocation and network routing, as
well as in coding theory. There are many variants of domination, we mainly fucus on
the total edge domination which is a variant of edge domination. Edge domination is
introduced by Mitchell and Hedetniemi [7] and is related to telephone switching network
[6]. Edge domination is also related to the approximation of the vertex cover problem,
since an independent edge dominating set is a matching [3].

In this paper we in general follow [1] for natation and graph theory terminology. All
graphs considered here are finite, undirected, connected, have no loops or multiple edges.
Let G = (V,E) be a graph with vertex set V and edge set E. A subset F of E is
called an edge dominating set (abbreviated for ED-set) of G if every edge not in F is
adjacent to at least one edge in F . The edge domination number, denoted by γ

′
(G), is

the minimum cardinality of an ED-set of G. An ED-set of G with cardinality γ
′
(G) is

called a γ
′
(G)-set. The edge domination problem has been studied by several authors

for example [2, 4, 11, 13]. Yannakakis and Gavril [13] showed that, the edge domination
problem is NP-complete even when graphs are planar or bipartite of maximum degree 3,
but solvable for trees and claw-free chordal graphs.

The concept of the total edge domination, a variant of edge domination, was intro-
duced by Kulli and Patwari [5]. A subset Ft of E is called a total edge dominating set
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(abbreviated for TED-set) of G if every edge is adjacent to at least one edge in Ft. The
total edge domination number, denoted by γ

′
t(G), is the minimum cardinality of a TED-set

of G. A TED-set of G with cardinality γ
′
t(G) is called a γ

′
t(G)-set. Zhao et al. proved [14]

that the total edge domination problem is NP-complete for planar graphs with maximum
degree three, and for undirected path graphs and also constructed a linear algorithm for
total edge domination problem in trees by a label method. For more study on total edge
domination, see for example references [8, 9, 10].

As far as we know, there is no discussion on the complexity of total edge domination
problem for bipartite graphs. For this reason, we prove that the total edge domination
problem is NP-complete for bipartite graphs with maximum degree 3. We also design
another linear time algorithm for computing γ

′
t(T ) of a tree T by the dynamic program-

ming method, different from the algorithm in [14]. Kulli et al. [5] gave the lower bound
of the total edge domination number for a graph G: γ

′
(G) 6 γ

′
t(G), it is obvious that

γ
′
t(G) 6 2γ

′
(G). So, for any graph G, γ

′
(G) 6 γ

′
t(G) 6 2γ

′
(G). In this paper, we show

that the bounds are sharp and characterize trees achieving the lower or upper bound.
Notation. Let G = (V,E) be a graph. For v ∈ V , denote by NG(v) the open

neighborhood of v in G, i.e., NG(v) = {u ∈ V | uv ∈ E}, by degG(v) the size of NG(v)
called the degree of v, and by EG(v) the set of all the edges of G incident with v, i.e.,
EG(v) = {e ∈ E| v is incident with e}. Similarly, for e ∈ E, denote by NG(e) the open
neighbourhood of e in G, i.e., NG(e) = {e′ ∈ E| e′ is adjacent to e} and by NG[e] =
NG(e)∪{e} the closed neighbourhood of e. For two vertices u, v ∈ V , the distance dG(u, v)
is defined as the length of a shortest path between u and v in G. We define the shorter
distance between vertex w and one endpoint of edge e as the distance between w and
e, denoted by dG(w, e). The maximum distance among all pairs of vertices is called the
diameter of G, denoted by diam(G). If there is no ambiguity in the sequel, the subscript
in the notation is omitted.

A leaf of a graph G is a vertex of degree one and a support vertex (resp. strong support
vertex) of G is a vertex adjacent to a leaf (resp. adjacent to at least two leaves). A leaf
edge (or pendant edge) of G is an edge with one leaf as an endpoint. Consider one vertex
of a tree as special, called the root of this tree. A tree with the fixed root is a rooted
tree. For a vertex v of a rooted tree T with root r, a neighbour of v away from r is called
a child. For a positive integer k, a star S1,k is a tree that contains exactly one non-leaf
vertex called a center vertex and k leaves. A double star is a tree that contains exactly
two non-leaf vertices called center vertices.

2 The result on NP-completeness

In this section, we are going to prove that the total edge domination problem is NP-
complete for bipartite graphs with maximum degree 3. To prove that a problem P is
NP-complete, it is enough to prove that P ∈ NP and to show that a known NP-complete
problem is reducible to the problem P in polynomial time. The known NP-complete
problem used in our reduction is the SAT-3 restricted problem as follows:

SAT-3 RESTRICTED PROBLEM (SAT-3 RES) [12].
Instance: A set of clauses C1, C2, . . . , Cp containing only variables, with at most three
literals per clause, such that every variable occurs two times and its negation once.
Question: Is there a truth assignment of zeros and ones to the variables satisfying all
the clauses?
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The decision total edge domination problem is stated as follows:

Instance: A graph G = (V,E) and a positive integer k 6 |E|.
Question: Does G have a total edge dominating set of size at most k?

Now we can state our main result in this section.

Theorem 2.1. The total edge domination problem for bipartite graphs with maximum
degree 3 is NP-complete.

Proof. The reduction is from the SAT-3 restricted problem. Consider a set of clauses
{C1, . . . , Cp} with variables x1, x2, . . . , xn as input for the SAT-3 restricted problem. Now
we construct a graph G = (V,E). For any 1 6 l 6 p, there are two adjacent vertices,
say dl and d′l, corresponding to the clause Cl, denoted by Gl. For any 1 6 i 6 n, there
is a subgraph of G, which is a disjoint union of three paths aiai,0ai,1ai,2, bibi,0bi,1bi,2,
cici,0ci,1ci,2, and two edges aici and cibi, corresponding to the variable xi, denoted by Gxi

(see Fig. 1). For any clause Cl, if xi ∈ Cl, then we connect dl to one of vertices ai,0 and
bi,0 to ensure that d(ai,0) = 3 and d(bi,0) = 3 (from conditions in SAT-3 RES); if xi ∈ Cl,
then we connect d′l to ci,0 (for an example, see Fig. 1). It is obvious that G is bipartite,
coloring vertices with white and black, shown as Fig. 1. We will show that there is a
truth assignment of zeros and ones to the variables satisfying all clauses {C1, C2, . . . , Cp}
if and only if G has a total edge dominating set of size 6n.

1
l

1
l

1
l

Figure 1: The induced subgraph of G by Gl1 , Gxi , Gxj and Gxk ; for example, Cl1 =
(xixjxk).

Necessity: Given a satisfying assignment of the clauses, define a set F of edges as
follows (assume that xi is in two clauses Cl1 and Cl3 , and xi is in clause Cl2):

F ={ai,0dj1 , ai,0ai,1, bi,0dj3 , bi,0bi,1, cici,0, ci,0ci,1 | xi = 1}
∪ {aiai,0, ai,0ai,1, bibi,0, bi,0bi,1, ci,0d′j2 , ci,0ci,1 | xi = 0},

(see Fig. 2). It is obvious that F is a TED-set of size 6n.

(a) In the case xi = 0;
(b) In the case xi = 1.

Figure 2: The construction of a TED-set F on Gxi , represented by the thick edges.

Conversely, we assume that G has a TED-set F of size 6n. For any 1 6 i 6 n, in view
of leaf edges ai,1ai,2, bi,1bi,2, ci,1ci,2, F must contain three edges ai,0ai,1, bi,0bi,1, ci,0ci,1 and
its respective adjacent edges. Thus the subgraph Gxi contains exactly 6 edges in F . For
the convenience of proof, we assume that xi is contained in clauses Cl1 and Cl2 , and xi is
contained in clause Cl3 .
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Case 1. cici,0 6∈ F .
In this case, F must contain aiai,0, bibi,0 and we may assume that the edge adjacent

to ci,0ci,1 in F is ci,0d
′
l3

, otherwise we can add ci,0d
′
l3

into F by deleting ci,1ci,2 from F .
Case 2. cici,0 ∈ F .

Similar to Case 1, we can assume that ai,0dl1 , bi,0dl2 ∈ F .
Therefore, regardless of whether F contains cici,0, we can always give a special total

edge dominating set F of size 6n. We define a truth assignment τ by, if cici,0 ∈ F , setting
xi = 1 and xi = 0, otherwise. Since F is a TED-set constructed as above, at least one
edge in F is adjacent to dld

′
l for every l (note that dld

′
l /∈ F ). Consequently τ satisfies all

clauses.
The degree of vertices except for dl and d′l in G constructed above is at most 3, but

if Cl = xi1xi2xi3 (resp., xi1 xi2 xi3), then dG(dl) = 4 (resp., dG(d′l) = 4). Then we use
a tricky technique: (1) replace H shown as Fig. 3(a) for dld

′
l and, (2) replace the three

edges connecting the vertices a, b, c corresponding to variables and dl (resp. d′l) with the
three edges connecting a, b, c and x, y, z in H, respectively, say ax, by, cz.

(a) H contains exactly 9 edges in F when none of the

three edges {ax, by, cz} belongs to F ;

(b) H contains exactly 8 edges in F when ax is in F .

Figure 3: The graph H and the construction of a TED-set F on H, represented by the
thick edges.

It is easy to show by a straightforward case analysis that: for a TED-set F of G,
(1). if none of the three edges {ax, by, cz} belongs to F , then F contains at least nine
edges from H, see Fig. 3(a).
(2). if one of three edges {ax, by, cz} is in F , say ax, then F contains at least eight edges
from H, see Fig. 3(b).

Especially, let s be the number of 3-literal clauses which satisfies that the literals
contained are all positive or all negative. Then we can similarly show that there is a truth
assignment of zeros and ones to the variables satisfying all clauses {C1, C2, . . . , Cp} if and
only if G has a total edge dominating set of size 6n+ 8s.

From the proof of Theorem 2.1, the graph constructed has a girth of at least 10.

Corollary 2.1. The total edge domination problem for bipartite graphs of girth at least
10 with maximum degree 3 is NP-complete.

Proof. The notations are as in the proof of Theorem 2.1. By the construction of G, there
are no edges among Gl’s (or H) and among Gxi ’s. So a cycle C is either in H ( note that
there is no cycles in Gl or Gxi)or formed by going through Gl1 , Gxi1

, Gl2 , Gxi2
, . . ., Glk ,

Gxk , Gl1 (k > 2); in the second case the intersection of C and Gxi contains at least three
edges and so the length of C is at least 5k > 10. Note that the girth of H is more than
12.

