The complexity of total edge domination and some related results on trees

Zhuo Pan*, Yu Yang*, Xianyue Li, Shou-Jun Xu ${ }^{\dagger}$
School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China

Abstract

For a graph $G=(V, E)$ with vertex set V and edge set E, a subset F of E is called an edge dominating set (resp. a total edge dominating set) if every edge in $E \backslash F$ (resp. in E) is adjacent to at least one edge in F, the minimum cardinality of an edge dominating set (resp. a total edge dominating set) of G is the edge domination number (resp. total edge domination number) of G, denoted by $\gamma^{\prime}(G)$ (resp. $\gamma_{t}^{\prime}(G)$). In the present paper, we prove that the total edge domination problem is NP-complete for bipartite graphs with maximum degree 3. We also design a linear-time algorithm for solving this problem for trees. Finally, for a graph G, we give the inequality $\gamma^{\prime}(G) \leqslant \gamma_{t}^{\prime}(G) \leqslant 2 \gamma^{\prime}(G)$ and characterize the trees T which obtain the upper or lower bounds in the inequality.

Keywords: Edge domination; Total edge domination; NP-completeness; Linear-time algorithm; Trees

1 Introduction

Dominating problems have been subject of many studies in graph theory, and have many applications in operations research, e.g., in resource allocation and network routing, as well as in coding theory. There are many variants of domination, we mainly fucus on the total edge domination which is a variant of edge domination. Edge domination is introduced by Mitchell and Hedetniemi [7] and is related to telephone switching network [6]. Edge domination is also related to the approximation of the vertex cover problem, since an independent edge dominating set is a matching [3].

In this paper we in general follow [1] for natation and graph theory terminology. All graphs considered here are finite, undirected, connected, have no loops or multiple edges. Let $G=(V, E)$ be a graph with vertex set V and edge set E. A subset F of E is called an edge dominating set (abbreviated for $E D$-set) of G if every edge not in F is adjacent to at least one edge in F. The edge domination number, denoted by $\gamma^{\prime}(G)$, is the minimum cardinality of an ED-set of G. An ED-set of G with cardinality $\gamma^{\prime}(G)$ is called a $\gamma^{\prime}(G)$-set. The edge domination problem has been studied by several authors for example [2, 4, 11, [13]. Yannakakis and Gavril [13] showed that, the edge domination problem is NP-complete even when graphs are planar or bipartite of maximum degree 3, but solvable for trees and claw-free chordal graphs.

The concept of the total edge domination, a variant of edge domination, was introduced by Kulli and Patwari [5]. A subset F_{t} of E is called a total edge dominating set

[^0](abbreviated for TED-set) of G if every edge is adjacent to at least one edge in F_{t}. The total edge domination number, denoted by $\gamma_{t}^{\prime}(G)$, is the minimum cardinality of a TED-set of G. A TED-set of G with cardinality $\gamma_{t}^{\prime}(G)$ is called a $\gamma_{t}^{\prime}(G)$-set. Zhao et al. proved [14] that the total edge domination problem is NP-complete for planar graphs with maximum degree three, and for undirected path graphs and also constructed a linear algorithm for total edge domination problem in trees by a label method. For more study on total edge domination, see for example references [8, 9, 10].

As far as we know, there is no discussion on the complexity of total edge domination problem for bipartite graphs. For this reason, we prove that the total edge domination problem is NP-complete for bipartite graphs with maximum degree 3. We also design another linear time algorithm for computing $\gamma_{t}^{\prime}(T)$ of a tree T by the dynamic programming method, different from the algorithm in [14]. Kulli et al. [5] gave the lower bound of the total edge domination number for a graph G : $\gamma^{\prime}(G) \leqslant \gamma_{t}^{\prime}(G)$, it is obvious that $\gamma_{t}^{\prime}(G) \leqslant 2 \gamma^{\prime}(G)$. So, for any graph $G, \gamma^{\prime}(G) \leqslant \gamma_{t}^{\prime}(G) \leqslant 2 \gamma^{\prime}(G)$. In this paper, we show that the bounds are sharp and characterize trees achieving the lower or upper bound.

Notation. Let $G=(V, E)$ be a graph. For $v \in V$, denote by $N_{G}(v)$ the open neighborhood of v in G, i.e., $N_{G}(v)=\{u \in V \mid u v \in E\}$, by $\operatorname{deg}_{G}(v)$ the size of $N_{G}(v)$ called the degree of v, and by $E_{G}(v)$ the set of all the edges of G incident with v, i.e., $E_{G}(v)=\{e \in E \mid v$ is incident with $e\}$. Similarly, for $e \in E$, denote by $N_{G}(e)$ the open neighbourhood of e in G, i.e., $N_{G}(e)=\left\{e^{\prime} \in E \mid e^{\prime}\right.$ is adjacent to $\left.e\right\}$ and by $N_{G}[e]=$ $N_{G}(e) \cup\{e\}$ the closed neighbourhood of e. For two vertices $u, v \in V$, the distance $d_{G}(u, v)$ is defined as the length of a shortest path between u and v in G. We define the shorter distance between vertex w and one endpoint of edge e as the distance between w and e, denoted by $d_{G}(w, e)$. The maximum distance among all pairs of vertices is called the diameter of G, denoted by $\operatorname{diam}(G)$. If there is no ambiguity in the sequel, the subscript in the notation is omitted.

A leaf of a graph G is a vertex of degree one and a support vertex (resp. strong support vertex) of G is a vertex adjacent to a leaf (resp. adjacent to at least two leaves). A leaf edge (or pendant edge) of G is an edge with one leaf as an endpoint. Consider one vertex of a tree as special, called the root of this tree. A tree with the fixed root is a rooted tree. For a vertex v of a rooted tree T with root r, a neighbour of v away from r is called a child. For a positive integer k, a star $S_{1, k}$ is a tree that contains exactly one non-leaf vertex called a center vertex and k leaves. A double star is a tree that contains exactly two non-leaf vertices called center vertices.

2 The result on NP-completeness

In this section, we are going to prove that the total edge domination problem is NPcomplete for bipartite graphs with maximum degree 3. To prove that a problem P is NP-complete, it is enough to prove that $P \in \mathcal{N} \mathcal{P}$ and to show that a known NP-complete problem is reducible to the problem P in polynomial time. The known NP-complete problem used in our reduction is the SAT-3 restricted problem as follows:

SAT-3 RESTRICTED PROBLEM (SAT-3 RES) [12].

Instance: A set of clauses $C_{1}, C_{2}, \ldots, C_{p}$ containing only variables, with at most three literals per clause, such that every variable occurs two times and its negation once.
Question: Is there a truth assignment of zeros and ones to the variables satisfying all the clauses?

The decision total edge domination problem is stated as follows:
Instance: A graph $G=(V, E)$ and a positive integer $k \leqslant|E|$.
Question: Does G have a total edge dominating set of size at most k ?
Now we can state our main result in this section.
Theorem 2.1. The total edge domination problem for bipartite graphs with maximum degree 3 is NP-complete.
Proof. The reduction is from the SAT-3 restricted problem. Consider a set of clauses $\left\{C_{1}, \ldots, C_{p}\right\}$ with variables $x_{1}, x_{2}, \ldots, x_{n}$ as input for the SAT-3 restricted problem. Now we construct a graph $G=(V, E)$. For any $1 \leqslant l \leqslant p$, there are two adjacent vertices, say d_{l} and d_{l}^{\prime}, corresponding to the clause C_{l}, denoted by G_{l}. For any $1 \leqslant i \leqslant n$, there is a subgraph of G, which is a disjoint union of three paths $a_{i} a_{i, 0} a_{i, 1} a_{i, 2}, b_{i} b_{i, 0} b_{i, 1} b_{i, 2}$, $c_{i} c_{i, 0} c_{i, 1} c_{i, 2}$, and two edges $a_{i} c_{i}$ and $c_{i} b_{i}$, corresponding to the variable x_{i}, denoted by $G_{x_{i}}$ (see Fig. 1). For any clause C_{l}, if $x_{i} \in C_{l}$, then we connect d_{l} to one of vertices $a_{i, 0}$ and $b_{i, 0}$ to ensure that $d\left(a_{i, 0}\right)=3$ and $d\left(b_{i, 0}\right)=3$ (from conditions in SAT-3 RES); if $\overline{x_{i}} \in C_{l}$, then we connect d_{l}^{\prime} to $c_{i, 0}$ (for an example, see Fig. 1). It is obvious that G is bipartite, coloring vertices with white and black, shown as Fig. 1. We will show that there is a truth assignment of zeros and ones to the variables satisfying all clauses $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ if and only if G has a total edge dominating set of size $6 n$.

Figure 1: The induced subgraph of G by $G_{l_{1}}, G_{x_{i}}, G_{x_{j}}$ and $G_{x_{k}}$; for example, $C_{l_{1}}=$ $\left(x_{i} \overline{x_{j}} x_{k}\right)$.

Necessity: Given a satisfying assignment of the clauses, define a set F of edges as follows (assume that x_{i} is in two clauses $C_{l_{1}}$ and $C_{l_{3}}$, and $\overline{x_{i}}$ is in clause $C_{l_{2}}$):

$$
\begin{aligned}
F= & \left\{a_{i, 0} d_{j_{1}}, a_{i, 0} a_{i, 1}, b_{i, 0} d_{j_{3}}, b_{i, 0} b_{i, 1}, c_{i} c_{i, 0}, c_{i, 0} c_{i, 1} \mid x_{i}=1\right\} \\
& \cup\left\{a_{i} a_{i, 0}, a_{i, 0} a_{i, 1}, b_{i} b_{i, 0}, b_{i, 0} b_{i, 1}, c_{i, 0} d_{j_{2}}^{\prime}, c_{i, 0} c_{i, 1} \mid x_{i}=0\right\},
\end{aligned}
$$

(see Fig. 2). It is obvious that F is a TED-set of size $6 n$.

(a) In the case $x_{i}=0$;

(b) In the case $x_{i}=1$.

Figure 2: The construction of a TED-set F on $G_{x_{i}}$, represented by the thick edges.
Conversely, we assume that G has a TED-set F of size $6 n$. For any $1 \leqslant i \leqslant n$, in view of leaf edges $a_{i, 1} a_{i, 2}, b_{i, 1} b_{i, 2}, c_{i, 1} c_{i, 2}, F$ must contain three edges $a_{i, 0} a_{i, 1}, b_{i, 0} b_{i, 1}, c_{i, 0} c_{i, 1}$ and its respective adjacent edges. Thus the subgraph $G_{x_{i}}$ contains exactly 6 edges in F. For the convenience of proof, we assume that x_{i} is contained in clauses $C_{l_{1}}$ and $C_{l_{2}}$, and $\overline{x_{i}}$ is contained in clause $C_{l_{3}}$.

Case 1. $c_{i} c_{i, 0} \notin F$.
In this case, F must contain $a_{i} a_{i, 0}, b_{i} b_{i, 0}$ and we may assume that the edge adjacent to $c_{i, 0} c_{i, 1}$ in F is $c_{i, 0} d_{l_{3}}^{\prime}$, otherwise we can add $c_{i, 0} d_{l_{3}}^{\prime}$ into F by deleting $c_{i, 1} c_{i, 2}$ from F.
Case 2. $c_{i} c_{i, 0} \in F$.
Similar to Case 1, we can assume that $a_{i, 0} d_{l_{1}}, b_{i, 0} d_{l_{2}} \in F$.
Therefore, regardless of whether F contains $c_{i} c_{i, 0}$, we can always give a special total edge dominating set F of size $6 n$. We define a truth assignment τ by, if $c_{i} c_{i, 0} \in F$, setting $x_{i}=1$ and $x_{i}=0$, otherwise. Since F is a TED-set constructed as above, at least one edge in F is adjacent to $d_{l} d_{l}^{\prime}$ for every l (note that $d_{l} d_{l}^{\prime} \notin F$). Consequently τ satisfies all clauses.

The degree of vertices except for d_{l} and d_{l}^{\prime} in G constructed above is at most 3 , but if $C_{l}=x_{i_{1}} x_{i_{2}} x_{i_{3}}$ (resp., $\overline{x_{i_{1}}} \overline{i_{i_{2}}} \overline{x_{i_{3}}}$), then $d_{G}\left(d_{l}\right)=4$ (resp., $d_{G}\left(d_{l}^{\prime}\right)=4$). Then we use a tricky technique: (1) replace H shown as Fig. 3(a) for $d_{l} d_{l}^{\prime}$ and, (2) replace the three edges connecting the vertices a, b, c corresponding to variables and d_{l} (resp. d_{l}^{\prime}) with the three edges connecting a, b, c and x, y, z in H, respectively, say $a x, b y, c z$.

(a) H contains exactly 9 edges in F when none of the three edges $\{a x, b y, c z\}$ belongs to F;

(b) H contains exactly 8 edges in F when $a x$ is in F.

Figure 3: The graph H and the construction of a TED-set F on H, represented by the thick edges.

It is easy to show by a straightforward case analysis that: for a TED-set F of G, (1). if none of the three edges $\{a x, b y, c z\}$ belongs to F, then F contains at least nine edges from H, see Fig. 3(a).
(2). if one of three edges $\{a x, b y, c z\}$ is in F, say $a x$, then F contains at least eight edges from H, see Fig. 3(b).

Especially, let s be the number of 3 -literal clauses which satisfies that the literals contained are all positive or all negative. Then we can similarly show that there is a truth assignment of zeros and ones to the variables satisfying all clauses $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ if and only if G has a total edge dominating set of size $6 n+8 s$.

From the proof of Theorem [2.1, the graph constructed has a girth of at least 10.
Corollary 2.1. The total edge domination problem for bipartite graphs of girth at least 10 with maximum degree 3 is NP-complete.
Proof. The notations are as in the proof of Theorem 2.1. By the construction of G, there are no edges among G_{l} 's (or H) and among $G_{x_{i}}$'s. So a cycle C is either in H (note that there is no cycles in G_{l} or $G_{x_{i}}$)or formed by going through $G_{l_{1}}, G_{x_{i_{1}}}, G_{l_{2}}, G_{x_{i_{2}}}, \ldots, G_{l_{k}}$, $G_{x_{k}}, G_{l_{1}}(k \geqslant 2)$; in the second case the intersection of C and $G_{x_{i}}$ contains at least three edges and so the length of C is at least $5 k \geqslant 10$. Note that the girth of H is more than 12.

