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Abstract
We study the k- Center problem, where the input is a graphG = (V , E)with positive
edge weights and an integer k, and the goal is to select k center vertices C ⊆ V such
that the maximum distance from any vertex to the closest center vertex is minimized.
In general, this problem is NP-hard and cannot be approximated within a factor less
than 2. Typical applications of the k- Center problem can be found in logistics or
urban planning and hence, it is natural to study the problemon transportation networks.
Common characterizations of such networks are graphs that are (almost) planar or have
low doubling dimension, highway dimension or skeleton dimension. It was shown
by Feldmann and Marx that k- Center is W[1]-hard on planar graphs of constant
doubling dimension when parameterized by the number of centers k, the highway
dimension hd and the pathwidth pw (Feldmann and Marx 2020). We extend their
result and show that even if we additionally parameterize by the skeleton dimension
κ , the k- Center problem remains W[1]-hard. Moreover, we prove that under the
Exponential Time Hypothesis there is no exact algorithm for k- Center that has
runtime f (k, hd, pw, κ) · |V |o(pw+κ+√

k+hd) for any computable function f .

Keywords k-Center · Skeleton dimension · Highway dimension · Parameterized
complexity

1 Introduction

The k- Center problem consists of the following task: Given a graph G = (V , E)

with positive edge weights � : E → Q+ and some positive integer k, choose k center
vertices C ⊆ V that minimize the maximum distance from any vertex of the graph
to the closest center. Formally, denote the shortest path distances in the graph G by
dist : V 2 → Q+ and let Br (v) = {w ∈ V | dist(v,w) ≤ r} be the ball of radius r
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around v. We define the cost of a solution C ⊆ V as the smallest radius r ≥ 0 such
that V = ⋃

v∈C Br (v) and the goal is to find a solution of size at most k that has
minimum cost.

As k- Center is a generalization of theDominating Set problem, it isNP-hard on
general graphs. Therefore, approximation algorithms and fixed-parameter algorithms
for k- Center have been studied extensively in different settings. Due to Hochbaum
and Shmoys (1986) there is a 2-approximation algorithm, i.e., an efficient algorithm
that computes a solution which deviates from the optimum at most by a factor of 2.
This factor is tight, as for any ε > 0, it isNP-hard to compute a (2−ε)-approximation,
even when considering planar graphs (Plesník 1980) or geometric graphs using L1-
or L∞-distances (Feder and Greene 1988).

Still, the k- Center problem has common applications in areas like logistics or
urban planning. Imagine for example that we want to place a limited number of ware-
houses, hospitals or police stations in some city. However, there is only a budget to
build k such facilities and the task is to find k locations such that the distance from
any point to the closest facility is a small as possible. Thus, it is very reasonable to
study k- Center on transportation networks. Such networks are commonly modeled
as planar graphs or graphs that have low doubling dimension, highway dimension, or
skeleton dimension. For formal definitions of these parameters, see Sect. 2.

It is usually assumed that in graphs that model transportation networks, the men-
tioned parameters are bounded by O(polylog|V |) or O(

√|V |). It was shown that on
graphs of maximum degree � and highway dimension hd, the skeleton dimension is
at most (� + 1) · hd (Kosowski and Viennot 2017). The relationship between high-
way dimension hd and skeleton dimension κ was also evaluated experimentally on
several real-world road networks and it turned out that κ 	 hd (Blum and Storandt
2018). Moreover, it was conjectured that on road networks the skeleton dimension is
a constant whereas the highway dimension grows faster than O(polylog|V |).

Still, graphs of low highway dimension or skeleton dimension do not allow better
approximation factors than 2. In particular, it was shown that for any ε > 0, it is
NP-hard to compute a (2 − ε)-approximation for graphs of highway dimension hd ∈
O(log2 |V |) (Feldmann 2019) or skeleton dimension κ ∈ O(log2 |V |) (Blum 2019).

Another way of dealing with NP-hard problem is parameterization. The idea is to
capture the complexity of the problem through some parameter pwhich is independent
of the problem size n. A fixed-parameter algorithm computes an exact solution in time
f (p) ·nO(1) where f is a computable function and p a parameter. If a certain problem
admits such an fixed-parameter algorithm, we call it also fixed-parameter tractable
(FPT).

When studying the fixed-parameter tractability of k- Center, a very natural param-
eter is the number of centers k. However, k- Center is W[2]-hard for parameter k,
which stems from the Dominating Set problem, and hence k- Center in not fixed-
parameter tractable for parameter k unless FPT = W[2].

The fixed-parameter tractability of k- Center on transportation networkswas stud-
ied by Feldmann and Marx (2020). They showed that even if the input is restricted
to planar graphs of constant doubling dimension, the problem is W[1]-hard when the
parameter combines k, the highway dimension hd and the pathwidth pw. Moreover,
they proved that under the Exponential Time Hypothesis (ETH) there is no exact algo-
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rithm with runtime f (k, pw, hd) · |V |o(pw+√
k+hd). In the present paper we extend

this result and show that one can additionally parameterize by the skeleton dimension
κ without affecting W[1]-hardness. Formally, we show the following theorem.

Theorem 1 On planar graphs of constant doubling dimension, the k- Center problem
isW[1]-hard for the combinedparameter (k, pw, hd, κ)where pw is the pathwidth, hd
the highway dimension and κ the skeleton dimension of the input graph. AssumingETH
there is no f (k, pw, hd, κ) · |V |o(pw+κ+√

k+hd) time algorithm1 for any computable
function f .

In the reduction of Feldmann and Marx, the maximum degree � of the produced
graph can be quadratic in the input size. As it holds that � ≤ κ , we cannot conclude
any parameterized hardness for the skeleton dimension. Our new construction yields a
graph of constant maximum degree, which enables us to bound the skeleton dimension
as well as the highway dimension and the pathwidth.

Experiments performed by Blum and Storandt (2018) indicate that in real-world
road networks, the skeleton dimension κ is significantly smaller than the highway
dimension, which motivates the use of κ as a parameter. Note that in general, the
parameters pw, hd and κ are incomparable (Blum 2019). However, our main result
shows that combining all these parameters and the number of centers k does not allow
a fixed-parameter algorithm unless FPT = W[1].

Still, if a problem is hard to approximate and does not allow any fixed-parameter
algorithm, it can help to combine the two paradigms. For the k- Center problem,
parameterization indeed allows to achieve better approximation factors than 2. For
instance, there is a so called efficient parameterized approximation scheme (EPAS)
parameterized by k and the highway dimension hd, i.e., an algorithm computing a
(1+ ε)-approximation for any ε > 0 in time f (k, hd, ε) · nO(1) for some computable
function f (Becker et al. 2018).Moreover, there is an EPASparameterized by k and the
doubling dimension (Feldmann and Marx 2020). As any graph of skeleton dimension
κ has doubling dimension at most log2(2κ + 1) (Kosowski and Viennot 2017), this
also yields an EPAS for parameter (k, κ). Theorem 1 implies that approximation is
indeed necessary when parameterizing by any of k, hd, κ and pw.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. Addition modulo 4 is denoted by � and the lexico-
graphic order on N × N is denoted by ≤, i.e., (a, b) ≤ (a′, b′) if and only if a < a′ or
a = a′ and b ≤ b′.

