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Average eccentricity, minimum degree and

maximum degree in graphs

P. Dankelmann, F.J. Osaye (University of Johannesburg)

Abstract

Let G be a connected finite graph with vertex set V (G). The eccentricity
e(v) of a vertex v is the distance from v to a vertex farthest from v. The
average eccentricity of G is defined as 1

|V (G)|

∑

v∈V (G) e(v). We show that
the average eccentricity of a connected graph of order n, minimum degree
δ and maximum degree ∆ does not exceed 9

4
n−∆−1
δ+1

(

1 + ∆−δ
3n

)

+ 7, and this
bound is sharp apart from an additive constant. We give improved bounds
for triangle-free graphs and for graphs not containing a 4-cycles.

1 Introduction

Let G be a connected graph with vertex set V (G). The eccentricity e(v) of a ver-
tex is the maximum distance between v and a vertex in G. The average eccen-

tricity avec(G) of G is the average of the eccentricities of the vertices of G, i.e.,
avec(G) = 1

|V (G)|

∑

u∈V (G) e(u). The average eccentricity was first introduced by

Buckley and Harary [2] under the name eccentric mean. Its systematic study was ini-
tiated by Dankelmann, Goddard and Swart [4], who established an upper bound on
the average eccentricity in terms of order and minimum degree, and further showed
among other results, that the path maximizes the average eccentricity among all
connected graphs of given order.

Proposition 1 ([4]). Let G be a connected graph of order n. Then

avec(G) ≤ avec(G) ≤
1

n

⌊

3n2

4
−

n

2

⌋

,

and this bound is sharp.

We first recall some upper bounds on the average eccentricity of a connected
graph involving the minimum degree. Dankelmann, Goddard and Swart [4] showed
that if G is a graph of order n and minimum degree δ ≥ 2, then

avec(G) ≤
9n

4(δ + 1)
+

15

4
, (1)
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and this bound is sharp apart from a small additive constant. By applying a similar
technique, it was recently proved in [7] that if G is K3-free, then the bound (1) can
be improved to

avec(G) ≤ 3
⌈ n

2δ

⌉

+ 5, (2)

and for C4-free graphs to

avec(G) ≤
15

4

⌈

n

δ2 − 2⌊ δ
2
⌋+ 1

⌉

+
11

2
. (3)

Moreover, they showed that the bound in (2) is sharp apart from a small additive
constant and that, for δ+1 a prime power, there exists an infinite number of C4-free
graphs of minimum degree at least δ with

avec(G) ≥
15

4

n

δ2 + 3δ + 2
−

5

2
.

Other recent results on the average eccentricity of graphs can be found, for example,
in ([1], [5], [6], [7], [8], [9], [10], [12], [13], [14]).

In the bounds (1), (2) and (3), the examples that show that these bounds are
sharp or close to being sharp, all have vertex degrees close to the minimum degree.
That suggests that these bounds can be improved for graphs containing a vertex
of large degree. In this paper, we show that this is indeed the case by proving
asymptotically sharp upper bounds on the average eccentricity of a graph of given
order, minimum degree and maximum degree. We also give corresponding bounds
for triangle-free graphs and C4-free graphs. Our bounds improve on the inequali-
ties (1), (2) and (3). Moreover, we construct graphs to show that our bounds for
connected graphs and triangle-free graphs are sharp apart from a small additive
constant, and that for C4-free graphs our bound is close to being best possible.

2 Definitions, notation and preliminaries

We use the following notation. Let G be a connected graph of order n with vertex
set V (G), edge set E(G). The distance between two vertices u and v, denoted
by dG(u, v) is the length of a shortest (u, v)-path in G. The diameter diam(G)
and radius rad(G) are the largest and smallest, respectively, of all eccentricities of
vertices of G. The total eccentricity EX(G) is the sum of the eccentricities of the
vertices of G. If x is a vertex of G, e an edge of G, and A a subset of V (G), then
dG(x,A) is the minimum of the distances between x and a vertex in A, and dG(e, A)
is the minimum of the distances between a vertex incident with e and the vertices
in A.

The neighbourhood of a vertex v, denoted by NG(v), is the set of vertices adjacent
to v. The closed neighbourhood NG[v] is defined as NG(v)∪{v}. For k ∈ N, the kth
neighbourhood of a given subset A ⊂ V , denoted by Nk

G(A), is the set of all vertices
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x of G with dG(x, a) ≤ k for some a ∈ A. If k = 1, then we simply write NG[A]. If
no confusion can occur, we drop the argument or subscript G. The degree deg(v) of
a vertex v is defined as |NG(v)|. We denote the minimum and maximum degree of
G by δ(G) and ∆(G), respectively. For k ∈ N, the kth power Gk of G is the graph
with the same vertex set of G, in which two distinct vertices u and v are adjacent
if d(u, v) ≤ k. If A ⊂ V , then Gk[A] is the subgraph of Gk induced by A. If H is a
subgraph of G, we write H ≤ G.