3 A linear-time algorithm for trees

In this section, we work on a linear-time algorithm for finding the total edge domination number of a tree by using the dynamic programming method.

First, we define some sets and some parameters. Let T be a tree with an edge e. We define:

$$
\begin{aligned}
& \mathcal{F}_{1}(T, e):=\{F \mid F \text { is a TED-set of } T \text { with } e \in F\} ; \\
& \mathcal{F}_{0}(T, e):=\{F \mid F \text { is a TED-set of } T \text { with } e \notin F\} ; \\
& \mathcal{F}_{\overline{1}}(T, e):=\{F \mid F \text { is an ED-set of } T \text { with a unique isolated edge } e \text { in } F\} ; \\
& \mathcal{F}_{\overline{0}}(T, e):=\{F \mid F \text { is a TED-set of } T-e, \text { but } e \text { is not dominated by } F\} .
\end{aligned}
$$

It is easily obtained
Lemma 3.1. Let e be a leaf edge of tree T. Then
$\mathcal{F}_{1}(T, e) \neq \emptyset$ if and only if $T \neq K_{2}$;
$\mathcal{F}_{0}(T, e) \neq \emptyset$ if and only if T has at least 3 edges;
$\mathcal{F}_{\overline{1}}(T, e) \neq \emptyset$ (resp. $\left.\mathcal{F}_{\overline{0}}(T, e) \neq \emptyset\right)$ if and only if $T \backslash N[e]$ has no K_{2} as components.
We denote

$$
\begin{aligned}
\gamma_{1}^{\prime}(T, e) & :=\min \left\{|F| \mid F \in \mathcal{F}_{1}(T, e)\right\} ; \\
\gamma_{0}^{\prime}(T, e) & :=\min \left\{|F| \mid F \in \mathcal{F}_{0}(T, e)\right\} ; \\
\gamma_{\overline{1}}^{\prime}(T, e) & :=\min \left\{|F| \mid F \in \mathcal{F}_{\overline{1}}(T, e)\right\} ; \\
\gamma_{\overline{0}}^{\prime}(T, e) & :=\min \left\{|F| \mid F \in \mathcal{F}_{\overline{0}}(T, e)\right\} .
\end{aligned}
$$

By convention, if a set is empty, then we set the value as infinity. For example, if $\mathcal{F}_{\overline{0}}(T, e)=\emptyset$, then we set $\gamma_{\overline{0}}^{\prime}(T, e)=\infty$. We can define $F \in \mathcal{F}_{1}(T, e)$ (resp. $\mathcal{F}_{0}(T, e)$, $\left.\mathcal{F}_{\overline{1}}(T, e), \mathcal{F}_{\overline{0}}(T, e)\right)$ of minimum cardinality as a $\gamma_{1}^{\prime}(T, e)\left(\right.$ resp. $\left.\gamma_{0}^{\prime}(T, e), \gamma_{\overline{1}}^{\prime}(T, e), \gamma_{\overline{0}}^{\prime}(T, e)\right)$ set of T. We give some inequality relationships among four values defined as above.

Lemma 3.2. Let T be a tree with an edge e. If $\mathcal{F}_{1}(T, e), \mathcal{F}_{0}(T, e), \mathcal{F}_{\overline{1}}(T, e)$ and $\mathcal{F}_{\overline{0}}(T, e)$ are non-empty sets, then
(1) $\gamma_{1}^{\prime}(T, e) \leqslant \gamma_{0}^{\prime}(T, e)+1$;
(2) $\gamma_{1}^{\prime}(T, e) \leqslant \gamma_{\overline{1}}^{\prime}(T, e)+1$;
(3) $\gamma_{1}^{\prime}(T, e) \leqslant \gamma_{\overline{0}}^{\prime}(T, e)+2$;
(4) $\gamma_{\overline{1}}^{\prime}(T, e) \leqslant \gamma_{\overline{0}}^{\prime}(T, e)+1$.

Proof. Let e^{\prime} be any edge in $N(e)$.
(1) Let $F \in \mathcal{F}_{0}(T, e)$. Then there exists an edge $e^{\prime \prime} \in F$ adjacent to e and further $F+e$ is a TED set of T containing e. Therefore $\gamma_{1}^{\prime}(T, e) \leqslant \gamma_{0}^{\prime}(T, e)+1$.
(2) Let $F_{0} \in \mathcal{F}_{\overline{1}}(T, e)$. Then $e \in F_{0}$ and $N(e) \cap F_{0}=\emptyset$ by the definition of $\mathcal{F}_{\overline{1}}(T, e)$. $F_{0}+e^{\prime}$ is a TED-set of containing e. Therefore $\gamma_{t, 1}^{\prime}(T, e) \leqslant \gamma_{\overline{1}}^{\prime}(T, e)+1$.
(3) Let $F_{1} \in \mathcal{F}_{\overline{0}}(T, e)$. Then $N[e] \cap F_{1}=\emptyset$ by the definition of $\mathcal{F}_{\overline{0}}(T, e) . F_{1}+e+e^{\prime}$ is a TED-set of T containing e. Thus $\gamma_{1}^{\prime}(T, e) \leqslant \gamma_{t, \overline{0}}^{\prime}(T, e)+2$.
(4) Let $F_{2} \in \mathcal{F}_{\overline{0}}(T, e)$. Then $F_{2}+e$ is an ED-set of T with a unique isolated edge e by the definition of $\mathcal{F}_{\overline{1}}(T, e)$. Thus $\gamma_{\overline{1}}^{\prime}(T, e) \leqslant \gamma_{t, \overline{0}}^{\prime}(T, e)+1$.

Before giving the dynamic programming algorithm, we designed an edge data structure as follows.

Root the tree T at any leaf, say r. The height, denoted by h, of T is the maximum distance between r and all other vertices of T. The level $i(0 \leqslant i \leqslant h)$ is the set of vertices of T with a distance i from r.

For such a rooted tree T of order $n+1$, let us label the edges of T as $1,2, \ldots, n$. We go through every level from h to 1 . For each $i, 1 \leqslant i \leqslant h$, we traverse the edges connecting the vertices on i and $i-1$ in any order, from left to right. We list the fathers of all edges
of T (the edge numbered n has no father by writing father $[n]=0$), so we can use a data structure called an edge parent array to represent T. Let e^{0} be a non-leaf edge in rooted tree T, u the endpoint of e^{0} away from the root. Denote by $N_{c}\left(e^{0}\right)$ the set of neighbors of e^{0} with endpoints u, called children neighbors of e^{0}, say $\left\{e^{1}, e^{2}, \ldots, e^{q}\right\}$ for some integer q. For $0 \leqslant j \leqslant q$, let T^{j} be the component containing e^{j} of $T \backslash\left(\left\{e^{0}, e^{1}, \ldots, e^{q}\right\} \backslash\left\{e^{j}\right\}\right)$.

Theorem 3.1. Let T be a rooted tree with a non-leaf edge e^{0} and $N_{c}\left(e^{0}\right)=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$ for some integer $q \geqslant 1$. For $0 \leqslant j \leqslant q, T^{j}$ are defined as above, and denote

$$
\begin{aligned}
\theta_{j} & :=\min \left\{\gamma_{1}^{\prime}\left(T^{j}, e^{j}\right), \gamma_{0}^{\prime}\left(T^{j}, e^{j}\right), \gamma_{\overline{1}}^{\prime}\left(T^{j}, e^{j}\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)\right\} ; \\
A_{1} & :=\left\{j \in\{1,2, \ldots, q\} \mid \theta_{j}=\gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)\right\} ; \\
A_{2} & :=\left\{j \in\{1,2, \ldots, q\} \mid \theta_{j}=\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)\right\} ; \\
A_{3} & :=\left\{j \in\{1,2, \ldots, q\} \mid \theta_{j}=\gamma_{\overline{1}}^{\prime}\left(T^{j}, e^{j}\right)\right\} ; \\
A_{4} & :=\left\{j \in\{1,2, \ldots, q\} \mid \theta_{j}=\gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)\right\} .
\end{aligned}
$$

Then
(1). $\gamma_{1}^{\prime}\left(T, e^{0}\right)= \begin{cases}\min \left\{\gamma_{1}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}, & \text { if } A_{1} \cup A_{3} \neq \emptyset ; \\ \min \left\{\gamma_{1}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+1\right\}+\sum_{j=1}^{q} \theta_{j}, & \text { if } A_{1} \cup A_{3}=\emptyset .\end{cases}$

(3). $\gamma_{\overline{1}}^{\prime}\left(T, e^{0}\right)=\gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \min \left\{\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)\right\}$;
(4). $\gamma_{\overline{0}}^{\prime}\left(T, e^{0}\right)=\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)$.

Proof. For the convenience, for $0 \leqslant j \leqslant q$, we define $F_{T^{j}}=F_{T} \cap T^{j}$ for an edge subset F_{T} of T and thus $\left|F_{T}\right|=\sum_{j=0}^{q}\left|F_{T^{j}}\right|$. Especially, for $0 \leqslant j \leqslant q$, if F_{T} is a TED-set of T, then $F_{T^{j}} \in \mathcal{F}_{1}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{0}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{1}}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{0}}\left(T^{j}, e^{j}\right)$ by the definition. Denote $\overline{N_{c}}\left(e^{0}\right)=N\left(e^{0}\right) \backslash N_{c}\left(e^{0}\right)$.
(1). Let F_{T} be a $\gamma_{1}^{\prime}\left(T, e^{0}\right)$-set.

Case 1.1. $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$.
In this case, the restriction $F_{T^{0}}$ of F_{T} on T^{0} is a TED-set of T^{0}, further a $\gamma_{1}^{\prime}\left(T^{0}, e^{0}\right)$-set. For any $j(1 \leqslant j \leqslant q), F_{T^{j}}$ is a set of size θ_{j} in $\mathcal{F}_{1}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{0}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{1}}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{0}}\left(T^{j}, e^{j}\right)$ by the definition of $F_{T^{j}}$. So

$$
\gamma_{1}^{\prime}\left(T, e^{0}\right)=\gamma_{1}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j} .
$$

Case 1.2. $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$.
In this case, $F_{T^{0}} \in \mathcal{F}_{\overline{1}}\left(T^{0}, e^{0}\right)$. Thus

$$
\begin{equation*}
\gamma_{1}^{\prime}\left(T, e^{0}\right) \geqslant \gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j} . \tag{1}
\end{equation*}
$$

In order to connect e^{0} in F_{T}, there exists some $1 \leqslant j \leqslant q$ such that $e^{j} \in F_{T^{j}}$.
Subcase 1.2.1. $A_{1} \cup A_{3} \neq \emptyset$, say, $j_{1} \in A_{1}$.
We take any $\gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)$-set B^{0} and $\gamma_{1}^{\prime}\left(T^{j_{1}}, e^{j_{1}}\right)$-set $B^{j_{1}}$. For any $j \neq j_{1}(1 \leqslant j \leqslant q)$, we choose an edge set B^{j} of size θ_{j} in $\mathcal{F}_{1}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{0}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{1}}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{0}}\left(T^{j}, e^{j}\right)$. Then $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}$ satisfying $\left|N\left(e_{0}\right) \cap\left(\cup_{j=0}^{q} B^{j}\right)\right| \geqslant 1$. Combined with (1), we have

$$
\gamma_{1}^{\prime}\left(T, e^{0}\right)=\gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j} .
$$

Subcase 1.2.2. $A_{1} \cup A_{3}=\emptyset$, i.e., $A_{1}=\emptyset$ and $A_{3}=\emptyset$.
In this subcase, equality does not hold in Eq. (1). If $A_{2} \neq \emptyset$, combined with Lemma 3.1, Lemma 3.2 (1) and $A_{1}=\emptyset$, for any $j \in A_{2}, \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)=\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)+1=\theta_{j}+1$. Otherwise, If $A_{2}=\emptyset$, then $A_{4}=\{1,2, \ldots, q\}(\neq \emptyset)$. Combined with Lemma 3.2 (4) and $A_{3}=\emptyset$, for any $j \in A_{4}, \gamma_{\overline{1}}^{\prime}\left(T^{j}, e^{j}\right)=\gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)+1=\theta_{j}+1$. Similar to Subcase 1.2.1, whatever which case it is, we can construct a TED-set of T of size $\gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ satisfying $\left|N\left(e_{0}\right) \cap\left(\cup_{j=0}^{q} B^{j}\right)\right| \geqslant 1$. So

$$
\gamma_{1}^{\prime}\left(T, e^{0}\right)=\gamma_{\overline{1}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1
$$

(2). Let F_{T} be a $\gamma_{0}^{\prime}\left(T, e^{0}\right)$-set.

If $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$, then the restriction $F_{T^{0}}$ of F_{T} on T^{0} is a TED-set of T^{0}, further a $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)$-set. So

$$
\begin{equation*}
\gamma_{0}^{\prime}\left(T, e^{0}\right) \geqslant \gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j} . \tag{2}
\end{equation*}
$$

If $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$, then the restriction $F_{T^{0}}$ of F_{T} on T^{0} belongs to $\mathcal{F}_{\overline{0}}\left(T^{0}, e^{0}\right)$, further a $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)$-set. So

$$
\begin{equation*}
\gamma_{0}^{\prime}\left(T, e^{0}\right) \geqslant \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j} \tag{3}
\end{equation*}
$$

Case 2.1. $A_{1} \neq \emptyset$, say $j_{1} \in A_{1}$.
We take any $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)$-set in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$ and any $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)$-set in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$. Denoted by B^{0}, any $\gamma_{1}^{\prime}\left(T^{j_{1}}, e^{j_{1}}\right)$-set $B^{j_{1}}$, and for any $j \neq j_{1}$ $(1 \leqslant j \leqslant q)$, an edge set B^{j} of size θ_{j} in $\mathcal{F}_{1}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{0}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{1}}\left(T^{j}, e^{j}\right) \cup \mathcal{F}_{\overline{0}}\left(T^{j}, e^{j}\right)$. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$ or $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{i=1}^{q} \theta_{j}$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$ satisfying $\left|N\left(e_{0}\right) \cap\left(\cup_{j=0}^{q} B^{j}\right)\right| \neq 0$. Combined with (2) and (3), we have

$$
\gamma_{0}^{\prime}\left(T, e^{0}\right)=\min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}
$$

Case 2.2. $A_{1}=\emptyset$ and $A_{3} \neq \emptyset$.