In a graphG = (V , E) let π (s, t) be the shortest s-t path and let �(P) be the length
of a path P . The concatenation of two paths P and P ′ is denoted by P ◦ P ′.

A graph G is planar if it can be embedded into the plane without crossing edges,
and d-doubling if for any r > 0, any ball B2r (v) of radius 2r in G is contained in the
union of d balls of radius r . If d is the smallest integer such that G is d-doubling, the
graph G has doubling dimension log2 d.

1 Here o(pw + κ + √
k + hd) stands for g(pw + κ + √

k + hd). where g is a function with g(x) ∈ o(x).
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For the highway dimension several slightly different definitions can be found in the
literature (Abraham et al. 2010, 2011, 2016). Here we use the original one given by
Abraham et al. (2010). Note that our results also hold when using the definition from
(Abraham et al. 2011). For a discussion on the different definitions, we refer to (Blum
2019).

Definition 1 The highway dimension of a graph G is the smallest integer hd such that
for any radius r and any vertex v there is a hitting set S ⊆ B4r (v) of size hd for the
set of all shortest paths π satisfying |π | > r and π ⊆ B4r (v).

To define the skeleton dimension, which was introduced in (Kosowski and Viennot
2017), we need to consider the geometric realization G̃ of a graph G. Intuitively, G̃
is a continuous version of G where every edge is subdivided into infinitely many
infinitely short edges. For a vertex s ∈ V , let Ts be the shortest path tree of s. We
assume that inG every shortest path is unique, which can be achieved, e.g., by slightly
perturbing the edge weights, and it follows that Ts is also unique. The skeleton T ∗

s of
the shortest path tree Ts is defined as the subtree of T̃s induced by all vertices v, for
which there is some vertex w such that v is contained in π (s, w) and moreover, we
have dist(s, v) ≤ 2 · dist(v,w). Intuitively, we obtain the skeleton T ∗

s by cutting off
the last third of every branch of the shortest path tree Ts .

Definition 2 For a shortest path tree skeleton T ∗
s = (V ∗, E∗) in a graphG and a radius

r > 0, let Cutr (s):={v ∈ V ∗| dist(s, v) = r}. The skeleton dimension of a graph G
is κ:=maxs,r |Cutr (s)|.

We conclude this section with a definition of the pathwidth.

Definition 3 Apath decomposition of a graphG = (V , E) is a sequence (X1, . . . , Xr )

where every Xi (also called bag) is a subset of V and the following properties are
satisfied:

(1)
⋃r

i=1 Xi = V ,
(2) for every edge {u, v} ∈ E there is a bag Xi containing both u and v, and
(3) for every three indices i ≤ j ≤ we have Xi ∩ Xk ⊆ X j .

The width of a path decomposition is the size of the largest bag minus one, i.e.
maxri=1 (|Xi | − 1). The pathwidth pw of a graph G = (V , E) is defined as the mini-
mum width of all path decompositions of G.

3 The reduction

Following the idea of Feldmann andMarx (2020), who showed that on planar graphs of
constant doubling dimension, k- Center isW[1]-hard for parameter (k, pw, hd), we
present a reduction from the Grid Tiling with Inequality (GT≤) problem. This
problem asks the following question: Given χ2 sets Si, j ⊆ [n]2 of pairs of integers,
where (i, j) ∈ [χ ]2, is it possible to choose one pair si, j ∈ Si, j from every set, such
that
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– if si, j = (a, b) and si+1, j = (a′, b′) we have a ≤ a′, and
– if si, j = (a, b) and si, j+1 = (a′, b′) we have b ≤ b′.

It is known that the GT≤ problem isW[1]-hard for parameter χ and, unless the Expo-
nential Time Hypothesis (ETH) fails, it has no f (χ) · no(χ) time algorithm for any
computable f (Cygan et al. 2015).

3.1 The reduction of Feldmann andMarx

Given some instance I of GT≤, the reduction from (Feldmann and Marx 2020) pro-
duces the following graph HI . For any of the χ2 sets Si, j , the graph HI contains
a gadget Hi, j that consists of a cycle Oi, j = v1v2 . . . v16n2+4v1 and five additional
vertices x1i, j , x

2
i, j , x

3
i, j , x

4
i, j , and yi, j . For all i, j , every edge of the cycle Oi, j has

unit length and the vertex yi, j is connected to Oi, j via edges to v1, v4n2+2, v8n2+3 and
v12n2+4, which all have length 2n2 + 1. Moreover, for every pair (a, b) ∈ Si, j and
τ = (a − 1) · n + b, the gadget Hi, j contains the four edges

– {x1i, j , vτ } of length 2n2 − a
n+1 ,

– {x2i, j , vτ+4n2+1} of length 2n2 + b
n+1 − 1,

– {x3i, j , vτ+8n2+2} of length 2n2 + a
n+1 − 1, and

– {x4i, j , vτ+12n2+3} of length 2n2 − b
n+1 .

Finally, the individual gadgets are connected in a grid-like fashion, which means
that there is a path from x2i, j to x4i, j+1 and from x3i, j to x1i+1, j . Each of these paths has

length 1 and consists of n + 2 edges of length 1
n+2 .

Feldmann andMarx showed that the givenGT≤ instance I has a solution if and only
if the k- Center problem in the graph HI has a solution of cost 2n2 using k = 5χ2

centers. Moreover, the graph HI is planar and has doubling dimensionO(1), highway
dimension O(χ2) and pathwidth O(χ). Observe that the degree of any vertex xhi, j is

|Si, j |. This means that the skeleton dimension of HI might be as large as 	(n2), as
the maximum degree of HI is a lower bound on its skeleton dimension. We show now
how to construct a graph GI that resembles HI , but has skeleton dimension O(χ)

and fulfills the other mentioned properties.