The line graph L(G) of G is the graph whose vertices are the edges of G such
that two vertices of L(G) are adjacent if they share a vertex as edges of G. Let
M ⊆ E(G), then V (M) is the set of vertices incident with at least an edge of M .
For k ∈ N, a k-packing of G is a subset A ⊆ V with dG(u, v) > k for all u, v ∈ A.
The sequential sum G1+G2+ . . .+Gk is the graph obtained from the disjoint union
of the graphs G1, G2, . . . , Gk by joining every vertex of Gi to every vertex of Gi+1

for i = 1, 2, . . . , k − 1.
A set of edges M ⊂ E(G) is a matching in G if no two edges of M are incident.

A maximum matching is a matching of maximum size. A graph G is said to be
complete if all vertices of G are pairwise adjacent. A path, cycle or complete graph
of order n is denoted by Pn, Cn or Kn. We refer to K3 also as a triangle. For a
positive integer k, kK1 is an edgeless graph of k isolated vertices. If F is a graph,
then G is said to be F -free if G does not contain F as a subgraph.

An important tool in the proofs of our main results is the weighted eccentricity
of a graph defined in [4].

Definition 1 ([4]). Let G be a connected graph and c : V (G) → R a nonnegative

weight function on the vertices of G. Then the eccentricity of G with respect to c is

defined by

EXc(G) =
∑

x∈V (G)

c(x)eG(x).

Let N =
∑

x∈V (G) c(x) be the total weight of the vertices in G. If N > 0, then the

average eccentricity of G with respect to c is

avecc(G) =
EXc(G)

N
.

The following result from [4] generalises the bound in Proposition 1.

Proposition 2 ([4]). Let G be a connected graph, c a weight function on the vertices

of G, and N =
∑

v∈V (G) c(v) the total weight of the vertices of G. If c(v) ≥ 1 for all

v ∈ V (G), then
avecc(G) ≤ avec(P⌈N⌉).

3 Main Results

We begin by presenting a result on an upper bound on the average eccentricity in
terms of order, minimum degree and maximum degree. The approach used through-
out this section is a slight modification of that used in [4] and [7].
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3.1 A bound on the average eccentricity of a graph

Theorem 1. Let G be a connected graph of order n, minimum degree δ and maxi-

mum degree ∆. Then,

avec(G) ≤
9

4

n−∆− 1

δ + 1

(

1 +
∆− δ

3n

)

+ 7.

This bound is sharp apart from the value of the additive constant.

Proof: Let v1 be a vertex of degree ∆. We find a maximal 2-packing A of G using
the following method: Let A = {v1}. If there exists a vertex a1 with dG(a1, A) = 3,
add a1 to A. Add vertices ai with dG(ai, A) = 3 to A until every vertex not in A
is within distance two of A. Then A = {v1, a1, a2, . . . , ar} and |A| = r + 1. Let T1

be the forest with vertex set N [A] and whose edge set consists of all edges incident
with vertices in A.

By our construction of A, there exist r edges in G, each joining two neighbours
of distinct vertices of A, such that the addition of these edges to T1 yields a subtree
T2 ≤ G. Now every vertex u ∈ V (G)−V (T2) is adjacent to some u′ ∈ V (T2). Let T
be the spanning tree of G with edge set E(T ) = E(T2) ∪ {uu′|u ∈ V (G)− V (T2)}.
Since degT (v1) = degG(v1), it follows that T has the same maximum degree as G.

Since deleting edges does not decrease the average eccentricity, we have avec(G) ≤
avec(T ). Thus it suffices to prove the result for T . We think of T as a weighted tree
in which each vertex has weight 1. We now obtain a new weight function by moving
the weight every vertex to a nearest vertex in A. More specifically, for every vertex
x of T let xA be a vertex in A closest to u in T . Let c : V (T ) → N ∪ {0} be the
weight function defined by

c(u) = |{x ∈ V (T )|xA = u}|

for each x ∈ V (T ). Then c(u) = 0 if u 6∈ A, c(u) ≥ δ + 1 if u ∈ A − {v1}, and
c(u) ≥ ∆+ 1 if u = v1. Note that

∑

u∈V (T ) c(u) = n. It follows that

n =
∑

u∈V (T )

c(u) =
∑

u∈A

c(u) ≥ ∆+ 1 + (|A| − 1)(δ + 1) = |A|(δ + 1) + ∆− δ.