If $\left|A_{3}\right| \geqslant 2$, then, for $j_{1}, j_{2} \in A_{2}$, we can take a $\gamma_{\overline{1}}^{\prime}\left(T^{j_{1}}, e^{j_{1}}\right)$-set $B^{j_{1}}$ and a $\gamma_{\bar{T}}^{\prime}\left(T^{j_{2}}, e^{j_{2}}\right)$ set $B^{j_{2}}$. The others B^{0} and B^{j} for $1 \leqslant j \leqslant q$ and $j \neq j_{1}, j_{2}$ are taken as Subcase 2.1. Similarly, we can obtain

$$
\gamma_{0}^{\prime}\left(T, e^{0}\right)=\min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}
$$

If $\left|A_{3}\right|=1$, say $A_{3}=\left\{j_{3}\right\}$, then neither Eq. (2) nor Eq. (3) take equality in this case. According to Lemma 3.2 (2) and $A_{1}=\emptyset, \gamma_{1}^{\prime}\left(T^{j_{3}}, e^{j_{3}}\right)=\gamma_{\overline{1}}^{\prime}\left(T^{j_{3}}, e^{j_{2}}\right)+1=\theta_{j_{3}}+1$. We take a $\gamma_{1}^{\prime}\left(T^{j_{3}}, e^{j_{3}}\right)$-set $B^{\jmath_{3}}$. The others B^{0} and B^{j} for $1 \leqslant j \leqslant q$ and $j \neq j_{3}$ are taken as Subcase 2.1. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$ or $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$ satisfying $\left|N\left(e_{0}\right) \cap\left(\cup_{j=0}^{q} B^{j}\right)\right| \neq 0$. So

$$
\gamma_{0}^{\prime}\left(T, e^{0}\right)=\min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}+1
$$

Case 2.3. $A_{1}=A_{3}=\emptyset$ and $A_{2} \neq \emptyset$.
If $A_{4}=\emptyset$, i.e., $A_{2}=\{1,2, \ldots, q\}$, and $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$, then we take any $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)$-set B^{0}. For $1 \leqslant j \leqslant q$, we take any $\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)$-set B^{j}. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}$.

If $A_{4}=\emptyset$ and $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$, then equality does not hold in Eq. (3). By Lemma 3.2 (1) and $A_{1}=\emptyset$, for any $j \in A_{2}, \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)=\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)+1=\theta_{j}+1$. We take a $\gamma_{1}^{\prime}\left(T^{j_{1}}, e^{j_{1}}\right)$-set $B^{j_{1}}$ for some $1 \leqslant j_{1} \leqslant q$ and others B^{j} for any $0 \leqslant j \leqslant q$ and $j \neq j_{1}$ are taken as in Subcase 2.1. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$.

If $A_{4} \neq 0$, then equality does not hold in Eqs. (2) and (3). By Lemma 3.2 (1) and $A_{1}=\emptyset$, for any $j \in A_{2}, \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)=\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)+1=\theta_{j}+1$. We take any $\gamma_{1}^{\prime}\left(T^{j_{1}}, e^{j_{1}}\right)$-set $B^{j_{1}}$ for some $1 \leqslant j_{1} \leqslant q$ and the others B^{j} for any $0 \leqslant j \leqslant q$ and $j \neq j_{1}$ are taken as in Subcase 2.1. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$ or $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$.

So

$$
\gamma_{0}^{\prime}\left(T, e^{0}\right)=\left\{\begin{array}{lc}
\min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+1\right\}+\sum_{j=1}^{q} \theta_{j}, & \text { if } A_{4}=\emptyset ; \\
\min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}+1, & \text { if } A_{4} \neq \emptyset
\end{array}\right.
$$

Case 2.4. $A_{1}=A_{2}=A_{3}=\emptyset$, i.e., $A_{4}=\{1,2, \ldots, q\}$.
In this case, to obtain a $\gamma_{0}^{\prime}\left(T, e^{0}\right)$-set, we need one $\gamma_{1}^{\prime}\left(T^{j^{\prime}}, e^{j^{\prime}}\right)$-set or at least two $\gamma_{\overline{1}}^{\prime}\left(T^{j^{\prime \prime}}, e^{j^{\prime \prime}}\right)$-sets for $1 \leqslant j^{\prime \prime} \leqslant q$. So, equality does not hold in Eqs. (2) and (3). By Lemma 3.2 (4), for each $\forall j \in A_{4}$, we have $\gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)+1 \leqslant \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right) \leqslant \gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)+2$. If there exists $j_{4} \in A_{4}$ such that $\gamma_{1}^{\prime}\left(T^{j_{4}}, e^{j_{4}}\right)-\gamma_{\overline{0}}^{\prime}\left(T^{j_{4}}, e^{j_{4}}\right)=1$, then we can take a $\gamma_{1}^{\prime}\left(T^{j_{4}}, e^{j_{4}}\right)$-set $B^{j_{4}}$ and the others B^{j} for $0 \leqslant j \leqslant q$ and $j \neq j^{4}$ are taken as in Subcase 2.1. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$ or $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}(e) \cap F_{T}=\emptyset$. Otherwise, for all $j, \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)-\gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)=2$. Thus, the left-hand sides in both Eqs. (2) and (3) are at least two more than the right-hand sides. We can take a $\gamma_{1}^{\prime}\left(T^{j_{4}}, e^{j_{4}}\right)$-set $B^{j_{4}}$ and the others B^{j} for $0 \leqslant j \leqslant q$ and $j \neq j^{4}$ are taken as in Subcase 2.1. Thus $\cup_{j=0}^{q} B^{j}$ is a TED-set of T of size $\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+2$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T} \neq \emptyset$ or $\gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)+\sum_{j=1}^{q} \theta_{j}+1$ in the case of $\overline{N_{c}}\left(e^{0}\right) \cap F_{T}=\emptyset$. Therefore
$\gamma_{0}^{\prime}\left(T, e^{0}\right)= \begin{cases}\min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}+1, & \text { there is } j \text { such that } \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)-\gamma_{t, \overline{0}}^{\prime}\left(T^{j}, e^{j}\right)=1 ; \\ \min \left\{\gamma_{0}^{\prime}\left(T^{0}, e^{0}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, e^{0}\right)\right\}+\sum_{j=1}^{q} \theta_{j}+2, & \text { for any } j \text { such that } \gamma_{1}^{\prime}\left(T^{j}, e^{j}\right)-\gamma_{t, \overline{0}}^{\prime}\left(T^{j}, e^{j}\right)=2 .\end{cases}$
(3). Let F_{T} be a $\gamma_{\overline{1}}^{\prime}(T, e)$-set.

The restriction $F_{T^{0}}$ of F_{T} on T^{0} belongs to $\mathcal{F}_{\overline{1}}\left(T^{0}, e\right)$, for $1 \leqslant j \leqslant q$, the restriction $F_{T^{j}}$ of F_{T} on T^{j} belongs to $\mathcal{F}_{0}\left(F^{j}, e^{j}\right)$ or $\mathcal{F}_{\overline{0}}\left(F^{j}, e^{j}\right)$, the converse also holds. Therefore

$$
\gamma_{\overline{1}}^{\prime}(T, e)=\gamma_{\overline{1}}^{\prime}\left(T^{0}, e\right)+\sum_{j=1}^{q} \min \left\{\gamma_{0}^{\prime}\left(T^{j}, e^{j}\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, e^{j}\right)\right\} .
$$

(4). Let F_{T} be a $\gamma_{\overline{0}}^{\prime}(T, e)$-set.

The restriction $F_{T^{0}}$ of F_{T} on T^{0} belongs to $\mathcal{F}_{\overline{0}}\left(T^{0}, e\right)$, for $1 \leqslant j \leqslant q$, the restriction $F_{T^{j}}$ of F_{T} on T^{j} belongs to $\mathcal{F}_{0}\left(F^{j}, e^{j}\right)$, the converse also holds. Therefore

$$
\gamma_{\overline{0}}^{\prime}(T, e)=\gamma_{\overline{0}}^{\prime}\left(T^{0}, e\right)+\sum_{j=1}^{q} \gamma_{0}^{\prime}\left(T^{j}, e^{j}\right)
$$

By Theorem 3.1, we give algorithms as follows.

```
Algorithm 1 Determine the value of \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right)\).
Require: an edge \(i\) of a rooted tree \(T\) which represent by its edge parent array \([1,2,3, \ldots, n]\).
Ensure: \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right)\)
    \(i^{\prime} \leftarrow\) father \((i)\);
    \(N_{c}\left(i^{\prime}\right) \leftarrow \operatorname{children}\left(i^{\prime}\right)\);
    \(T^{0} \leftarrow\) the component containing \(i^{\prime}\) of \(T-\left(N_{c}\left(i^{\prime}\right)\right)\);
    for each \(j \in N_{c}\left(i^{\prime}\right)\) do
        \(T^{j} \leftarrow\) the component containing \(j\) of \(T-\left(N_{c}\left(i^{\prime}\right)+i^{\prime}-j\right)\);
    end for
    for each \(j \in N_{c}\left(i^{\prime}\right)\) do
        \(\theta_{j} \leftarrow \min \left\{\gamma_{1}^{\prime}\left(T^{j}, j\right), \gamma_{0}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{1}}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
        \(A_{1} \leftarrow\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{1}^{\prime}\left(T^{j}, j\right)\right\} ;\)
            \(A_{3} \leftarrow\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{\overline{1}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
    end for
    if \(A_{1} \cup A_{3} \neq \emptyset\) then
        \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{1}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{1}}^{\prime}\left(T^{0}, i^{\prime}\right)\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)} \theta_{j}\)
    else
        \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{1}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{1}}^{\prime}\left(T^{0}, i^{\prime}\right)+1\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)} \theta_{j}\).
    end if
```

```
Algorithm 2 Determine the value of \(\gamma_{\overline{1}}^{\prime}\left(T, i^{\prime}\right)\).
Require: an edge \(i\) of a rooted tree \(T\) which represent by its edge parent array \([1,2,3, \ldots, n]\).
Ensure: \(\gamma_{\overline{1}}^{\prime}\left(T, i^{\prime}\right)\)
    \(i^{\prime} \leftarrow\) father \((i)\);
    \(N_{c}\left(i^{\prime}\right) \leftarrow \operatorname{children}\left(i^{\prime}\right) ;\)
    \(T^{0} \leftarrow\) the component containing \(i^{\prime}\) of \(T-\left(N_{c}\left(i^{\prime}\right)\right)\);
    for each \(j \in N_{c}\left(i^{\prime}\right)\) do
        \(T^{j} \leftarrow\) the component containing \(j\) of \(T-\left(N_{c}\left(i^{\prime}\right)+i^{\prime}-j\right)\);
    end for
    \(\gamma_{\overline{1}}^{\prime}\left(T, i^{\prime}\right) \leftarrow \gamma_{\overline{1}}^{\prime}\left(T^{0}, i^{\prime}\right)+\sum_{j \in N_{c}\left(i^{\prime}\right)} \min \left\{\gamma_{0}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)\right\}\)
```