3.2 Our construction

We assume that in the given GT≤-instance, for all (i, j) ∈ [χ ]2 and every b ∈ [n],
there is some a ∈ [n] such that (a, b) ∈ Si, j . This is a valid assumption, as from an
instance I of ordinaryGT≤, we can construct the following instance I ′. For i ∈ [χ−1]
and j ∈ [χ ] we add the pairs {(n + χ − i, b)|b ∈ [n]} to Si, j . Moreover, we add the
pairs {(0, b)|b ∈ [n]} to every Sχ, j . Clearly, every solution for I is also a solution
for I ′. Consider now a solution for I ′. For (i, j) ∈ [χ − 1] × [χ ] we cannot choose
a “dummy” pair si, j = (n + χ − i, b), as there is no (a′, b′) ∈ Si+1, j such that
a′ ≥ n + χ − i . Moreover, it is not possible to choose sχ, j = (0, b′) as Sχ−1, j
contains no pair (a, b) satisfying a ≤ 0. Hence, I has a solution if and only if I ′ has
a solution.
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(a) (b)

Fig. 1 A single gadget Gi, j and the whole graph GI

Given a GT≤-instance I we construct the following graph GI (cf. Fig. 1). Like
in (Feldmann and Marx 2020), we create a gadget Gi, j for every set Si, j . Any Gi, j

contains a cycle Oi, j , which initially consists of four edges that have length 2n+2+ 1/n.
Denote the four vertices of the cycle Oi, j by z1i, j , . . . , z

4
i, j and for h ∈ [4] let Oh

i, j =
π

(
zhi, j , z

h�1
i, j

)
. Now, for any pair (a, b) ∈ Si, j and any h ∈ [4] we insert a vertex

vh(a,b) into the path Oh
i, j and place it such that its distance to zhi, j is

d(a,b):=2b − 1 + a

n
.

It follows that the distance between vh(a,b) and vh�1
(a,b) is 2n+2 + 1/n. Moreover, for

(a′, b′) ≤ (a, b), the distance from vh
(a′,b′) to vh(a,b) is 2

b − 2b
′ + (a − a′)/n.

Additionally, for any pair (a, b) ∈ Si, j and any h ∈ [4], we insert two vertices
ψh

(a,b) and ψ ′h
(a,b) into the path Oh

i, j such that their distances from vh(a,b) are 2
n+1 and

2n+1 + 1/n, respectively. This implies that

dist
(
vh(a,b), ψ

h
(a,b)

)
= dist

(
ψ ′h

(a,b), v
h�1
(a,b)

)
= 2n+1 and

dist
(
vh(a,b), ψ

′h
(a,b)

)
= dist

(
ψh

(a,b), v
h�1
(a,b)

)
= 2n+1 + 1

n
.

Any gadget Gi, j also contains a central vertex yi, j that is connected to each zhi, j
through an edge of length 2n+1 + 1. Finally, we add four vertices x1i, j , . . . , x

4
i, j to

every gadget Gi, j , through which we will connect the individual gadgets. For (a, b) ∈
Si, j and h ∈ [4] denote the distance between vh(a,b) and xhi, j by dh(a,b). The idea of

our reduction is that we attach every xhi, j to the cycle Oi, j such that for every pair
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(a, b) ∈ Si, j and h ∈ {1, 3}, the distance dh(a,b) reflects the value of b, whereas for

h ∈ {2, 4}, the distance dh(a,b) reflects the value of a.

For the latter, we simply add an edge between x2i, j and the vertex v2(a∗,b∗) where

(a∗, b∗) = min Si, j .2 The length of this edge is chosen as

d2(a∗,b∗):=2n + 1 + d(a∗,b∗) = 2n + 2b
∗ + a∗

n
.

Similarly we add the edge
{
x4i, j , v

4
(a∗,b∗)

}
and set its length to

d4(a∗,b∗):=2n+1 − d(a∗,b∗) = 2n+1 + 1 − 2b
∗ − a∗

n
.

It follows that for all (a, b) ∈ Si, j we have

d2(a,b) = d2(a∗,b∗) + d(a,b) − d(a∗,b∗) = 2n + 2b + a

n
and

d4(a,b) = d4(a∗,b∗) + d(a∗,b∗) − d(a,b) = 2n+1 + 1 − 2b − a

n
.

Attaching x1i, j and x3i, j to Gi, j is slightly more elaborate. We want to ensure that
for any two pairs (a, b), (a, b′) ∈ Si, j that agree on the first component, we have
d1(a,b) = d1

(a,b′). For that purpose, we add a path U 1
i, j = u11, . . . , u

1
n and set the length

of every edge {u1λ, u1λ+1} to 2λ. Moreover, we add the edge {u1n, x1i, j } of length 2n . For
every b ∈ [n], consider the vertex v1(a∗,b) that is furthest from z1i, j .

3 We call it also

the b-portal ρ1
b . We attach it to u1b through an edge of length 2b − a∗/n, the so called

b-portal edge. It follows that for (a, b) ∈ Si, j we have

dist(v1(a,b), u
1
b) = 2b − a∗

n
+ d(a∗,b) − d(a,b) = 2b − a

n

and

dist(u1b, x
1
i, j ) =

n∑

λ=b

2λ = 2n+1 − 2b,

and hence we have

d1(a,b) = 2n+1 − a

n
.

Similarly we proceed with the vertices contained in O3
i, j . We add a path U 3

i, j =
u31, . . . , u

3
n , set the length of every edge {u3λ, u3λ+1} to 2λ and add the edge {u3n, x3i, j }

2 Here the minimum is taken w.r.t. the lexical order as defined previously.
3 This means a∗ = max(a,b)∈Si, j a.
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of length 2n . For b ∈ [n] we use the vertex v3(a∗,b) that is closest to z3i, j as the b-portal

ρ3
b and attach it to u3b trough a portal edge of length 2b − 1 + a∗/n. It follows that

d3(a,b) = 2n+1 − 1 + a

n
.

To complete the construction, we connect the individual gadgets in a grid-like
fashion. For i ∈ [n − 1] we connect x3i, j and x1i+1, j through a path Pi, j of length 1
that consists of (n + 1) edges of length 1/(n + 1) each. Moreover, for j ∈ [n − 1]
we connect x2i, j and x4i, j+1 through a path P ′

i, j = w1, . . . , wn where w1 = x4i, j+1

and wn = x4i, j . We set the length of every edge {wλ+1, wλ} to 2λ which implies that
�(P ′

i, j ) = 2n −2. The resulting graph GI can be constructed in polynomial time from
the given GT≤-instance I.

3.3 Graph properties

We now show some basic properties of GI that will be useful to prove the correctness
of our reduction and to obtain bounds on several graph parameters. We first observe
that all shortest paths between the cycle Oi, j and a path Uh

i, j have a certain structure
(cf. Fig. 2).

Lemma 1 Let a, b, b′ ∈ [n] and h ∈ {1, 3}. For β ∈ [n] denote the path

π
(
vh(a,b), ρ

h
β

)
◦

{
ρh

β, uhβ

}
◦ π

(
uhβ, uhb′

)
by Pβ .

(a) If b′ ≥ b, the shortest path from vh(a,b) to u
h
b′ is Pb.

(b) If b′ < b, the shortest path from vh(a,b) to u
h
b′ is Pb′ .