By rearranging, we have

|A| ≤
n−∆+ δ

δ + 1
. (4)

For every vertex x of T we have d(x, xA) ≤ 2 and thus |eT (x)− eT (xA)| ≤ 2. Hence

avec(T ) =
1

n

∑

x∈V (T )

eT (x)

≤
1

n

∑

x∈V (T )

(eT (xA) + 2)

=
( 1

n

∑

u∈A

c(u)eT (u)
)

+ 2

= avecc(T ) + 2. (5)
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Note that the weight of c is concentrated in A. Thus we consider the induced
subgraph T 3[A], which by the construction of A is connected. Clearly for all ai, aj ∈
A, d(ai, aj) ≤ 3dT 3[A](ai, aj). Since every vertex of T is within distance two of some
vertex in A, we have for each ai ∈ A, eT (ai) ≤ 3eT 3[A](ai) + 2. Thus,

avecc(T ) ≤ 3avecc(T
3[A]) + 2. (6)

We now modify the weight function c to obtain a new weight function c′ which
satisfies c′(a) ≥ 1 for all a ∈ A. Define c′(u) = c(u)

δ+1
for u ∈ A − {v1}, and c′(v1) =

c(v1)−∆+δ
δ+1

. Since c(u) ≥ degG(u) + 1 for all u ∈ A, and since degG(v1) = ∆ while
degG(ai) ≥ δ for ai ∈ A− {v1}, we have c′(u) ≥ 1 for all u ∈ A.

Since
∑

u∈A c(u) = n, we have for the total weight N of c′,

N =
∑

u∈A

c′(u) =
(
∑

u∈A c(u))−∆+ δ

δ + 1
=

n−∆+ δ

δ + 1
.

We now express avecc(T
3[A]) in terms of avecc′(T

3[A]). We have

avecc′(T
3[A]) =

EXc′(T
3[A])

N

=
1

δ+1
[
∑

u∈A−{v1}
c(u)eT 3[A](u) + (c(v1)−∆+ δ)eT 3[A](v1)]

1
δ+1

[n−∆+ δ]

=
EXc(T

3[A])− eT 3[A](v1)(∆− δ)

n−∆+ δ

=
n

n−∆+ δ
avecc(T

3[A])−
∆− δ

n−∆+ δ
eT 3[A](v1),

and thus, by rearranging,

avecc(T
3[A]) =

n−∆+ δ

n
avecc′(T

3[A]) +
∆− δ

n
eT 3[A](v1). (7)

We bound the two terms of the right hand side of (7) separately. Since T 3[A] has
order |A|, and since |A| ≤ n−∆+δ

δ+1
by (4), we have

eT 3[A](v1) ≤ diam(T 3[A]) ≤ |A| − 1 ≤
n−∆− 1

δ + 1
. (8)

To bound avecc′(T
3[A]) note that c′(u) ≥ 1 for all u ∈ A. Hence we have by

Proposition 2,

avecc′(T
3[A]) ≤ avec(P⌈N⌉) ≤

3

4
⌈N⌉ −

1

2
<

3

4

n−∆− 1

δ + 1
+ 1, (9)
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with the last inequality holding since ⌈N⌉ = ⌈n−∆+δ
δ+1

⌉ < n−∆−1
δ+1

+ 2. Substituting
(8) and (9) into (7) yields, after simplification,

avecc(T
3[A]) <

n−∆+ δ

n

(3

4

n−∆− 1

δ + 1
+ 1

)

+
∆− δ

n

(n−∆− 1

δ + 1

)

=
3

4

n−∆− 1

δ + 1

[

1 +
∆− δ

3n

]

+ 1−
∆− δ

n

≤
3

4

n−∆− 1

δ + 1

[

1 +
∆− δ

3n

]

+ 1. (10)

Combining inequalities (5), (6), and (10), we obtain

avec(T ) ≤ avecc(T ) + 2

≤ 3avecc(T
3[A]) + 4

<
9

4

n−∆− 1

δ + 1

(

1 +
∆− δ

3n

)

+ 7.

The bound on avec(G) now follows since avec(G) ≤ avec(T ).
To see that the bound in Theorem 1 is sharp apart from an additive constant,

let δ, ∆ and k be positive integers with ∆ ≥ δ + 1 and consider the graph Gδ,∆,k

obtained as follows.
Let G1, G2, . . . , Gk−1 be disjoint copies of the complete graph Kδ+1 and let Gk

be the complete graph K∆. For i = 2, 3, . . . , k − 1 let uivi be an edge of Gi. Let
Gδ,∆,k be the graph with vertex set V (Gδ,∆,k) = V (G1) ∪ V (G2) ∪ . . . ∪ V (Gk), and
edge set E(Gδ,∆,k) = E(G1)∪E(G2) ∪ · · · ∪E(Gk)− {u2v2, u3v3, . . . , uk − 1vk−1} ∪
{v1u2, v2u3, . . . , vk−1uk}. The graph G3,8,6 is shown in Figure 1.