Theorem 3.2. Algorithm 5 produces the total edge domination number of a tree in lineartime.

```
Algorithm 3 Determine the value of \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right)\).
Require: an edge \(i\) of a rooted tree \(T\) which represent by its edge parent array \([1,2,3, \ldots, n]\).
Ensure: \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right)\);
    \(N_{c}\left(i^{\prime}\right) \leftarrow\) children \(\left(i^{\prime}\right) ;\)
    \(T^{0} \leftarrow\) the component containing \(i^{\prime}\) of \(T-\left(N_{c}\left(i^{\prime}\right)\right)\);
    for each \(j \in N_{c}\left(i^{\prime}\right)\) do
        \(T^{j} \leftarrow\) the component containing \(j\) of \(T-\left(N_{c}\left(i^{\prime}\right)+i^{\prime}-j\right) ;\)
    end for
    for each \(j \in N_{c}\left(i^{\prime}\right)\) do
        \(\theta_{j} \leftarrow \min \left\{\gamma_{1}^{\prime}\left(T^{j}, j\right), \gamma_{0}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{1}}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
        \(A_{1} \leftarrow\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{1}^{\prime}\left(T^{j}, j\right)\right\} ;\)
        \(A_{2} \leftarrow\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{0}^{\prime}\left(T^{j}, j\right)\right\} ;\)
        \(A_{3} \leftarrow\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{\overline{1}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
        \(A_{4} \leftarrow\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
    end for
    if \(A_{1} \neq \emptyset\) or \(\left|A_{3}\right| \geqslant 2\) then
        \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{0}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, i^{\prime}\right)\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)} \theta_{j}\)
    else if \(A_{1}=\emptyset\), and \(\left|A_{3}\right|=1\) or \(A_{3}=\emptyset, A_{2} \neq \emptyset, A_{4} \neq \emptyset\) then
        \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{0}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, i^{\prime}\right)\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)} \theta_{j}+1\)
    else if \(A_{1}=A_{3}=A_{4}=\emptyset\) then
        \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{0}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, i^{\prime}\right)+1\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)} \theta_{j}\)
    else if \(A_{1}=A_{2}=A_{3}=\emptyset\), and \(\exists j \in A_{4}\), such that \(\gamma_{1}^{\prime}\left(T^{j}, j\right)-\gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)==1\) then
        \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{0}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, i^{\prime}\right)\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)} \theta_{j}+1\)
    else if \(A_{1}=A_{2}=A_{3}=\emptyset\), and \(\forall j \in A_{4}, \gamma_{1}^{\prime}\left(T^{j}, j\right)-\gamma_{0}^{\prime}\left(T^{j}, j\right)==2\) then
        \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right) \leftarrow \min \left\{\gamma_{0}^{\prime}\left(T^{0}, i^{\prime}\right), \gamma_{\overline{0}}^{\prime}\left(T^{0}, i^{\prime}\right)\right\}+\sum_{j \in N_{c}\left(i^{\prime}\right)}+2\)
    end if
```

```
Algorithm 4 Determine the value of \(\gamma_{\overline{0}}^{\prime}\left(T, i^{\prime}\right)\).
Require: an edge \(i\) of an rooted tree \(T\) which represent by its edge parent array \([1,2,3, \ldots, n]\).
Ensure: \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right)\)
    \(i^{\prime} \leftarrow\) father \((i)\);
    \(N_{c}\left(i^{\prime}\right) \leftarrow \operatorname{children}\left(i^{\prime}\right) ;\)
    \(T^{0} \leftarrow\) the component containing \(i^{\prime}\) of \(T-\left(N_{c}\left(i^{\prime}\right)\right)\);
    for each \(j \in N_{c}\left(i^{\prime}\right)\) do
        \(T^{j} \leftarrow\) the component containing \(j\) of \(T-\left(N_{c}\left(i^{\prime}\right)+i^{\prime}-j\right) ;\)
    end for
    \(\gamma_{\overline{0}}^{\prime}\left(T, i^{\prime}\right) \leftarrow \gamma_{\overline{0}}^{\prime}\left(T^{0}, i^{\prime}\right)+\sum_{j \in N_{c}\left(i^{\prime}\right)}^{m} \gamma_{0}^{\prime}\left(T^{j}, j\right)\)
```

```
Algorithm 5 Determine the total edge domination number of a tree.
Require: an edge rooted tree \(T\) represent by its edge parent array \([1,2,3, \ldots, n]\).
Ensure: a minimum total edge domination number of \(T\).
    for each \(i \in[1, n]\) do
        \(\gamma_{1}^{\prime}(T, 1) \leftarrow \infty ; \gamma_{0}^{\prime}(T, 1) \leftarrow \infty ; \gamma_{\overline{1}}^{\prime}(T, 1) \leftarrow 1 ; \gamma_{\overline{0}}^{\prime}(T, 1) \leftarrow 0 ;\)
    end for
    for each \(i \in[1, n-1]\) do
        \(i^{\prime} \leftarrow\) father \((i) ;\)
        \(N_{c}\left(i^{\prime}\right) \leftarrow \operatorname{children}\left(i^{\prime}\right) ;\)
        \(T^{0} \leftarrow\) the component containing \(i^{\prime}\) of \(T-\left(N_{c}\left(i^{\prime}\right)\right)\);
        for each \(j \in N_{c}\left(i^{\prime}\right)\) do
            \(T^{j} \leftarrow\) the component containing \(j\) of \(T-\left(N_{c}\left(i^{\prime}\right)+i^{\prime}-j\right)\);
        end for
        for each \(j \in N_{c}\left(i^{\prime}\right)\) do
            \(\theta_{j}:=\min \left\{\gamma_{1}^{\prime}\left(T^{j}, j\right), \gamma_{0}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{1}}^{\prime}\left(T^{j}, j\right), \gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
            \(A_{1}:=\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{1}^{\prime}\left(T^{j}, j\right)\right\} ;\)
            \(A_{2}:=\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{0}^{\prime}\left(T^{j}, j\right)\right\} ;\)
            \(A_{3}:=\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{\overline{1}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
            \(A_{4}:=\left\{j \in N_{c}\left(i^{\prime}\right) \mid \theta_{j}=\gamma_{\overline{0}}^{\prime}\left(T^{j}, j\right)\right\} ;\)
            \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right)=\) Determine the value of \(\gamma_{1}^{\prime}\left(T, i^{\prime}\right)\).
            \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right)=\) Determine the value of \(\gamma_{0}^{\prime}\left(T, i^{\prime}\right)\).
            \(\gamma_{\overline{1}}^{\prime}\left(T, i^{\prime}\right)=\) Determine the value of \(\gamma_{\overline{1}}^{\prime}\left(T, i^{\prime}\right)\).
            \(\gamma_{\overline{1}}^{\prime}\left(T, i^{\prime}\right)=\) Determine the value of \(\gamma_{\overline{0}}^{\prime}\left(T, i^{\prime}\right)\).
        end for
    end for
    return \(\gamma^{\prime}(T)=\min \left\{\gamma_{1}^{\prime}(T, n), \gamma_{0}^{\prime}(T, n), \gamma_{\overline{1}}^{\prime}(T, n), \gamma_{\overline{0}}^{\prime}(T, n)\right\}\)
```

Proof. It is easy to know that the running times of Algorithms 1, 2, 3 and 4 are constant times. Then Algorithm 5, needing to visit each father edge e of T once, and all of the statements within which can be executed in a constant time, so with an adequate data structure the algorithm works in linear-time.

4 Characterizing $\left(\gamma_{t}^{\prime}=2 \gamma^{\prime}\right)$-trees and $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-trees

In this section we provide a constructive characterization of trees satisfying $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$ and $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)$, denoted by $\left(\gamma_{t}^{\prime}=2 \gamma^{\prime}\right)$-trees and ($\gamma_{t}^{\prime}=\gamma^{\prime}$)-trees, respectively.

First, we begin with some properties of specific graphs used in this section.
Example 4.1. Let T be a star or a double star. Then $\gamma^{\prime}(T)=1$ and $\gamma_{t}^{\prime}(T)=2$.
Example 4.2. If T is a path with five vertices, then $\gamma^{\prime}(T)=\gamma_{t}^{\prime}(T)=2$. If T is a path with six vertices, then $\gamma^{\prime}(T)=2$ and $\gamma_{t}^{\prime}(T)=3$.

Theorem 4.1. Let G be a connected graph of diameter $\geqslant 4$. Then there exists a minimum edge dominating set (resp. a minimum total edge dominating set) D of G such that D contains no leaf edges of G.

Proof. Suppose to the contrary that each minimum edge dominating set contains some leaf edges and D is a minimum edge dominating set containing least leaf edges. Then for each leaf edge $e \in D, N(e) \cap D=\emptyset$, otherwise, $D-e$ is a smaller edge dominating set, a contradiction. Choose one non-leaf edge e^{\prime} of $N(e)$, then $D^{\prime}=D-e+e^{\prime}$ is a new minimum edge dominating set containing less leaf edges than D, a contradiction. Similarly, we can prove the total version.

Corollary 4.1. Let T be a tree with diameter 4. Then $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)$.

Proof. The induced subgraph of all non-leaf edges in T is a star $S_{1, k}$. In order to dominate all leaf edges, by Theorem4.1, $E\left(S_{1, k}\right)$ is a minimum edge dominating set and also a TEDset of T, so $\gamma_{t}^{\prime}(T) \leqslant \gamma^{\prime}(T)$, combined with $\gamma^{\prime}(T) \leqslant \gamma_{t}^{\prime}(T)$, we get $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)$.

Corollary 4.2. Let T be a tree with diameter 5. Then $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)$ or $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)+1$.
Proof. From the condition, the induced subgraph of all non-leaf edges in T is exactly a double star, say H and two adjacent center vertices r, t. Let D be a minimum edge dominating set of T containing no leaf edges by theorem 4.1 and, e an leaf edge in H, say $e=v r$ or $v t$. Since, in T, v is incident with at least one leaf edge, D contains e. Thus $(E(H)-r t) \subseteq D$. Combined that $D+r t$ induces an connected subgraph, exactly H, further $D+r t$ is a total edge dominating set of T, so $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)$ or $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)+1$.

4. $1 \quad\left(\gamma_{t}^{\prime}=2 \gamma^{\prime}\right)$-trees

In this subsection we provide a constructive characterization of trees T satisfying $\gamma_{t}^{\prime}(T)=$ $2 \gamma^{\prime}(T)$. Note that a star or double star satisfies the condition above. In what follows we consider the trees satisfying the condition other than stars.

Our aim is to describe an inductive procedure of the tree T with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$ by labelling. For the initiated step, for any vertex v of P_{4}, we give a label C or L to v, denoted by $l(v)$, defined as $l(v)=L$ if v is a leaf of $P_{4}, l(v)=C$, otherwise. For convenience, we call an edge with both endpoints labelled C as $C-C$ edge.

Let \mathcal{T} be the family of labelled trees T containing the labelled P_{4} as the initiated labelled tree, constructed inductively by the two operations $\mathcal{O}_{1}, \mathcal{O}_{2}$ listed below (i.e., constructing a bigger labelled tree T^{\prime} from a smaller labelled tree T in \mathcal{T}).

Operation \mathcal{O}_{1} : Let $T \in \mathcal{T}$ and v a vertex of T with $l(v)=L$ such that: (1). each vertex labelled C of distance 2 from v is adjacent to a leaf vertex; (2). For any $C-C$ edge $w u$ of distance 1 from v, say v is adjacent to u, either u has a leaf other than v or $N(w)-u$ are all leaves. Construct a bigger tree T^{\prime} in \mathcal{T} from T and a labelled P_{4} by identifying v and a leaf vertex of P_{4}, labelling the identified vertex as L and keeping the labels of the other vertices unchanged, see Fig. 5(a).

Operation \mathcal{O}_{2} : Let $T \in \mathcal{T}$ and v a vertex of T with $l(v)=C$. Construct a bigger tree T^{\prime} in \mathcal{T} from T by adding a new vertex u adjacent to v, labelling u as L, keeping the labels of the other vertices unchanged, see Fig. 5(b).

Figure 4: Two operations.
From the two operations above, we can get the following simple observations.
Observation 4.1. Let $T \in \mathcal{T}$. Then
(1) Each leaf vertex is labelled L and each support vertex is labelled C.
(2) Exactly one neighbor of each vertex labelled C is labelled C, and the remaining neighbours are labelled L.
(3) No two vertices labelled L are adjacent.
(4) If one endpoints of a $C-C$ edge has a non-leaf neighbor labelled L, then the other endpoint has one leaf neighbor.

Lemma 4.1. Let $T \in \mathcal{T}$ and U the set of edges whose endpoints are labelled C in T. Then U is a $\gamma^{\prime}(T)$-set.

Proof. By Observation 4.1 (2) and (3), we know that U is an edge dominating set of T and further each component of the induced subgraph $T[U]$ is K_{2}. By Observation 4.1 (4) and Theorem 4.1, the size of any edge dominating set is at least $|D|$. Thus, U is a $\gamma^{\prime}(T)$-set of T.

Lemma 4.2. Let $T \in \mathcal{T}$. Then T is a $\left(\gamma_{t}^{\prime}=2 \gamma^{\prime}\right)$-tree.
Proof. We proceed by induction on the size m of the edge set of a tree $T \in \mathcal{T}$. For the initial step, it is obvious that $\gamma_{t}^{\prime}\left(P_{4}\right)=2 \gamma^{\prime}\left(P_{4}\right)$. For the inductive hypothesis, we assume that, for every $\bar{T} \in \mathcal{T}$ of edge size less than $m, \gamma_{t}^{\prime}(\bar{T})=2 \gamma^{\prime}(\bar{T})$. Let $T \in \mathcal{T}$ with edge size m, and suppose T is obtained from a tree $\bar{T} \in \mathcal{T}$ by one of two operations. We need to prove that $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$. Next, we divide two cases to analyze according to which operation is used to construct the tree T from \bar{T}.

Case 1. T is obtained from \bar{T} and a labelled $P_{4}=u_{1} u_{2} u_{3} u_{4}$ by Operation 1, i.e., identifying u_{1} and $v(\in V(\bar{T}))$, denoted by v the identifying vertex in T.

By Lemma 4.1, we have $\gamma^{\prime}(T)=\gamma^{\prime}(\bar{T})+1$. Next, we just need to show $\gamma_{t}^{\prime}(T)=$ $\gamma_{t}^{\prime}(\bar{T})+2$.

On the one hand, the union of a $\gamma_{t}^{\prime}(\bar{T})$-set of \bar{T} and $\left\{v u_{2}, u_{2} u_{3}\right\}$ is a TED-set of T, further $\gamma_{t}^{\prime}(T) \leqslant \gamma_{t}^{\prime}(\bar{T})+2$. On the other hand, it is sufficient to show that $\gamma_{t}^{\prime}(\bar{T})+2 \leq \gamma_{t}^{\prime}(T)$. Without loss of generality, let $N_{\bar{T}}(v)=\left\{v_{1}, \ldots, v_{r}\right\}$ for some positive integer r. For $1 \leqslant i \leqslant r$, from the definition of Operation 1 and Observation $4.1(3), l_{\bar{T}}(v)=L$ and $l_{\bar{T}}\left(v_{i}\right)=C$; by Observation 4.1 (2), we denote by $w_{i}(1 \leqslant i \leqslant r)$ the unique vertex labelled C adjacent to v_{i} in \bar{T}; and by the choice of v in the definition of Operation $1, w_{i}$ has one leaf neighbor in \bar{T}.

By Theorem 4.1, we let F_{t} be such a $\gamma_{t}^{\prime}(T)$-set that F_{t} contains no leaf edges. If the restriction $\left.F_{t}\right|_{\bar{T}}$ of F_{t} on \bar{T} is a TED-set of \bar{T}, then $\gamma_{t}^{\prime}(\bar{T})+2 \leq \gamma_{t}^{\prime}(T)$. In what follows we assume that $\left.F_{t}\right|_{\bar{T}}$ is not a TED-set of \bar{T}, then $\left|E_{\bar{T}}(v) \cap F_{t}\right| \leqslant 1$.