3 A linear-time algorithm for trees

In this section, we work on a linear-time algorithm for finding the total edge domination
number of a tree by using the dynamic programming method.
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First, we define some sets and some parameters. Let T be a tree with an edge e. We
define:

F1(T, e) := {F | F is a TED-set of T with e ∈ F};
F0(T, e) := {F | F is a TED-set of T with e /∈ F};
F1(T, e) := {F | F is an ED-set of T with a unique isolated edge e in F};
F0(T, e) := {F | F is a TED-set of T − e, but e is not dominated by F}.

It is easily obtained

Lemma 3.1. Let e be a leaf edge of tree T . Then
F1(T, e) 6= ∅ if and only if T 6= K2;
F0(T, e) 6= ∅ if and only if T has at least 3 edges;
F1(T, e) 6= ∅ (resp. F0(T, e) 6= ∅) if and only if T \N [e] has no K2 as components.

We denote

γ′1(T, e) :=min{ |F |
∣∣ F ∈ F1(T, e)};

γ′0(T, e) :=min{ |F |
∣∣ F ∈ F0(T, e)};

γ′1(T, e) :=min{ |F |
∣∣ F ∈ F1(T, e)};

γ′0(T, e) :=min{ |F |
∣∣ F ∈ F0(T, e)}.

By convention, if a set is empty, then we set the value as infinity. For example,
if F0(T, e) = ∅, then we set γ′

0
(T, e) = ∞. We can define F ∈ F1(T, e) (resp. F0(T, e),

F1(T, e), F0(T, e)) of minimum cardinality as a γ′1(T, e) (resp. γ′0(T, e), γ
′
1
(T, e), γ′

0
(T, e))-

set of T . We give some inequality relationships among four values defined as above.

Lemma 3.2. Let T be a tree with an edge e. If F1(T, e),F0(T, e),F1(T, e) and F0(T, e)
are non-empty sets, then
(1) γ′1(T, e) 6 γ′0(T, e) + 1;
(2) γ′1(T, e) 6 γ′

1
(T, e) + 1;

(3) γ′1(T, e) 6 γ′
0
(T, e) + 2;

(4) γ′
1
(T, e) 6 γ′

0
(T, e) + 1.

Proof. Let e′ be any edge in N(e).
(1) Let F ∈ F0(T, e). Then there exists an edge e′′ ∈ F adjacent to e and further

F + e is a TED set of T containing e. Therefore γ′1(T, e) 6 γ′0(T, e) + 1.
(2) Let F0 ∈ F1(T, e). Then e ∈ F0 and N(e) ∩ F0 = ∅ by the definition of F1(T, e).

F0 + e′ is a TED-set of containing e. Therefore γ′t,1(T, e) 6 γ′
1
(T, e) + 1.

(3) Let F1 ∈ F0(T, e). Then N [e] ∩ F1 = ∅ by the definition of F0(T, e). F1 + e+ e′ is
a TED-set of T containing e. Thus γ′1(T, e) 6 γ′

t,0
(T, e) + 2.

(4) Let F2 ∈ F0(T, e). Then F2 + e is an ED-set of T with a unique isolated edge e by
the definition of F1(T, e). Thus γ′

1
(T, e) 6 γ′

t,0
(T, e) + 1.

Before giving the dynamic programming algorithm, we designed an edge data structure
as follows.

Root the tree T at any leaf, say r. The height, denoted by h, of T is the maximum
distance between r and all other vertices of T . The level i (0 6 i 6 h) is the set of vertices
of T with a distance i from r.

For such a rooted tree T of order n+1, let us label the edges of T as 1, 2, . . . , n. We go
through every level from h to 1. For each i, 1 6 i 6 h, we traverse the edges connecting
the vertices on i and i− 1 in any order, from left to right. We list the fathers of all edges
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of T (the edge numbered n has no father by writing father [n] = 0 ), so we can use a data
structure called an edge parent array to represent T . Let e0 be a non-leaf edge in rooted
tree T , u the endpoint of e0 away from the root. Denote by Nc(e

0) the set of neighbors of
e0 with endpoints u, called children neighbors of e0, say {e1, e2, . . . , eq} for some integer
q. For 0 6 j 6 q, let T j be the component containing ej of T \ ({e0, e1, . . . , eq} \ {ej}).

Theorem 3.1. Let T be a rooted tree with a non-leaf edge e0 and Nc(e
0) = {e1, e2, . . . , eq}

for some integer q > 1. For 0 6 j 6 q, T j are defined as above, and denote

θj := min{γ′1(T j, ej), γ′0(T j, ej), γ′1(T
j, ej), γ′0(T

j, ej)};
A1 :={j ∈ {1, 2, . . . , q}|θj = γ′1(T

j, ej)};
A2 :={j ∈ {1, 2, . . . , q}|θj = γ′0(T

j, ej)};
A3 :={j ∈ {1, 2, . . . , q}|θj = γ′1(T

j, ej)};
A4 :={j ∈ {1, 2, . . . , q}|θj = γ′0(T

j, ej)}.

Then

(1). γ′1(T, e
0) =


min{γ′1(T 0, e0), γ′

1
(T 0, e0)}+

q∑
j=1

θj , if A1∪A3 6=∅;

min{γ′1(T 0, e0), γ′
1
(T 0, e0) + 1}+

q∑
j=1

θj , if A1∪A3=∅.

(2). γ′0(T, e
0) =



min{γ′0(T 0, e0), γ′
0
(T 0, e0)}+

q∑
j=1

θj , if A1 6=∅ or |A3|>2;

min{γ′0(T 0, e0), γ′
0
(T 0, e0)}+

q∑
j=1

θj + 1, if A1=∅ and |A3|=1 or
A1=A3=∅, A2 6=∅, A4 6=∅;

min{γ′0(T 0, e0), γ′
0
(T 0, e0) + 1}+

q∑
j=1

θj , if A1=A3=A4=∅;

min{γ′0(T 0, e0), γ′
0
(T 0, e0)}+

q∑
j=1

θj + 1,
if A1=A2=A3=∅, and there is j∈A4

such that γ′1(T
j ,ej)−γ′

0
(T j ,ej)=1;

min{γ′0(T 0, e0), γ′
0
(T 0, e0)}+

q∑
j=1

θj + 2,
if A1=A2=A3=∅ and any j∈A4,

γ′1(T
j ,ej)−γ′

0
(T j ,ej)=2.

(3). γ′
1
(T, e0) = γ′

1
(T 0, e0) +

q∑
j=1

min{γ′0(T j , ej), γ′0(T
j , ej)};

(4). γ′
0
(T, e0) = γ′

0
(T 0, e0) +

q∑
j=1

γ′0(T
j , ej).

Proof. For the convenience, for 0 6 j 6 q, we define FT j = FT ∩ T j for an edge subset
FT of T and thus |FT | =

∑q
j=0 |FT j |. Especially, for 0 6 j 6 q, if FT is a TED-set of

T , then FT j ∈ F1(T
j, ej) ∪ F0(T

j, ej) ∪ F1(T
j, ej) ∪ F0(T

j, ej) by the definition. Denote
Nc(e

0) = N(e0) \Nc(e
0).

(1). Let FT be a γ′1(T, e
0)-set.

Case 1.1. Nc(e
0) ∩ FT 6= ∅.

In this case, the restriction FT 0 of FT on T 0 is a TED-set of T 0, further a γ′1(T
0, e0)-set.

For any j (1 6 j 6 q), FT j is a set of size θj in F1(T
j, ej)∪F0(T

j, ej)∪F1(T
j, ej)∪F0(T

j, ej)
by the definition of FT j . So

γ′1(T, e
0) = γ′1(T

0, e0) +

q∑
j=1

θj.
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Case 1.2. Nc(e
0) ∩ FT = ∅.

In this case, FT 0 ∈ F1(T
0, e0). Thus

γ′1(T, e
0) > γ′1(T

0, e0) +

q∑
j=1

θj. (1)

In order to connect e0 in FT , there exists some 1 6 j 6 q such that ej ∈ FT j .
Subcase 1.2.1. A1 ∪ A3 6= ∅, say, j1 ∈ A1.

We take any γ′
1
(T 0, e0)-set B0 and γ′1(T

j1 , ej1)-set Bj1 . For any j 6= j1 (1 6 j 6 q), we
choose an edge set Bj of size θj in F1(T

j, ej) ∪ F0(T
j, ej) ∪ F1(T

j, ej) ∪ F0(T
j, ej). Then

∪qj=0B
j is a TED-set of T of size γ′

1
(T 0, e0) +

∑q
j=1 θj satisfying |N(e0) ∩ (∪qj=0B

j)| > 1.
Combined with (1), we have

γ′1(T, e
0) = γ′1(T

0, e0) +

q∑
j=1

θj.

Subcase 1.2.2. A1 ∪ A3 = ∅, i.e., A1 = ∅ and A3 = ∅.
In this subcase, equality does not hold in Eq. (1). If A2 6= ∅, combined with Lemma

3.1, Lemma 3.2 (1) and A1 = ∅, for any j ∈ A2, γ
′
1(T

j, ej) = γ′0(T
j, ej) + 1 = θj + 1.

Otherwise, If A2 = ∅, then A4 = {1, 2, . . . , q}(6= ∅). Combined with Lemma 3.2 (4) and
A3 = ∅, for any j ∈ A4, γ

′
1
(T j, ej) = γ′

0
(T j, ej) + 1 = θj + 1. Similar to Subcase 1.2.1,

whatever which case it is, we can construct a TED-set of T of size γ′
1
(T 0, e0)+

∑q
j=1 θj +1

satisfying |N(e0) ∩ (∪qj=0B
j)| > 1. So

γ′1(T, e
0) = γ′1(T

0, e0) +

q∑
j=1

θj + 1.

(2). Let FT be a γ′0(T, e
0)-set.

If Nc(e
0)∩ FT 6= ∅, then the restriction FT 0 of FT on T 0 is a TED-set of T 0, further a

γ′0(T
0, e0)-set. So

γ′0(T, e
0) > γ′0(T

0, e0) +

q∑
j=1

θj. (2)

If Nc(e
0)∩FT = ∅, then the restriction FT 0 of FT on T 0 belongs to F0(T

0, e0), further
a γ′

0
(T 0, e0)-set. So

γ′0(T, e
0) > γ′0(T

0, e0) +

q∑
j=1

θj. (3)

Case 2.1. A1 6= ∅, say j1 ∈ A1.
We take any γ′0(T

0, e0)-set in the case of Nc(e
0) ∩ FT 6= ∅ and any γ′

0
(T 0, e0)-set in

the case of Nc(e
0) ∩ FT = ∅. Denoted by B0, any γ′1(T

j1 , ej1)-set Bj1 , and for any j 6= j1
(1 6 j 6 q), an edge set Bj of size θj in F1(T

j, ej) ∪ F0(T
j, ej) ∪ F1(T

j, ej) ∪ F0(T
j, ej).