It is easy to see that Gδ,∆,k has minimum degree δ, maximum degree ∆, order
n = ∆ + (δ + 1)(k − 1), diam(Gδ,∆,k) = 3(k − 1) and rad(Gδ,∆,k) = ⌈3

2
(k − 1)⌉. A

straightforward calculation, whose details we omit, shows that

EX(Gδ,∆,k) = 3(k − 1)(∆ + δ + 1)− 2 + 6(δ + 1)[
3

8
k2 −

5

4
k + 1].

Now k−1 = n−∆
δ+1

. Hence 3(k−1)(∆+δ+1) = 3n−δ
δ+1

(∆+δ+1) = 3 (n−∆)∆
δ+1

+O(n)

and 6(δ +1)[3
8
k2 − 5

4
k+ 1] = 6(δ+ 1)[3

8
(k− 1)2 +O(k)] = 9

4
(n−∆)2

δ+1
+O(n), and thus

avec(Gδ,∆,k) =
1

n
EX(Gδ,∆,k)

=
1

n

(

3
(n−∆)∆

δ + 1
+

9

4

(n−∆)2

δ + 1
+O(n)

)

=
9

4

n−∆

δ + 1
(1 +

∆

3n
) +O(1).

Since the upper bound on avec(G) is also 9
4
n−∆
δ+1

(1 + ∆
3n
) + O(1), we conclude that

the bound is sharp apart from an additive constant.
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Figure 1: Gδ,∆,k with δ = 3, ∆ = 8 and k = 6.

We note that for fixed δ and large n, the value avec(Gδ,∆,k) and the bound in
Theorem 1 differ only by O(1), irrespective of whether ∆ is constant or grows with
n. In addition, since ∆ ≥ δ and since the bound in Theorem 1 is decreasing in
∆, replacing ∆ by δ in our bound in Theorem 1 yields a bound on the average
eccentricity in terms of order and minimum degree that differs from (1) only by a
small additive constant. Hence Theorem 1 is, in some sense, a generalisation of (1).

3.2 A bound on the average eccentricity of a triangle-free

graph

We now show that the bound in Theorem 1 can be improved for triangle-free graphs.

Theorem 2. Let G be a connected triangle-free graph with n vertices, minimum

degree δ and maximum degree ∆. Then,

avec(G) ≤
3

2

n−∆

δ

[

1 +
∆− δ

3n

]

+
19

2
.

This bound is sharp apart from the value of the additive constant.

Proof. Let v1 be a vertex of degree ∆ in G and let e1 be an edge incident with
v1. We obtain a maximal matching M of G as follows. Let M = {e1}. Let V (M)
be the set of vertices incident with an edge of M . Recall that dG(e1, V (M)) is the
minimum of the distances between a vertex incident with edge e1 and a vertex in
V (M). If there exists an edge e2 in G with dG(e2, V (M)) = 3, add e2 to M . Add
edges ei with dG(ei, V (M)) = 3 to M until each of the edges not in M is within
distance two of M .

Let T1 ≤ G be a subforest of G with vertex set N [V (M)] and edge set consisting
of all edges incident with a vertex in V (M). By our construction of M , G contains
|M | − 1 edges, each joining two distinct components of T1, whose addition to T1

yields a subtree T2 ≤ G so that T2 contains T1 and |V (T1)| = |V (T2)|.
Now every vertex x not in T2 is within distance at most three from some vertex

x′ in T2. Let T be a spanning tree of G which contains T2 and which is distance
preserving from V (M), i.e. dT (x, V (M)) = dG(x, V (M)), for every vertex x ∈ V (G).
Since degT (v1) = degG(v1), tree T has the same maximum degree asG. Furthermore,
since avec(G) ≤ avec(T ), it suffices to prove the bound for T .

7



For every vertex u ∈ V (T ), let uM be a vertex in V (M) closest to u in T . We
can view T as a weighted tree in which each vertex has weight 1. We now move the
weight of u to uM . That is, we define a weight function c : V (T ) → N ∪ {0} by

c(u) = |{x ∈ V (T )|xM = u}|

for u ∈ V (T ). Note that c(u) = 0 if u 6∈ V (M) and
∑

u∈V (M) c(u) = n, where

n = |V (G)|. Since G is triangle-free, no two incident vertices of an edge in M have a
common neighbour. Hence, degT (u) ≥ δ implying that c(u) ≥ δ for u ∈ V (M)−{v1}
and degT (v1) = ∆.