If $E_{\bar{T}}(v) \cap F_{t}=\emptyset$, then $\left.F_{t}\right|_{\bar{T}}$ does not dominate some edge incident with v in \bar{T}, say $v v_{i}$ for some integer i, further there is no leaf edge e incident with v_{i} in T, otherwise F_{t} does not dominate e in T. By the choice of v in Operation 1, all neighbors of w_{i} other than v_{i} are all leaves, a contradiction with the choice of F_{t}. If $E_{\bar{T}}(v) \cap F_{t}$ has a unique edge, say $v v_{i}$ for some i, then $w_{i} v_{i} \notin F_{t}$. Since w_{i} has a leaf vertex by the choice of v in Operation $\underline{1,}$ there is one edge in F_{t} incident with w_{i}. Therefore the restriction of $F_{t}-v v_{i}+v_{i} w_{i}$ on \bar{T} is a TED-set of \bar{T}, further $\underline{\gamma_{t}^{\prime}}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(T)$.
Case 2. T is obtained from \bar{T} by adding a new vertex u adjacent to v labelled C (i.e., Operation 2).

By Lemma 4.1, we can easily get $\gamma^{\prime}(T)=\gamma^{\prime}(\bar{T})$. Then $\gamma_{t}^{\prime}(T) \leqslant 2 \gamma^{\prime}(T)=2 \gamma^{\prime}(\bar{T})=$ $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)$, and so $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$.

Combined the two cases above, we have $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$ for $T \in \mathcal{T}$.

Lemma 4.3. Let T be a tree with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$, F a $\gamma^{\prime}(T)$-set. Then $N[e] \cap N\left[e^{\prime}\right]=\emptyset$ for any distinct edges $e, e^{\prime} \in F$.

Proof. By contradiction. Assume that there exist two edges e, e^{\prime} in F such that $N[e] \cap$ $N\left[e^{\prime}\right] \neq \emptyset$, say $e^{\prime \prime} \in N[e] \cap N\left[e^{\prime}\right]$. Now we construct a TED-set S of T from $F+e^{\prime \prime}:$ for any edge $f \in F-e-e^{\prime}$, adding an edge adjacent to f to $F+e^{\prime \prime}$. Then $|S| \leqslant 2|F|-1=$ $2 \gamma^{\prime}(T)-1$, a contradiction.

Corollary 4.3. Let T be a tree with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$, vu and $u w$ two adjacent edges in T. Then v, w and u can't all be support vertices.

Proof. This follows directly from Lemma 4.3 .
Lemma 4.4. Let T be a non-star tree with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$. Then $T \in \mathcal{T}$.
Proof. We proceed by induction on the edge size of a non-star tree T with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$. For the initial step, if T is a tree with $\operatorname{diam}(T)=3$, then T is a double star with $\gamma^{\prime}(T)=1$ and $\gamma_{t}^{\prime}(T)=2$, so we can obtain T from a labelled P_{4} by doing a series of Operation \mathcal{O}_{2}. By Corollaries 4.1 and 4.2 , if T is a tree with $\operatorname{diam}(T)=4$ or 5 , then T does not satisfy $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$. In what follows let T be a tree of edge size m and diameter at least 6 with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$. For the inductive hypothesis, we assume that every tree \bar{T} of edge size less than m with $\gamma_{t}^{\prime}(\bar{T})=2 \gamma^{\prime}(\bar{T})$ is in \mathcal{T}.

If a support vertex v has two leaf neighbor in T with $\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)$ and w is one of leaf neighbors of v, then v is still a support vertex in $\bar{T}=T-w$. Combined with Theorem 4.1, a minimum edge dominating set (resp. a minimum total edge set) of \bar{T} containing no leaf edges is exactly a minimum edge edge dominating set (resp. a minimum total edge set) of T containing no leaf edges. So $\gamma^{\prime}(\bar{T})=\gamma^{\prime}(T), \gamma_{t}^{\prime}(\bar{T})=\gamma_{t}^{\prime}(T)$. Therefore, $2 \gamma^{\prime}(\bar{T})=2 \gamma^{\prime}(T)=\gamma_{t}^{\prime}(T)=\gamma_{t}^{\prime}(\bar{T})$. By the inductive hypothesis, $\bar{T} \in \mathcal{T}$ with a labeling. By Observation 4.1 (1), the support vertex v is labelled C in \bar{T}. Thus we can obtain the tree T by applying Operation \mathcal{O}_{2} to \bar{T}.

Let P be a longest path in T, say $P=v_{0} v_{1} \ldots v_{t}$ for some $t(t \geqslant 6)$ and denoted by $e_{i}=v_{i} v_{i+1}$. If v_{2} has a leaf neighbor, say v_{1}^{\prime}, let $\bar{T}=T-v_{1}^{\prime}$. By Theorem 4.1, \bar{T} has a $\gamma^{\prime}(\bar{T})$-set (resp. a $\gamma_{t}^{\prime}(\bar{T})$-set) containing e_{1}, which is still a $\gamma^{\prime}(T)$-set (resp. a $\gamma_{t}^{\prime}(T)$-set), so $\gamma_{t}^{\prime}(\bar{T})=\gamma_{t}^{\prime}(T)=2 \gamma^{\prime}(T)=2 \gamma^{\prime}(\bar{T})$. By the inductive hypothesis, $\bar{T} \in \mathcal{T}$ with a labelling. By Observation 4.1 (1) and (2), the vertices v_{1} and v_{2} are labelled C in \bar{T}. Thus we can obtain the tree \bar{T} by applying Operation \mathcal{O}_{2} to \bar{T}.

In what follows we assume that each support vertex of T has exactly one leaf neighbor and v_{2} is not a support vertex. Let F be a $\gamma^{\prime}(T)$-set of T containing non-leaf edges by Theorem 4.1, thus $e_{1} \in F$. For convenience, we root T at the vertex v_{t}.
Claim 1. For every child v of v_{3}, the subtree of $T-v_{3}$ containing v is exactly P_{3}.
By contradiction. If v is a leaf, then there exists an edge incident with v_{3} in F, say e. Note that $e_{1} \in F$. But $N[e] \cap N\left[e_{1}\right] \neq \emptyset$, a contradiction with Lemma 4.3. If v has only leaf children, then $v v_{3} \in F$. Similarly, we can obtain a contradiction because $N\left[v v_{3}\right] \cap N\left[e_{1}\right] \neq \emptyset$. If v has at least two support children, then $|E(v) \cap F| \geqslant 2$, a contradiction. So v has exactly one support child, combined with the same role of v as v_{2} in the choice of P and the assumption, we obtain the claim.
Claim 2. For a child v_{3}^{\prime} of v_{4}, the length of a longest path starting at v_{3}^{\prime} in the subtree $T-v_{4}$ containing v_{3}^{\prime} is not 2 .

Assume to the contrary that there exists one child v_{3}^{\prime} of v_{4} such that the length of a longest path P starting at v_{3}^{\prime} in the subtree $T-v_{4}$ containing v_{3}^{\prime} is 2 , say $P=v_{3}^{\prime} v_{2}^{\prime} v_{1}^{\prime}$. Obviously, $v_{3}^{\prime} \neq v_{3}$ and $v_{3}^{\prime} v_{2}^{\prime} \in F$. Combined with Lemma 4.3 and $e_{1} \in F, E\left(v_{4}\right) \cap F=\emptyset$, then e_{3} is not dominated by F, a contradiction.

Claim 3. If there exists a child v_{3}^{\prime} of v_{4} such that the subtree of $T-v_{4}$ containing v_{3}^{\prime} is P_{2}, then v_{5} has no leaf child.

Similar to the analysis of Claims 1 and 2, we can show it by contradiction.
Claim 4. If $\operatorname{diam}(T)>6$ and there exist no children v_{3}^{\prime} of v_{4} such that the subtree of $T-v_{4}$ containing v_{3}^{\prime} is P_{2}, then v_{4} and v_{5} are both support vertices.

Suppose to the contrary. Since there is no subtree of $T \backslash\left\{v_{4}\right\}$ containing v_{3}^{\prime} isomorphic to P_{2}.

(a) A total edge dominating set F_{t} of T;

(b) a minimum total edge dominating set F_{t}^{\prime} of T.

Figure 5: Illstration for Claim 4 in Lemma 4.4.
Let $\left\{v_{3}^{1}, v_{3}^{2}, \ldots, v_{3}^{s}\right\}$ be the set of non-leaf children of v_{4} for some positive integer s. For any $1 \leqslant i \leqslant l$, combined the assumption and Claim 2, the length of a longest path starting at v_{3}^{i} in the subtree $T-v_{4}$ containing v_{3}^{i} is 3 . By the symmetry of v_{3} and v_{3}^{i} and Claim 1, the subtree of $T-v_{4}$ containing v_{3}^{i} is exactly P_{4}, say $v_{3}^{i} v_{2}^{i} v_{1}^{i} v_{0}^{i}$. By the choice of F and Lemma 4.3, for any $1 \leqslant i \leqslant s, v_{2}^{i} v_{1}^{i} \in F$ and $E\left(v_{3}^{i}\right) \cap F=\emptyset$. So $\left\{e_{4}\right\} \subseteq F$.

If v_{4} is not support, let e_{7}^{\prime} be the unique edge in $\left(E_{T}\left(v_{7}\right)-e_{6}\right) \cap F \neq \emptyset$ by $\left\{e_{4}\right\} \subseteq F$ and Lemma 4.3. Now we construct a TED-set F_{t} of T from $F_{0}=F-e_{4}+e_{5}$ by first adding the common neighbor edge e_{6} of e_{5} and e_{7}^{\prime} in F_{0}, second, for any $1 \leqslant i \leqslant l$, adding $v_{2}^{i} v_{3}^{i}$ into F_{0}, and adding a neighbor edge of each edge in $F_{0}-\left\{e_{5}, e_{7}^{\prime}\right\}+\left\{v_{1}^{1} v_{2}^{1}, v_{1}^{2} v_{2}^{2}, \cdots, v_{1}^{s} v_{2}^{s}\right\}$ (see Fig. 5(a)). It is obvious that F_{t} is a TED-set of T and $\left|F_{t}\right| \leqslant 2|F|-1$, a contradiction.

If v_{5} is not support, let A be the set of vertices of distance 2 from v_{5} in the subtree of $T-e_{4}$ containing v_{5}. For $v \in A,|F \cap E(v)|=1$, say e_{v}, by $e_{4} \in F$ and Lemma 4.3, and denoted by e_{v}^{\prime} the unique edge of $E(v)$ of distance 1 from v_{5}. Note that $e_{v}^{\prime} \neq e_{v}$ because v_{5} is of distance 2 from e_{v}. Now we can construct a TED-set F_{t}^{\prime} of T from $F_{0}^{\prime}=F-e_{4}+e_{3}$ by first adding e_{2} and the set $\left\{e_{v}^{\prime} \mid v \in A\right\}$ into F_{0}^{\prime}, second adding a neighbor edge of each edge in $F_{0}^{\prime}-\left\{e_{v} \mid v \in A\right\}-\left\{e_{1}, e_{3}\right\}$ (see Fig. 5(b)). Note that $\left\{e_{1}, e_{2}, e_{3}\right\} \in F_{t}^{\prime}$. It is obvious that F_{t}^{\prime} is a TED-set of T and $\left|F_{t}^{\prime}\right| \leqslant 2|F|-1$, a contradiction. So we prove Claim 4 .

By Claim 1 and the assumption that each support vertex of T has exactly one leaf neighbor and v_{2} is not a support vertex, $d\left(v_{1}\right)=d\left(v_{2}\right)=2$, thus the subgraph induced by $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$ is P_{4}. Let $\bar{T}=T-\left\{v_{0}, v_{1}, v_{2}\right\}$.
Claim 5. $\gamma_{t}^{\prime}(\bar{T})=2 \gamma^{\prime}(\bar{T})$.
Combined with Lemma 4.3 and $e_{1} \in F$, we have $E\left(v_{3}\right) \cap F=\emptyset$, thus the restriction of F on \bar{T} is an ED-set of \bar{T}, further $\gamma^{\prime}(\bar{T}) \leqslant \gamma^{\prime}(T)-1$. Combined with the obvious
inequality: $\gamma_{t}^{\prime}(T) \leqslant \gamma_{t}^{\prime}(\bar{T})+2$, we have $2 \gamma^{\prime}(\bar{T}) \leqslant 2\left(\gamma^{\prime}(T)-1\right)=2 \gamma^{\prime}(T)-2=\gamma_{t}^{\prime}(T)-2 \leqslant$ $\gamma_{t}^{\prime}(\bar{T}) \leqslant 2 \gamma^{\prime}(\bar{T})$. Consequently we must have equality throughout this inequality chain. Particularly, we have $\gamma_{t}^{\prime}(\bar{T})=2 \gamma^{\prime}(\bar{T})$.

By Claim 5 and the inductive hypothesis, $\bar{T} \in \mathcal{T}$ with a labelling. In what follows we show that T is obtained from \bar{T} by Operation \mathcal{O}_{1} (the identifying vertex is v_{3}, the role of v). By Claim 1 and Observation 4.1 (1), (2), (3), we have $l\left(v_{3}\right)=L, l\left(v_{4}\right)=C$. In the case $l\left(v_{5}\right)=C$, if $\operatorname{diam}(T)=6$, then all neighbors of v_{5} other than v_{4} are all leaves; if $\operatorname{diam}(T)>6$, then each child of v_{4} is labelled L and by Claim 4, v_{4} and v_{5} have both one leaf neighbor. In the other case $l\left(v_{5}\right)=L$, there is one child v_{3}^{\prime} of v_{4} labelling C. Combined with Corollary 4.1 and Claim 2, v_{3}^{\prime} has only leaf children. For the other C-C edges $w u$ of distance 1 from v_{3}, say v_{3} is adjacent to u, i.e., u is the child of v_{3}, by Claim 1. $N(w)-u$ are all leaves. Combined all cases above, it is obvious that the $C-C$ edge incident with v_{4} of distance 1 from v_{3} satisfies the condition in Operation \mathcal{O}_{1}. Therefore we can apply Operation \mathcal{O}_{1} from \bar{T} to obtain the tree T, further, $T \in \mathcal{T}$.

As an immediate consequence of Lemmas 4.2 and 4.4, we have
Theorem 4.2. A non-star tree is a $\left(\gamma_{t}^{\prime}=2 \gamma^{\prime}\right)$-tree if and only if $T \in \mathcal{T}$.

