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Abstract
For distinct vertices u and v in a graph G, the connectivity between u and v, denoted
κG(u, v), is the maximum number of internally disjoint u–v paths in G. The average
connectivity of G, denoted κ(G), is the average of κG(u, v) taken over all unordered
pairs of distinct verticesu, v ofG.Analogously, for a directed graph D, the connectivity
from u to v, denoted κD(u, v), is the maximum number of internally disjoint directed
u–v paths in D. The average connectivity of D, denoted κ(D), is the average of
κD(u, v) taken over all ordered pairs of distinct vertices u, v of D. An orientation of a
graph G is a directed graph obtained by assigning a direction to every edge of G. For a
graphG, let κmax(G) denote themaximumaverage connectivity among all orientations
of G. In this paper we obtain bounds for κmax(G) and for the ratio κmax(G)/κ(G) for
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all graphs G of a given order and in a given class of graphs. Whenever possible, we
demonstrate sharpness of these bounds. This problem had previously been studied for
trees. We focus on the classes of cubic 3-connected graphs, minimally 2-connected
graphs, 2-trees, and maximal outerplanar graphs.

Keywords Connectivity · Average connectivity · Orientations · Cubic graphs ·
Minimally 2-connected graphs · Maximal outerplanar graphs

1 Introduction

In this article, a graph is finite, loopless, and contains nomultiple edges. An orientation
of a graph G is a directed graph obtained by assigning a direction to every edge of
G. Connectedness properties of orientations of graphs have been studied in a variety
of different settings. Probably the most well-known and oldest result in this area is
Robbins’ Theorem (Robbins 1939), which states that every 2-edge-connected graph
has a strong orientation, i.e., an orientation with the property that for every pair u, v of
distinct vertices of the graph, there is both a directed u–v path and a directed v–u path.
Nash-Williams (1960) extended this result by showing that every 2k-edge-connected
graph has a strongly k-edge-connected orientation, i.e., an orientation for which there
exist k edge-disjoint paths fromu to v for every ordered pair (u, v)of distinct vertices of
the graph.Mader (1978) also established this result using his so-called lifting theorem.
In light of these results on edge connectivity, it is natural to ask what can be said about
the connectivity of an orientation of a graph in terms of its connectivity. Thomassen
(1989) proposed the following conjecture.

Conjecture 1.1 For every positive integer k, there exists a smallest positive integer
f (k) such that every f (k)-connected graph has a strongly k-connected orientation.

More recently, Thomassen (2014) established the following necessary and sufficient
conditions that guarantee that a graph admits a strongly 2-connected orientation.

Theorem 1.2 (Thomassen 2014) A graph G has a strongly 2-connected orientation if
and only if G is 4-edge-connected, and every vertex-deleted subgraph of G is 2-edge-
connected.

It follows that if G is 4-connected, then G has a strongly 2-connected orientation,
confirming Conjecture 1.1 in the case k = 2. Conjecture 1.1 remains open for k ≥ 3.
Durand de Gevigney (2020) showed that for each k ≥ 3, the problem of deciding
whether a given graph has a strongly k-connected orientation is NP-complete.

Instead of trying to find the largest k for which a given graph has a strongly
k-connected orientation, we focus on finding orientations for which the average con-
nectivity, that is, the average of the connectivities between all ordered pairs of vertices,
is maximized.

For distinct vertices u and v in a graphG, the connectivity between u and v, denoted
κG(u, v), or κ(u, v) if G is clear from context, is the maximum number of internally
disjoint u–v paths in G. If u and v are not adjacent in G, then Menger’s Theorem
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states that κG(u, v) is also equal to the minimum number of vertices whose removal
separates u and v in G. It is also well-known that the connectivity κ(G) of a graph G
is the minimum of κG(u, v) taken over all unordered pairs of distinct vertices u, v of
G. See Oellermann (2013) for more details.

The average connectivity ofG, denoted κ̄(G), is the average of κG(u, v) taken over
all unordered pairs of distinct vertices u, v of G. If G has order n, then

κ̄(G) = 1
(n
2

)
∑

{u,v}⊆V (G)

κG(u, v).

This parameterwas introducedbyBeineke et al. (2002) as amore refinedmeasure of the
connectedness of a graph than the connectivity. Bounds on the average connectivity
of a graph in terms of various graph parameters were given by Dankelmann and
Oellermann (2003).

For a directed graph D with distinct vertices u and v, the connectivity from u to v,
denoted κD(u, v), is the maximum number of internally disjoint directed u–v paths in
D. The average connectivity of D, denoted κ̄(D), is defined as the average of κD(u, v)

taken over all ordered pairs of distinct vertices u, v of D. If D has order n, then

κ̄(D) = 1

n(n − 1)

∑

(u,v)
u,v∈V (D),u �=v

κD(u, v).

The average connectivity of digraphs was first introduced by Henning and Oellermann
(2004).

In this article, we are concerned primarily with the maximum average connectivity
among all orientations of a given graph G, denoted κ̄max(G). This parameter was also
introduced by Henning and Oellermann (2004). If D is an orientation of G such that
κ̄max(G) = κ̄(D), then we say that D is an optimal orientation ofG. Note that optimal
orientations need not be unique; a graphmay havemany different optimal orientations.
Henning and Oellermann gave the following asymptotically sharp bound on κ̄max(T )

for any tree T .1

1 The family of trees described in Henning and Oellermann (2004) for which the lower bound is asymptot-
ically sharp can be obtained as follows. For a given t ≥ 1, take three copies of K1,t , and identify a leaf from
each copy of K1,t in a single vertex (which will have degree 3). Let T3t+1 be such a tree. So if n = 3t + 1,

then κ̄max(T3t+1) = 2n2+14n−43
9n(n−1) . We point out that it was incorrectly stated in Henning and Oellermann

(2004) that for a tree T of order n ≥ 3, we have κ̄max(T ) ≥ 2n2+14n−43
9n(n−1) . This inequality holds for n ≥ 34.

However, for n < 34, we have

κ̄max(K1,n−1) =
⌊
n−1
2

⌋⌈
n−1
2

⌉
+ (n − 1)

n(n − 1)
<

2n2 + 14n − 43

9n(n − 1)
.

For n < 34, the stars are in fact the extremal trees. That is, for n < 34, one can show that κ̄max(K1,n−1) ≤
κ̄max(T ) for every tree T of order n.
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Theorem 1.3 (Henning and Oellermann 2004) If T is a tree of order n ≥ 3, then

2
9 < κ̄max(T ) ≤ 1

2 .

We obtain bounds on κ̄max(G) for all graphs G of a given order and belonging to
a given class of graphs. Whenever possible, we demonstrate that these bounds are
(asymptotically) sharp. We study these problems for two classes of graphs that are,
in some sense, generalizations or extensions of trees: minimally 2-connected graphs
(trees are minimally 1-connected), and maximal outerplanar graphs (which are known
to be 2-trees).

We are also interested in the value of the ratio κ̄max(G)/κ̄(G) for a given graph
G, which is in some sense a measure of how well the overall level of connectedness
of a graph can be preserved under orientation. Naively, one might expect the ratio
κ̄max(G)/κ̄(G) to be close to 1/2, since one might hope for an orientation of G in
which a collection of κG(u, v) internally disjoint paths are all directed one way or
the other, for every pair of distinct vertices u, v. But the directed u–v paths need not
be internally disjoint from the directed v–u paths, meaning that κ̄max(G)/κ̄(G) can
be much larger than 1/2; we show that it can be arbitrarily close to 1. It is also true
that κ̄max(G)/κ̄(G) can be much smaller than 1/2. For example, we have already
mentioned that there are trees T such that κ̄max(T ) is arbitrarily close to 2/9. Since
κ̄(T ) = 1 for every tree T , it follows immediately that κ̄max(T )/κ̄(T ) can be arbitrarily
close to 2/9.

We now describe our main contributions, and the layout of the article. In Sect. 2,
we present some terminology, and some straightforward bounds on κ̄max(G) and
κ̄max(G)/κ̄(G) for every graph G. We briefly consider the edge connectivity ana-
logue of κ̄max(G)/κ̄(G) in order to highlight a stark contrast between connectivity
and edge connectivity in this setting.

In Sect. 3, we show that if G is an r -regular graph of order n for odd r , then

κ̄max(G) ≤ r−1
2 + n

4(n−1) ,

and that this bound is sharp. We then focus on cubic 3-connected graphs. If G is
a cubic 3-connected graph, then certainly κ̄max(G) ≥ 1 by Robbins’ Theorem. We
demonstrate that this lower bound is asymptotically tight by describing a sequence of
cubic 3-connected graphs for which the values of κ̄max approach 1. This shows that
one cannot guarantee significantly more ‘connectedness’ in an optimal orientation of
a 3-connected graph than in an optimal orientation of a 2-edge-connected graph.