Now dT (x, xM ) ≤ 3 for every vertex x of T . The same argument as in the proof
of Theorem 1 (see (5)) shows that

avec(T ) ≤ avecc(T ) + 3. (11)

Let c̄ be the weight function on the vertex set E(T ) of the line graph L = L(T )
defined by:

c̄(uv) =

{

c(u) + c(v) if uv ∈ M,

0 if uv 6∈ M.

Since e1 is an edge incident with v1 in T , we have c̄(e1) ≥ ∆+ δ and c̄(e) ≥ 2δ for
e ∈ M − {e1}. Note that

∑

e∈M c̄(e) =
∑

v∈V (T ) c(v) = n. It follows that

n ≥ ∆+ δ +
∑

x∈M−{e1}

2δ = ∆+ δ + 2δ(|M | − 1),

and rearranging yields

|M | ≤
n−∆+ δ

2δ
. (12)

It is easy to show that if u, v ∈ V (T ) and eu, ev are edges of T incident with u and
v, respectively, then

|dL(eu, ev)− dT (u, v)| ≤ 1.

Hence, if u is an eccentric vertex of v, i.e., a vertex with dT (v, u) = eT (v), then

eT (v) = dT (u, v) ≤ dL(eu, ev) + 1 ≤ eL(ev) + 1,

where eu and ev are edges of T incident with u and v, respectively. Summation over
all vertices of T yields that

∑

v∈V (T )

eT (v)c(v) =
∑

uv∈M

[

eT (u)c(u) + eT (v)c(v)
]

≤
∑

uv∈M

[

c̄(uv)
(

eL(uv) + 1
)

]

=
∑

e∈M

eL(e)c̄(e) +
∑

e∈M

c̄(e).

8



Therefore,

EXc(T ) ≤ EXc̄(L) +
∑

e∈M

c̄(e),

and since
∑

v∈V (T ) c(v) =
∑

e∈M c(e) = n, division by n yields

avecc(T ) ≤ avecc̄(L) + 1. (13)

If e1 and e2 are two matching edges with dT (e1, e2) = 3, then dL(e1, e2) ≤ 4. Now
the weights lie solely on M . Thus we construct the induced subgraph L4[M ] which
is connected and has exactly |M | vertices. Clearly, for every two edges e1, e2 ∈ M ,

dL(e1, e2) ≤ 4dL4[M ](e1, e2).

Furthermore, for every edge e′ ∈ E(T ) there exists an edge e′′ ∈ M with dL(e
′, e′′) ≤

3, so that eL(e) ≤ 4eL4[M ](e) + 3 for every e ∈ M , and so

avecc̄(L) ≤ 4avecc̄(L
4[M ]) + 3. (14)

We now modify the weight function c̄ to obtain a weight function c′ on M with
c̄′(e) ≥ 1 for all e ∈ M . Define c̄′(e) = c̄(e)

2δ
for e ∈ M − {e1}, and c̄′(e1) =

c̄(e1)−∆+δ
2δ

.
Since c̄(e1) ≥ ∆ + δ and c̄(e) ≥ 2δ for e ∈ M − {e1}, weight function c̄′ assigns a
weight of at least 1 to every edge of M . Let N ′ =

∑

e∈V (M) c̄
′(e). Then N ′ = n−∆+δ

2δ
.

As in the proof of Theorem 1 (see (7)), we show that

avecc̄(L
4[M ]) =

n−∆+ δ

n
avecc̄′(L

4[M ]) +
∆− δ

n
eL4[M ](e1). (15)

Since L4[M ] has order |M |, and since |M | ≤ n−∆+δ
2δ

by (12), we have

eT 4[M ](v1) ≤ diam(L4[M ]) ≤ |M | − 1 ≤
n−∆

2δ
−

1

2
. (16)

Since ⌈N ′⌉ = ⌈n−∆+δ
2δ

⌉ < n−∆
2δ

+ 3
2
, we have by Proposition 2,

avecc̄′(L
4[M ]) ≤ avec(P⌈N ′⌉) ≤

3

4
⌈N ′⌉ −

1

2
<

3

4

n−∆

2δ
+

5

8
. (17)

Substituting (16) and (17) into (15) yields, after simplification,

avecc̄(L
4[M ]) ≤

n−∆+ δ

n

(3

4

n−∆

2δ
+

5

8

)

+
∆− δ

n

(n−∆

2δ
−

1

2

)

=
3(n−∆)

8δ
+

(n−∆)(∆− δ)

8nδ
−

9(∆− δ)

8n
+

5

8
. (18)
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Hence combining these inequalities (11), (13), (14) and (18) yields

avec(T ) ≤ avecc(T ) + 3

≤ avecc̄(L) + 4

≤ 4 avecc̄(L
4[M ]) + 7

≤ 4
(3(n−∆)

8δ
+

(n−∆)(∆− δ)

8nδ
−

9(∆− δ)

8n
+

5

8

)

+ 7

=
n−∆

2δ

(

3 +
∆− δ

n

)

−
9(∆− δ)

2n
+

19

2

≤
3

2

n−∆

δ

(

1 +
∆− δ

3n

)

+
19

2
.