Proof Any shortest path from vh(a,b) to u
h
b′ needs to contain some portal edge

{
ρh

β, uhβ

}
.

We only prove case (a) for h = 1, the remaining cases can be shown similarly.
Let β ∈ [n] and let ρ1

β = v1(α,β) be the β-portal. The path Pβ has length

dist(v1(a,b), ρ
1
β) + dist(ρ1

β, u1β) + dist(u1β, u1b′), which equals

∣
∣
∣
∣2

β − 2b + (α − a)

n

∣
∣
∣
∣ + 2β − α

n
+

∣
∣
∣2b

′ − 2β
∣
∣
∣ .

This means that �(Pb) = 2b
′ − a/n, and

�(Pβ) =

⎧
⎪⎨

⎪⎩

2b
′ + 2b − 2β + a−2α

n for β < b

2b
′ + 2β − 2b − α

n for b < β ≤ b′

3 · 2β − 2b − 2b
′ − a

n for β ≥ b′.

It follows that for β �= b we have �(Pβ) > �(Pb), and hence, Pb is the shortest path
from vh(a,b) to u

h
b′ . ��
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(a) (b)

Fig. 2 Illustration of the shortest path structure as shown in Lemma 1. Shortest paths are drawn using thick
red lines

Moreover, it holds that for any vertex v of the graphGI , there is some central vertex
yi, j not too far away.

Lemma 2 For every vertex v, we have min(i, j) dist(v, yi, j ) ≤ 2n+2 + 2n+1.

Proof Assume first that v is contained in some gadget Gi, j . If v is contained in the
cycle Oi, j , the distance to the closest vertex zhi, j is at most 2n+1 as every edge length

is a multiple of 1/n and the subpath Oh
i, j between zhi, j and zh�1

i, j has length 2n+2 + 1/n.

Moreover, we have dist(zhi, j , yi, j ) = 2n+1 + 1, and hence, the distance between any

v ∈ Oi, j and yi, j is bounded by 2n+2 + 1.
Consider now some vertex xhi, j . The distance from xhi, j to any vertex vh(a,b) is d

h
(a,b)

and the is a path from dh(a,b) to yi, j via zhi, j of length d(a,b) + 2n+1 + 1. It follows, that

dist(xhi, j , yi, j ) ≤ dh(a,b) + d(a,b) + 2n+1 + 1 ≤ 2n+2 + 2n + 2, (1)

where the last inequality follows from the fact that dh(a,b) + d(a,b) ≤ 2n+1 + 2n + 1,

which is easy to verify. Assume now that v ∈ uhb for some h ∈ {1, 3} and b ∈ [n].
The shortest path from v to yi, j passes through the portal edge {uhb, ρh

b }, which has
length at most 2b, and the vertex zhi, j . The distance from ρh

b to zhi, j is at most 2b and
it follows that

dist(uhb, yi, j ) ≤ 2b + 2b + 2n+1 + 1 ≤ 2n+2 + 1.

It remains to consider the case where v is not contained in any gadget. If this holds, v is
contained in some path Pi, j or P ′

i, j between two gadgets. The lengths of these paths is

bounded by 2n−2 and hence, there is some vertex xhi, j such that dist(v, xhi, j ) ≤ 2n−2.

It follows from Equation 1, that dist(v, yi, j ) ≤ 2n+2 + 2n+1. ��

3.4 Correctness of the reduction

We show now that the GT≤-instance I has a solution if and only if the k- Center
instance GI has a solution of cost at most 2n+1 for k = 5χ2 centers.

Lemma 3 A solution for the GT≤-instance I implies a solution for the k- Center
instance GI of cost at most 2n+1.
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Proof For (i, j) ∈ [n]2 let si, j be the pair from Si, j that is chosen in a solution of I.
For the k- Center instance GI , we choose a center set C of size 5χ2 by selecting
from every gadget Gi, j the central vertex yi, j and the four vertices v1si, j , . . . , v

4
si, j . We

show that C has cost at most 2n+1.
Consider a gadget Gi, j and the four chosen centers v1(a,b), . . . , v

4
(a,b). It holds that

the distance between any two neighboring centers vh(a,b) and vh�1
(a,b) is 2

n+2 + 1/n and
moreover, the length of every edge of the cycle Oi, j is a multiple of 1/n. Hence, it
follows that for every vertex v ∈ Oi, j there is some center vertex vh(a,b) at distance at

most 2n+1. Consider some vertex uhb′ for h ∈ {1, 3}. It follows from Lemma 1, that
dist(vh(a,b), u

h
b′) ≤ 2n+1. Finally, the vertex yi, j is chosen as a center. This means that

the complete gadget Gi, j is contained in the five balls of radius 2n+1 around yi, j and
v1(a,b), . . . , v

4
(a,b).

It remains to show that the chosen centers cover all paths Pi, j and P ′
i, j that connect

the individual gadgets. Consider two neighboring gadgets Gi, j and Gi+1, j and let
si, j = (a, b) and si+1, j = (a′, b′) be the corresponding pairs from the solution of I.
We have a ≤ a′. From Gi, j we have chosen a center v3(a,b) that has distance d3(a,b)

to x3i, j . Similarly, we have chosen some v1
(a′,b′) from Gi+1, j whose distance to x1i+1, j

is d1
(a′,b′). The path Pi, j between x3i, j and x1i+1, j has length 1, and hence the distance

between the two considered centers is

d3(a,b)+�(Pi, j )+d1(a′,b′) = 2n+1 − 1+ a

n
+ 1 + 2n+1 − a′

n
= 2n+2 + a − a′

n
≤ 2n+2.

This means that Pi, j can be covered with balls of radius 2n+1 around v1
(a′,b′) and v3(a,b).

Similarly, b ≤ b′ yields

d2(a,b) + �(P ′
i, j ) + d4(a′,b′) = 2n + 2b + a

n
+ 2n − 2 + 2n+1 + 1 − 2b

′ − a′

n

= 2n+2 − 1 + 2b − 2b
′ + a − a′

n
< 2n+2

Hence, any vertex contained in a path P ′
i, j has distance at most 2n+1 from a chosen

center. ��
In the next lemma we show that every solution forGI of cost at most 2n+1 contains

four equidistant vertices v1(a,b), . . . , v
4
(a,b) from every Gi, j , which yield a solution for

I. This completes our correctness proof.

Lemma 4 A solution for the k- Center instance GI of cost at most 2n+1 implies a
solution for the GT≤-instance I.
Proof Let C be a solution for GI of cost at most 2n+1. Consider a gadget Gi, j . The
central vertex yi, j has distance at least 2n+1 + 1 to any other vertex. Hence we have
yi, j ∈ C . Let Ci, j be the remaining centers from C that have distance at most 2n+1

from any vertex of Gi, j . As k = 5χ2, there are at most 4χ2 such centers in total. We
first show that every Ci, j consists of exactly 4 vertices contained in the cycle Oi, j .
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Claim For (i, j) ∈ [n]2 we have Ci, j ⊆ Oi, j and |Ci, j | = 4.