In Sect. 4, we show that if G is a minimally 2-connected graph of order n, then

1 ≤ κ̄max(G) < 5
4 .

While the lower bound is sharp, we suspect that the upper bound can be improved.
We also show that for every minimally 2-connected graph G,

4
9 <

κ̄max(G)
κ̄(G)

< 5
8 .
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Although we are unable to show that these bounds are sharp, we do find sequences of
minimally 2-connected graphs for which the ratio κ̄max(G)/κ̄(G) approaches 25

54 and
9
16 , respectively. One of these constructions uses the sequence of cubic 3-connected
graphs described in Sect. 3.

Finally, in Sect. 5, we show that if G is a maximal outerplanar graph, then

κ̄max(G) ≤ 3
2 + n−5

n2−n
,

and that this bound is asymptotically sharp. We conjecture that if G is a maximal
outerplanar graph of order at least 4, then κ̄max(G) ≥ 19

18 . We give an example which
demonstrates that if this conjecture is true, then the bound is asymptotically sharp.

2 General bounds

We begin with some notation and terminology. The total connectivity of a graph G is
the sum of the connectivities of all unordered pairs of distinct vertices of G, and is
denoted by K (G). Evidently, if G has order n, then K (G) = (n

2

)
κ̄(G). If u and v are

distinct vertices of G, then κ(u, v) ≤ min{deg(u) + deg(v)}. Thus, if d1, d2, . . . , dn
is the degree sequence of G, then K (G) ≤ ∑

1≤i< j≤n min{di , d j }. In this case, we
call

P(G) = P(d1, d2, . . . , dn) =
∑

1≤i< j≤n

min{di , d j }

the potential of G.
If D is a digraph, and u, v ∈ V (D) are distinct, then we let θD(u, v) = κD(u, v) +

κD(v, u). If D is clear from context, then the subscript will be omitted. We also refer
to θ(u, v) as the θ value for u and v. For every pair u, v of distinct vertices of D, we
have θ(u, v) = κ(u, v) + κ(v, u) ≤ min{od(u), id(v)} + min{od(v), id(u)}. We call

P(D) =
∑

{u,v}⊆V (D)

(min{od(u), id(v)} + min{od(v), id(u)})

the potential of D.
The total connectivityof a digraph D, denoted K (D), is the sumof the connectivities

of all ordered pairs of distinct vertices of D, or equivalently, the sum of the θ values
of all unordered pairs of distinct vertices of D. If D has order n, then K (D) =
n(n − 1)κ̄(D).

For a graph G, the notation Kmax(G) denotes the maximum total connectivity
among all orientations of G. The potential of G provides the following useful upper
bound on the total connectivity of any orientation of G, and hence on Kmax(G).

Observation 2.1 If D is an orientation of a graph G, then

K (D) =
∑

{u,v}⊆V (D)

θ(u, v) ≤ P(D) ≤ P(G).
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Fig. 1 The orientation D2n of
the graph F2n

v1 v2 v3 v4

u1 u2 u3 u4 un−1

vn−1

un

vn
· · ·

· · ·

Let D be an orientation of G. We call a pair of vertices u and v of D full if
θD(u, v) = min{degG(u), degG(v)}.We say that D is saturated if every pair of distinct
vertices is full, i.e., if K (D) = P(G).

We now present some preliminary results. We begin with some straightforward
bounds on κ̄max(G). From Robbins’ theorem (Robbins 1939), we know that if G is a
2-edge-connected graph, then G has a strong orientation. This gives the following.

Theorem 2.2 If G is a 2-edge-connected graph, then κ̄max(G) ≥ 1.

We remark, however, that we do not know whether every optimal orientation of a
2-edge-connected graph is strong.

If D is an orientation of a graph of order n, then θ(u, v) ≤ n−1 for all pairs u, v of
vertices of D. This gives the following bound, first noted by Henning and Oellermann.

Theorem 2.3 (Henning and Oellermann 2004) If G is a graph of order n, then
κ̄max(G) ≤ n−1

2 .

This bound is achieved, for example, if n is odd andG ∼= Kn (Henning andOellermann
2004).

We now turn to bounds on the ratio κ̄max(G)/κ̄(G).

Theorem 2.4 For every graph G, we have κ̄max(G)/κ̄(G) ≤ 1, and this bound is
asymptotically sharp.

Proof If D is an orientation of G, then θD(u, v) ≤ 2κG(u, v) for all pairs u, v of
vertices of G. So κ̄max(G)/κ̄(G) ≤ 1.

To see that this bound is asymptotically sharp, let F2n be the lexicographic product
Pn ◦ (2K1), i.e., the graph obtained from two disjoint paths P : v1v2 . . . vn and
Q : u1u2 . . . un by adding the edges vi ui+1 and uivi+1 for 1 ≤ i < n (see Fig. 1).
The graph F2n has n − 2 pairs u, v such that κ(u, v) = 4, namely those pairs ui , vi
for 2 ≤ i ≤ n − 1, and 4(n − 3) pairs u, v such that κ(u, v) = 3, namely those pairs
of adjacent vertices of degree four. For all remaining pairs u, v of F2n , we see that
κF2n (u, v) = 2. Thus limn→∞ κ̄(F2n) = 2.

We now describe an orientation D2n of F2n with the property that limn→∞ κ̄(D2n)
κ̄(F2n)

=
1 (see Fig. 1). Orient P from vn to v1 and Q from un to u1. The edges uivi+1 and
vi ui+1 are oriented as (ui , vi+1) and (vi , ui+1) for 1 ≤ i < n. For all pairs u, v of
vertices of degree 4, we have θD2n (u, v) = 4. Since asymptotically almost all pairs of
vertices have degree 4, our claim follows. Hence, we have limn→∞ κ̄max(F2n)

κ̄(F2n)
= 1. ��

While Theorem 2.4 gives an asymptotically sharp upper bound on the ratio
κ̄max(G)/κ̄(G) for every graphG, it is an open problem to determinewhether there is a
positive constant c such that for every connected graphG, we have κ̄max(G)/κ̄(G) ≥ c.
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Webriefly consider the edge connectivity analogue of κ̄max(G)/κ̄(G) for the sake of
comparison. Let λ(u, v), λ̄(G), and λ̄max(G) denote the edge connectivity analogues
of κ(u, v), κ̄(G), and κ̄max(G), respectively. While the ratio κ̄max(G)/κ̄(G) can be
arbitrarily close to 1, this is not the case for λ̄max(G)/λ̄(G).

Theorem 2.5 For every graph G, we have λ̄max(G)/λ̄(G) ≤ 1/2.

Proof Let G be a graph with distinct vertices u and v. Let D be any orientation of G.
There is a set of λG(u, v) edges whose removal leaves a component Cu containing u,
and a component Cv containing v. Suppose that exactly k of the edges are oriented
from a vertex of Cu to a vertex of Cv . Every directed u-v path in D must use at least
one of these edges, so λD(u, v) ≤ k. Similarly, λD(v, u) ≤ λG(u, v) − k. Thus, we
have λD(u, v)+λD(v, u) ≤ λG(u, v) for every pair of distinct vertices u, v of G, and
the theorem statement follows immediately. ��

In proving that every 2k-edge-connected graph has a strongly k-edge-connected
orientation, Nash-Williams actually proved the stronger result that for every graph
G, there is an orientation D of G such that for every ordered pair (u, v) of distinct
vertices of D, there exist at least λG(u, v)/2� edge-disjoint directed u-v paths in D

(Nash-Williams 1960). It follows immediately that λ̄max(G) ≥ λ̄(D) ≥ λ̄(G)−1
2 , or

equivalently,

λ̄max(G)

λ̄(G)
≥ 1

2
− 1

2λ̄(G)
.

We can easily obtain a positive constant lower bound on λ̄max(G)/λ̄(G) in the case
that G is 2-edge-connected, and we will see that this bound is asymptotically sharp in
Sect. 3.2.

Theorem 2.6 If G is a 2-edge-connected graph, then λ̄max(G)/λ̄(G) ≥ 1/3.

Proof Let G be a 2-edge-connected graph. By the result of Nash-Williams, there is
an orientation D of G such that for every pair of distinct vertices u, v of G, we have
λD(u, v) ≥ λG(u, v)/2�. We claim that λD(u, v)+λD(v, u) ≥ 2

3λG(u, v) for every
pair of distinct vertices u, v of G, from which the theorem statement easily follows.
If λG(u, v) is even, then we have

λD(u, v) + λD(v, u) ≥ 2 · λG(u, v)/2� = λG(u, v).