The bound now follows since avec(G) ≤ avec(T ).
To see that the bound is sharp apart from an additive constant, let n, δ,∆ and

k be positive integers with ∆ ≥ 3
2
δ and k a multiple of 4. Consider the graph

G′ = G′
δ,∆,k defined by

G′ = G1 +G2 + . . .+Gk,

where G2 = (∆− ⌈ δ
2
⌉)K1, Gk−1 = δK1, and for 1 ≤ i ≤ k, i 6= 2, k − 1,

Gi =

{

⌈ δ
2
⌉K1 if i = 0 or 3 mod 4,

⌊ δ
2
⌋K1 if i = 1 or 2 mod 4.

The graph G′
10,4,12 is shown in Figure 2.

By inspection, G′
δ,∆,k has minimum degree δ, maximum degree ∆, and it is

triangle-free. Moreover, G′
δ,∆,k has exactly ∆ + δ(k

2
)− ⌈ δ

2
⌉ vertices. A simple calcu-

lation, whose details we omit, yields that

EX(G′
δ,∆,k) = δ

(3k2

8
−

k

4

)

+ (∆−
⌈δ

2

⌉

)(k − 2).

Let n = n(G′
δ,∆,k) = ∆+ δ(k

2
)− ⌈ δ

2
⌉. Then k = 2

δ
(n−∆+ ⌈ δ

2
⌉) = 2

δ
(n−∆) +O(1).

Hence δ
(

3k2

8
− k

4

)

= 3
8
δk2 + O(n) = 3

2δ
(n − ∆)2 + O(n) and (∆ −

⌈

δ
2

⌉

)(k − 2) =

∆k + O(n) = 2
δ
(n − ∆)∆ + O(n). Substituting this into the above expression for

EX(G′
δ,∆,k) and dividing by n we get

avec(Gδ,∆,k) =
1

n

( 3

2δ
(n−∆)2 +

2

δ
(n−∆)∆ +O(n)

)

=
3

2

n−∆

δ

(

1 +
∆

3n

)

+O(1).

Hence the bund in Theorem 2 and avec(Gδ,∆,k) is bounded by a constant.
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✈
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✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

✈

Figure 2: G′
δ,∆,k with ∆ = 10, δ = 4 and k = 12.

3.3 A bound on the average eccentricity of a C4-free graph

In this section we show that the bound in Theorem 1 can be improved for graphs
not containing C4 as a (not necessarily induced) subgraph.

Theorem 3. Let G be a C4-free graph of order n, minimum degree δ and maximum

degree ∆. Then

avec(G) ≤
15

4

n− ε∆ + εδ
εδ

[

1 +
ε∆ − εδ

3n

]

+
37

4
,

where ε∆ := ∆δ − 2
⌊

∆
2

⌋

+ 1 and εδ := δ2 − 2⌊ δ
2
⌋ + 1.

Proof. Let v1 be a vertex in G with degG(v1) = ∆. We find a 4-packing A of G using
the following method. Let A = {v1}. If there exists a vertex a1 with dG(a1, A) = 5,
add a1 to A. Add vertices ai satisfying dG(ai, A) = 5 to A until each of the vertices
not in A is within distance 4 of A. For each a ∈ A, let Ta be a subtree of G with
vertex set N2

G[a] which is distance preserving from a. Let T1 =
⋃

a∈A Ta. Then T1 is
a subforest of G. By the way A is constructed, there exists |A| − 1 edges in G, each
joining two components of T1, whose addition to T1 yields a subtree T2 of G.

Let T be a spanning tree of G obtained from T2 and which satisfies dT (x,A) =
dG(x,A) for each x ∈ V (G). Since degT (v1) = degG(v1), tree T has the same
maximum degree as G. For every vertex x of T let xA be a vertex in A closest to x.
We define a weight function c : V (T ) → N ∪ {0} for each u ∈ V (T ) as

c(u) = |{x ∈ V (T )|xA = u}|.