To prove this, let (A, B) = max Si, j and let h ∈ [4]. We show that ψh
(A,B) can only

be covered through vertices from Gi, j \ {x1i, j , . . . , x4i, j }.
Consider some vertex xh

′
i, j . The shortest path from xh

′
i, j to ψh

(A,B) has to pass trough

either vh(A,B) or z
h
i, j . The distance from ψh

(A,B) to vh(A,B) is 2
n+1 whereas the distance

fromψh
(A,B) to z

h
i, j is 2

n+1+ 1/n−2B +1− A/n > 2n . Moreover, the distance from xh
′

i, j

to any vertex in the cycle Oi, j is at least 2n . It follows that dist(xh
′

i, j , ψ
h
(A,B)) > 2n+1

and hence, ψh
(A,B) cannot be covered through xh

′
i, j or any vertex not contained in the

gadget Gi, j .
Moreover, any two of the vertices ψ1

(A,B), . . . , ψ
4
(A,B) have distance at least 2

n+2 +
1/n and hence we need at least 4 centers to cover them with balls of radius 2n+1. This
implies that Ci, j ⊆ Gi, j \ {x1i, j , . . . , x4i, j } and |Ci, j | = 4.

Assume now that Ci, j � Oi, j , which means that some vertex uhb ∈ Ci, j was
chosen as a center. Let vh(a,b) be the corresponding b-portal. Lemma 1 implies that the

distance from uhb to any of the verticesψ1
(a,b), . . . , ψ

4
(a,b) is more than 2n+1. Moreover,

the pairwise distance of ψ1
(a,b), . . . , ψ

4
(a,b) is at least 2

n+2 + 1/n. This means that apart

from uhb , the set Ci, j needs to contain 4 more centers, which contradicts |Ci, j | = 4.
Hence we obtain Ci, j ⊆ Oi, j .

We now show, that every Ci, j contains four equidistant centers vh(a,b), i.e., any two

consecutive centers on Oi, j are at distance 2n+2 + 1/n from each other.

Claim For (i, j) ∈ [n]2 we have Ci, j =
{
v1(a,b), . . . , v

4
(a,b)

}
for (a, b) ∈ Si, j .

Let (α, β) be the minimum of Si, j . Consider the vertex x1i, j . Its distance to

z1i, j , ψ1
(α,β) and any vertex of Oi−1, j is more than 2n+1. Hence, it must be

covered through some vertex v1(a,b) where (a, b) ∈ Si, j . Consider the vertices

ψ ′1
(a,b), ψ

2
(a,b), ψ

′2
(a,b), ψ

3
(a,b), ψ ′3

(a,b), ψ
4
(a,b). None of them is contained in the ball of

radius 2n+1 around v1(a,b). Moreover, for h ∈ {1, 2, 3}, the distance between ψ ′h
(a,b)

and ψh�1
(a,b) is 2

n+2, whereas the distance between ψ ′1
(a,b) and ψ ′2

(a,b) and the distance

betweenψ3
(a,b) andψ4

(a,b) are both 2
n+2+1/n. This means that the whole cycle Oi, j can

only be covered with 4 balls of radius 2n+1 if we have
{
v2(a,b), v

3
(a,b), v

4
(a,b)

}
⊆ Ci, j .

Finally we show that the sets Ci, j yield a solution for I.
Claim For (i, j) ∈ [n]2 choosing si, j = (a, b) where v1(a,b) ∈ Ci, j yields a solution
for the GT≤-instance I.

Let si, j = (a, b) and si+1, j = (a′, b′) and assume that a > a′. Consider the path
Pi, j connecting the vertices x3i, j and x1i+1, j . As the path Pi, j consists of n + 1 edges

of length 1/(n + 1), it contains a vertex w that has distance 1 − a/(n + 1) from x3i, j
and distance a/(n + 1) from x1i+1, j . It follows that the distances from w to the closest
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centers in Gi, j and Gi+1, j are

d3(a,b) + 1 − a

n + 1
= 2n+1 − 1 + a

n
+ 1 − a

n + 1
> 2n+1 and

d1(a′,b′) + a

n + 1
= 2n+1 − a′

n
+ a

n + 1
> 2n+1,

respectively. This contradicts the fact that C is a solution for the k- Center instance,
and hence a ≤ a′. Similarly, let si, j = (a, b) and si, j+1 = (a′, b′) and assume that
b > b′. Consider the path P ′

i, j = w1 . . . wn connecting x2i, j and x4i, j+1. Recall that

every edge {wλ+1, wλ} has length 2λ and hence we have dist(x2i, j , wb) = 2n − 2b and

dist(wb, x4i, j+1) = 2b − 2. It follows that the distances from wb to the closest centers
in Gi, j and Gi, j+1 are

d2(a,b) + 2n − 2b = 2n + 2b + a

n
+ 2n − 2b = 2n+1 + a

n
> 2n+1 and

d4(a′,b′) + 2b − 2 = 2n+1 + 1 − 2b
′ + a′

n
+ 2b − 2 ≥ 2n+1 + a′

n
> 2n+1,

respectively, which gives a contradiction. It follows that b ≤ b′ and hence, choosing
si, j = (a, b) for v1(a,b) ∈ Ci, j yields a solution for I.

This completes the proof as any solution C of cost at most 2n+1 for the k- Center
instance GI implies a solution for the GT≤-instance I. ��

4 Bounds on graph parameters

In this part we show bounds on the doubling dimension, the highway dimension, the
skeleton dimension and the pathwidth of the graph GI , which imply Theorem 1. To
bound the doubling dimension, we exploit the fact that the individual gadgets Gi, j are
connected in a grid-like fashion. This means that we can bound the diameter of balls
within this grid. For that purpose, let Ai, j (d) = {(i ′, j ′) ∈ [χ ]2||i ′−i |+| j ′− j | ≤ d}.
Moreover, let Vi, j (d) be the vertices of all gadgets Gi ′, j ′ satisfying (i ′, j ′) ∈ Ai, j (d)

and the vertices on the paths Pi ′, j ′ and P ′
i ′, j ′ between these gadgets. We now bound

the diameter of the graph induced by Vi, j (d).

Lemma 5 Consider the graph induced by Vi, j (d). Its diameter is at most (2n+3 +
2n+1 + 2n + 2) · (2d + 1). Moreover, if |Ai, j (d)| = (2d + 1)2, i.e. Ai, j (d) contains
all possible index pairs, the diameter is at least (2n+2 + 2n) · (2d + 1).