Thus ∪qj=0B
j is a TED-set of T of size γ′0(T

0, e0) +
∑q

j=1 θj in the case of Nc(e
0)∩FT 6= ∅

or γ′
0
(T 0, e0) +

∑q
j=1 θj in the case of Nc(e

0) ∩ FT = ∅ satisfying |N(e0) ∩ (∪qj=0B
j)| 6= 0.

Combined with (2) and (3), we have

γ′0(T, e
0) = min{γ′0(T 0, e0), γ′0(T

0, e0)}+

q∑
j=1

θj.

Case 2.2. A1 = ∅ and A3 6= ∅.

7



If |A3| > 2, then, for j1, j2 ∈ A2, we can take a γ′
1
(T j1 , ej1)-set Bj1 and a γ′

1
(T j2 , ej2)-

set Bj2 . The others B0 and Bj for 1 6 j 6 q and j 6= j1, j2 are taken as Subcase 2.1.
Similarly, we can obtain

γ′0(T, e
0) = min{γ′0(T 0, e0), γ′0(T

0, e0)}+

q∑
j=1

θj.

If |A3| = 1, say A3 = {j3}, then neither Eq. (2) nor Eq. (3) take equality in this case.
According to Lemma 3.2 (2) and A1 = ∅, γ′1(T j3 , ej3) = γ′

1
(T j3 , ej2) + 1 = θj3 + 1. We

take a γ′1(T
j3 , ej3)-set Bj3 . The others B0 and Bj for 1 6 j 6 q and j 6= j3 are taken as

Subcase 2.1. Thus ∪qj=0B
j is a TED-set of T of size γ′0(T

0, e0) +
∑q

j=1 θj + 1 in the case

of Nc(e
0) ∩ FT 6= ∅ or γ′

0
(T 0, e0) +

∑q
j=1 θj + 1 in the case of Nc(e

0) ∩ FT = ∅ satisfying

|N(e0) ∩ (∪qj=0B
j)| 6= 0. So

γ′0(T, e
0) = min{γ′0(T 0, e0), γ′0(T

0, e0)}+

q∑
j=1

θj + 1.

Case 2.3. A1 = A3 = ∅ and A2 6= ∅.
If A4 = ∅, i.e., A2 = {1, 2, . . . , q}, and Nc(e

0)∩FT 6= ∅, then we take any γ′0(T
0, e0)-set

B0. For 1 6 j 6 q, we take any γ′0(T
j, ej)-set Bj. Thus ∪qj=0B

j is a TED-set of T of size
γ′0(T

0, e0) +
∑q

j=1 θj.

If A4 = ∅ and Nc(e
0) ∩ FT = ∅, then equality does not hold in Eq. (3). By Lemma

3.2 (1) and A1 = ∅, for any j ∈ A2, γ
′
1(T

j, ej) = γ′0(T
j, ej) + 1 = θj + 1. We take a

γ′1(T
j1 , ej1)-set Bj1 for some 1 6 j1 6 q and others Bj for any 0 6 j 6 q and j 6= j1 are

taken as in Subcase 2.1. Thus ∪qj=0B
j is a TED-set of T of size γ′

0
(T 0, e0) +

∑q
j=1 θj + 1.

If A4 6= 0, then equality does not hold in Eqs. (2) and (3). By Lemma 3.2 (1) and
A1 = ∅, for any j ∈ A2, γ

′
1(T

j, ej) = γ′0(T
j, ej) + 1 = θj + 1. We take any γ′1(T

j1 , ej1)-set
Bj1 for some 1 6 j1 6 q and the others Bj for any 0 6 j 6 q and j 6= j1 are taken as in
Subcase 2.1. Thus ∪qj=0B

j is a TED-set of T of size γ′0(T
0, e0) +

∑q
j=1 θj + 1 in the case

of Nc(e
0) ∩ FT 6= ∅ or γ′

0
(T 0, e0) +

∑q
j=1 θj + 1 in the case of Nc(e

0) ∩ FT = ∅.
So

γ′0(T, e
0) =


min{γ′0(T 0, e0), γ′

0
(T 0, e0) + 1}+

q∑
j=1

θj, if A4=∅;

min{γ′0(T 0, e0), γ′
0
(T 0, e0)}+

q∑
j=1

θj + 1, if A4 6=∅.

Case 2.4. A1 = A2 = A3 = ∅, i.e., A4 = {1, 2, . . . , q}.
In this case, to obtain a γ′0(T, e

0)-set, we need one γ′1(T
j′ , ej

′
)-set or at least two

γ′
1
(T j

′′
, ej

′′
)-sets for 1 6 j′′ 6 q. So, equality does not hold in Eqs. (2) and (3). By

Lemma 3.2 (4), for each ∀j ∈ A4, we have γ′
0
(T j, ej) + 1 6 γ′1(T

j, ej) 6 γ′
0
(T j, ej) + 2.

If there exists j4 ∈ A4 such that γ′1(T
j4 , ej4) − γ′

0
(T j4 , ej4) = 1, then we can take a

γ′1(T
j4 , ej4)-set Bj4 and the others Bj for 0 6 j 6 q and j 6= j4 are taken as in Subcase

2.1. Thus ∪qj=0B
j is a TED-set of T of size γ′0(T

0, e0) +
∑q

j=1 θj + 1 in the case of

Nc(e
0)∩ FT 6= ∅ or γ′

0
(T 0, e0) +

∑q
j=1 θj + 1 in the case of Nc(e)∩ FT = ∅. Otherwise, for

all j, γ′1(T
j, ej)− γ′

0
(T j, ej) = 2. Thus, the left-hand sides in both Eqs. (2) and (3) are at

least two more than the right-hand sides. We can take a γ′1(T
j4 , ej4)-set Bj4 and the others

Bj for 0 6 j 6 q and j 6= j4 are taken as in Subcase 2.1. Thus ∪qj=0B
j is a TED-set of T

of size γ′0(T
0, e0) +

∑q
j=1 θj + 2 in the case of Nc(e

0) ∩ FT 6= ∅ or γ′
0
(T 0, e0) +

∑q
j=1 θj + 1

in the case of Nc(e
0) ∩ FT = ∅. Therefore
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γ′0(T, e
0) =


min{γ′0(T 0, e0), γ′

0
(T 0, e0)}+

q∑
j=1

θj + 1, there is j such that γ′1(T
j ,ej)−γ′

t,0
(T j ,ej)=1;

min{γ′0(T 0, e0), γ′
0
(T 0, e0)}+

q∑
j=1

θj + 2, for any j such that γ′1(T
j ,ej)−γ′

t,0
(T j ,ej)=2.

(3). Let FT be a γ′
1
(T, e)-set.

The restriction FT 0 of FT on T 0 belongs to F1(T
0, e), for 1 6 j 6 q, the restriction

FT j of FT on T j belongs to F0(F
j, ej) or F0(F

j, ej), the converse also holds. Therefore

γ′1(T, e) = γ′1(T
0, e) +

q∑
j=1

min{γ′0(T j, ej), γ′0(T
j, ej)}.

(4). Let FT be a γ′
0
(T, e)-set.

The restriction FT 0 of FT on T 0 belongs to F0(T
0, e), for 1 6 j 6 q, the restriction FT j

of FT on T j belongs to F0(F
j, ej), the converse also holds. Therefore

γ′0(T, e) = γ′0(T
0, e) +

q∑
j=1

γ′0(T
j, ej).

By Theorem 3.1, we give algorithms as follows.

Algorithm 1 Determine the value of γ′1(T, i
′).

Require: an edge i of a rooted tree T which represent by its edge parent array [1, 2, 3, . . . , n].
Ensure: γ′1(T, i

′)

1: i′ ← father(i);
2: Nc(i′)← children(i′);
3: T 0 ← the component containing i′ of T − (Nc(i′));
4: for each j ∈ Nc(i′) do
5: T j ← the component containing j of T − (Nc(i′) + i′ − j);
6: end for
7: for each j ∈ Nc(i′) do
8: θj ← min{γ′1(T j , j), γ′0(T

j , j), γ′
1
(T j , j), γ′

0
(T j , j)};

9: A1 ← {j ∈ Nc(i′)|θj = γ′1(T
j , j)};

10: A3 ← {j ∈ Nc(i′)|θj = γ′
1
(T j , j)};

11: end for
12: if A1 ∪A3 6= ∅ then

13: γ′1(T, i
′)← min{γ′1(T 0, i′), γ′

1
(T 0, i′)}+

∑
j∈Nc(i′)

θj

14: else
15: γ′1(T, i

′)← min{γ′1(T 0, i′), γ′
1
(T 0, i′) + 1}+

∑
j∈Nc(i′)

θj .

16: end if

Algorithm 2 Determine the value of γ′
1
(T, i′).

Require: an edge i of a rooted tree T which represent by its edge parent array [1, 2, 3, . . . , n].
Ensure: γ′

1̄
(T, i′)

i
′ ← father(i);
Nc(i′)← children(i′);
T 0 ← the component containing i′ of T − (Nc(i′));
for each j ∈ Nc(i′) do

T j ← the component containing j of T − (Nc(i′) + i′ − j);
end for
γ′

1
(T, i′)← γ′

1
(T 0, i′) +

∑
j∈Nc(i′)

min{γ′0(T j , j), γ′
0
(T j , j)}

Theorem 3.2. Algorithm 5 produces the total edge domination number of a tree in linear-
time.
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Algorithm 3 Determine the value of γ′0(T, i
′).

Require: an edge i of a rooted tree T which represent by its edge parent array [1, 2, 3, . . . , n].
Ensure: γ′0(T, i

′);
Nc(i′)← children(i′);
T 0 ← the component containing i′ of T − (Nc(i′));
for each j ∈ Nc(i′) do

T j ← the component containing j of T − (Nc(i′) + i′ − j);
end for
for each j ∈ Nc(i′) do

θj ← min{γ′1(T j , j), γ′0(T
j , j), γ′

1
(T j , j), γ′

0
(T j , j)};

A1 ← {j ∈ Nc(i′)|θj = γ′1(T
j , j)};

A2 ← {j ∈ Nc(i′)|θj = γ′0(T
j , j)};

A3 ← {j ∈ Nc(i′)|θj = γ′
1
(T j , j)};

A4 ← {j ∈ Nc(i′)|θj = γ′
0
(T j , j)};

end for
if A1 6= ∅ or |A3| > 2 then

γ′0(T, i
′)← min{γ′0(T 0, i′), γ′

0
(T 0, i′)}+

∑
j∈Nc(i′)

θj

else if A1 = ∅ , and |A3| = 1 or A3 = ∅, A2 6= ∅, A4 6= ∅ then
γ′0(T, i

′)← min{γ′0(T 0, i′), γ′
0
(T 0, i′)}+

∑
j∈Nc(i′)

θj + 1

else if A1 = A3 = A4 = ∅ then
γ′0(T, i

′)← min{γ′0(T 0, i′), γ′
0
(T 0, i′) + 1}+

∑
j∈Nc(i′)

θj

else if A1 = A2 = A3 = ∅, and ∃j ∈ A4, such that γ′1(T
j , j)− γ′

0
(T j , j) == 1 then

γ′0(T, i
′)← min{γ′0(T 0, i′), γ′

0
(T 0, i′)}+

∑
j∈Nc(i′)

θj + 1

else if A1 = A2 = A3 = ∅, and ∀j ∈ A4, γ′1(T
j , j)− γ′

0
(T j , j) == 2 then

γ′0(T, i
′)← min{γ′0(T 0, i′), γ′

0
(T 0, i′)}+

∑
j∈Nc(i′)

+2

end if

Algorithm 4 Determine the value of γ′
0
(T, i′).