Since G is C4-free, no two neighbours of v1 have a common neighbour apart from
v1. It follows that for ∆ even, we have |N2

G[v1]| ≥ 1 + ∆+∆(δ − 2) = ∆δ −∆+ 1.
For ∆ odd, the handshake lemma yields that at least one of the neighbours of v1 is
not adjacent to any other neighbour of v1, and so |N2

G[v1]| ≥ 1 + ∆ + (∆ − 1)(δ −
2) + (δ − 1) = ∆δ − ∆ + 2. Combining these two bounds on |N2

G[v1]| yields that

11



|N2
G[v1]| ≥ ∆δ−2

⌊

∆
2

⌋

+1 = ε∆. The same reasoning as for v1 shows that for vertices

ai ∈ A− {v1}, |N
2
G[ai]| ≥ δ2 − 2⌊ δ

2
⌋+ 1 = εδ. This implies that

c(v1) ≥ ε∆, and c(ai) ≥ εδ for ai ∈ A− {v1}, (19)

while c(u) = 0 whenever u 6∈ A. Now for every vertex x ∈ V (T ), d(x, xA) ≤ 4. Thus
we have |eT (x)− eT (xA)| ≤ 4, and an argument similar to (5) shows that

avec(T ) ≤ avecc(T ) + 4. (20)

By the way A was constructed, T 5[A] is connected and so for ai, aj ∈ A, d(ai, aj) ≤
5dT 5[A](ai, aj). Since every vertex of T is within distance 4 of A, we have

avecc(T ) ≤ 5avecc(T
5[A]) + 4. (21)

We modify c to obtain a weight function c′′ for which every vertex of A has weight
at least 1. Define c′′(ai) =

c(ai)
εδ

for all ai ∈ A − {v1} and c′′(v1) =
c(v1)−ε∆+εδ

εδ
. By

(19) we have c′′(a) ≥ 1 for all a ∈ A.
Let N ′′ =

∑

u∈A c′′(u). Then

N ′′ =
n− ε∆ + εδ

εδ
.

As in the proof of Theorem 1 (see (7)), we express avecc(T
5[A]) in terms of avecc′′(T

5[A]).
Clearly,

avecc′′(T
5[A]) =

EXc′′(T
5[A])

N ′′

=

1
εδ
EXc(T

5[A])− ε∆−εδ
εδ

eT 5[A](v1)

(n− ε∆ + εδ)/εδ

=
n

n− ε∆ + εδ
avecc(T

5[A])−
ε∆ − εδ

n− ε∆ + εδ
eT 5[A](v1).

By rearranging, we obtain

aveccT
5[A] =

n− ε∆ + εδ
n

avecc′′(T
5[A]) +

ε∆ − εδ
n

eT 5[A](v1). (22)

We bound the terms on the right hand side of (22) separately. Since T 5[A] has order
|A|, we have eT 5[A](v1) ≤ |A| − 1. Also |A| =

∑

a∈A 1 ≤
∑

a∈A c′′(a) = N ′′, and so

eT 5[A](v1) ≤ |A| − 1 ≤ N ′′ − 1 =
n− ε∆ + εδ

εδ
− 1. (23)

Since ⌈N ′′⌉ < N ′′ + 1 = n−ε∆+εδ
εδ

+ 1 it follows by Proposition 2 that

avecc′′(T
5[A]) ≤ avec(P⌈N ′′⌉) ≤

3⌈N ′′⌉

4
−

1

2
<

3

4

n− ε∆ + εδ
εδ

+
1

4
. (24)
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u∗
1 v∗1 u∗

2 v∗2 u∗
3 v∗3 u∗

4 v∗4
H∗

1 H∗
2 H∗

3 H∗
4

H1

H2

Figure 3: Hδ,∆,k,m for k = 4 and m = 2.

Thus substituting (24) and (23) in (22) yields, after simplification,

aveccT
5[A] <

n− ε∆ + εδ
n

[3

4

n− ε∆ + εδ
εδ

+
1

4

]

+
ε∆ − εδ

n

(n− ε∆ + εδ
εδ

− 1
)

=
3

4

n− ε∆ + εδ
εδ

[

1 +
ε∆ − εδ

3n

]

+
1

4
−

5

4

ε∆ − εδ
n

≤
3

4

n− ε∆ + εδ
εδ

[

1 +
ε∆ − εδ

3n

]

+
1

4
.

Combining inequalities (20), (21) and (25), we obtain with further simplification,

avec(T ) ≤ avecc(T ) + 4

≤ 5avecc(T
5[A]) + 8

≤
15

4

n− ε∆ + εδ
εδ

[

1 +
ε∆ − εδ

3n

]

+
37

4
,

as desired.