Proof Let (i, j) ∈ [χ ]. We first bound the distance between any xhi, j and xh
′

i, j . In
particular we show that for any h, h′ ∈ [4] where h �= h′ we have

2n+2 + 2n < dist(xhi, j , x
h′
i, j ) ≤ 2n+3 + 2n+1 + 4.

The upper bound follows directly from Equation 1 in the proof of Lemma 2. For the
lower bound, observe that the shortest path between xhi, j and x

h′
i, j needs to pass through
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two vertices vh(a,b) and vh
′

(a′,b′) of the cycle Oi, j . It holds that the distance from xhi, j to

vh(a,b) and from xh
′

i, j to vh
′

(a′,b′) are d
h
(a,b) and d

h′
(a′,b′), which are both at least 2

n .Moreover,

the distance from vh(a,b) to vh
′

(a′,b′) is minimized, if vh(a,b) = vh(n,n) and vh
′

(a′,b′) = vh�1
(1,1).

As dist(vh(n,n), v
h�1
(1,1)) = 2n+2 + 1/n + d(1,1) − d(n,n) = 2n+1 + 2n + 1 + 1/n, a lower

bound of 2 · 2n + 2n+1 + 2n + 1 + 1/n > 2n+2 + 2n on dist(xhi, j , x
h′
i, j ) follows.

Consider now the graph induced by Vi, j (d). Any shortest path in this graph traverses
at most 2d + 1 gadgets and contains at most 2d paths between two gadgets. These
paths have length at most 2n − 2. Moreover, it follows from the proof of Lemma 2
that the diameter of a single gadget is at most 2n+3 + 2n+1 + 4. This means that the
distance of any shortest path is upper bounded by (2d + 1) · (2n+3 + 2n+1 + 2n + 2).

If |Ai, j (d)| = (2d + 1)2, the shortest path from x1i−d, j to x4i+d, j has to traverse

2d + 1 gadgets hence a lower bound of (2d + 1) · (2n+2 + 2n) on the diameter of the
graph induced by Vi, j (d) follows. ��

This allows us to show that the doubling dimension of GI is constant.

Lemma 6 The graph GI is planar and has constant doubling dimension.

Proof It canbe seen easily thatGI is planar.Recall that a graphhas doublingdimension
at most λ if any ball of radius 2r can be covered with 2λ balls of radius r .

To bound the doubling dimension of GI , consider a ball B2r (v) of radius 2r
around some vertex v ∈ V . Lemma 2 implies that there is a vertex yi, j satisfying
dist(v, yi, j ) ≤ 2n+2 + 2n+1. It follows that the ball B2r (v) is contained in the ball
around yi, j that has radius 2n+2+2n+1+2r .Moreover, Lemma 5 implies that the latter
ball in turn is contained in Vi, j (d) if 2 · (2n+2 + 2n+1 + 2r) ≤ (2n+2 + 2n) · (2d + 1).
This is true for 2d + 1 = 6r/2n+2 and r ≥ 2n+2 + 2n+1.

We now show that we can cover the vertices Vi, j (d) through a constant number of
balls that have radius r and are centered at vertices yi ′, j ′ . Lemma 5 implies that for
every (i ′, j ′) ∈ [χ ]2, the ball Br (yi ′, j ′) contains the set Vi ′, j ′(d ′) if 2r ≥ (2n+3 +
2n+1+2n+2) ·(2d ′+1). This is the case for 2d ′+1 = 2r/2n+4. As wewant Vi ′, j ′(d ′)
to be nonempty, we require d ′ ≥ 0, which holds for r ≥ 2n+3. Hence it suffices to
show that there is a constant number of sets Vi ′, j ′(d ′) whose union contains Vi, j (d).

As it was observed in (Feldmann andMarx 2020), the index set Ai, j (d) is contained
in the union of � 2d+1

2d ′+1�2 index sets Ai ′, j ′(d ′). It follows that we can cover the vertices
Vi, j (d) through � 2d+1

2d ′+1�2 vertex sets Vi ′, j ′(d ′). Hence, for r ≥ 2n+3 we can cover

B2r (v) with � 2d+1
2d ′+1�2 = � 6r/2n+2

2r/2n+4 �2 = 144 balls of radius r .

Assume now that r < 2n+3. We already showed that B2r (v) is contained in Vi, j (d)

if 2d + 1 = 6r/2n+2 < 12, which implies d < 6. Hence, the ball B2r (v) intersects
at most |Ai, j (5)| ≤ (2 · 5 + 1)2 = 121 gadgets Gi ′, j ′ . We show that we can cover
any of these gadgets Gi ′, j ′ and the paths to its neighboring gadgets through a constant
number of ball Br (w).

If r ≥ 2n+1, we can choose the 9 balls centered at yi ′, j ′ , zhi ′, j ′ and xhi ′, j ′ where

h ∈ [4], as for every w ∈ Oi ′, j ′ there is some zhi ′, j ′ satisfying dist(zhi ′, j ′ , w) ≤ 2n+1,

for h ∈ {1, 3} and b ∈ [n] it holds that dist(xhi ′, j ′, uhb) ≤ 2n+1 and the length the paths
to the neighboring gadgets have length at most 2n − 2.
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Let now r < 2n+1. If v = yi ′, j , i.e. the ball B2r (v) is centered at yi ′, j , we can
choose Xi ′, j ′ = {yi ′, j ′, zhi ′, j ′ |h ∈ [4]}. Otherwise, B2r (v)∩Oi ′, j ′ is a subpath of Oi ′, j ′
that has length at most 4r , which can be covered by 4 balls of radius r . Similarly, we
can also cover B2r (v)∩Uh

i ′, j ′ , B2r (v)∩ Pi ′, j ′ and B2r (v)∩ P ′
i ′, j ′ with 4 balls of radius

r each. This means that we can cover B2r ∩ Gi ′, j ′ through a constant number of balls
of radius r .

It follows that we can cover any ball B2r (v) for any v ∈ V and any r > 0 with a
constant number of balls of radius r , which completes the proof. ��

We next bound the highway dimension of GI .

Lemma 7 The graph GI has highway dimension hd ∈ O(χ2).

Proof For any radius r > 0 we specify a set Hr such that every shortest path π

satisfying �(π) > r intersects Hr and moreover, for every vertex v ∈ V we have
|Hr ∩ B4r (v)| ∈ O(χ2). Let

X = {yi, j , xhi, j , zhi, j |(i, j) ∈ [χ ]2, h ∈ [4]}.