4.2 $\quad\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-trees

In this subsection we provide a constructive characterization of $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-trees T, i.e., a tree satisfying $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T)$. We use edge labelling to describe a procedure of constructing T recursively, which is different from the vertex labelling in the previous subsection. By Example 4.1 and Corollary 4.1, for the initial step, let T be a tree with $\operatorname{diam}(T)=4$, in which each edge is either a leaf edge or a support edge, we label support edges in T with S, leaf edges adjacent to at least two non-leaf-edges with L_{2}, other leaf edges with L_{1}.

Let \mathcal{T}_{t} be the family of edge-labelled trees T that contains edge-labelled trees with diameter 4 and is under the five operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}, \mathcal{O}_{5}$ listed below: constructing a bigger tree from a smaller tree in \mathcal{T}_{t}. For convenience, we call an edge labelled S (resp. L_{1}, L_{2}) in $T \in \mathcal{T}_{t}$ an S (resp. L_{1}, L_{2})-edge, and denote by $D(T)$ the set of S-edges. First, according to the label of the associated edges of the vertex v in an edge-labelled tree $T \in \mathcal{T}_{t}$, we partition the vertex set of T into the following four subsets A_{1}, A_{2}, B and C listed below:

$$
\begin{aligned}
A_{1} & :=\{v \mid \text { Only one } S-\text { edge in } E(v)\} ; \\
A_{2} & :=\{v \mid \text { At least two } S-\text { edges in } E(v)\} ; \\
B & :=\left\{v \mid \text { All edge in } E(v) \text { are } L_{2}-\text { edges }\right\} ; \\
C & :=V-A_{1}-A_{2}-B .
\end{aligned}
$$

(a) $v \in A_{1}$: exactly one S edge.
(c) $v \in B$: all edges in $E(v)$ are L_{2}-edges.

(d) $v \in C$: at least one L_{1-} edge but no S-edges in $E(v)$.

Figure 6: Vertex partition of $T \in \mathcal{T}$.
Now, we list the five operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}, \mathcal{O}_{5}$:
Operation \mathcal{O}_{1} : Let $T \in \mathcal{T}_{t}, v$ a vertex of T belonging to $A_{1} \cup A_{2}$. Construct a bigger tree T^{\prime} in \mathcal{T}_{t} from T by adding a new vertex u adjacent to v. If $v \in A_{1}$, then label $v u$
as L_{1}; (by definition, u is in C, A_{1}, A_{2}, B are unchanged;) if $v \in A_{2}$, then label $v u$ as L_{2} (note that $u \in B$ and A_{1}, A_{2}, C are unchanged), see Fig. 7(a).

Operation \mathcal{O}_{2} : Let $T \in \mathcal{T}_{t}, v$ a vertex of T belonging to A_{2}. Construct a bigger tree T^{\prime} in \mathcal{T}_{t} from T by adding two new adjacent vertices u_{1}, u_{2}, connecting v and u_{1} and labelling $v u_{1}$ as S and $u_{1} u_{2}$ as L_{1} (obviously, $u_{1} \in A_{1}$ and $u_{2} \in C$), see Fig. 7(b),

Operation \mathcal{O}_{3} : Let $T \in \mathcal{T}_{t}, v \notin A_{1}$ a vertex of T satisfying, in the case $v \in C$, that each L_{1}-edge in $E(v)$ is either adjacent to one leaf edge or contained in a $P_{4}=v w x y$, whose edges are labelled as L_{1}, L_{1}, L_{2} consecutively and all edges in $E(x)$ are L_{2}-edges except $w x$. Construct a bigger tree T^{\prime} in \mathcal{T}_{t} from T by adding a new path $u_{1} u_{2} u_{3} u_{4} u_{5}$ to join v and u_{2}, and labelling $u_{2} u_{3}, u_{3} u_{4}$ as $S, v u_{2}, u_{1} u_{2}, u_{4} u_{5}$ as L_{1}, see Fig. 7(c). (From the definition, $u_{2}, u_{4} \in A_{1}, u_{3} \in A_{2}, u_{1}, u_{5} \in C$ and if $v \in B$, then v is moved from B to C.)

Operation \mathcal{O}_{4} : Let $T \in \mathcal{T}_{t}, v \in B$ a vertex of T. Construct a bigger tree T^{\prime} in \mathcal{T}_{t} from T by adding a new path $u_{1} u_{2} u_{3} u_{4}$ to join v and u_{1}, and labelling $v u_{1}, u_{3} u_{4}$ as $L_{1}, u_{1} u_{2}, u_{2} u_{3}$ as S, see Fig. 7(d). (Similarly, $u_{1}, u_{3} \in A_{1}, u_{2} \in A_{2}, u_{4} \in C$, and v is moved from B to C.)

Operation \mathcal{O}_{5} : Let $T \in \mathcal{T}_{t}, v$ a vertex of T. Construct a bigger tree T^{\prime} in \mathcal{T}_{t} from T by adding a new path $u_{1} u_{2} u_{3} u_{4} u_{5}$ to join v and u_{3}, and labelling $v u_{3}$ as $L_{2}, u_{1} u_{2}, u_{4} u_{5}$ as L_{1}, $u_{2} u_{3}, u_{3} u_{4}$ as S, see Fig. $7(\mathrm{e})$. (From the definition, $u_{2}, u_{4} \in A_{1}, u_{1}, u_{5} \in C, u_{3} \in A_{2}$ and if $v \in B$, then v is moved from B to C.)

(a) Operation \mathcal{O}_{1} : the edge $u v$ is labelled as L_{2} if $v \in A_{2}$ and is labelled as L_{1} if $v \in A_{1}$.

(b) Operation \mathcal{O}_{2}.

(c) Operation \mathcal{O}_{3}.

(d) Operation \mathcal{O}_{4}.

(e) Operation \mathcal{O}_{5}.

Figure 7: Five operations.
From the five operations above, we can get the simple observations as follows.
Observation 4.2. Let $T \in \mathcal{T}_{t}$.
(1) One endpoint of an L_{1}-edge is incident with exactly one S-edge, the other endpoint is incident with either non S-edges or at least two S-edges.
(2) An L_{2}-edge is adjacent to at least two S-edges.
(3) A leaf edge is labelled L_{1} or L_{2}. Furthermore, a leaf edge adjacent to exactly one non-leaf edge e is labelled L_{1} and e is labelled as S.
(4) Each edge in T is adjacent to at least one S-edge, and each component of the induced subgraph $T[D(T)]$ is a nontrivial star. Further, $D(T)$ is a total edge dominating set of T.

Lemma 4.5. Let $T \in \mathcal{T}_{t}$. Then $D(T)$ is a $\gamma_{t}^{\prime}(T)$-set and T is a $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-tree.
Proof. Let $T \in \mathcal{T}_{t}$, we first prove that $D(T)$ (simply, D) is a $\gamma_{t}^{\prime}(T)$-set. By Observation 4.2 (4), D is a TED-set of T. It is sufficient to find a set L of L_{1}-edges of size $|D|$ such that each edge in L has exactly one neighbor S-edge. In order to prove that there is such an edge set of each tree T in \mathcal{T}_{t}, we proceed by induction on the size m of the edge set of T. For the initial step, the leaves adjacent to exactly one non-leaf edge of T with diameter 4 construct the required set L. For the inductive step, we assume each tree \bar{T} of size less than m in \mathcal{T}_{t} has a set \bar{L} of L_{1}-edges such that each edge in \bar{L} has exactly one neighbor S-edge. Now we divide five cases as follows:
Case 1. T is obtained by applying Operation \mathcal{O}_{1} from \bar{T} and a vertex u.
In this case, $D(T)=D(\bar{T})$, and let $L=\bar{L}$, which is the desired set for T.
Case 2. T is obtained by applying Operation \mathcal{O}_{2} from \bar{T} and an edge $u_{1} u_{2}$ in which a vertex v in \bar{T} is adjacent to u_{1}.

In this case, $D(T)$ is one more S-edge than $D(\bar{T})$. By Observation 4.2 (1), there is no L_{1}-edges in \bar{L} incident with v. So $\bar{L} \cup\left\{u_{1} u_{2}\right\}$ is a desired set for T.
Case 3. T is obtained by applying Operation \mathcal{O}_{3} from \bar{T} and a path $u_{1} u_{2} u_{3} u_{4} u_{5}$.
In this case, $D(T)$ is two more edges than $D(\bar{T})$. If $v \in A_{2} \cup B$, by the definitions of A_{2}, B and Observation 4.2 (1), there are no L_{1}-edges incident with v in \bar{T}. So $\bar{L} \cup$ $\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$ is a desired set for T.

When $v \in C$, if there is no L_{1}-edge incident with v in \bar{L}, then $\bar{L} \cup\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$ is a desired set for T. Otherwise, let $e^{\prime}=v w$ be the L_{1}-edge in \bar{L}, from the definition of Operation \mathcal{O}_{3}, there is one leaf edge $e^{\prime \prime}$ incident with w or there exists a $P_{4}=v w x y$ in \bar{T}, whose edges are labelled as L_{1}, L_{1}, L_{2} consecutively and all edges in $E(x)$ are L_{2}-edges except $w x$, then $\left(\bar{L}-e^{\prime}\right) \cup\left\{u_{1} u_{2}, u_{4} u_{5}, e^{\prime \prime}\right\}$ or $\left(\bar{L}-e^{\prime}\right) \cup\left\{u_{1} u_{2}, u_{4} u_{5}, w x\right\}$ is a desired set for T.

Therefore, we can always find a desired set for T in this case.
Case 4. T is obtained by applying Operation \mathcal{O}_{4} from \bar{T} and a path $u_{1} u_{2} u_{3} u_{4}$.
In this case, $D(T)$ is two more edges than $D(\bar{T})$. If there is no L_{1}-edge in \bar{L} adjacent to some edge in $E(v)$, then $\bar{L} \cup\left\{v u_{1}, u_{3} u_{4},\right\}$ is a desired set for T. Otherwise, let $w x$ be the L_{1}-edge in \bar{L} adjacent to some edge in $E(v)$. By Observation 4.2 (1), (2), without loss of generality, assume $x \in A_{1}$, then there is an L_{1}-edge $x y$ in $E(x)$ such that y is either a leaf vertex or only incident with L_{2}-edges except $x y$. So $(\bar{L}-w x) \cup\left\{v u_{1}, u_{3} u_{4}, y x\right\}$ is a desired set for T.

Hence, we can always find a desired set for T in this case.
Case 5. T is obtained by applying Operation \mathcal{O}_{5} from \bar{T} and a path $u_{1} u_{2} u_{3} u_{4} u_{5}$.
In this case, $D(T)$ is two more edges than $D(\bar{T})$. So $\bar{L} \cup\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$ is a desired edge set for T.

Combined the five cases above, for $T \in \mathcal{T}_{t}$, we can always find an edge set L collecting L_{1}-edge such that each edge in L has exactly one neighbor S-edge. Since the edges in L need at least $|L|$ edges to dominate, $\gamma^{\prime}(T) \geqslant|L|=|D|$. Hence, D is a $\gamma_{t}^{\prime}(T)$-set and T is a $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-tree
Lemma 4.6. Let T be a $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-tree, F_{t} a $\gamma_{t}^{\prime}(T)$-set. Then any component of the induced subgraph $T\left[F_{t}\right]$ is nontrivial star.

Proof. By contradiction. If there is a $P=v_{1} v_{2} v_{3} v_{4}$ in $T\left[F_{t}\right]$, then the edges which are dominated by $v_{2} v_{3}$ are also dominated by $v_{1} v_{2}$ or $v_{3} v_{3}$. So $F_{t}-v_{2} v_{3}$ is an edge dominating set with cardinality $\left|F_{t}\right|-1$, a contradiction. Hence every component of $T\left[F_{t}\right]$ is a nontrivial star.

Lemma 4.7. Let T be a $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-tree. Then $T \in \mathcal{T}_{t}$.
Proof. We proceed by induction on the edge size of a nontrivial tree T satisfying $\gamma_{t}^{\prime}(T)=$ $\gamma^{\prime}(T)$. For the initial step, by Corollary 4.1, a tree T with diameter 4 satisfies $\gamma_{t}^{\prime}(T)=$ $\gamma^{\prime}(T)$ and is in \mathcal{T}_{t}. For the inductive hypothesis, we assume that every tree \bar{T} with $\gamma_{t}^{\prime}(\bar{T})=\gamma^{\prime}(\bar{T})$ has edge size less than m and $\operatorname{diam}(\bar{T}) \geqslant 5$, there exists an edge label such that $\bar{T} \in \mathcal{T}$.

If a support vertex v of T has at least two leaf neighbors, say u and w two of them, then v is still a support vertex in $\bar{T}=T-w$. By Theorem 4.1, any minimum edge dominating set of \bar{T} containing no leaf edges is still an edge dominating set of T. So $\gamma^{\prime}(T)=\gamma_{t}^{\prime}(T)=$ $\gamma^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)$ and $\gamma_{t}^{\prime}(\bar{T})=\gamma^{\prime}(\bar{T})$. Hence, by the inductive hypothesis, $\bar{T} \in \mathcal{T}_{t}$. By Observation 4.2 (1), (2), (3), $u v$ is an L_{1} - or L_{2}-edge and $v \in A_{2} \cup A_{1}$ in \bar{T}. We can obtain the tree \bar{T} by applying Operation \mathcal{O}_{1} from \bar{T} and a new vertex w, so $T \in \mathcal{T}_{t}$. We may assume that each support vertex of $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-tree T of edge size m has exactly one leaf neighbor, denoted by Assumption 1.

If a support vertex v of T, say w is a leaf neighbor of v, has a support neighbor with degree 2 , then let $\bar{T}=T-w$. Similar to the discuss as above, $\gamma_{t}^{\prime}(\bar{T})=\gamma^{\prime}(\bar{T})$ and by the inductive hypothesis, $\bar{T} \in \mathcal{T}_{t}$. By Observation 4.2 (3), $u v$ is an S-edge in \bar{T}, combined with Observation 4.2 (4), v $\in A_{2}$. We can obtain the tree T by applying Operation \mathcal{O}_{1} from \bar{T} and a new vertex w, so $T \in \mathcal{T}_{t}$. We may assume that there is no support vertex which has a support neighbor of degree 2, denoted by Assumption 2.