On the other hand, if λG(u, v) is odd, then since G is 2-edge-connected, we have
λG(u, v) ≥ 3, and hence

λD(u, v) + λD(v, u) ≥ 2 · λG(u, v)/2� = λG(u, v) − 1 ≥ 2
3λG(u, v).

This completes the proof of the claim, and hence the theorem. ��
Overall, we see that the parameters λ̄max(G)/λ̄(G) and κ̄max(G)/κ̄(G) appear to

behave rather differently in general.
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3 Odd regular graphs

In this section, we study bounds on the average connectivity of optimal orientations
of r -regular r -connected graphs for odd r . A graph G is uniformly r-connected if
κ(G) = κ̄(G) = r [see Beineke et al. (2002)]. Clearly all r -regular r -connected
graphs are uniformly r -connected.

Orientations of odd regular graphs are never saturated, due to the following ele-
mentary result.

Observation 3.1 Let D be an orientation of an r-regular graph. If a pair of vertices
u, v in D is full, then the out-degree of u equals the in-degree of v.

So, if G �= K2 is r -regular with saturated orientation D, then r is even and the
orientation of D is regular; that is, every vertex has in- and out-degree r/2. For even r ,
there do exist r -regular r -connected graphs with saturated orientations [see Henning
and Oellermann (2001, 2004)].

3.1 An upper bound on �̄max(G)

Theorem 3.2 Let r ≥ 3 be odd. If G is an r-regular graph on n vertices, then

κ̄max(G) ≤ r − 1

2
+ n

4(n − 1)
.

Proof Let D be an arbitrary orientation of G. Let C be the number of full pairs in the
orientation D. Then the total connectivity of D is at most C + (r − 1)n(n − 1)/2.
Let A be the vertices of G with larger in-degree than out-degree. Then it follows from
Observation 3.1 that a full pair contains one vertex belonging to A and one vertex
not belonging to A. So the number of full pairs of D is at most n2/4. Our result now
follows. ��

We now describe, for every odd r ≥ 3, a family of r -regular graphs achieving
the upper bound of Theorem 3.2. Let s, t ≥ 2 be integers, and let Hs,t be the graph
constructed as follows. Take 2s sets of vertices V1, . . . , V2s , each of size t . For every
odd i , join every vertex in Vi to every vertex in Vi+1. For every even i , add all edges
between the vertices of Vi and Vi+1 apart from a perfect matching (where subscripts
are expressed modulo 2s). Then Hs,t is a regular graph of degree 2t −1. For example,
H2,2 is the hypercube Q3, and H5,3 is shown in Fig. 2.

Now, let Ds,t be the orientation of Hs,t obtained by placing the sets V1, V2, . . . , V2s
around a circle and orienting edges clockwise (see Fig. 2). To aid us in our discus-
sions, we colour the vertices in the odd subscripted sets white, and those in the even
subscripted sets black. In Ds,t , the white vertices have in-degree t − 1 and out-degree
t , while the black vertices have out-degree t − 1 and in-degree t . We claim that there
are t internally disjoint paths from any white vertex to any black vertex; and there are
t − 1 internally disjoint paths from any white vertex to any other white vertex, as well
as from any black vertex to any other black vertex, and from any black vertex to any
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Fig. 2 The graph H5,3

Fig. 3 The Möbius ladder of
order 14

white vertex. It follows immediately that κ̄(Ds,t ) = κ̄max(Hs,t ) matches the upper
bound given by Theorem 3.2.

In the cubic case, the bound of Theorem 3.2 is also achieved by theMöbius ladders.
Figure 3 shows a Möbius ladder of order 14.

3.2 The average connectivity in 3-connected cubic graphs

By Theorem 1.2, we have κ̄max(G) ≥ 2 for every 4-connected 4-regular graph G. In
contrast, for a 3-connected cubic graph G, we show that κ̄max(G) can be arbitrarily
close to 1. This demonstrates that the lower bound of Theorem 2.2 is asymptoti-
cally sharp even for 3-connected cubic graphs. Additionally, we see that the ratio
κ̄max(G)/κ̄(G) can be arbitrarily close to 1/3 for a 3-connected cubic graph G (and it
cannot be smaller than 1/3).

We begin by considering triangles in cubic graphs. Let T be a triangle in a cubic
graphG. In an orientation of the graphG wedefine a vertex u of T as bad if θ(u, v) ≤ 2
for all vertices v ∈ V (G) − V (T ).

Lemma 3.3 Let G be a cubic graph and let T be a triangle inG. Then in any orientation
of G, at least one vertex of T is bad.

Proof Let D be an orientation of G. Consider the three arcs incident with vertices of
T , but not belonging to T . Suppose that s of them are oriented away from T . In order
to be in a full pair with a vertex not in T , a vertex of T must have out-degree s. This
is not possible for all vertices of T . ��
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(a) The graph K4

ac

bd
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db
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cd

da
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(b) The inflation I(K4)

Fig. 4 The graphs K4 and I (K4)

Now, given a graph G, the graph I (G), which we will call the inflation of G
[see Chvátal (1973)], is defined as the line graph of the subdivision of G (where the
subdivision of G is obtained from G by subdividing every edge exactly once). In the
case that G is a cubic graph, the process of constructing I (G) is sometimes referred
to as making the wye-delta replacement at each vertex of G. For a cubic graph G, the
graph I (G) is obtained as follows. For every vertex v ∈ V (G), let Tv be a triangle
with vertices vx , vy, and vz , where x, y, and z are the neighbours of v in G. The
inflation I (G) is obtained from the disjoint union ∪v∈V (G)Tv by joining vx with xv ,
for every edge vx of G. The inflation of K4 is shown in Fig. 4.

If F is an orientation of I (G), then the orientation of G obtained by assigning vx
the orientation (v, x) if (vx , xv) is in I (G), or (x, v) if (xv, vx ) is in I (G), is called
the projection of F onto G. On the other hand, if D is an orientation of G, and F is an
orientation of I (G) with the property that (v, x) ∈ E(D) implies (vx , xv) ∈ E(F),
then we say that F is a lifting of D to I (G).

Lemma 3.4 Let G be a cubic graph. Let F be an orientation of I (G) and let D be the
projection of F onto G. If D has exactly C full pairs, then F has at most 4C+2|V (G)|
full pairs.

Proof Suppose Tx and Ty are distinct triangles of I (G). Then, by Lemma 3.3, there
are at most four full pairs of vertices of I (G) that have one vertex in Tx and the other in
Ty . If P and Q are (internally) disjoint Tx–Ty paths in I (G), then, apart from vertices
in Tx or Ty , the paths P and Q cannot contain vertices from the same triangle of I (G).
So D has a pair of internally disjoint x–y paths obtained from P and Q by contracting
every triangle in I (G) to the corresponding vertex in G. It follows that x and y must
be a full pair in D. Thus, the number of full pairs of F that are not contained in a
single triangle is at most four times the number of full pairs of D.

Now it suffices to show that every triangle of I (G) contains at most two full pairs of
vertices. Suppose that a and bmake up a full pair and belong to the same triangle Tz of
I (G). If Fa→b is a family of κI (G)(a, b) internally disjoint a–b paths, and Fb→a is a
family of κI (G)(b, a) internally disjoint b–a paths, then κI (G)(a, b)+κI (G)(b, a) = 3,
and every arc incident with a and every arc incident with b appears in Fa→b ∪Fb→a .
So the arc between a and b constitutes one of the paths in this union, and a second
path necessarily has length 2 and passes through the third vertex of Tz . The internal

123



Journal of Combinatorial Optimization

vertices of the third path in this union are necessarily not in Tz . Moreover, if the arc
incident with a but not in Tz is directed away from a, then the arc incident with b and
not in Tz is directed towards b, and vice versa. This can only happen for two pairs of
vertices in Tz . ��

The previous lemma shows how orientations of I (G) give rise to orientations of G
where connectedness properties between triangles in I (G) translate to connectedness
properties between the corresponding vertices of G. On the other hand, if D is an
orientation of G, and F is a lifting of D to I (G) in which every triangle is oriented
cyclically, then the next lemma establishes a connection between the connectedness
properties of D and those of F .

Lemma 3.5 Let G be a 3-connected cubic graph, and let D be a strong orientation of
G. Let F be a lifting of D to I (G) in which every triangle is oriented cyclically. If D
has exactly C full pairs, then F has 4C + 2|V (G)| full pairs.
Proof Note that the orientation F of I (G) is strong. Consider a full pair x and y in D.
Without loss of generality, assume that x has out-degree 2 and y has in-degree 2. Let
a1, a2 be the out-neighbours and a3 the in-neighbour of x in D. Let b1, b2 be the
in-neighbours and b3 the out-neighbour of y in D. Then for i ∈ {1, 2} and j ∈ {1, 2},
there are two disjoint paths from xai to yb j in I (G). It follows that for two distinct
triangles in I (G), we have four full pairs of vertices in I (G) (where each pair contains
a vertex from each of these two triangles).