For r ≥ 2n+2 we choose Hr = X . We have |Hr | = 9χ2 and hence for every vertex
v ∈ V we have |Hr ∩ B4r (v)| ∈ O(χ2). We show now that any shortest path of length
more than r intersects Hr . Clearly, all shortest paths that are not completely contained
within one single gadget are hit by Hr as all xhi, j are contained in Hr and the paths Pi, j
and P ′

i, j between the individual gadgets have length at most 2n − 2. Consider some
gadget Gi, j . All edges of the cycle Oi, j have length at least 1/n and for any h ∈ [4]
we have dist(zhi, j , z

h�1
i, j ) = 2n+2 + 1/n. Hence, any subpath of Oi, j that has length at

least 2n+2 intersects Hr . Moreover, for h ∈ {1, 3}, the path Uh
i, j has length 2n − 2.

It remains to consider some shortest path π(s, t) where s ∈ Oi, j and t ∈ Uh
i, j . Let

t = uhb . According to Lemma 1, the shortest path π(s, t) traverses exactly one portal
edge {ρh

β, uhβ}whereβ ∈ [b]. Thismeans that dist(s, t) = dist(s, ρh
β)+dist(ρh

β, uhb) ≤
dist(s, ρh

β) + 2b. The vertex s is contained in the shortest path π(zhi, j , ρ
h
β) or in

π(ρh
β, zh�1

i, j ). In the first case we have dist(s, ρh
β) < dist(zhi, j , ρ

h
β) ≤ 2β . This implies

that dist(s, t) < 2β + 2b ≤ 2n+1. In the second case we have dist(s, ρh
β) ≤ 2n+2 − 2β

and moreover Lemma 1 implies that β = b. Hence we obtain dist(s, t) ≤ 2n+2 −
2β + 2β = 2n+2. This means that every shortest path of length more than r ≥ 2n+2 is
hit by Hr .

Let now r < 2n+2. For a shortest path p = v1, . . . , vν and q > 0 let p〈q〉 be a
q-cover of p, i.e., we have p〈q〉 ⊆ {v1, . . . , vν} such that any subpath of p that has
length at least q contains some node from p〈q〉. We consider q-covers p〈q〉 that are
constructed greedily, i.e., we start with p〈q〉 = {v1} and iteratively add the closest
vertex that has distance at least q. For (i, j) ∈ [χ ]2 let

Xi, j =
⋃

h∈[4]
Oh
i, j

〈r/4〉 ∪
⋃

h∈{1,3}
Uh
i, j

〈r/4〉 ∪
{
u1n, u

3
n

}
∪ P〈r/4〉

i, j ∪ P ′
i, j

〈r/4〉
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and choose Hr = X ∪ ⋃
(i, j)∈[χ ]2 Xi, j . Consider some shortest path π(s, t) that has

length more than r . Clearly, π(s, t) is hit by Hr if it contains some node from X
or it is a subpath of some cycle Oi, j , some path Uh

i, j or some path Pi, j or P ′
i, j . It

remains to be shown that π(s, t) is also hit by Hr if s ∈ Oi, j and t ∈ Uh
i, j . Let

t = uhb . Lemma 1 implies that π(s, t) consists of a subpath p of Oi, j , a portal edge
{ρh

β, uhβ} and a subpath p′ ofUh
i, j . Assume that π(s, t) is not hit by Hr . By the choice

of Xi, j we have �(p) < r/4 and �(p′)| < r/4. This means that dist(ρh
β, uhβ) > r/2.

By construction of the graph GI we have dist(ρh
β, uhβ) ≤ 2β and hence 2β > r/2.

As we have uhβ /∈ Xi, j , it holds that β /∈ {1, n} and moreover it follows from the

choice of Uh
i, j

〈r/4〉
, that dist(uhβ−1, u

h
β) ≤ r/4. However, by construction of GI we

have dist(uhβ−1, u
h
β) = 2β−1, which implies 2β ≤ r/2, a contradiction to 2β > r/2. This

means that every shortest path of length more than r is hit by Hr .
Finallywe have to show that for every vertex v ∈ V wehave |Hr∩B4r (v)| ∈ O(χ2).

As for the r/4-cover of some shortest path pwehave |B4r (v)∩ p〈r/4〉| ∈ O(1), it follows
that for every (i, j) ∈ [χ ]2 we have |B4r (v) ∩ Xi, j | ∈ O(1). Moreover there are χ2

different sets Xi, j and we have |X | = 9χ2, which implies |Hr ∩ B4r (v)| ∈ O(χ2). ��
Observe, that for any graph G of highway dimension hd and maximum degree �,

we have κ ≤ (� + 1)hd where κ is the skeleton dimension (Kosowski and Viennot
2017). As the graph GI has maximum degree � = 4, it follows that the skeleton
dimension of GI is bounded by O(χ2).

However, with some more effort, we can show a stronger bound of O(χ). We will
use the following lemma, which was originally shown by Blum and Storandt (2018).

Lemma 8 (Lemma 2 in (Blum and Storandt 2018)) Consider vertices u, v, w ∈ V
such that v lies on the shortest u-w-path. If w is contained in the skeleton T ∗

u , it is
also contained in the skeleton T ∗

v .

Proof Let x be the furthest descendant of w in the shortest path tree Tu of u. As w is
contained in the shortest path three skeleton T ∗

u , we have dist(w, x) ≥ 2 · dist(u, w).
Because shortest paths are unique, the node x is also a descendant of w in the shortest
path tree Tv of v and as dist(w, x) ≥ 2 · dist(u, w) ≥ 2 · dist(v,w), the node w is
contained in the skeleton T ∗

v . ��
The crucial property of the constructed graph is that every skeleton T ∗

s contains
only a limited number of portal edges, as we show next. Recall that the skeleton T ∗

s
of a shortest path tree Ts is defined on the geometric realization, where every edge is
subdivided into infinitely many infinitely short edges. We refer to vertices that were
introduced during this subdivision as interior vertices. For simplicity, in the following
we confuse a graph G and its geometric realization G̃.

Lemma 9 Consider a vertex s = vh(a,b) for (a, b) ∈ [n]2 and h ∈ {1, 3}. The skeleton
T ∗
s contains an interior vertex of a portal edge {ρh

β, uhβ} only if we have β ∈ {b, b−1}.
Proof Assume h = 1. For β > b, it follows from Lemma 1 that {ρh

β, uhβ} is not

contained in the shortest path tree Ts of s and hence, no interior vertex of {ρh
β, uhβ} can
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be contained in T ∗
s . Let β < b−1 and let ρh

β = vh(α,β). Lemma 1 implies that uhβ is the

furthest descendant of ρh
β in the shortest path tree Ts , and we have dist(ρh

β, uhb) < 2β .

Moreover, the distance from vh(a,b) to ρh
β is

d(a,b) − d(α,β) = 2b − 2β + a − α

n
> 2β+1 > 1/2 · dist(ρh

β, uhb).