If v has at least three support neighbors of degree 2 in T, say $\left\{u_{1}, u_{2}, \ldots, u_{l}\right\}$ and $l \geqslant 3$, and set \bar{T} as the tree from T by deleting $\left\{u_{3}, u_{4}, \ldots, u_{l}\right\}$ and their respective children, then similar to the discuss as above, $\bar{T} \in \mathcal{T}_{t}$ and T is obtained from \bar{T} by applying a series of Operation \mathcal{O}_{2}, so $T \in \mathcal{T}_{t}$. Hence we may assume that every vertex has at most two support neighbors of degree 2, denoted by Assumption 3.

Let F_{t} be a $\gamma_{t}^{\prime}(T)$-set containing non-leaf edges, $P=v_{0} v_{1} \ldots v_{t}$ the longest path of T, say the edge $e_{i}=v_{i} v_{i+1}$. Obviously, v_{1} is a support vertex of degree 2 and each child of v_{2} is a support vertex of degree 2 . We root T at the vertex v_{t}.

Since e_{0} is a leaf edge, F_{t} must contain e_{1}. Combined with Lemma 4.6 and the choice of F_{t}, it is impossible to contain both e_{2} and e_{3} in F_{t}, i.e., $e_{2} \in F_{t}$ and $e_{3} \notin F_{t}$ or $e_{2} \notin F_{t}$ and $e_{3} \in F_{t}$ or $e_{2} \notin F_{t}$ and $e_{3} \notin F_{t}$.

Combined with Assumptions 2 and $3, d\left(v_{2}\right)=2$ or 3 . Next, we divide two cases according to the degree of v_{2}.
Case 1. $d\left(v_{2}\right)=3$.
By Assumptions 1 and 2 , v_{2} has another support child v_{1}^{\prime} of degree 2, say v_{0}^{\prime} is the child of v_{1}^{\prime}.
Subcase 1.1. $e_{2} \in F_{t}$.
In this subcase, we can let $\bar{T}=T-\left\{v_{0}, v_{1}\right\}$. Combined with Lemma 4.6 and the choice of F_{t}, the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}, further, $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-1$. Combined with an obvious inequality: $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+1$, we have $\gamma^{\prime}(\bar{T})+1 \leqslant \gamma_{t}^{\prime}(\bar{T})+1 \leqslant \gamma_{t}^{\prime}(T)=$ $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+1$, and so $\gamma_{t}^{\prime}(\bar{T})=\gamma^{\prime}(\bar{T})$. By the inductive hypothesis, there is an edge label of \bar{T} such that $\bar{T} \in \mathcal{T}_{t}$. By Observation 4.2 (3), $v_{1}^{\prime} v_{2}$ is an S-edge in \bar{T}, combined with Observation 4.2 (4), there are at least two S-edges incident with v_{2} in \bar{T} in either case, $v_{2} \in A_{2}$. We can obtain the tree T by applying Operation \mathcal{O}_{2} from \bar{T} and a new edge $v_{0} v_{1}$, so $T \in \mathcal{T}_{t}$.
Subcase 1.2. $e_{2} \notin F_{t}$.
Let $\bar{T}=T-\left\{v_{0}, v_{1}, v_{1}^{\prime}, v_{0}^{\prime}, v_{2}\right\}$. Since edges $v_{1}^{\prime} v_{0}^{\prime}$ and e_{0} are leaf edges, combined with Lemma 4.6 and the choice of F_{t}, the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}, further,
$\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-2$.
Combined with an obvious inequality: $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, we have $\gamma^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(\bar{T})+$ $2 \leqslant \gamma_{t}^{\prime}(T)=\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, and so $\gamma_{t}^{\prime}(\bar{T})=\gamma^{\prime}(\bar{T})$. By the inductive hypothesis, there is an edge label of \bar{T} such that $\bar{T} \in \mathcal{T}_{t}$. We can obtain the tree T by applying Operation \mathcal{O}_{5} from \bar{T} and a path $v_{0} v_{1} v_{2} v_{1}^{\prime} v_{0}^{\prime}$, so $T \in \mathcal{T}_{t}$.
Case 2. $d\left(v_{2}\right)=2$.
Since $d\left(v_{2}\right)=2$, we have $\left\{e_{1}, e_{2}\right\} \subseteq F_{t}$ by the choice of F_{t}. So $\left(E\left(v_{3}\right)-e_{2}\right) \cap F_{t}=\emptyset$ by Lemma 4.6 .
Claim 6. Let v_{2}^{\prime} be a child of v_{3} other than v_{2}. Then v_{2}^{\prime} is a leaf vertex.
By contradiction. v_{2}^{\prime} has at most one support child by symmetry and Assumption 3. Then $v_{2}^{\prime} v_{3}$ belongs to F_{t} by the choice of F_{t}, a contradiction with Lemma 4.6.

Claim 7. Let v_{4}^{\prime} be any non-leaf child of v_{5}. Then each subtree $T_{4^{\prime}}$ of $T-v_{4}^{\prime}$ not containing v_{5} is isomorphic to one of the graphs in the following figure.

Figure 8: The subgraphs following v_{4}^{\prime}.
Let v_{3}^{\prime} be the child of v_{4}^{\prime} in $T_{4^{\prime}}$. If the length of a longest path starting at v_{3}^{\prime} in $T_{4^{\prime}}$ is 3 , combined with symmetry, Claim 6 and Assumptions 1, 2, 3, then $T_{4^{\prime}}$ is isomorphic to (a) or (b). If the length of a longest path starting at v_{3}^{\prime} in $T_{4^{\prime}}$ is 2 , combined with Assumptions 1, 2, 3, then $T_{4^{\prime}}$ is isomorphic to (e) or (f). If the length of a longest path starting at v_{3}^{\prime} in $T_{4^{\prime}}$ is 1 , by Assumption 1, then $T_{4^{\prime}}$ is isomorphic to (c). If the length of a longest path starting at v_{3}^{\prime} in $T_{4^{\prime}}$ is 0 , then $T_{4^{\prime}}$ is (d). Therefore, $T_{4^{\prime}}$ is isomorphic to one of the graphs in the Fig. 8 ,

If v_{4} has one non-leaf child, say $v_{3}^{\prime \prime}$, such that the subtree T_{4} of $T-v_{4}$ containing $v_{3}^{\prime \prime}$ is isomorphic to (e) in Fig. 8, then T_{4} is a P_{5}. Let \bar{T} be the subtree of $T-T_{4}$. If $v_{4} v_{3}^{\prime \prime} \in F_{t}$, then $F_{t}-v_{4} v_{3}^{\prime \prime}+e_{3}-e_{2}$ is still an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction. Hence $v_{4} v_{3}^{\prime \prime} \notin F_{t}$ and the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}, further $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-2$. Combined with an obvious inequality: $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, we have $\gamma^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(\bar{T})+2 \leqslant$ $\gamma_{t}^{\prime}(T)=\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, so $\gamma^{\prime}(\bar{T})=\gamma_{t}^{\prime}(\bar{T})$. By the inductive hypothesis, $\bar{T} \in \mathcal{T}_{t}$ with an edge labelling. Thus T is obtained from \bar{T} by applying Operation \mathcal{O}_{5}. So $T \in \mathcal{T}_{t}$. In what follows assume that there is no subtree of $T-v_{4}$ not containing v_{5} isomorphic to (e) in Fig. 8, denoted by Assumption 4.

Claim 8. If $\left|E\left(v_{5}\right) \cap F_{t}\right| \geqslant 1$ and there is a child, say $v_{4}^{\prime \prime}$, of v_{5} such that there is a subtree $T_{4^{\prime \prime}}$ of $T-v_{4}^{\prime \prime}$ not containing v_{5} isomorphic to (e) in Fig. 8, then T is obtained from $\bar{T}=T-T_{4^{\prime \prime}}$ by applying Operation \mathcal{O}_{5}.

Let $v_{3}^{\prime \prime \prime}$ be the child of $v_{4}^{\prime \prime}$ in $T_{4^{\prime \prime}}$. Obviously $T_{4^{\prime \prime}}$ is a P_{5}. In one case $\left|E\left(v_{5}\right) \cap F_{t}\right| \geqslant 2$, if $v_{4}^{\prime \prime} v_{3}^{\prime \prime \prime} \in F_{t}$, then $F_{t}^{\prime}=F_{t}-v_{4}^{\prime \prime} v_{3}^{\prime \prime \prime}+v_{4}^{\prime \prime} v_{5}$ is still a TED-set of T. The restriction of F_{t}^{\prime} on \bar{T} is a TED-set of \bar{T}, further $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-2$. Similar to the discuss as above, $\bar{T} \in \mathcal{T}_{t}$. Thus T is obtained from \bar{T} by applying Operation \mathcal{O}_{5}. If $v_{4}^{\prime \prime} v_{3}^{\prime \prime \prime} \notin F_{t}$, then the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}. Similar to the discuss as above, T is obtained from \bar{T} by applying Operation \mathcal{O}_{5}.

In the other case $\left|E\left(v_{5}\right) \cap F_{t}\right|=1$, say $e_{5}^{\prime}=E\left(v_{5}\right) \cap F_{t}$. Let x be any non-leaf neighbor of v_{5} in T. We claim that $\left|E(x) \cap F_{t}\right| \neq 1$. Indeed, if this is not the case, say $e_{x}=E(x) \cap F_{t}$, then $F_{t}-e_{5}^{\prime}-e_{x}+x v_{5}$ is an ED-set of T, a contradiction. So $v_{4}^{\prime \prime} v_{3}^{\prime \prime \prime} \notin F_{t}$. Combined Lemma 4.6, similar to the discuss as above, T is obtained from \bar{T} by applying Operation \mathcal{O}_{5}.

In what follows assume that, if $\left|E\left(v_{5}\right) \cap F_{t}\right| \geqslant 1$ and let v_{4}^{\prime} be a child of v_{5}, there is no subtree of $T-v_{4}^{\prime}$ not containing v_{5} isomorphic to (e) in Fig. 8, denoted by Assumption 5.

By Claim 7, let $\left\{v_{3}^{1}, v_{3}^{2}, \ldots, v_{3}^{w}\right\}$ be the set of children of v_{4} such that the subtree of $T-v_{4}$ containing v_{3}^{i} is isomorphic to (a) for $0 \leqslant i \leqslant w,\left\{u_{3}^{1}, u_{3}^{2}, \ldots, u_{3}^{z}\right\}$ the set of children of v_{4} such that the subtree of $T-v_{4}$ containing u_{3}^{j} is isomorphic to (b) in Fig. 8 for $0 \leqslant j \leqslant z$. Combined with the structure of (a) and (b) and Lemma 4.6, we have $\left|\left(E\left(v_{3}^{i}\right)-v_{3}^{i} v_{4}\right) \cap F_{t}\right|=1$ and $\left|\left(E\left(u_{3}^{j}\right)-u_{3}^{j} v_{4}\right) \cap F_{t}\right|=1$, say $e_{v}^{i}=\left(E\left(v_{3}^{i}\right)-v_{3}^{i} v_{4}\right) \cap F_{t}$ and $e_{u}^{j}=\left(E\left(u_{3}^{j}\right)-u_{3}^{j} v_{4}\right) \cap F_{t}$ for each i and j. Then,
Claim 9. $w \leqslant 1$. Further, if $w=1$, then $d\left(v_{4}\right)=2$.
By contradiction. If $w \geqslant 2$, then $F_{t}-e_{v}^{1}+e_{3}-e_{v}^{2}$ is an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction. So $w \leqslant 1$.

Assume that $d\left(v_{4}\right) \geqslant 3$ when $w=1$. If $z \neq 0$, then $F_{t}-e_{u}^{1}+v_{4} u_{3}^{1}-e_{v}^{1}$ is an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction. If there is a subtree of $T-v_{4}$ not containing v_{5} isomorphic to one of (c), (d) and (f) in Fig. 8, then $E\left(v_{4}\right) \cap F_{t} \neq \emptyset$ by the choice of F_{t} and Lemma 4.6, thus $F_{t}-e_{v}^{1}$ is an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction. Therefore, if $w=1$, then $d\left(v_{4}\right)=2$.

By Claim 9, we have the following two claims.
Claim 10. There is no subtree of $T-v_{4}$ not containing v_{5} isomorphic to (f) in Fig. 8.
By Claim 9, we just need to consider the case $w=0$. By contradiction. If there is a subtree of $T-v_{4}$ containing one child, say v_{3}^{\prime}, of v_{4} isomorphic to (f), then $\left|E\left(v_{3}^{\prime}\right) \cap F_{t}\right| \geqslant 2$ and $v_{4} v_{3}^{\prime} \in F_{t}$. Thus $F_{t}-v_{4} v_{3}^{\prime}-e_{2}+e_{3}$ is an ED-set of T of size $\left|F_{t}\right|-1$ by Lemma 4.6, a contradiction.

Combined with Assumption 4 and Claim 10, there is no subtree of $T-v_{4}$ not containing v_{5} isomorphic to (e) or (f).
Claim 11. If $w=1$, then $E\left(v_{4}\right) \cap F_{t}=\emptyset$. Otherwise, $\left|E\left(v_{4}\right) \cap F_{t}\right| \neq 1$.
By contradiction. Assume $E\left(v_{4}\right) \cap F_{t} \neq \emptyset$ when $w=1$, then $F_{t}-e_{2}$ is an ED-set of T, a contradiction. Assume $\left|E\left(v_{4}\right) \cap F_{t}\right|=1$ when $w=0$, then $e_{4} \in F_{t}$ by Claims 7 and 10. Thus $F_{t}-e_{4}+e_{3}-e_{2}$ is an ED-set of T, a contradiction. Therefore, if $w=1$, then $E\left(v_{4}\right) \cap F_{t}=\emptyset$. Otherwise, $\left|E\left(v_{4}\right) \cap F_{t}\right| \neq 1$.