Since every arc in D is in a cycle, it follows that for i ∈ {1, 2} there is a path from
xai to xa3 that is internally disjoint from Tx . Thus for every triangle Tx in D, there are
two full pairs with both vertices in Tx . This gives the desired result. ��

Together, Lemmas 3.4 and 3.5 give the following.

Theorem 3.6 Let G be a 3-connected cubic graph of order n. If G has a strong optimal
orientation D, and F is a lifting of D to I (G) in which every triangle is oriented
cyclically, then F is a strong optimal orientation of I (G). Moreover,

κ̄max(I (G)) = κ̄(F) = 1 + 4n(n − 1)[κ̄max(G) − 1] + 2n

3n(3n − 1)
.

Proof Suppose G has a strong optimal orientation D. Then θD(u, v) ≥ 2 for all pairs
u, v of vertices of D. Also if u, v is a full pair, then θD(u, v) − 2 = 1. Hence

∑

{u,v}⊆V (G)

(θ(u, v) − 2) = K (D) − n(n − 1)

equals the number of full pairs in D. If F is the orientation of I (G) obtained by
lifting D to I (G) and orienting each triangle cyclically, then, by Lemma 3.5, F has
4(K (D) − n(n − 1)) + 2n full pairs. Thus

K (F)=3n(3n−1)+4(K (D)−n(n−1))+2n=3n(3n−1)+4n(n−1)[κ̄(D) − 1] + 2n.

123



Journal of Combinatorial Optimization

The result now follows. ��
It is readily seen that K4 has a strong optimal orientation, and that κ̄max(K4) = 4/3.

Thus we obtain the following corollary to Theorem 3.6.

Corollary 3.7 lim
k→∞ κ̄max(I

k(K4)) = 1.

We conclude that the bound of Theorem 2.2 is asymptotically sharp even for 3-
connected cubic graphs, and that the ratio κ̄max(G)/κ̄(G) can be made arbitrarily
close to 1/3 for a 3-connected cubic graph G.

Finally, we note that for every pair of distinct vertices u, v in a cubic graph, a
collection of u-v paths is internally disjoint if and only if it is edge disjoint. Hence, if
G is a cubic graph, then λ̄max(G)/λ̄(G) = κ̄max(G)/κ̄(G). Therefore, it follows from
Corollary 3.7 that the bound of Theorem 2.6 is asymptotically sharp.

4 Orientations of minimally 2-connected graphs

It is natural to ask which graphs G satisfy κ(G) = κ̄(G) = k for some positive integer
k. It was observed in Beineke et al. (2002) that every graph G having this property is
minimally k-connected, i.e., satisfies κ(G) = k and κ(G−e) < k for every edge e ofG.
The minimally 1-connected graphs are precisely the trees, whose average connectivity
is 1. However, the average connectivity of minimally k-connected graphs, for k ≥ 2,
need not be k. Indeed, it has been shown that if G is a minimally 2-connected graph,
then 2 ≤ κ̄(G) < 9/4, and these bounds are asymptotically tight (Casablanca et al.
2021). In this section, we determine bounds on κ̄max(G) and κ̄max(G)/κ̄(G) for every
minimally 2-connected graph G.

Mader (1972) showed that if G is minimally k-connected, then the subgraph of G
induced by the vertices of degree exceeding k is a forest. For minimally 2-connected
graphs, the following stronger result holds.

Theorem 4.1 (see Bollobás (2004, Theorem 3.8)) Let G be a minimally 2-connected
graph that is not a cycle, and let F be the subgraph induced by the vertices of degree
exceeding 2 in G. Then F is a forest with at least two components.

Minimally 2-connected graphs were characterized independently by Dirac (1967)
and Plummer (1968). A cycle C of a graph G is said to have a chord if there is an
edge of G that joins a pair of non-adjacent vertices from C . Plummer characterized
the minimally 2-connected graphs as follows.

Theorem 4.2 (Plummer 1968) A 2-connected graph G is minimally 2-connected if
and only if no cycle of G has a chord.

4.1 Bounds on �̄max(G)

Here, we establish upper and lower bounds on κ̄max(G), where G is a minimally 2-
connected graph. Our first lemma concerns optimal orientations of connected graphs
in general.
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Lemma 4.3 Let D be an optimal orientation of a connected graph G of order at least
3. Then no arc of D is oriented from a source to a sink.

Proof Suppose otherwise that D contains the arc (u, v), where u is a source and v

is a sink. Then the only oriented path in D that contains the arc (u, v) is the path of
length 1 from u to v. Let D′ be the orientation obtained by reversing the arc (u, v) to
obtain (v, u). Note that θD′(u, v) = θD(u, v), and that θD′(x, y) ≥ θD(x, y) for any
other pair of vertices in G, since no path between x and y used the arc (u, v). Further,
there is a vertex w �= v such that either (u, w) or (w, v) is an arc in D, and there is an
oriented path from v to w (or w to u, respectively) in D′, while there was none in D.
This gives κ̄(D′) > κ̄(D), a contradiction. ��

We now establish a structure result for every minimally 2-connected graph G of a
given order for which κ̄max(G) has largest possible value.

Lemma 4.4 Let G be aminimally 2-connected graph of order n ≥ 5 such that κ̄max(G)

is largest. Then no two vertices of degree 2 are adjacent in G.

Proof Let G be as in the lemma statement. Since K2,n−2 has an orientation for which
the total connectivity exceeds n(n − 1), we know that G is not a cycle. Suppose,
towards a contradiction, that G has two adjacent vertices of degree 2, say u and v.
Let u′ be the other neighbour of u and let v′ be the other neighbour of v. Since G is
2-connected and n ≥ 5, we have u′ �= v′. Further, since G is minimally 2-connected
and is not a cycle, one can argue that u′v′ /∈ E(G) by using Theorem 4.2. LetG ′ be the
graph obtained by deleting the edge uv and adding the edges u′v and uv′. Using the
fact that u′v′ /∈ E(G), it is straightforward to show that G ′ is minimally 2-connected.
We claim that κ̄max(G ′) > κ̄max(G).

Let D be an optimal orientation of G. Suppose first that the path P : u′uvv′ is
oriented from u′ to v′ or from v′ to u′ in D. Let D′ be the orientation ofG ′ obtained from
D by deleting the arcs incident to u and v, and adding the arcs (u′, u), (u, v′), (v′, v),

and (v, u′). By straightforward arguments, we have θD′(u′, v′) = θD(u′, v′) + 1, and
θD′(x, y) ≥ θD(x, y) for every other unordered pair of vertices x, y. It follows that
κ̄(D′) > κ̄(D).

On the other hand, if the vertices of P do not induce an oriented path in D, then
either u or v is a source or a sink in D. Suppose u is a sink; the other cases are similar.
Then by Lemma 4.3, v is not a source. So (u′, u), (v, u), and (v′, v) are arcs in D. Let
D′ be the orientation of G ′ obtained from D by deleting the arc (v, u) and adding the
arcs (v′, u) and (v, u′). Once again, one can verify that θD′(u′, v′) = θD(u′, v′) + 1,
and that θD′(x, y) ≥ θD(x, y) for every other unordered pair of vertices x, y. It follows
that κ̄(D′) > κ̄(D). ��

We are now ready to bound the value of κ̄max(G) for any minimally 2-connected
graph G.

Theorem 4.5 Let G be a minimally 2-connected graph of order n ≥ 3. Then

1 ≤ κ̄max(G) ≤ 1 + (n−3)2

4n(n−1) < 5
4 .
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Proof The lower bound follows immediately from Robbins’ Theorem. For the upper
bound, let G be a minimally 2-connected graph of order n ≥ 3 such that κ̄max(G) is
largest. Suppose that G has s vertices of degree at least 3 and n − s vertices of degree
2. Let V1 = {v1, . . . , vs} be the set of vertices of degree at least 3. Let di = deg(vi )
for all i ∈ {1, . . . , s}. By Theorem 4.1, the subgraph G[V1] is a forest with at least
two components. So the subgraph induced by the vertices of degree at least 3 has at
most s − 2 edges. By Lemma 4.4, every edge incident to a vertex of degree 2 must
also be incident to a vertex of degree at least 3. Thus we have

s∑

i=1

di = 2(n − s) + 2|E(G[V1])| ≤ 2(n − s) + 2(s − 2) = 2n − 4.