Require: an edge i of an rooted tree T which represent by its edge parent array [1, 2, 3, . . . , n].
Ensure: γ′1(T, i

′)

i
′ ← father(i);
Nc(i′)← children(i′);
T 0 ← the component containing i′ of T − (Nc(i′));
for each j ∈ Nc(i′) do

T j ← the component containing j of T − (Nc(i′) + i′ − j);
end for

γ′
0
(T, i′)← γ′

0
(T 0, i′) +

m∑
j∈Nc(i′)

γ′0(T
j , j)
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Algorithm 5 Determine the total edge domination number of a tree.
Require: an edge rooted tree T represent by its edge parent array [1, 2, 3, . . . , n].
Ensure: a minimum total edge domination number of T .
1: for each i ∈ [1, n] do
2: γ′1(T, 1)←∞; γ′0(T, 1)←∞; γ′

1
(T, 1)← 1; γ′

0
(T, 1)← 0;

3: end for
4: for each i ∈ [1, n− 1] do

5: i
′ ← father(i);

6: Nc(i′)← children(i′);
7: T 0 ← the component containing i′ of T − (Nc(i′));
8: for each j ∈ Nc(i′) do
9: T j ← the component containing j of T − (Nc(i′) + i′ − j);
10: end for
11: for each j ∈ Nc(i′) do
12: θj := min{γ′1(T j , j), γ′0(T

j , j), γ′
1
(T j , j), γ′

0
(T j , j)};

13: A1 := {j ∈ Nc(i′)|θj = γ′1(T
j , j)};

14: A2 := {j ∈ Nc(i′)|θj = γ′0(T
j , j)};

15: A3 := {j ∈ Nc(i′)|θj = γ′
1
(T j , j)};

16: A4 := {j ∈ Nc(i′)|θj = γ′
0
(T j , j)};

17: γ′1(T, i
′)=Determine the value of γ′1(T, i

′).

18: γ′0(T, i
′)=Determine the value of γ′0(T, i

′).

19: γ′
1̄
(T, i′)=Determine the value of γ′

1
(T, i′).

20: γ′
1̄
(T, i′)=Determine the value of γ′

0
(T, i′).

21: end for
22: end for
23: return γ′(T ) = min{γ′1(T, n), γ′0(T, n), γ′1̄(T, n), γ

′
0̄
(T, n)}

Proof. It is easy to know that the running times of Algorithms 1, 2, 3 and 4 are constant
times. Then Algorithm 5, needing to visit each father edge e of T once, and all of the
statements within which can be executed in a constant time, so with an adequate data
structure the algorithm works in linear-time.

4 Characterizing (γ′t = 2γ′)-trees and (γ′t = γ′)-trees

In this section we provide a constructive characterization of trees satisfying γ′t(T ) = 2γ′(T )
and γ′t(T ) = γ′(T ), denoted by (γ′t = 2γ′)-trees and (γ′t = γ′)-trees, respectively.

First, we begin with some properties of specific graphs used in this section.

Example 4.1. Let T be a star or a double star. Then γ
′
(T ) = 1 and γ

′
t(T ) = 2.

Example 4.2. If T is a path with five vertices, then γ
′
(T ) = γ

′
t(T ) = 2. If T is a path

with six vertices, then γ
′
(T ) = 2 and γ

′
t(T ) = 3.

Theorem 4.1. Let G be a connected graph of diameter > 4. Then there exists a minimum
edge dominating set (resp. a minimum total edge dominating set) D of G such that D
contains no leaf edges of G.

Proof. Suppose to the contrary that each minimum edge dominating set contains some
leaf edges and D is a minimum edge dominating set containing least leaf edges. Then
for each leaf edge e ∈ D, N(e) ∩ D = ∅, otherwise, D − e is a smaller edge dominating
set, a contradiction. Choose one non-leaf edge e′ of N(e), then D′ = D − e + e′ is a
new minimum edge dominating set containing less leaf edges than D, a contradiction.
Similarly, we can prove the total version.

Corollary 4.1. Let T be a tree with diameter 4. Then γ
′
t(T ) = γ

′
(T ).

11



Proof. The induced subgraph of all non-leaf edges in T is a star S1,k. In order to dominate
all leaf edges, by Theorem 4.1, E(S1,k) is a minimum edge dominating set and also a TED-
set of T , so γ

′
t(T ) 6 γ

′
(T ), combined with γ

′
(T ) 6 γ

′
t(T ), we get γ

′
t(T ) = γ

′
(T ).

Corollary 4.2. Let T be a tree with diameter 5. Then γ
′
t(T ) = γ

′
(T ) or γ

′
t(T ) = γ

′
(T )+1.

Proof. From the condition, the induced subgraph of all non-leaf edges in T is exactly
a double star, say H and two adjacent center vertices r, t. Let D be a minimum edge
dominating set of T containing no leaf edges by theorem 4.1 and, e an leaf edge in H,
say e = vr or vt. Since, in T , v is incident with at least one leaf edge, D contains
e. Thus (E(H) − rt) ⊆ D. Combined that D + rt induces an connected subgraph,
exactly H, further D + rt is a total edge dominating set of T , so γ

′
t(T ) = γ

′
(T ) or

γ
′
t(T ) = γ

′
(T ) + 1.

4.1 (γ′t = 2γ′)-trees

In this subsection we provide a constructive characterization of trees T satisfying γ′t(T ) =
2γ′(T ). Note that a star or double star satisfies the condition above. In what follows we
consider the trees satisfying the condition other than stars.

Our aim is to describe an inductive procedure of the tree T with γ′t(T ) = 2γ′(T ) by
labelling. For the initiated step, for any vertex v of P4, we give a label C or L to v, denoted
by l(v), defined as l(v) = L if v is a leaf of P4, l(v) = C, otherwise. For convenience, we
call an edge with both endpoints labelled C as C − C edge.

Let T be the family of labelled trees T containing the labelled P4 as the initiated
labelled tree, constructed inductively by the two operations O1, O2 listed below (i.e.,
constructing a bigger labelled tree T ′ from a smaller labelled tree T in T ).

Operation O1: Let T ∈ T and v a vertex of T with l(v) = L such that: (1). each vertex
labelled C of distance 2 from v is adjacent to a leaf vertex; (2). For any C − C edge wu
of distance 1 from v, say v is adjacent to u, either u has a leaf other than v or N(w)− u
are all leaves. Construct a bigger tree T ′ in T from T and a labelled P4 by identifying v
and a leaf vertex of P4, labelling the identified vertex as L and keeping the labels of the
other vertices unchanged, see Fig. 5(a).

Operation O2: Let T ∈ T and v a vertex of T with l(v) = C. Construct a bigger tree T ′

in T from T by adding a new vertex u adjacent to v, labelling u as L, keeping the labels
of the other vertices unchanged, see Fig. 5(b).

(a) Operation O1; (b) Operation O2.

Figure 4: Two operations.

From the two operations above, we can get the following simple observations.

Observation 4.1. Let T ∈ T . Then

(1) Each leaf vertex is labelled L and each support vertex is labelled C.

12



(2) Exactly one neighbor of each vertex labelled C is labelled C, and the remaining
neighbours are labelled L.

(3) No two vertices labelled L are adjacent.

(4) If one endpoints of a C − C edge has a non-leaf neighbor labelled L, then the other
endpoint has one leaf neighbor.

Lemma 4.1. Let T ∈ T and U the set of edges whose endpoints are labelled C in T .
Then U is a γ′(T )-set.

Proof. By Observation 4.1 (2) and (3), we know that U is an edge dominating set of T
and further each component of the induced subgraph T [U ] is K2. By Observation 4.1
(4) and Theorem 4.1, the size of any edge dominating set is at least |D|. Thus, U is a
γ′(T )-set of T .

Lemma 4.2. Let T ∈ T . Then T is a (γ′t = 2γ′)-tree.

Proof. We proceed by induction on the size m of the edge set of a tree T ∈ T . For the
initial step, it is obvious that γ′t(P4) = 2γ′(P4). For the inductive hypothesis, we assume
that, for every T ∈ T of edge size less than m, γ′t(T ) = 2γ′(T ). Let T ∈ T with edge
size m, and suppose T is obtained from a tree T ∈ T by one of two operations. We need
to prove that γ′t(T ) = 2γ′(T ). Next, we divide two cases to analyze according to which
operation is used to construct the tree T from T .

Case 1. T is obtained from T and a labelled P4 = u1u2u3u4 by Operation 1, i.e.,
identifying u1 and v(∈ V (T )), denoted by v the identifying vertex in T .

By Lemma 4.1, we have γ′(T ) = γ′(T ) + 1. Next, we just need to show γ′t(T ) =
γ′t(T ) + 2.

On the one hand, the union of a γ′t(T )-set of T and {vu2, u2u3} is a TED-set of T ,
further γ′t(T ) 6 γ′t(T )+2. On the other hand, it is sufficient to show that γ′t(T )+2 ≤ γ′t(T ).
Without loss of generality, let NT (v) = {v1, . . . , vr} for some positive integer r. For
1 6 i 6 r, from the definition of Operation 1 and Observation 4.1 (3), lT (v) = L and
lT (vi) = C; by Observation 4.1 (2), we denote by wi (1 6 i 6 r) the unique vertex labelled
C adjacent to vi in T ; and by the choice of v in the definition of Operation 1, wi has one
leaf neighbor in T .

By Theorem 4.1, we let Ft be such a γ′t(T )-set that Ft contains no leaf edges. If the
restriction Ft|T of Ft on T is a TED-set of T , then γ′t(T ) + 2 ≤ γ′t(T ). In what follows we
assume that Ft|T is not a TED-set of T , then |ET (v) ∩ Ft| 6 1.