The following theorem shows that the bound in Theorem 3 is not far from being
sharp if δ+1 is a prime power. In our construction below, the maximum degree and
order can be chosen almost arbitrarily, they only have to satisfy certain conditions
regarding their values modulo δ + 1 or δ + 2. Our construction is a modification of
a graph first constructed by Erdös et al. [11].

Theorem 4. Let δ ≥ 3 be an integer such that δ + 1 is a prime power. Then for

n,∆ ∈ N with 2δ − 3 ≤ ∆ < n and n ≡ 0 (mod (δ + 1)(δ + 2)) and ∆ ≡ δ + 1
(mod δ+2) there exists a C4-free graph G with minimum degree δ, maximum degree

∆, order n whose average eccentricity satisfies

avec(G) ≥
3

4

n− ε∆ −∆

ε′δ

(

1 +
∆(δ + 1)

3n

)

+O(1),

where ε∆ is as in Theorem 3, and ε′δ = (δ + 1)(δ + 2).
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Proof: Our construction is a modification of a construction given in [11]. Let
q = δ+1, so q is a prime power. Denote be GF (q) the field of order q and by GF (q)3

the 3-dimensional vector space over GF (q) of all triples of elements of GF (q). Let
H be the graph whose vertices are the 1-dimensional subspaces of GF (q)3. Two
vertices are adjacent if, as subspaces of GF (q)3, they are orthogonal. It is easy to
verify that H is C4-free, has q

2 + q + 1 vertices and that diam(H) = 2. Each vertex
of H has degree either q + 1 (if the corresponding subspace is not self-orthogonal)
or q (if the corresponding subspace is self-orthogonal).

Let H∗ be the graph obtained from H by choosing a vertex z that corresponds
to a self-orthogonal subspace, two neighbours u and v of z, and deleting vertex z
as well as all edges joining a neighbour of u to a neighbour of v. It is easy to show
that H∗ has order q2 + q, that δ(H∗) ≥ q − 1, and that dH∗(u, v) = diam(H∗) = 4.

For i = 1, 2, . . . , k let H∗
i be a copy of H∗. We denote the vertices of H∗

i corre-
sponding to the vertices u and v of H∗ by u∗

i and v∗i , respectively. For j = 1, 2 . . . , ℓ
let Hi be a copy of H , and let wi be a vertex of Hi of degree q+1. Let Hδ,∆,k,ℓ be the
graph obtained from the disjoint union H∗

1 ∪H∗
2 ∪ . . . ,∪H∗

k ∪H1 ∪H2 ∪ . . .∪Hℓ by
adding the edges v∗1u

∗
2, v

∗
2u

∗
3, . . . , v

∗
k−1u

∗
k and by identifying the vertices w1, w2, . . . , wℓ

and u∗
1 to a new vertex y. Then Hδ,∆,k,ℓ has order n = (m + k)(q2 + q), minimum

degree δ = q − 1, and maximum degree ∆ = (m + 1)(q + 1)− 1, which is attained
by vertex y.

We now bound the average eccentricity of this graph from below. For i =
0, 1, . . . , k

2
− 1, each of the 2(q2 + q) vertices in V (H∗

k/2−i) ∪ V (H∗
k/2+1+i) has ec-

centricity at least 5(i + k/2). The remaining m(q2 + q) vertices, which are in
(V (H1) ∪ . . . V (Hm))− {u∗

1}, have eccentricity at least 5k. Hence,

EX(Hδ,∆,k,m) =
(

k/2−1
∑

i=0

2(q2 + q)5(
k

2
+ i)

)

+m(q2 + q)5k

= 5k(q2 + q)
(3

4
k +m−

1

2

)

.

We now express the two factors of the above term for EX(Hδ,∆,k,m) separately in
terms of n, ∆ and δ. Let ε∆ and εδ be as in Theorem 3, and define ε′δ = (δ+1)(δ+2).

Since q = δ + 1 and q is constant, we have n− ε∆ + εδ − 2∆ = n−∆δ +O(1) =
(m+k)(q2+ q)− (m+1)− [(m+1)(q+1)−1](q−2)−2(m+1)(q+1)−2+O(1) =
k(q2+ q)+O(1). Hence the first factor is k(q2+ q) = n− ε∆+ εδ − 2∆+O(1). Now
consider the second factor. 3

4
k+m−1

2
= 3

4
(k+m)+1

4
m+O(1) = 3

4
n

q2+q
+1

4
∆
q+1

+O(1) =
3
4

(

n
δ+1)(δ+2)

+ ∆(δ+1)
3(δ+1)(δ+2)

)

+O(1). Combining these terms we obtain

EX(Hδ,∆,k,m) =
3

4

n− ε∆ −∆

ε′δ

(

n+
∆(δ + 1)

3

)

+O(n).

Dividing by n now yields the statement of the theorem.
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