Let D be some orientation of G, and let d and r be the unique integers such that
0 ≤ r < s and 2n − 4 = ds + r . By Observation 2.1, we have

K (D) ≤ P(G) = 2 · [(n
2

) − (s
2

)] + P(d1, d2, . . . , ds)

≤ 2 · [(n
2

) − (s
2

)] + d
(s
2

) + (r
2

)

= 2
(n
2

) + (d − 2)
(s
2

) + (r
2

)

= n(n − 1) + [ 2n−4−r
s − 2

] · (s
2

) + (r
2

)

= n(n − 1) + [ 2n−2s−4−r
s

] (s
2

) + (r
2

)

= n(n − 1) + (n − s − 2)(s − 1) − r(s−1)
2 + r(r−1)

2

= n(n − 1) + (n − s − 2)(s − 1) − r(s−r)
2

≤ n(n − 1) + (n − s − 2)(s − 1).

By elementary calculus, this last expression is at most n(n−1)+ (n−3)2

4 , with equality
if and only if s = n−1

2 . Since D is an arbitrary orientation of G, it follows that

κ̄max(G) ≤ 1 + (n−3)2

4n(n−1) < 5
4 . ��

The lower bound of Theorem 4.5 is sharp if and only ifG is a cycle. We believe that
the upper boundofTheorem4.5 canbe improved.Wewill see later inExample 4.10 that
κ̄max(G) can bemade arbitrarily close to 9/8 for aminimally 2-connected graphG; we
know of several distinct families of minimally 2-connected graphs which demonstrate
this, but we do not know of any minimally 2-connected graph G with κ̄max(G) > 9/8.

4.2 Bounds on the ratio �̄max(G)/�̄(G)

The following bounds follow from Theorem 4.5 and from a bound on the average
connectivity of a minimally 2-connected graph given in Casablanca et al. (2021).

Corollary 4.6 Let G be a minimally 2-connected graph. Then

4
9 <

κ̄max(G)

κ̄(G)
< 5

8 .
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Proof The lower bound follows from the facts that κ̄max(G) ≥ 1 (by Theorem2.2), and
κ̄(G) < 9

4 [by Casablanca et al. (2021, Theorem 2.11)]. The upper bound follows from
the facts that κ̄max(G) < 5

4 (by Theorem 4.5), and κ̄(G) ≥ 2 since G is 2-connected.
��

Wedo not knowwhether these bounds are sharp. In the remainder of this section, we
describe constructions of minimally 2-connected graphs G with ratio κ̄max(G)/κ̄(G)

arbitrarily close to 25
54 (which is 1

54 greater than the lower bound), and minimally 2-
connected graphs with ratio κ̄max(G)/κ̄(G) arbitrarily close to 9

16 (which is 1
16 less

than the upper bound).
We begin with two short lemmas on subdivisions of graphs. For a graph G, we let

S(G) denote the subdivision ofG, obtained fromG by subdividing every edge exactly
once. For ease of notation, we let S(G) have vertex set V (G) ∪ E(G), and u ∈ V (G)

and e ∈ E(G) are joined by an edge in S(G) whenever u is an endvertex of e in G.
Note that if G is 2-connected, then S(G) is minimally 2-connected.

Lemma 4.7 For any graph G of order n and size m,

K (S(G)) ≤ 2
[(n+m

2

) − (n
2

)] + K (G),

with equality if and only if G is 2-connected.

Proof Let u and v be distinct vertices of S(G). If either u or v is in E(G), then
κS(G)(u, v) ≤ 2, with equality for all such pairs if and only if G is 2-connected.
Suppose otherwise that u, v ∈ V (G). Any collection of k internally disjoint u–v
paths in S(G) corresponds to a collection of k internally disjoint u–v paths in G in an
obvious manner; so κS(G)(u, v) = κG(u, v). The statement now follows by summing
the connectivities between all pairs of vertices. ��

Lemma 4.8 Let G be a graph of order n and size m. Then

Kmax(S(G)) ≤ 2
[(n+m

2

) − (n
2

)] + Kmax(G),

with equality if there is an optimal orientation of G that is strong.

Proof Let DS be any orientation of S(G). Let u and v be distinct vertices of S(G). If
either u or v is in E(G), then θDS (u, v) ≤ 2, with equality for all such pairs if DS is
strong. Suppose otherwise that u, v ∈ V (G). Consider the partial orientation D of G
obtained from DS as follows. For every edge e ∈ E(G), say e = uv, orient e from u
to v if and only if both of the arcs (u, e) and (e, v) appear in DS . Remove all edges of
G that are not given an orientation in this manner (namely those edges of G that are
sources or sinks as vertices in DS). Then κDS (u, v) = κD(u, v). Thus, we have

∑

u,v∈V (G)

κDS (u, v) =
∑

u,v∈V (G)

κD(u, v) ≤ Kmax(G),

123



Journal of Combinatorial Optimization

with equality if and only if D is an optimal orientation of G (in particular, every edge
of G must be in D). Altogether, we have

Kmax(S(G)) ≤ 2
[(n+m

2

) − (n
2

)] + Kmax(G),

with equality if D is a strong optimal orientation of G. ��
Example 4.9 Let Gk = I k(K4), with notation as in Sect. 3.2. The subdivision S(Gk)

of Gk is minimally 2-connected (since Gk is 2-connected), and we show that

lim
k→∞

κ̄max(S(Gk))

κ̄(S(Gk))
= 25

54
.

For ease of notation, let n = 4 · 3k (the order of Gk), let m = 3n
2 (the size of Gk), and

let N = (n+m
2

) − (n
2

)
. By a straightforward computation, we have

lim
k→∞

2N
n(n−1) = 21

4 . (1)

By Theorem 3.6, we know that Gk has a strong optimal orientation. Hence, by Lem-
mas 4.7 and 4.8, we have

κ̄max(S(Gk))

κ̄(S(Gk))
= Kmax(S(Gk))

2K (S(Gk))
= 2N + Kmax(Gk)

2 [2N + K (Gk)]
=

2N
n(n−1) + κ̄max(Gk)

4N
n(n−1) + κ̄(Gk)

. (2)

Now using (1), (2), Corollary 3.6, and the fact that κ̄(Gk) = 3, we obtain

lim
k→∞

κ̄max(S(Gk))

κ̄(S(Gk))
=

21
4 + 1
21
2 + 3

= 25

54
.

��
Example 4.10 Let n be a positive integer, and define H4n+1 as follows (see Fig. 5). Let
P : v1v2 . . . v2n be a path of order 2n. Subdivide each edge vivi+1 of P for 1 ≤ i < 2n,
and call the new vertex wi . Now add a vertex w0 and join it to v1 and v2, and add a
vertex w2n and join it to v2n−1 and v2n . To complete the construction of H4n+1, add
the edges vivi+2 for 1 ≤ i < 2n− 1. By inspection, H4n+1 is minimally 2-connected,
and we now show that

lim
n→∞

κ̄max(H4n+1)

κ̄(H4n+1)
≥ 9

16
.

Apart from the pairs of vertices vi , vi+1 for 1 ≤ i < 2n, the connectivity between
any pair of vertices u, v in H4n+1 is 2. So the total connectivity of H4n+1 is

K (H4n+1) = 2

(
4n + 1

2

)
+ 2n − 1.
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v1

v2

v3

v4

v5

v6

v7

v8

· · ·

· · ·

· · ·

v2n−3

v2n−2

v2n−1

v2n

w0 w2n
w1

w2

w3

w4

w5

w6

w7 w2n−3

Fig. 5 A family of minimally 2-connected graphs with ratio tending to 9
16

Hence, limn→∞ κ̄(H4n+1) = 2.
We now describe an orientation D4n+1 of H4n+1 (see Fig. 5). For every 1 ≤ i < 2n,

orient the path viwivi+1 from vi to vi+1. Orient the path v2w0v1 from v2 to v1, and
orient the path v2nw2nv2n−1 from v2n to v2n−1. Orient the path v2nv2n−2 . . . v2 from
v2n to v2, and the path v2n−1v2n−3 . . . v1 from v2n−1 to v1. One can verify that D4n+1
is strong. Note that H4n+1 has 2n vertices of degree at least 3 (the vi ’s) and 2n + 1
vertices of degree 2 (the wi ’s). Note that for any pair vi , v j with i < j , we have
κD4n+1(vi , v j ) = 1 and κD4n+1(v j , vi ) = 2, hence θD4n+1(vi , v j ) = 3. Therefore, the
total connectivity of D4n+3 is given by

K (D4n+1) = 2

(
4n + 1

2

)
+

(
2n

2

)
.

So limn→∞ κ̄(D4n+1) = 9
8 , and we certainly have κ̄max(H4n+1) ≥ κ̄(D4n+1) for all

n. It follows that

lim
n→∞

κ̄max(H4n+1)

κ̄(H4n+1)
≥ lim

n→∞
κ̄(D4n+1)

κ̄(H4n+1)
= 9

16
.