If ET (v)∩Ft = ∅, then Ft|T does not dominate some edge incident with v in T , say vvi
for some integer i, further there is no leaf edge e incident with vi in T , otherwise Ft does
not dominate e in T . By the choice of v in Operation 1, all neighbors of wi other than vi
are all leaves, a contradiction with the choice of Ft. If ET (v) ∩ Ft has a unique edge, say
vvi for some i, then wivi /∈ Ft. Since wi has a leaf vertex by the choice of v in Operation
1, there is one edge in Ft incident with wi. Therefore the restriction of Ft− vvi + viwi on
T is a TED-set of T , further γ′t(T ) + 2 6 γ′t(T ).
Case 2. T is obtained from T by adding a new vertex u adjacent to v labelled C (i.e.,
Operation 2).

By Lemma 4.1, we can easily get γ′(T ) = γ′(T ). Then γ′t(T ) 6 2γ′(T ) = 2γ′(T ) =
γ′t(T ) 6 γ′t(T ), and so γ′t(T ) = 2γ′(T ).

Combined the two cases above, we have γ′t(T ) = 2γ′(T ) for T ∈ T .
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Lemma 4.3. Let T be a tree with γ′t(T ) = 2γ′(T ), F a γ′(T )-set. Then N [e] ∩N [e′] = ∅
for any distinct edges e, e′ ∈ F .

Proof. By contradiction. Assume that there exist two edges e, e′ in F such that N [e] ∩
N [e′] 6= ∅, say e′′ ∈ N [e] ∩ N [e′]. Now we construct a TED-set S of T from F + e′′: for
any edge f ∈ F − e− e′, adding an edge adjacent to f to F + e′′. Then |S| 6 2|F | − 1 =
2γ′(T )− 1, a contradiction.

Corollary 4.3. Let T be a tree with γ′t(T ) = 2γ′(T ), vu and uw two adjacent edges in T .
Then v, w and u can’t all be support vertices.

Proof. This follows directly from Lemma 4.3.

Lemma 4.4. Let T be a non-star tree with γ′t(T ) = 2γ′(T ). Then T ∈ T .

Proof. We proceed by induction on the edge size of a non-star tree T with γ′t(T ) = 2γ′(T ).
For the initial step, if T is a tree with diam(T ) = 3, then T is a double star with γ′(T ) = 1
and γ′t(T ) = 2, so we can obtain T from a labelled P4 by doing a series of Operation O2.
By Corollaries 4.1 and 4.2, if T is a tree with diam(T ) = 4 or 5, then T does not satisfy
γ′t(T ) = 2γ′(T ). In what follows let T be a tree of edge size m and diameter at least 6
with γ′t(T ) = 2γ′(T ). For the inductive hypothesis, we assume that every tree T of edge
size less than m with γ′t(T ) = 2γ′(T ) is in T .

If a support vertex v has two leaf neighbor in T with γ′t(T ) = 2γ′(T ) and w is one of
leaf neighbors of v, then v is still a support vertex in T = T −w. Combined with Theorem
4.1, a minimum edge dominating set (resp. a minimum total edge set) of T containing
no leaf edges is exactly a minimum edge edge dominating set (resp. a minimum total
edge set) of T containing no leaf edges. So γ′(T ) = γ′(T ), γ′t(T ) = γ′t(T ). Therefore,
2γ′(T ) = 2γ′(T ) = γ′t(T ) = γ′t(T ). By the inductive hypothesis, T ∈ T with a labeling.
By Observation 4.1 (1), the support vertex v is labelled C in T . Thus we can obtain the
tree T by applying Operation O2 to T .

Let P be a longest path in T , say P = v0v1 . . . vt for some t (t > 6) and denoted by
ei = vivi+1. If v2 has a leaf neighbor, say v′1, let T = T − v′1. By Theorem 4.1, T has a
γ′(T )-set (resp. a γ′t(T )-set ) containing e1, which is still a γ′(T )-set (resp. a γ′t(T )-set),
so γ′t(T ) = γ′t(T ) = 2γ′(T ) = 2γ′(T ). By the inductive hypothesis, T ∈ T with a labelling.
By Observation 4.1 (1) and (2), the vertices v1 and v2 are labelled C in T . Thus we can
obtain the tree T by applying Operation O2 to T .

In what follows we assume that each support vertex of T has exactly one leaf neighbor
and v2 is not a support vertex. Let F be a γ′(T )-set of T containing non-leaf edges by
Theorem 4.1, thus e1 ∈ F . For convenience, we root T at the vertex vt.

Claim 1. For every child v of v3, the subtree of T − v3 containing v is exactly P3.

By contradiction. If v is a leaf, then there exists an edge incident with v3 in F , say
e. Note that e1 ∈ F . But N [e] ∩ N [e1] 6= ∅, a contradiction with Lemma 4.3. If v
has only leaf children, then vv3 ∈ F . Similarly, we can obtain a contradiction because
N [vv3] ∩ N [e1] 6= ∅. If v has at least two support children, then |E(v) ∩ F | > 2, a
contradiction. So v has exactly one support child, combined with the same role of v as v2
in the choice of P and the assumption, we obtain the claim.

Claim 2. For a child v′3 of v4, the length of a longest path starting at v′3 in the subtree
T − v4 containing v′3 is not 2.
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Assume to the contrary that there exists one child v′3 of v4 such that the length of a
longest path P starting at v′3 in the subtree T − v4 containing v′3 is 2, say P = v′3v

′
2v
′
1.

Obviously, v′3 6= v3 and v′3v
′
2 ∈ F . Combined with Lemma 4.3 and e1 ∈ F , E(v4)∩F = ∅,

then e3 is not dominated by F , a contradiction.

Claim 3. If there exists a child v′3 of v4 such that the subtree of T − v4 containing v′3 is
P2, then v5 has no leaf child.

Similar to the analysis of Claims 1 and 2, we can show it by contradiction.

Claim 4. If diam(T ) > 6 and there exist no children v′3 of v4 such that the subtree of
T − v4 containing v′3 is P2, then v4 and v5 are both support vertices.

Suppose to the contrary. Since there is no subtree of T \{v4} containing v′3 isomorphic
to P2.

0

l
v

1

l
v

2

l
v

3

l
v

0

i
v

1

i
v

2

i
v

3

i
v

0
v

1
v

2
v

3
v

1

0
v

1

1
v

1

2
v

1

3
v

4
v

5
v

6
v

7
v

L L
M M

v

'

v
e

v
e

3
e

L

2
e

1
e

0
e

L

L

(a) A total edge dominating set Ft of T ;

0

l
v

1

l
v

2

l
v

3

l
v

0

i
v

1

i
v

2

i
v

3

i
v

0
v

1
v

2
v

3
v

1

0
v

1

1
v

1

2
v

1

3
v

4
v

5
v

6
v

7
v

L L
M M

v

'

v
e

v
e

3
e

L

2
e

1
e

0
e

L

L

(b) a minimum total edge dominating set F ′t
of T .

Figure 5: Illstration for Claim 4 in Lemma 4.4.

Let {v13, v23, . . . , vs3} be the set of non-leaf children of v4 for some positive integer s.
For any 1 6 i 6 l, combined the assumption and Claim 2, the length of a longest path
starting at vi3 in the subtree T − v4 containing vi3 is 3. By the symmetry of v3 and vi3 and
Claim 1, the subtree of T − v4 containing vi3 is exactly P4, say vi3v

i
2v
i
1v
i
0. By the choice of

F and Lemma 4.3, for any 1 6 i 6 s, vi2v
i
1 ∈ F and E(vi3) ∩ F = ∅. So {e4} ⊆ F .

If v4 is not support, let e′7 be the unique edge in (ET (v7)−e6)∩F 6= ∅ by {e4} ⊆ F and
Lemma 4.3. Now we construct a TED-set Ft of T from F0 = F−e4+e5 by first adding the
common neighbor edge e6 of e5 and e′7 in F0, second, for any 1 6 i 6 l, adding vi2v

i
3 into

F0, and adding a neighbor edge of each edge in F0−{e5, e′7}+ {v11v12, v21v22, · · · , vs1vs2} (see
Fig. 5(a)). It is obvious that Ft is a TED-set of T and |Ft| 6 2|F | − 1, a contradiction.

If v5 is not support, let A be the set of vertices of distance 2 from v5 in the subtree of
T − e4 containing v5. For v ∈ A, |F ∩ E(v)| = 1, say ev, by e4 ∈ F and Lemma 4.3, and
denoted by e′v the unique edge of E(v) of distance 1 from v5. Note that e′v 6= ev because v5
is of distance 2 from ev. Now we can construct a TED-set F ′t of T from F ′0 = F − e4 + e3
by first adding e2 and the set {e′v|v ∈ A} into F ′0, second adding a neighbor edge of each
edge in F ′0−{ev|v ∈ A}−{e1, e3} (see Fig. 5(b)). Note that {e1, e2, e3} ∈ F ′t . It is obvious
that F ′t is a TED-set of T and |F ′t | 6 2|F | − 1, a contradiction. So we prove Claim 4.

By Claim 1 and the assumption that each support vertex of T has exactly one leaf
neighbor and v2 is not a support vertex, d(v1) = d(v2) = 2, thus the subgraph induced by
{v0, v1, v2, v3} is P4. Let T = T − {v0, v1, v2}.

Claim 5. γ′t(T ) = 2γ′(T ).

Combined with Lemma 4.3 and e1 ∈ F , we have E(v3) ∩ F = ∅, thus the restriction
of F on T is an ED-set of T , further γ′(T ) 6 γ′(T ) − 1. Combined with the obvious
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inequality: γ′t(T ) 6 γ′t(T ) + 2, we have 2γ′(T ) 6 2(γ′(T )− 1) = 2γ′(T )− 2 = γ′t(T )− 2 6
γ′t(T ) 6 2γ′(T ). Consequently we must have equality throughout this inequality chain.
Particularly, we have γ′t(T ) = 2γ′(T ).

By Claim 5 and the inductive hypothesis, T ∈ T with a labelling. In what follows we
show that T is obtained from T by Operation O1 (the identifying vertex is v3, the role
of v). By Claim 1 and Observation 4.1 (1), (2), (3), we have l(v3) = L, l(v4) = C. In
the case l(v5) = C, if diam(T ) = 6, then all neighbors of v5 other than v4 are all leaves;
if diam(T ) > 6, then each child of v4 is labelled L and by Claim 4, v4 and v5 have both
one leaf neighbor. In the other case l(v5) = L, there is one child v′3 of v4 labelling C.
Combined with Corollary 4.1 and Claim 2, v′3 has only leaf children. For the other C-C
edges wu of distance 1 from v3, say v3 is adjacent to u, i.e., u is the child of v3, by Claim
1, N(w) − u are all leaves. Combined all cases above, it is obvious that the C − C edge
incident with v4 of distance 1 from v3 satisfies the condition in Operation O1. Therefore
we can apply Operation O1 from T to obtain the tree T , further, T ∈ T .