Combined with Claims 7, 10 and 11, if $\left|E\left(v_{4}\right) \cap F_{t}\right| \geqslant 2$, then there is a subtree of $T-v_{4}$ not containing v_{5} isomorphic to graph (c) in Fig. 8, i.e., a $P_{2}=u v$, say u is a child of v_{4}. By Claim 9 , the subtree T^{a} of $T-v_{4}$ containing v_{3} is isomorphic to (b). Let \bar{T} be the subtree of $T-T^{a}$. By $\left|E\left(v_{4}\right) \cap F_{t}\right| \geqslant 2$, the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}, further $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-2$. Combined with an obvious inequality: $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, we have $\gamma^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(T)=\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, and so $\gamma^{\prime}(\bar{T})=\gamma_{t}^{\prime}(\bar{T})$. By the inductive hypothesis, $\bar{T} \in \mathcal{T}_{t}$ with an edge labelling. In \bar{T}, by Observation 4.2 (3), the leaf edge $u v$ is an L_{1}-edge and $v_{4} u$ is an S-edge. Combined with Observation 4.2 (4), $v_{4} \in A_{2}$. Therefore T is obtained from \bar{T} by applying Operation \mathcal{O}_{3}. So $T \in \mathcal{T}_{t}$.

If $E\left(v_{4}\right) \cap F_{t}=\emptyset$, then there is no subtree of $T-v_{4}$ not containing v_{5} isomorphic to (c) or (d). Combined with Claims 7. 9, Assumption 4 and the above analysis, then we may
assume that each subtree of $T-v_{4}$ not containing v_{5} is isomorphic to (a) or (b), denoted by Assumption 6.

By Assumption 6, we can divide two subcases to discuss according to the subtree T_{4} of $T-v_{4}$ containing v_{3} is isomorphic to (a) or (b) as follow.
Subcase 2.1. T_{4} is isomorphic to (a).
By Claims 9 and 11, $d\left(v_{3}\right)=d\left(v_{4}\right)=2$ and $E\left(v_{4}\right) \cap F_{t}=\emptyset$. Obviously, $e_{4} \notin F_{t}$ and $\left|E\left(v_{5}\right) \cap F_{t}\right| \geqslant 1$.
Claim 12. $\left|E\left(v_{5}\right) \cap F_{t}\right| \geqslant 2$.
If $\left|\left(E\left(v_{5}\right)-e_{4}\right) \cap F_{t}\right|=1$, say $e_{5}^{\prime}=E\left(v_{5}\right) \cap F_{t}$, then $F_{t}-e_{5}^{\prime}+e_{4}-e_{2}$ is an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction.

Combined with $\left|E\left(v_{5}\right) \cap F_{t}\right| \geqslant 2$ and $E\left(v_{4}\right) \cap F_{t}=\emptyset$, there is a child other than v_{4}, say v_{4}^{\prime}, of v_{5} such that $v_{5} v_{4}^{\prime} \in F_{t}$. Obviously, v_{4}^{\prime} is not a leaf. Then
Claim 13. v_{4}^{\prime} is a support vertex of degree 2.
We first show that v_{4}^{\prime} is a support vertex. Assume to the contrary that v_{4}^{\prime} has no leaf children, combined with Claim 7. Assumption 5 and Lemma 4.6, every subtree of $T-v_{4}^{\prime}$ not containing v_{5} is isomorphic to (a) or (b) in Fig. 8. Obviously $F_{t}-v_{5} v_{4}^{\prime}$ is still an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction. Therefore, v_{4}^{\prime} is a support vertex.

If $d\left(v_{4}^{\prime}\right) \geqslant 3$, then we denote by T^{\prime} a subtree of $T-v_{4}^{\prime}$ containing a non-leaf child of v_{4}^{\prime}. Combined with Assumption 5 and Claim 7, T^{\prime} is not isomorphic to (a) or (e) in Fig. 8. By Lemma 4.6. T^{\prime} is not isomorphic to (c) or (f). Hence T^{\prime} is isomorphic to (b), say v_{3}^{\prime} the non-leaf child of $v_{4}^{\prime}, v_{2}^{\prime}$ the non-leaf child of v_{3}^{\prime}. Obviously, $F_{t}-v_{5} v_{4}^{\prime}-v_{2}^{\prime} v_{3}^{\prime}+v_{3}^{\prime} v_{4}^{\prime}$ is an ED-set of T of size $\left|F_{t}\right|-1$, a contradiction. So $d\left(v_{4}^{\prime}\right)=2$.

Since $d\left(v_{2}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=2$, the subgraph induced by $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$ is P_{4}. Let $\bar{T}=T-\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. By $E\left(v_{4}\right) \cap F_{t}=\emptyset$, the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}, further $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-2$. Combined with an obvious inequality: $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, we have $\gamma^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(T)=\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, and so $\gamma^{\prime}(\bar{T})=\gamma_{t}^{\prime}(\bar{T})$. By the inductive hypothesis, $\bar{T} \in \mathcal{T}_{t}$ with an edge labelling. By Observation 4.2 (3), e_{4} is an $L_{2^{-}}$or $L_{1^{-}}$-edge. Combined with Claim 13 and Observation 4.2 (11), (4), e_{4} is an L_{2}-edge. Since $d_{\bar{T}}\left(v_{4}\right)=1, v_{4} \in B$. Therefore T is obtained from \bar{T} by applying Operation \mathcal{O}_{4}, $T \in \mathcal{T}_{t}$.
Subcase 2.2. T_{4} is isomorphic to (b).
In this subcase, let v_{4}^{\prime} be any non-leaf child of v_{5}, by symmetry and Assumption 6, there is no subtree of $T-v_{4}^{\prime}$ not containing v_{5} isomorphic to (a) in Fig. 8, and each subtree of $T-v_{4}$ not containing v_{5} is isomorphic to (b), i.e., a P_{5}. Let $\bar{T}=T-T_{4}$. Since $e_{3} \notin F_{t}$ by Lemma 4.6, the restriction of F_{t} on \bar{T} is a TED-set of \bar{T}, further $\gamma_{t}^{\prime}(\bar{T}) \leqslant \gamma_{t}^{\prime}(T)-2$. Combined with an obvious inequality: $\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, we have $\gamma^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(\bar{T})+2 \leqslant \gamma_{t}^{\prime}(T)=\gamma^{\prime}(T) \leqslant \gamma^{\prime}(\bar{T})+2$, further $\gamma^{\prime}(\bar{T})=\gamma_{t}^{\prime}(\bar{T})$. By the inductive hypothesis, $\bar{T} \in \mathcal{T}_{t}$ with an edge labelling. Combined with the structure of (b) and Observation 4.2 (2), then in \bar{T}, all edges connecting v_{4} and its children being L_{1} edges, so $v_{4} \in C$ by Observation 4.2 (1). If in \bar{T}, e_{4} is an L_{2}-edge or e_{4} is an L_{1}-edge and adjacent to a leaf edge, then T is obtained from \bar{T} by applying Operation \mathcal{O}_{3}. In what follows we assume that in \bar{T}, e_{4} is an L_{1}-edge and adjacent to non-leaf edges, denoted by Assumption 7. Note that in \bar{T}, there is only one S-edge in $E_{\bar{T}}\left(v_{5}\right)$, say e_{5}^{\prime}, and $v_{5} \in A_{1}$ in \bar{T}.

By Lemma 4.5, all S-edges in \bar{T} construct a minimum total edge dominating set $D(\bar{T})$. Then, $F_{t}^{\prime \prime}=D(\bar{T})+e_{1}+e_{2}$ is a minimum total edge dominating set of T by
$\gamma_{t}^{\prime}(\bar{T})+2=\gamma_{t}^{\prime}(T)$. Further, $\left|E\left(v_{5}\right) \cap F_{t}^{\prime}\right|=1$, Claim 8 still holds. Then, we have the following claim:
Claim 14. e_{5} is an L_{1}-edge in $E_{\bar{T}}\left(v_{5}\right)$, and all edges in $\left(E_{\bar{T}}\left(v_{6}\right)-e_{5}\right)$ are L_{2}-edges.
Let v_{4}^{\prime} be any non-leaf child of v_{5} other than v_{4} and v_{3}^{\prime} any child of v_{4}^{\prime} in \bar{T}. There is no subtree of $\bar{T}-v_{4}^{\prime}$ containing v_{3}^{\prime} isomorphic to (e) in \bar{T} by Assumption 5 and Claim 8. We claim that the length of a longest path starting at v_{3}^{\prime} in the subtree T^{\prime} of $T-v_{4}^{\prime}$ containing v_{3}^{\prime} is 3 or 1 . If the length of a longest path starting at v_{3}^{\prime} in T^{\prime} is 2 or 0 , by Lemma 4.6 and Observation 4.2 (3), (4), then $v_{4}^{\prime} \in A_{1}$ in \bar{T}, a contradiction by Observation 4.2 (1) and Lemma 4.6. By symmetry, Claim 7 and Assumptions 1, 2, 3, we know that T^{\prime} is isomorphic to (b) or (c). Let $\left\{z_{4}^{1}, \ldots, z_{4}^{h}\right\}$ be the set of children of v_{5} such that there is a subtree T_{4}^{r} of $T-z_{4}^{r}$ not containing v_{5} is isomorphic to (b) in \bar{T} for $1 \leqslant r \leqslant h$. Let z_{3}^{r} be the child of z_{4}^{r} in T_{4}^{r}. By the structure of (b), then $\left|E\left(z_{3}^{r}\right) \cap F_{t}^{\prime}\right|=1$, say $e^{r}=\left(E\left(z_{3}^{r}\right)-z_{3}^{r} z_{4}^{r}\right) \cap F_{t}^{\prime}$ for each r. If $E\left(v_{6}\right)$ has an S-edge other than e_{5}, then $F_{t}^{\prime}-\left\{e^{1}, \ldots, e^{h}\right\}+\left\{z_{3}^{1} z_{4}^{1}, \ldots, z_{3}^{h} z_{4}^{h}\right\}-e_{5}^{\prime}$ is an ED-set of T of size $\left|F_{t}^{\prime}\right|-1$, a contradiction. So all edges in $\left(E\left(v_{6}\right)-e_{5}\right)$ are L_{1} - or L_{2}-edges. By Observation 4.2 (2), (4), e_{5} is an L_{1}-edge.

By contradiction. If there is one edge $e_{6}^{\prime}=v_{6} v_{7}^{\prime}$ in $\left(E_{\bar{T}}\left(v_{6}\right)-e_{5}\right)$ is an L_{1}-edge, then there is exactly one S-edge $e_{6}^{\prime \prime}$ incident with v_{7}^{\prime} by Observation 4.2 (1). Thus $F_{t}^{\prime}-e_{6}^{\prime \prime}+$ $e_{6}^{\prime}-\left\{e^{1}, \ldots, e^{h}\right\}+\left\{z_{3}^{1} z_{4}^{1}, \ldots, z_{3}^{h} z_{4}^{h}\right\}-e_{5}^{\prime}$ is an ED-set of T of size $\left|F_{t}^{\prime}\right|-1$, a contradiction. Therefore, all edges in $\left(E_{\bar{T}}\left(v_{6}\right)-e_{5}\right)$ are L_{2}-edges.

Combined with the structure of (b) and Claim 14, all L_{1}-edges in $\left(E_{\bar{T}}\left(v_{4}\right)-e_{4}\right)$ are adjacent to a leaf edge, and there exist a P_{4} starting at v_{4}, whose edges are labelled as L_{1}, L_{1}, L_{2} consecutively, and all edges in $\left(E_{\bar{T}}\left(v_{6}\right)-e_{5}\right)$ are L_{2}-edges. Hence we can obtain T from \bar{T} by applying Operation \mathcal{O}_{3}.

As an immediate consequence of Lemmas 4.5 and 4.7, we have the following characterization of ($\gamma_{t}^{\prime}=\gamma^{\prime}$)-trees.

Theorem 4.3. A tree is a $\left(\gamma_{t}^{\prime}=\gamma^{\prime}\right)$-tree if and only if $T \in \mathcal{T}_{t}$.

5 Acknowledgements

This work was funded in part by National Natural Science Foundation of China (Grants No. 11571155, 11201205).

References

[1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundermentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[2] J.D. Horton, K. Kilakos, Minimum edge dominating sets, SIAM J. Discrete Math. 6(3) (1993) 375-387.
[3] R. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, R.E. Miller and J.W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[4] K. Kilakos, On the complexity of edge domination, Master's Thesis, University of New Brunswick, New Brunswick, Canada, 1998.
[5] V.R. Kulli, D.K. Patwari, On the edge domination number of a graph, in: Proceedings of the Symposium on Graph Theory and Combinatorics, Cochin, 1991, in: Publication, vol. 21, Centre Math. Sci. Trivandrum, 1991, pp. 75-81.
[6] C.L. Lru, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
[7] S. Mitchell, S.T. Hedetniemi, Edge domination in trees, Congr. Numer. 19 (1977) 489-509.
[8] M.H. Muddebihal, A.R. Sedamkar, Characterization of trees with equal edge domination and end edge domination numbers, Mathematical Theory and Modeling, 5 (2013) 3342.
[9] M.N.S. Paspasan, S.R. Canoy, Edge domination and total edge domination in the join of graphs, Appl. Math. Sci. 10 (2016) 1077-1086.
[10] S. Velammal, Equality of connected edge domination and total edge domaination in graphs, International Journal of Enhanced Research in Science Technology and Engineering 5 (2014) 198-201.
[11] B. Xu, Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006) 1541-1546.
[12] M. Yannakakis, Edge-deletion problems, SIAM J. Comput. 10 (1981) 297-309.
[13] M. Yannakakis, F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (1980) 364-372.
[14] Y.C. Zhao, Z.H. Liao, L.Y. Miao, On the algorithmic complexity of edge total domination, Theoret. Comput. Sci. 6 (2014) 28-33.

[^0]: *The first two authors contributed equally to this paper.
 ${ }^{\dagger}$ Corresponding author. E-mail address: shjxu@lzu.edu.cn (S.-J. Xu)