��

5 Maximal outerplanar graphs and 2-trees

A graph is outerplanar if it can be drawn in the plane so that no two of its edges cross
and all of its vertices appear on the boundary of the outer face. A graph is maximal
outerplanar if it is outerplanar and the addition of any edge destroys this property. It
is known that every maximal outerplanar graph is a 2-tree. For k ≥ 1, the k-trees are
defined recursively as follows: the complete graph Kk is a k-tree, and if T is a k-tree,
then the graph obtained from T by adding a new vertex and joining it to every vertex
in a k-clique of T is a k-tree. Note that trees are precisely the 1-trees.

It was shown in Dankelmann and Oellermann (2003) that all maximal outerplanar
graphs of the same order have the same average connectivity.
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Theorem 5.1 (Dankelmann and Oellermann 2003) If G is a maximal outerplanar
graph of order n, then

κ̄(G) = 2 + 2n − 6

n(n − 1)
.

So, formaximal outerplanar graphs of a fixed order, the ratio κ̄max(G)/κ̄(G) ismax-
imized or minimized exactly when κ̄max(G) is maximized or minimized, respectively.
So it suffices to focus on bounds for κ̄max(G) if G is maximal outerplanar. We show
that if G is a maximal outerplanar graph, then κ̄max(G) ≤ 3

2 + o(1). Moreover, this
bound is asymptotically sharp. We conjecture that κ̄max(G) ≥ 19/18 for every max-
imal outerplanar graph of order at least 4, and we demonstrate that if this conjecture
is true, then the bound is asymptotically sharp.

As was the case for maximal outerplanar graphs, one can show (by induction), that
if G is a 2-tree of order n ≥ 3, then κ̄(G) = 2 + 2n−6

n(n−1) . Thus, for 2-trees of a fixed
order, the ratio κ̄max(G)/κ̄(G) is maximized or minimized exactly when κ̄max(G) is
maximized or minimized, respectively. We show that if G is a 2-tree, then the bound
κ̄max(G) ≥ 1, guaranteed by Robbins’ Theorem, is asymptotically sharp.

5.1 Maximal outerplanar graphs

We use the following notation throughout this section. LetG be amaximal outerplanar
graph with a given embedding in the plane. We say that an edge is an outer edge of G
if it is part of the cycle C which forms the boundary of the outer face of G. An edge
that is not an outer edge is a chord of G.

The weak dual G∗ of G is the graph whose vertices are the faces of G distinct from
the outer face, and two vertices of G∗ are adjacent if, as faces of G, their boundaries
share an edge. If u∗ is a vertex of G∗, then V (u∗) denotes the set of vertices of G that
are on the boundary of u∗. It is well-known that G∗ is a tree of maximum degree at
most 3, and it is easy to see that a vertex of G∗ has degree 3 if and only if its boundary
consists of three chords.

Lemma 5.2 Let G be a maximal outerplanar graph of order n. Let A be the set of
vertices of G that are on a 4-cycle whose edges are chords. Let B2 be the set of
vertices of degree 2 in G. Then

|B2| ≥ 1

2
|A| + 2.

Proof Denote the set of vertices ofG∗ whose degree is 3 and who are adjacent to some
other vertex of degree 3 by V ∗

3 . We prove the lemma by bounding |V ∗
3 | from above in

terms of |B2|, and from below in terms of |A|.
We first bound |V ∗

3 | from above in terms of |B2|. Since a vertex of G has degree 2
if and only if its incident edges are both on the outer cycle, there is a natural bijection
between the vertices of G of degree 2 and the leaves of G∗. Hence |B2| = n∗

1, where
n∗
i is the number of vertices of G∗ of degree i . On the other hand, since G∗ is a tree
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of maximum degree at most 3, we have n∗
3 = n∗

1 − 2. Hence

|V ∗
3 | ≤ n∗

3 = n∗
1 − 2 = |B2| − 2. (3)

We now bound |V ∗
3 | from below in terms of |A|. We first show that

A =
⋃

u∗∈V ∗
3

V (u∗). (4)

To see that A ⊆ ⋃
u∗∈V ∗

3
V (u∗), let v ∈ A. Then v is on some 4-cycle Cv whose

edges are chords. Since G is maximal outerplanar, Cv also has a chord e. The two
faces u∗

1 and u∗
2 of G that have e on their respective boundaries are adjacent in G∗.

Further, since the edges on their boundaries are all chords, we see that u∗
1 and u

∗
2 have

degree 3 in G∗. Hence, we have u∗
1, u

∗
2 ∈ V ∗

3 and v ∈ V (u∗
1) ∪ V (u∗

2), and it follows
that v ∈ ⋃

u∗∈V ∗
3
V (u∗).

To see that
⋃

u∗∈V ∗
3
V (u∗) ⊆ A, let v ∈ ⋃

u∗∈V ∗
3
V (u∗). Then v ∈ V (u∗

1) for some
u∗
1 ∈ V ∗

3 . By the definition of V ∗
3 , the vertex u∗

1 has a neighbour u∗
2 in G∗ of degree

3. Since V (u∗
1) and V (u∗

2) share an edge of G, and since the edges on the boundary
of u∗

i , for i ∈ {1, 2}, are all chords, there is a 4-cycle of G containing the vertices of
V (u∗

1) ∪ V (u∗
2), whose edges are chords. Hence v ∈ A. This proves (4).

Let H∗
1 , H∗

2 , . . . , H∗
k be the components of the graph G∗[V ∗

3 ]. Then each H∗
i is a

tree on at least two vertices. Clearly, if H∗
i has two vertices, then

∣∣∣
⋃

u∗∈V (H∗
i ) V (u∗)

∣∣∣ =
4. Every additional vertex in H∗

i increases
∣∣∣
⋃

u∗∈V (H∗
i ) V (u∗)

∣∣∣ by one, hence

∣∣∣
⋃

u∗∈V (H∗
i ) V (u∗)

∣∣∣ = ∣∣V (H∗
i )

∣∣ + 2 ≤ 2
∣∣V (H∗

i )
∣∣ .

Summation over i = 1, 2, . . . , k yields

|A| =
∣
∣∣
⋃

u∗∈V ∗
3
V (u∗)

∣
∣∣

=
∣∣∣
⋃k

i=1
⋃

u∗∈V (Hi )
V (u∗)

∣∣∣

≤
k∑

i=1

∣∣∣
⋃

u∗∈V (Hi )
V (u∗)

∣∣∣

≤
k∑

i=1

2
∣∣V (H∗

i )
∣∣

= 2|V ∗
3 |. (5)

Combining (3) with (5) now yields the statement of the lemma. ��
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Theorem 5.3 If G is a maximal outerplanar graph of order n, then

κ̄max (G) ≤ 3

2
+ n − 5

n(n − 1)
.

Proof Let D be an arbitrary orientation of G. Let C , A and B2 be as defined above,
and let u, v ∈ V (G). We bound θ(u, v) from above.

First assume that uv ∈ E(G). We prove that

θ(u, v) ≤
{
5, if uv is a chord;
3, if uv is an outer edge.

(6)

If uv is a chord, then u and v have two common neighbours, say a and b. Every path
between u and v in G, and thus in D, contains either a or b or the edge uv. Hence,
apart from the path consisting of the edge uv, there exist at most two internally disjoint
directed u–v paths in D, and at most two internally disjoint directed v–u paths in D.
Hence, if uv is a chord, then θ(u, v) ≤ 5.

If uv is an outer edge, then u and v have exactly one common neighbour, say a.
Every path between u and v in G contains either a or the edge uv. Hence, apart from
the path consisting of the edge uv, there exist no two internally disjoint directed u–v
paths in D, and no two internally disjoint directed v–u paths in D. Hence, if uv is an
outer edge, then θ(u, v) ≤ 3.

Now assume that uv /∈ E(G). We prove that

θ(u, v) ≤
⎧
⎨

⎩

2, if {u, v} ∩ B2 �= ∅;
4, if {u, v} ⊆ A;
3, otherwise.

(7)

If {u, v} ∩ B2 �= ∅, then θ(u, v) ≤ min{degG(u), degG(v)} = 2. So assume that
{u, v} ∩ B2 = ∅. Clearly, since u and v are nonadjacent, and since G is maximal
outerplanar, there exist two adjacent vertices a and b of G that separate u and v.
Hence, there exist at most two internally disjoint directed u–v paths in D, and at most
two internally disjoint directed v–u paths in D. It follows that θ(u, v) ≤ 4. In order
to complete the proof of (7), it suffices to show the following:

If θ(u, v) = 4, then u is on a 4-cycle whose edges are chords. (8)

Assume that θ(u, v) = 4.Wemay assume that ifC is traversed in clockwise direction,
then u, a and b appear in this order. Let u1, u2, . . . , uk be the neighbours of u in
clockwise order, where u1 and uk are the neighbours of u inC . Since G is outerplanar,
there exists j such that u1, . . . , u j are in the u–a subpath, and u j+1, . . . , uk are on
the b–u subpath of C . Then {u j , u j+1} separates u and v in G. Also, uu j is a chord of
G, since otherwise, if uu j was an outer edge, then every u–v path in G passes either
through uu j or through u j+1, implying that θ(u, v) ≤ 3. Similarly, uu j+1 is a chord.