As an immediate consequence of Lemmas 4.2 and 4.4, we have

Theorem 4.2. A non-star tree is a (γ′t = 2γ′)-tree if and only if T ∈ T .

4.2 (γ′t = γ′)-trees

In this subsection we provide a constructive characterization of (γ′t = γ′)-trees T , i.e., a
tree satisfying γ′t(T ) = γ′(T ). We use edge labelling to describe a procedure of construct-
ing T recursively, which is different from the vertex labelling in the previous subsection.
By Example 4.1 and Corollary 4.1, for the initial step, let T be a tree with diam(T ) = 4,
in which each edge is either a leaf edge or a support edge, we label support edges in T
with S, leaf edges adjacent to at least two non-leaf-edges with L2, other leaf edges with
L1.

Let Tt be the family of edge-labelled trees T that contains edge-labelled trees with
diameter 4 and is under the five operations O1, O2, O3, O4, O5 listed below: constructing
a bigger tree from a smaller tree in Tt. For convenience, we call an edge labelled S (resp.
L1, L2) in T ∈ Tt an S (resp. L1, L2)-edge, and denote by D(T ) the set of S-edges. First,
according to the label of the associated edges of the vertex v in an edge-labelled tree
T ∈ Tt, we partition the vertex set of T into the following four subsets A1, A2, B and C
listed below:

A1 :={v| Only one S − edge in E(v)};
A2 :={v| At least two S − edges in E(v)};
B :={v| All edge in E(v) are L2 − edges};
C :=V − A1 − A2 −B.

S

v

L

(a) v ∈ A1: exactly one S-

edge.

S

v

S
L

(b) v ∈ A2: at least two S-

edges.

v

2
L

2
L

L

(c) v ∈ B: all edges in E(v)

are L2-edges.

v

1
L

1
L

L

(d) v ∈ C: at least one L1-

edge but no S-edges in E(v).

Figure 6: Vertex partition of T ∈ T .

Now, we list the five operations O1, O2, O3, O4, O5:
Operation O1: Let T ∈ Tt, v a vertex of T belonging to A1 ∪ A2. Construct a bigger
tree T ′ in Tt from T by adding a new vertex u adjacent to v. If v ∈ A1, then label vu
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as L1; (by definition, u is in C, A1, A2, B are unchanged;) if v ∈ A2, then label vu as L2

(note that u ∈ B and A1, A2, C are unchanged), see Fig. 7(a).

Operation O2: Let T ∈ Tt, v a vertex of T belonging to A2. Construct a bigger tree T ′

in Tt from T by adding two new adjacent vertices u1, u2, connecting v and u1 and labelling
vu1 as S and u1u2 as L1 (obviously, u1 ∈ A1 and u2 ∈ C), see Fig. 7(b).

Operation O3: Let T ∈ Tt, v /∈ A1 a vertex of T satisfying, in the case v ∈ C, that
each L1-edge in E(v) is either adjacent to one leaf edge or contained in a P4 = vwxy,
whose edges are labelled as L1, L1, L2 consecutively and all edges in E(x) are L2-edges
except wx. Construct a bigger tree T ′ in Tt from T by adding a new path u1u2u3u4u5 to
join v and u2, and labelling u2u3, u3u4 as S, vu2, u1u2, u4u5 as L1, see Fig. 7(c). (From
the definition, u2, u4 ∈ A1, u3 ∈ A2, u1, u5 ∈ C and if v ∈ B, then v is moved from B to C.)

Operation O4: Let T ∈ Tt, v ∈ B a vertex of T . Construct a bigger tree T ′ in Tt from T
by adding a new path u1u2u3u4 to join v and u1, and labelling vu1, u3u4 as L1, u1u2, u2u3
as S, see Fig. 7(d). (Similarly, u1, u3 ∈ A1, u2 ∈ A2, u4 ∈ C, and v is moved from B to C.)

Operation O5: Let T ∈ Tt, v a vertex of T . Construct a bigger tree T ′ in Tt from T by
adding a new path u1u2u3u4u5 to join v and u3, and labelling vu3 as L2, u1u2, u4u5 as L1,
u2u3, u3u4 as S, see Fig. 7(e). (From the definition, u2, u4 ∈ A1, u1, u5 ∈ C, u3 ∈ A2 and
if v ∈ B, then v is moved from B to C.)

S
v

(a) Operation O1: the edge uv is la-

belled as L2 if v ∈ A2 and is labelled

as L1 if v ∈ A1.

S
1

LS

S

(b) Operation O2.

SS
1

L

1
L

1
L

(c) Operation O3.

(d) Operation O4.

1
L

1
L

S

S

2
L

(e) Operation O5.

Figure 7: Five operations.

From the five operations above, we can get the simple observations as follows.

Observation 4.2. Let T ∈ Tt.

(1) One endpoint of an L1-edge is incident with exactly one S-edge, the other endpoint
is incident with either non S-edges or at least two S-edges.

(2) An L2-edge is adjacent to at least two S-edges.

(3) A leaf edge is labelled L1 or L2. Furthermore, a leaf edge adjacent to exactly one
non-leaf edge e is labelled L1 and e is labelled as S.

(4) Each edge in T is adjacent to at least one S-edge, and each component of the induced
subgraph T [D(T )] is a nontrivial star. Further, D(T ) is a total edge dominating set
of T .
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Lemma 4.5. Let T ∈ Tt. Then D(T ) is a γ′t(T )-set and T is a (γ′t = γ′)-tree.

Proof. Let T ∈ Tt, we first prove that D(T ) (simply, D) is a γ′t(T )-set. By Observation
4.2 (4), D is a TED-set of T . It is sufficient to find a set L of L1-edges of size |D| such
that each edge in L has exactly one neighbor S-edge. In order to prove that there is such
an edge set of each tree T in Tt, we proceed by induction on the size m of the edge set of
T . For the initial step, the leaves adjacent to exactly one non-leaf edge of T with diameter
4 construct the required set L. For the inductive step, we assume each tree T of size less
than m in Tt has a set L of L1-edges such that each edge in L has exactly one neighbor
S-edge. Now we divide five cases as follows:
Case 1. T is obtained by applying Operation O1 from T and a vertex u.

In this case, D(T ) = D(T ), and let L = L, which is the desired set for T .
Case 2. T is obtained by applying Operation O2 from T and an edge u1u2 in which a
vertex v in T is adjacent to u1.

In this case, D(T ) is one more S-edge than D(T ). By Observation 4.2 (1), there is no
L1-edges in L incident with v. So L ∪ {u1u2} is a desired set for T .
Case 3. T is obtained by applying Operation O3 from T and a path u1u2u3u4u5.

In this case, D(T ) is two more edges than D(T ). If v ∈ A2 ∪ B, by the definitions
of A2, B and Observation 4.2 (1), there are no L1-edges incident with v in T . So L ∪
{u1u2, u4u5} is a desired set for T .

When v ∈ C, if there is no L1-edge incident with v in L, then L ∪ {u1u2, u4u5} is
a desired set for T . Otherwise, let e′ = vw be the L1-edge in L, from the definition of
Operation O3, there is one leaf edge e′′ incident with w or there exists a P4 = vwxy in
T , whose edges are labelled as L1, L1, L2 consecutively and all edges in E(x) are L2-edges
except wx, then (L− e′) ∪ {u1u2, u4u5, e′′} or (L− e′) ∪ {u1u2, u4u5, wx} is a desired set
for T .

Therefore, we can always find a desired set for T in this case.
Case 4. T is obtained by applying Operation O4 from T and a path u1u2u3u4.

In this case, D(T ) is two more edges than D(T ). If there is no L1-edge in L adjacent
to some edge in E(v), then L ∪ {vu1, u3u4, } is a desired set for T . Otherwise, let wx be
the L1-edge in L adjacent to some edge in E(v). By Observation 4.2 (1),(2), without loss
of generality, assume x ∈ A1, then there is an L1-edge xy in E(x) such that y is either a
leaf vertex or only incident with L2-edges except xy. So (L − wx) ∪ {vu1, u3u4, yx} is a
desired set for T .

Hence, we can always find a desired set for T in this case.
Case 5. T is obtained by applying Operation O5 from T and a path u1u2u3u4u5.

In this case, D(T ) is two more edges than D(T ). So L∪{u1u2, u4u5} is a desired edge
set for T .

Combined the five cases above, for T ∈ Tt, we can always find an edge set L collecting
L1-edge such that each edge in L has exactly one neighbor S-edge. Since the edges in L
need at least |L| edges to dominate, γ′(T ) > |L| = |D|. Hence, D is a γ′t(T )-set and T is
a (γ′t = γ′)-tree

Lemma 4.6. Let T be a (γ′t = γ′)-tree, Ft a γ′t(T )-set. Then any component of the
induced subgraph T [Ft] is nontrivial star.

Proof. By contradiction. If there is a P = v1v2v3v4 in T [Ft], then the edges which are
dominated by v2v3 are also dominated by v1v2 or v3v3. So Ft−v2v3 is an edge dominating
set with cardinality |Ft|−1, a contradiction. Hence every component of T [Ft] is a nontrivial
star.
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Lemma 4.7. Let T be a (γ′t = γ′)-tree. Then T ∈ Tt.

Proof. We proceed by induction on the edge size of a nontrivial tree T satisfying γ′t(T ) =
γ′(T ). For the initial step, by Corollary 4.1, a tree T with diameter 4 satisfies γ′t(T ) =
γ′(T ) and is in Tt. For the inductive hypothesis, we assume that every tree T with
γ′t(T ) = γ′(T ) has edge size less than m and diam(T ) > 5, there exists an edge label such
that T ∈ T .

If a support vertex v of T has at least two leaf neighbors, say u and w two of them, then
v is still a support vertex in T = T −w. By Theorem 4.1, any minimum edge dominating
set of T containing no leaf edges is still an edge dominating set of T . So γ′(T ) = γ′t(T ) =
γ′(T ) 6 γ′t(T ) 6 γ′t(T ) and γ′t(T ) = γ′(T ). Hence, by the inductive hypothesis, T ∈ Tt.
By Observation 4.2 (1), (2), (3), uv is an L1- or L2-edge and v ∈ A2 ∪ A1 in T . We can
obtain the tree T by applying Operation O1 from T and a new vertex w, so T ∈ Tt. We
may assume that each support vertex of (γ′t = γ′)-tree T of edge size m has exactly one
leaf neighbor, denoted by Assumption 1.

If a support vertex v of T , say w is a leaf neighbor of v, has a support neighbor with
degree 2, then let T = T − w. Similar to the discuss as above, γ′t(T ) = γ′(T ) and by the
inductive hypothesis, T ∈ Tt. By Observation 4.2 (3), uv is an S-edge in T , combined
with Observation 4.2 (4), v ∈ A2. We can obtain the tree T by applying Operation O1

from T and a new vertex w, so T ∈ Tt. We may assume that there is no support vertex
which has a support neighbor of degree 2, denoted by Assumption 2.

If v has at least three support neighbors of degree 2 in T , say {u1, u2, . . . , ul} and l > 3,
and set T as the tree from T by deleting {u3, u4, . . . , ul} and their respective children,
then similar to the discuss as above, T ∈ Tt and T is obtained from T by applying a series
of Operation O2, so T ∈ Tt. Hence we may assume that every vertex has at most two
support neighbors of degree 2, denoted by Assumption 3.

Let Ft be a γ′t(T )-set containing non-leaf edges, P = v0v1 . . . vt the longest path of T ,
say the edge ei = vivi+1. Obviously, v1 is a support vertex of degree 2 and each child of
v2 is a support vertex of degree 2. We root T at the vertex vt.

Since e0 is a leaf edge, Ft must contain e1. Combined with Lemma 4.6 and the choice
of Ft, it is impossible to contain both e2 and e3 in Ft, i.e., e2 ∈ Ft and e3 /∈ Ft or e2 /∈ Ft
and e3 ∈ Ft or e2 /∈ Ft and e3 /∈ Ft.

Combined with Assumptions 2 and 3, d(v2) = 2 or 3. Next, we divide two cases
according to the degree of v2.
Case 1. d(v2) = 3.

By Assumptions 1 and 2, v2 has another support child v′1 of degree 2, say v′0 is the
child of v′1.
Subcase 1.1. e2 ∈ Ft.

In this subcase, we can let T = T−{v0, v1}. Combined with Lemma 4.6 and the choice
of Ft, the restriction of Ft on T is a TED-set of T , further, γ′t(T ) 6 γ′t(T )− 1. Combined
with an obvious inequality: γ′(T ) 6 γ′(T ) + 1, we have γ′(T ) + 1 6 γ′t(T ) + 1 6 γ′t(T ) =
γ′(T ) 6 γ′(T ) + 1, and so γ′t(T ) =γ′(T ). By the inductive hypothesis, there is an edge
label of T such that T ∈ Tt. By Observation 4.2 (3), v′1v2 is an S-edge in T , combined
with Observation 4.2 (4), there are at least two S-edges incident with v2 in T in either
case, v2 ∈ A2. We can obtain the tree T by applying Operation O2 from T and a new
edge v0v1, so T ∈ Tt.
Subcase 1.2. e2 /∈ Ft.

Let T = T − {v0, v1, v′1, v′0, v2}. Since edges v′1v
′
0 and e0 are leaf edges, combined with

Lemma 4.6 and the choice of Ft, the restriction of Ft on T is a TED-set of T , further,
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γ′t(T ) 6 γ′t(T )− 2.
Combined with an obvious inequality: γ′(T ) 6 γ′(T ) + 2, we have γ′(T ) + 2 6 γ′t(T ) +

2 6 γ′t(T ) = γ′(T ) 6 γ′(T ) + 2, and so γ′t(T ) = γ′(T ). By the inductive hypothesis, there
is an edge label of T such that T ∈ Tt. We can obtain the tree T by applying Operation
O5 from T and a path v0v1v2v

′
1v
′
0, so T ∈ Tt.

Case 2. d(v2) = 2.
Since d(v2) = 2, we have {e1, e2} ⊆ Ft by the choice of Ft. So (E(v3) − e2) ∩ Ft = ∅

by Lemma 4.6.

Claim 6. Let v′2 be a child of v3 other than v2. Then v′2 is a leaf vertex.

By contradiction. v′2 has at most one support child by symmetry and Assumption 3.
Then v′2v3 belongs to Ft by the choice of Ft, a contradiction with Lemma 4.6.

Claim 7. Let v′4 be any non-leaf child of v5. Then each subtree T4′ of T−v′4 not containing
v5 is isomorphic to one of the graphs in the following figure.

Figure 8: The subgraphs following v′4.

Let v′3 be the child of v′4 in T4′ . If the length of a longest path starting at v′3 in T4′
is 3, combined with symmetry, Claim 6 and Assumptions 1, 2, 3, then T4′ is isomorphic
to (a) or (b). If the length of a longest path starting at v′3 in T4′ is 2, combined with
Assumptions 1, 2, 3, then T4′ is isomorphic to (e) or (f). If the length of a longest path
starting at v′3 in T4′ is 1, by Assumption 1, then T4′ is isomorphic to (c). If the length of
a longest path starting at v′3 in T4′ is 0, then T4′ is (d). Therefore, T4′ is isomorphic to
one of the graphs in the Fig. 8.

If v4 has one non-leaf child, say v′′3 , such that the subtree T4 of T − v4 containing v′′3 is
isomorphic to (e) in Fig. 8, then T4 is a P5. Let T be the subtree of T − T4. If v4v

′′
3 ∈ Ft,

then Ft − v4v′′3 + e3 − e2 is still an ED-set of T of size |Ft| − 1, a contradiction. Hence
v4v
′′
3 /∈ Ft and the restriction of Ft on T is a TED-set of T , further γ′t(T ) 6 γ′t(T ) − 2.

Combined with an obvious inequality: γ′(T ) 6 γ′(T )+2, we have γ′(T )+2 6 γ′t(T )+2 6
γ′t(T ) = γ′(T ) 6 γ′(T ) + 2, so γ′(T ) = γ′t(T ). By the inductive hypothesis, T ∈ Tt with
an edge labelling. Thus T is obtained from T by applying Operation O5. So T ∈ Tt. In
what follows assume that there is no subtree of T − v4 not containing v5 isomorphic to
(e) in Fig. 8, denoted by Assumption 4.

Claim 8. If |E(v5)∩Ft| > 1 and there is a child, say v′′4 , of v5 such that there is a subtree
T4′′ of T − v′′4 not containing v5 isomorphic to (e) in Fig. 8, then T is obtained from
T = T − T4′′ by applying Operation O5.

Let v′′′3 be the child of v′′4 in T4′′ . Obviously T4′′ is a P5. In one case |E(v5) ∩ Ft| > 2,
if v′′4v

′′′
3 ∈ Ft, then F ′t = Ft − v′′4v′′′3 + v′′4v5 is still a TED-set of T . The restriction of F ′t on

T is a TED-set of T , further γ′t(T ) 6 γ′t(T )− 2. Similar to the discuss as above, T ∈ Tt.
Thus T is obtained from T by applying Operation O5. If v′′4v

′′′
3 /∈ Ft, then the restriction

of Ft on T is a TED-set of T . Similar to the discuss as above, T is obtained from T by
applying Operation O5.
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In the other case |E(v5)∩Ft| = 1, say e′5 = E(v5)∩Ft. Let x be any non-leaf neighbor
of v5 in T . We claim that |E(x)∩Ft| 6= 1. Indeed, if this is not the case, say ex = E(x)∩Ft,
then Ft − e′5 − ex + xv5 is an ED-set of T , a contradiction. So v′′4v

′′′
3 /∈ Ft. Combined

Lemma 4.6, similar to the discuss as above, T is obtained from T by applying Operation
O5.

In what follows assume that, if |E(v5)∩Ft| > 1 and let v′4 be a child of v5, there is no
subtree of T − v′4 not containing v5 isomorphic to (e) in Fig. 8, denoted by Assumption 5.

By Claim 7, let {v13, v23, . . . , vw3 } be the set of children of v4 such that the subtree
of T − v4 containing vi3 is isomorphic to (a) for 0 6 i 6 w, {u13, u23, . . . , uz3} the set of
children of v4 such that the subtree of T − v4 containing uj3 is isomorphic to (b) in Fig.
8 for 0 6 j 6 z. Combined with the structure of (a) and (b) and Lemma 4.6, we have
|(E(vi3)− vi3v4) ∩ Ft| = 1 and |(E(uj3)− u

j
3v4) ∩ Ft| = 1, say eiv = (E(vi3)− vi3v4) ∩ Ft and

eju = (E(uj3)− u
j
3v4) ∩ Ft for each i and j. Then,

Claim 9. w 6 1. Further, if w = 1, then d(v4) = 2.

By contradiction. If w > 2, then Ft − e1v + e3 − e2v is an ED-set of T of size |Ft| − 1, a
contradiction. So w 6 1.

Assume that d(v4) > 3 when w = 1. If z 6= 0, then Ft − e1u + v4u
1
3 − e1v is an ED-set

of T of size |Ft| − 1, a contradiction. If there is a subtree of T − v4 not containing v5
isomorphic to one of (c), (d) and (f) in Fig. 8, then E(v4) ∩ Ft 6= ∅ by the choice of Ft
and Lemma 4.6, thus Ft− e1v is an ED-set of T of size |Ft|−1, a contradiction. Therefore,
if w = 1, then d(v4) = 2.

By Claim 9, we have the following two claims.

Claim 10. There is no subtree of T − v4 not containing v5 isomorphic to (f) in Fig. 8.

By Claim 9, we just need to consider the case w = 0. By contradiction. If there is a
subtree of T−v4 containing one child, say v′3, of v4 isomorphic to (f), then |E(v′3)∩Ft| > 2
and v4v

′
3 ∈ Ft. Thus Ft − v4v′3 − e2 + e3 is an ED-set of T of size |Ft| − 1 by Lemma 4.6,

a contradiction.
Combined with Assumption 4 and Claim 10, there is no subtree of T−v4 not containing

v5 isomorphic to (e) or (f).

Claim 11. If w = 1, then E(v4) ∩ Ft = ∅. Otherwise, |E(v4) ∩ Ft| 6= 1.

By contradiction. Assume E(v4) ∩ Ft 6= ∅ when w = 1, then Ft − e2 is an ED-set of
T , a contradiction. Assume |E(v4) ∩ Ft| = 1 when w = 0, then e4 ∈ Ft by Claims 7 and
10. Thus Ft − e4 + e3 − e2 is an ED-set of T , a contradiction. Therefore, if w = 1, then
E(v4) ∩ Ft = ∅. Otherwise, |E(v4) ∩ Ft| 6= 1.