There exists a common neighbour c of u j and u j+1 distinct from u. We show that
u j c is a chord of G. Suppose to the contrary that u j c is an outer edge of G. Since
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every u–v path in G passes through {u j , u j+1}, it follows that every u–v path in G
passes either through the edge u j c or the vertex u j+1, which implies that θ(u, v) ≤ 3,
a contradiction. Hence u j c is a chord. Similarly we show that u j+1c is a chord. We
conclude that u, u j , c, u j+1, u is a 4-cycle whose edges are chords, so u ∈ A, and (8)
follows.

We use (6) and (7) to bound the total connectivity of D. Let x = |A| and y = |B2|.
First note that G has n unordered pairs {u, v} of vertices that are joined by an outer
edge. Of these, exactly 2y pairs involve a vertex of degree 2, so that θ(u, v) ≤ 2 in this
case, and the remaining n − 2y pairs satisfy θ(u, v) ≤ 3. Next, note that G has n − 3
pairs {u, v} of vertices that are joined by a chord, and for these we have θ(u, v) ≤ 5.

Of the
(n
2

) − 2n + 3 pairs {u, v} of nonadjacent vertices, at most
(x
2

)
are contained

in A, so θ(u, v) ≤ 4 for these pairs. There are
(n
2

) − (n−y
2

)
unordered pairs {u, v} of

vertices involving a vertex of degree 2, and 2y of these are joined by an outer edge,
while none of them are joined by chords. Hence there are

(n
2

) − (n−y
2

) − 2y pairs of
nonadjacent vertices involving a vertex of degree 2, so that θ(u, v) ≤ 2. The remaining(n−y

2

) − (x
2

) − 2n + 3 + 2y pairs satisfy θ(u, v) ≤ 3. Summation of θ(u, v) over all
unordered pairs {u, v} yields that

∑

{u,v}⊆V (G)

θ(u, v) ≤ 2

(
n

2

)
+

(
n − y

2

)
+

(
x

2

)
+ 2n − 6.

Now y ≥ 1
2 x + 2 by Lemma 5.2, hence

∑

{u,v}⊆V (G)

θ(u, v) ≤ 2

(
n

2

)
+

(
n − 2 − 1

2 x

2

)
+

(
x

2

)
+ 2n − 6

= 3

2
n2 − 1

2
n − 5 − 1

2
nx + 5

8
x2 − 5

4
x . (9)

Since y ≥ 1
2 x + 2, we have n ≥ x + y ≥ 3

2 x + 2, and thus x ≤ 2
3n − 4

3 . Elementary
calculus shows that the right hand side of (9), as a function of x , is maximized subject
to 0 ≤ x ≤ 2

3n − 4
3 when x = 0. Substituting this yields

∑

{u,v}⊆V (G)

θ(u, v) ≤ 3

2
n2 − 1

2
n − 5,

and dividing by n(n − 1) yields the theorem. ��
The bound of Theorem 5.3 is asymptotically sharp. Let G2n be the maximal out-

erplanar graph obtained from the path P2n : v1v2 . . . v2n by adding the edges of the
paths Q : v1v3 . . . v2n−1 and R : v2v4 . . . v2n . Note that G2n is the square of the path
of order 2n. Let D2n be the orientation of G2n obtained by directing the edges of P2n
from v1 to v2n , the edges of Q from v2n−1 to v1, and the edges of R from v2n to v2
(see Fig. 6). It is easy to see that all unordered pairs {u, v} of vertices of D2n satisfy
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Fig. 6 The orientation D2n of
maximal outerplanar graph G2n

v1

v2

v3

v4

v5

v6

v7

v8

· · ·

· · ·

v2n−3

v2n−2

v2n−1

v2n

Table 1 The minimum value of
κ̄max over all maximal
outerplanar graphs of a given
order

Order Minimum value of κ̄max

3 1

4 13/12

5 23/20

6 7/6

7 25/21

8 67/56

9 29/24

θ(u, v) = 3, except for those 4n − 3 pairs that involve a vertex of degree 2 in G, for
which we have θ(u, v) = 2. Hence, we have κ̄max(G2n) ≥ κ̄(D2n) = 3

2 − 4n−3
2n(2n−1) .

We now discuss a lower bound for κ̄max(G) if G is a maximal outerplanar graph.
Since maximal outerplanar graphs of order at least 3 are 2-connected, it follows imme-
diately, from Robbins’ Theorem, that κ̄max(G) ≥ 1 for every maximal outerplanar
graph G of order at least 3. Moreover, this bound is tight since κ̄max(K3) = 1. How-
ever, the graph K3 seems exceptional.

Table 1 gives the minimum value of κ̄max(G) taken over all maximal outerplanar
graphs G of order n for 3 ≤ n ≤ 9. For 3 ≤ n ≤ 8, the fan Fn (the join of K1 and
Pn−1) is the unique maximal outerplanar graph of order n that realizes this minimum
value. For n = 9, the fan F9 and one other graph attain the minimum value of κ̄max.
We do not pursue the details, but it appears that limn→∞ κ̄max(Fn) = 5

4 .

Based on the information in Table 1, one might initially guess that the minimum
value of κ̄max must increasewith the order.However,we nowdescribe an infinite family
of maximal outerplanar graphs for which κ̄max is asymptotically at most 19

18 + o(1).
We conjecture that κ̄max(G) ≥ 19/18 for every maximal outerplanar graph G of order
at least 4. The following example was inspired by the example from Henning and
Oellermann (2004) that demonstrates sharpness for the lower bound of Theorem 1.3.

Example 5.4 Define a trigon as a triangle with every edge coloured red. Define a
lozenge as a K4 − e in which the edges of a perfect matching are coloured red, and all
other edges are coloured black. Construct graph G0 as follows: start with a trigon, and
glue a lozenge red-on-red to every edge of the trigon, so that each vertex of the trigon
has degree 5 in the resulting graph. See Fig. 7 for illustrations of a trigon, a lozenge,
and the graph G0.

Suppose Gi−1 has been constructed for some i > 0. Construct Gi from Gi−1 as
follows: glue a trigon to every red outer edge of Gi−1, and then glue two lozenges
(red-on-red) onto the two red outer edges of each trigon, so that each vertex in the
trigon has degree 5 in the resulting graph (see Fig. 8a).

123



Journal of Combinatorial Optimization

(a) A trigon (b) A lozenge (c) The graph G0

Fig. 7 A trigon, a lozenge, and the graph G0

(a) The graph G1

M1M1

M1

M1M1

M1

(b) The graph H1

Fig. 8 The graphs G1 and H1

Now letMi be a sufficiently largemaximal outerplanar graphwith half of its vertices
having degree 2. For a given integer k, one can obtain such a graph Mi of order 2k
from an arbitrary maximal outerplanar graph F of order k as follows. For every outer
edge e of F , add a new vertex ve, and join ve to the endvertices of e. Colour one outer
edge of Mi red, and colour all other edges of Mi black. Construct the graph Hi from
Gi by gluing a copy of Mi (red-on-red) to every outer red edge of Gi (see Fig. 8b).
We choose the graph Mi in such a way that |V (Gi )| = o(|V (Mi )|). This way, if one
chooses two vertices u and v at random from Hi , then almost surely neither belongs
to Gi , and for sufficiently large i , they are in fact almost surely in different copies of
Mi .

Whenever a trigon and a lozenge (or a lozenge and a copy of Mi ) share a red edge
in Hi , we say that they are adjacent. If two vertices u and v of Hi belong to distinct
components of Hi − E , where E is the set of black edges of a lozenge, then this
lozenge is called a connector lozenge for u and v.