Combined with Claims 7, 10 and 11, if |E(v4) ∩ Ft| > 2, then there is a subtree of
T − v4 not containing v5 isomorphic to graph (c) in Fig. 8, i.e., a P2 = uv, say u is a child
of v4. By Claim 9, the subtree T a of T − v4 containing v3 is isomorphic to (b). Let T be
the subtree of T − T a. By |E(v4) ∩ Ft| > 2, the restriction of Ft on T is a TED-set of
T , further γ′t(T ) 6 γ′t(T ) − 2. Combined with an obvious inequality: γ′(T ) 6 γ′(T ) + 2,
we have γ′(T ) + 2 6 γ′t(T ) + 2 6 γ′t(T ) = γ′(T ) 6 γ′(T ) + 2, and so γ′(T ) = γ′t(T ). By
the inductive hypothesis, T ∈ Tt with an edge labelling. In T , by Observation 4.2 (3),
the leaf edge uv is an L1-edge and v4u is an S-edge. Combined with Observation 4.2 (4),
v4 ∈ A2. Therefore T is obtained from T by applying Operation O3. So T ∈ Tt.

If E(v4)∩Ft = ∅, then there is no subtree of T −v4 not containing v5 isomorphic to (c)
or (d). Combined with Claims 7, 9, Assumption 4 and the above analysis, then we may
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assume that each subtree of T − v4 not containing v5 is isomorphic to (a) or (b), denoted
by Assumption 6.

By Assumption 6, we can divide two subcases to discuss according to the subtree T4
of T − v4 containing v3 is isomorphic to (a) or (b) as follow.
Subcase 2.1. T4 is isomorphic to (a).

By Claims 9 and 11, d(v3) = d(v4) = 2 and E(v4) ∩ Ft = ∅. Obviously, e4 /∈ Ft and
|E(v5) ∩ Ft| > 1.

Claim 12. |E(v5) ∩ Ft| > 2.

If |(E(v5)− e4) ∩ Ft| = 1, say e′5 = E(v5) ∩ Ft, then Ft − e′5 + e4 − e2 is an ED-set of
T of size |Ft| − 1, a contradiction.

Combined with |E(v5)∩Ft| > 2 and E(v4)∩Ft = ∅, there is a child other than v4, say
v′4, of v5 such that v5v

′
4 ∈ Ft. Obviously, v′4 is not a leaf. Then

Claim 13. v′4 is a support vertex of degree 2.

We first show that v′4 is a support vertex. Assume to the contrary that v′4 has no leaf
children, combined with Claim 7, Assumption 5 and Lemma 4.6, every subtree of T − v′4
not containing v5 is isomorphic to (a) or (b) in Fig. 8. Obviously Ft − v5v

′
4 is still an

ED-set of T of size |Ft| − 1, a contradiction. Therefore, v′4 is a support vertex.
If d(v′4) > 3, then we denote by T ′ a subtree of T − v′4 containing a non-leaf child of

v′4. Combined with Assumption 5 and Claim 7, T ′ is not isomorphic to (a) or (e) in Fig.
8. By Lemma 4.6, T ′ is not isomorphic to (c) or (f). Hence T ′ is isomorphic to (b), say
v′3 the non-leaf child of v′4, v

′
2 the non-leaf child of v′3. Obviously, Ft − v5v′4 − v′2v′3 + v′3v

′
4

is an ED-set of T of size |Ft| − 1, a contradiction. So d(v′4) = 2.
Since d(v2) = d(v3) = d(v4) = 2, the subgraph induced by {v0, v1, v2, v3} is P4. Let

T = T − {v0, v1, v2, v3}. By E(v4) ∩ Ft = ∅, the restriction of Ft on T is a TED-set of
T , further γ′t(T ) 6 γ′t(T ) − 2. Combined with an obvious inequality: γ′(T ) 6 γ′(T ) + 2,
we have γ′(T ) + 2 6 γ′t(T ) + 2 6 γ′t(T ) = γ′(T ) 6 γ′(T ) + 2, and so γ′(T ) = γ′t(T ). By
the inductive hypothesis, T ∈ Tt with an edge labelling. By Observation 4.2 (3), e4 is an
L2- or L1-edge. Combined with Claim 13 and Observation 4.2 (1), (4), e4 is an L2-edge.
Since dT (v4) = 1, v4 ∈ B. Therefore T is obtained from T by applying Operation O4,
T ∈ Tt.
Subcase 2.2. T4 is isomorphic to (b).

In this subcase, let v′4 be any non-leaf child of v5, by symmetry and Assumption 6,
there is no subtree of T − v′4 not containing v5 isomorphic to (a) in Fig. 8, and each
subtree of T − v4 not containing v5 is isomorphic to (b), i.e., a P5. Let T = T − T4.
Since e3 /∈ Ft by Lemma 4.6, the restriction of Ft on T is a TED-set of T , further
γ′t(T ) 6 γ′t(T ) − 2. Combined with an obvious inequality: γ′(T ) 6 γ′(T ) + 2, we have
γ′(T ) + 2 6 γ′t(T ) + 2 6 γ′t(T ) = γ′(T ) 6 γ′(T ) + 2, further γ′(T ) = γ′t(T ). By the
inductive hypothesis, T ∈ Tt with an edge labelling. Combined with the structure of (b)
and Observation 4.2 (2), then in T , all edges connecting v4 and its children being L1-
edges, so v4 ∈ C by Observation 4.2 (1). If in T , e4 is an L2-edge or e4 is an L1-edge and
adjacent to a leaf edge, then T is obtained from T by applying Operation O3. In what
follows we assume that in T , e4 is an L1-edge and adjacent to non-leaf edges, denoted by
Assumption 7. Note that in T , there is only one S-edge in ET (v5), say e′5, and v5 ∈ A1 in
T .

By Lemma 4.5, all S-edges in T construct a minimum total edge dominating set
D(T ). Then, F ′t = D(T ) + e1 + e2 is a minimum total edge dominating set of T by
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γ′t(T ) + 2 = γ′t(T ). Further, |E(v5) ∩ F ′t | = 1, Claim 8 still holds. Then, we have the
following claim:

Claim 14. e5 is an L1-edge in ET (v5), and all edges in (ET (v6)− e5) are L2-edges.

Let v′4 be any non-leaf child of v5 other than v4 and v′3 any child of v′4 in T . There is no
subtree of T − v′4 containing v′3 isomorphic to (e) in T by Assumption 5 and Claim 8. We
claim that the length of a longest path starting at v′3 in the subtree T ′ of T −v′4 containing
v′3 is 3 or 1. If the length of a longest path starting at v′3 in T ′ is 2 or 0, by Lemma 4.6 and
Observation 4.2 (3), (4), then v′4 ∈ A1 in T , a contradiction by Observation 4.2 (1) and
Lemma 4.6. By symmetry, Claim 7 and Assumptions 1, 2, 3, we know that T ′ is isomorphic
to (b) or (c). Let {z14 , . . . , zh4} be the set of children of v5 such that there is a subtree T r4
of T − zr4 not containing v5 is isomorphic to (b) in T for 1 6 r 6 h. Let zr3 be the child of
zr4 in T r4 . By the structure of (b), then |E(zr3) ∩ F ′t | = 1, say er = (E(zr3)− zr3zr4) ∩ F ′t for
each r. If E(v6) has an S-edge other than e5, then F ′t−{e1, . . . , eh}+{z13z14 , . . . , zh3 zh4}−e′5
is an ED-set of T of size |F ′t | − 1, a contradiction. So all edges in (E(v6)− e5) are L1- or
L2-edges. By Observation 4.2 (2), (4), e5 is an L1-edge.

By contradiction. If there is one edge e′6 = v6v
′
7 in (ET (v6) − e5) is an L1-edge, then

there is exactly one S-edge e′′6 incident with v′7 by Observation 4.2 (1). Thus F ′t − e′′6 +
e′6−{e1, . . . , eh}+ {z13z14 , . . . , zh3 zh4}− e′5 is an ED-set of T of size |F ′t |− 1, a contradiction.
Therefore, all edges in (ET (v6)− e5) are L2-edges.

Combined with the structure of (b) and Claim 14, all L1-edges in (ET (v4) − e4) are
adjacent to a leaf edge, and there exist a P4 starting at v4, whose edges are labelled as L1,
L1, L2 consecutively, and all edges in (ET (v6)− e5) are L2-edges. Hence we can obtain T
from T by applying Operation O3.

As an immediate consequence of Lemmas 4.5 and 4.7, we have the following charac-
terization of (γ′t = γ′)-trees.

Theorem 4.3. A tree is a (γ′t = γ′)-tree if and only if T ∈ Tt.

5 Acknowledgements

This work was funded in part by National Natural Science Foundation of China (Grants
No. 11571155, 11201205).

References

[1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundermentals of Domination in Graphs,
Marcel Dekker, New York, 1998.

[2] J.D. Horton, K. Kilakos, Minimum edge dominating sets, SIAM J. Discrete Math.
6(3) (1993) 375-387.

[3] R. Karp, Reducibility among combinatorial problems, Complexity of Computer Com-
putations, R.E. Miller and J.W. Thatcher, eds., Plenum Press, New York, 1972, pp.
85-104.

[4] K. Kilakos, On the complexity of edge domination, Master’s Thesis, University of New
Brunswick, New Brunswick, Canada, 1998.

23



[5] V.R. Kulli, D.K. Patwari, On the edge domination number of a graph, in: Proceedings
of the Symposium on Graph Theory and Combinatorics, Cochin, 1991, in: Publication,
vol. 21, Centre Math. Sci. Trivandrum, 1991, pp. 75-81.

[6] C.L. Lru, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

[7] S. Mitchell, S.T. Hedetniemi, Edge domination in trees, Congr. Numer. 19 (1977)
489-509.

[8] M.H. Muddebihal, A.R. Sedamkar, Characterization of trees with equal edge domina-
tion and end edge domination numbers, Mathematical Theory and Modeling, 5 (2013)
3342.

[9] M.N.S. Paspasan, S.R. Canoy, Edge domination and total edge domination in the join
of graphs, Appl. Math. Sci. 10 (2016) 1077-1086.

[10] S. Velammal, Equality of connected edge domination and total edge domaination in
graphs, International Journal of Enhanced Research in Science Technology and Engi-
neering 5 (2014) 198-201.

[11] B. Xu, Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006)
1541-1546.

[12] M. Yannakakis, Edge-deletion problems, SIAM J. Comput. 10 (1981) 297-309.

[13] M. Yannakakis, F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38
(1980) 364-372.

[14] Y.C. Zhao, Z.H. Liao, L.Y. Miao, On the algorithmic complexity of edge total dom-
ination, Theoret. Comput. Sci. 6 (2014) 28-33.

24


	1 Introduction
	2  The result on NP-completeness
	3 A linear-time algorithm for trees
	4 Characterizing ('t=2')-trees and ('t=')-trees
	4.1 ('t=2')-trees
	4.2 ('t=')-trees

	5 Acknowledgements