We now consider an arbitrary orientation Di of Hi for some i ≥ 0. Suppose that
vertices u and v are not in Gi , and are in distinct copies of Mi (which is the case for
almost all pairs of vertices asymptotically). In this case, there must be at least two
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Fig. 9 An orientation of the
black edges of the lozenges
adjacent to a trigon

C3

C2C1

connector lozenges for u and v, so θ(u, v) ≤ 3. Suppose that θ(u, v) = 3. We may
assume, without loss of generality, that κ(u, v) = 2 and κ(v, u) = 1. So in every
connector lozenge for u and v, the independent black edges must be oriented away
from u towards v, and the third black edge must be oriented away from v towards u.
In particular, a majority of the black edges in any connector lozenge between u and v

must be oriented away from u towards v.
We take a step back to offer some intuition at this point. The deletion of a trigon

from Hi leaves three components C1,C2 and C3. By the argument of the previous
paragraph, there must be some pair of components, say C1 and C2, such that for every
vertex u in C1 and every vertex v in C2, we have θ(u, v) ≤ 2 in Di . Figure 9 shows
an orientation of the black edges of the lozenges adjacent to a trigon. This orientation
allows θ(u, v) = 3 for some u ∈ V (Ci ) where i ∈ {1, 2} and v ∈ V (C3). However,
this forces θ(u, v) = 2 for every u ∈ V (C1) and v ∈ V (C2). Most importantly, this
happens at the initial trigon of our construction, and this means that a large proportion
of pairs will have θ(u, v) ≤ 2.

Define an auxiliary graph Ai from Hi as follows. The vertex set of Ai is the set of
trigons of Hi together with the set of copies of Mi as subgraphs in Hi . Two vertices of
Ai are adjacent in Ai if and only if they are adjacent to a common lozenge in Hi . (So
edges in Ai correspond exactly to lozenges in Hi .) The orientation Di of Hi gives rise
to an orientation D∗

i of Ai as follows: orient edge uv in Ai as (u, v) if a majority of
the black arcs in the corresponding lozenge of Hi are directed away from u towards
v.

In order to bound the average connectivity of Di , we now bound the average con-
nectivity between leaves in the orientation D∗

i of Ai . There are 3 · 2i leaves in Ai ,
and by a straightforward induction, one can prove that there are at most 2 · 4i pairs of
leaves in D∗

i that are connected by a directed path. Thus, if we pick two leaves of D∗
i

at random, then the probability that there is a directed path between them (and hence
the probability that the connector lozenges between the corresponding copies of Mi

all have a majority of black edges oriented the same way) tends to at most p = 4/9.
We now return to the orientation Di of Hi . For each copy of Mi , we consider the set

of vertices in Mi that don’t belong to Gi (i.e., those that are not incident with the red
edge). Note that exactly half of these vertices have degree 2, and hence the proportion
of these vertices that can have θ value 3 with some vertex in another copy of Mi is at
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most q = 1/2. Thus, the average connectivity of Di is at most

3pq2 + 2(1 − pq2)

2
+ o(1) = 1 + pq2

2
+ o(1) ≤ 1 + 1

18 + o(1).

Since Di was an arbitrary orientation of Hi , we have

κ̄max(Hi ) ≤ 1 + 1

18
+ o(1).

Note that we have only shown an upper bound on κ̄max(Hi ); i.e., we have not shown
that κ̄max(Hi ) ≥ 1+ 1

18 . However, for each i , we can choose Mi so that we do in fact
have

lim
i→∞ κ̄max(Hi ) = 1 + 1

18
.

We omit the details of explicitly describing both Mi and an orientation of the resulting
graph Hi , and then demonstrating a lower bound on the average connectivity of this
orientation. However, we note that an optimal orientation of Ai , which also maximizes
the average connectivity between leaves, is easily obtained using the results ofHenning
and Oellermann (2004). An orientation of the black edges in the lozenges of Hi can
be “lifted” from this optimal orientation of Ai as follows: if (u, v) is an arc in Ai , then
orient the independent black edges in the corresponding lozenge of Hi away from u
towards v, and orient the last black edge in the corresponding lozenge of Hi away from
v towards u. This orientation of the lozenges more or less determines the orientations
of the edges in the trigons.

5.2 Orientations of 2-trees

We present a lower bound for κ̄max(G) if G is a 2-tree.

Theorem 5.5 Let G be a 2-tree of order n ≥ 3. Then

κmax (G) ≥ 1 + n − 3

n(n − 1)
,

and this bound is sharp for all n.

Proof We showby induction on n that every 2-treeG of order n has a strong orientation
D with K (D) ≥ n2 − 3. If n = 3, then G is a triangle, and orienting the edges of K3
as a directed cycle yields a digraph of total connectivity 6, so the statement holds for
n = 3. Now let G be a 2-tree of order n. Then G has a vertex u such that G − u is a
2-tree, and the neighbourhood of u inG consists of two adjacent vertices, v andw say.
By our induction hypothesis, G−u has a strong orientation D′ of total connectivity at
least (n−1)2 −3. We extend D′ to a strong orientation D of G by orienting the edges
uv and uw so that they form a directed 3-cycle together with vw. Then D is strong.
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Hence D contains 2(n − 1) paths, from u to and from all vertices in D′. Furthermore,
D contains a new path between v and w through u, that has no edges in common with
any path in D′. Hence K (D) ≥ K (D′) + 2n − 1 ≥ (n − 1)2 − 3+ 2n − 1 = n2 − 3.

For a given n ≥ 3, let Gn = K2 + Kn−2 (the join of K2 and Kn−2) and let u, v

be the vertices of degree n − 1 in Gn . Let Dn be an optimal orientation of Gn . If
a, b is a pair of vertices of Gn such that {a, b} �= {u, v}, then θ(a, b) ≤ 2. Moreover,
θ(u, v) ≤ n− 1. Hence K (Dn) ≤ n(n− 1)+ n− 3 and thus κ̄max(Gn) ≤ 1+ n−3

n(n−1) .
Thus the given bound is sharp. ��

We also conjecture that if G is a 2-tree of order n for which κ̄max(G) is largest, then
G is maximal outerplanar. If this conjecture holds, then the results of Sect. 5.1 tell us
that κ̄max(G) ≤ 3

2 + o(1) for every 2-tree G, and that this bound is asymptotically
sharp.

6 Conclusion

The problem of finding the maximum average connectivity among all orientations
of a graph was introduced in Henning and Oellermann (2004), where the following
asymptotically tight bounds for the maximum average connectivity of a tree T were
established:

2

9
< κ̄max(T ) ≤ 1

2
.

In this paper we focused on finding bounds for κ̄max(G) and κ̄max(G)/κ̄(G) for graphs
G belonging to certain classes that extend trees.

We showed that if G is a minimally 2-connected graph, then

1 ≤ κ̄max(G) <
5

4
,

and

4

9
<

κ̄max(G)

κ̄(G)
<

5

8
.

We know that the lower bound for κ̄max(G) is sharp, but suspect that the upper bound
can be improved.

Problem 6.1 Find an asymptotically sharpupper bound for κ̄max(G) ifG is aminimally
2-connected graph.

The bounds on the ratio have not yet been shown to be tight.

Problem 6.2 Determine asymptotically sharp upper and lower bounds for the ratio
κ̄max(G)

κ̄(G)
if G is a minimally 2-connected graph.
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If the upper bound of 5/4 for κ̄max(G) can be improved, this will also give rise to an
improved upper bound for the ratio κ̄max(G)

κ̄(G)
of minimally 2-connected graphs G.

For every maximal outerplanar graph G, we proved that

κ̄max(G) ≤ 3

2
+ o(1),

and that this bound is asymptotically sharp. For the lower bound, we propose the
following.

Conjecture 6.3 For every maximal outerplanar graph G of order at least 4, we have

κ̄max(G) ≥ 19/18.

We demonstrated that if this conjectured bound holds, then it is asymptotically sharp.
For a graph G in the class of 2-trees (which contain the maximal outerplanar

graphs), we showed that the bound κ̄max(G) ≥ 1 is asymptotically sharp. We propose
the following conjecture.

Conjecture 6.4 If G is a 2-tree of order n ≥ 3 for which κ̄max(G) is largest, then G is
maximal outerplanar.

If this conjecture holds, then the upper bound given in Theorem 5.3 is also an upper
bound for κ̄max(G) if G is a 2-tree.

We observed that if G is a graph, then κ̄max(G)/κ̄(G) ≤ 1, and we proved that this
bound is asymptotically sharp. However, the following remains open.

Problem 6.5 Does there exist a constant c > 0 such that κ̄max(G)/κ̄(G) ≥ c for every
(2-)connected graph G?

For every tree T , it is known that κ̄max(T )/κ̄(T ) > 2/9, and that this bound is asymp-
totically sharp. For every 3-connected cubic graph G, the fact that κ̄max(G)/κ̄(G) ≥
1/3 follows from Robbins’ Theorem, and we demonstrated that this bound is asymp-
totically sharp.

Very little is known about the global connectivity of optimal orientations of graphs.
In particular, it would be interesting if the following could be answered.

Problem 6.6 Is every optimal orientation of every 2-(edge-)connected graph strongly
connected?

Even the following weaker version of this problem remains open.

Problem 6.7 Does every 2-(edge-)connected graph have a strong optimal orientation?
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