This means that no interior vertex of {ρh
β, uhβ} can be contained in T ∗

s . The case h = 3
can be shown similarly. ��
Lemma 10 Consider a vertex s = uhb where b ∈ [n] and h ∈ {1, 3}. The skeleton T ∗

s

contains an interior vertex of a portal edge {ρh
β, uhβ} only if we have β ∈ {b, b−1, 1}.

Proof Assume h = 1. For β > b, it follows from Lemma 1 that {ρh
β, uhβ} is not

contained in the shortest path tree Ts of s and hence, no interior vertex of {ρh
β, uhβ} can

be contained in T ∗
s . Let 1 < β < b − 1 and let ρh

β = vh(α,β). It follows from Lemma 1

that the furthest possible descendant of uhβ within the shortest path tree Ts is vh(1,β),

which has distance 2β − 1/n from uhβ . The distance from uhb to uhβ is

dist(uhb, u
h
β) = 2b − 2β > 2β+1 > dist(uhβ, vh(1,β))

and hence, no interior vertex of {ρh
β, uhβ} can be contained in T ∗

s . The case h = 3 can
be shown similarly. ��

The previous two lemmas allow us to bound the size of any shortest path tree
skeleton within a single gadget.

Lemma 11 For any (i, j) ∈ [χ ]2 and any vertex s contained in Gi, j , the subtree of
the skeleton T ∗

s induced by the vertices of Gi, j is the union of a constant number of
paths.

Proof Let s be some vertex contained in some gadget Gi, j , consider the shortest path
tree Ts of s and let Ts[Gi, j ] be the subtree of Ts induced by the vertices of Gi, j . If
we disregard all portal edges {ρh

b , uhb}, it follows from Lemma 1 that Ts[Gi, j ] consists
of a constant number of subpaths of the cycle Oi, j , of the two paths U 1

i, j and U 3
i, j ,

the 4 edges incident to x1i, j , . . . , x
4
i, j and some of the edges incident to yi, j . Hence, if

we do not count the portal edges, the subtree T ∗
s [Gi, j ] of the skeleton T ∗

s induced by
Gi, j is the union of a constant number of paths. It remains to be shown that T ∗

s [Gi, j ]
intersects only a constant number of portal edges.

Consider first the case that s is some b-portal, i.e., s = ρh
b for some h ∈ {1, 3} and

b ∈ [n]. It follows from Lemma 9 that only {ρh
b−1, u

h
b−1} and {ρh

b , uhb} can intersect

T ∗
s [Gi, j ]. Consider now a portal edge {ρh�2

β , uh�2
β } on the opposite side of the cycle.

It follows from Lemma 8 that it can only intersect T ∗
s [Gi, j ], if it also intersects

the skeleton of ρh�2
1 or ρh�2

n , which according to Lemma 10 holds only for β ∈
{1, n − 1, n}. This means that T ∗

s [Gi, j ] consists of a constant number of paths. If s is
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contained in some path Uh where h ∈ {1, 3}, we can show the same using Lemmas 8
and 10.

Assume now that s is contained in the cycle Oi, j , but not a portal. Let u and v

be the two closest portals such that s is contained in the shortest u-v-path π (u, v). It
follows from Lemma 8, that T ∗

s [Gi, j ] is a subgraph of T ∗
u [Gi, j ]∪T ∗

v [Gi, j ]∪π (u, v)

and hence, it is the union of a constant number of paths. For similar reasons, the same
holds if s = yi, j or s = xhi, j . ��

Moreover we can show that every cut in any shortest path tree skeleton of GI
intersects at mostO(χ) different gadgets and connecting paths between two gadgets.

Lemma 12 For every vertex s ∈ V and every radius r > 0, Cutr (s) intersects O(χ)

gadgets Gi, j and O(χ) paths Pi, j and P ′
i, j .

Proof It can be shown that for any (i, j) ∈ [χ ]2, we have dist(yi, j , yi+1, j ) = 2n+3 +
4+ 2/n and dist(yi, j , yi, j+1) = 2n+3+3+ 2/n. This means that for any (i, j), (i ′, j ′) ∈
[χ ]2 we have

dist(yi, j , yi ′, j ′) = |i − i ′| · (2n+3 + 4 + 2/n) + | j − j ′| · (2n+3 + 3 + 2/n). (2)

Let r > 0, s ∈ V and consider a vertex v ∈ Cutr (s). It holds that dist(s, v) =
r . According to Lemma 2 there are two central vertices yi, j and yi ′, j ′ satisfying
dist(s, yi, j ) ≤ 2n+2 + 2n+1 and dist(v, yi ′, j ′) ≤ 2n+2 + 2n+1. Using the triangle
inequality we obtain that dist(yi, j , yi ′, j ′) ∈ [r−, r+] where r−:=r − (2n+3 + 2n+2)

and r+:=r + 2n+3 + 2n+2. Moreover, the ball around yi ′, j ′ of radius 2n+2 + 2n+1

intersectsO(1) gadgets Gi ′′, j ′′ and O(1) paths Pi ′′, j ′′ and P ′
i ′′, j ′′ . This means that any

bound on the size of the set

Y = {yi ′, j ′ | dist(yi, j , yi ′, j ′) ∈ [r−, r+]}

yields a bound on the number of gadgets and paths intersecting Cutr (s).
Consider now a vertex yi ′, j ′ ∈ Y . Assume that i ′ ≥ i and consider some i∗ ≥ i ′+4.

It follows from Equation 2 and dist(yi, j , yi ′, j ′) ≥ r− that

dist(yi, j , yi∗, j ′) ≥ dist(yi, j , yi ′, j ′) + 4 · (2n+3 + 4 + 2/n) > r+.

Thismeans that yi∗, j ′ /∈ Y and it follows that for any j ′ ∈ [χ ]we have |{i∗ ≥ i |yi∗, j ′ ∈
Y }| ≤ 3. Similarly we can show that |{i∗ ≤ i |yi∗, j ′ ∈ Y }| ≤ 3 for any j ′ ∈ [χ ] . This
implies |Y | ∈ O(χ), which completes the proof. ��

Combining Lemmas 8, 11, and 12, we obtain that the skeleton dimension of GI is
bounded by O(χ).

Lemma 13 The graph GI has skeleton dimension κ ∈ O(χ).

Proof Let s ∈ V , r > 0 and consider Cutr (s). Any vertex v ∈ Cutr (s) is either
contained in some gadget Gi, j or some connecting path Pi, j or P ′

i, j .
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We start with bounding the number of vertices that are contained in Cutr (s) and
some Pi, j or P ′

i, j . For any (i, j) ∈ [χ ]2 we have |Cutr (s) ∩ Pi, j | ≤ 2, as Pi, j
contains at most two distinct vertices that have the same distance from s. For the
same reason we have |Cutr (s) ∩ P ′

i, j | ≤ 2. Hence, Lemma 12 implies that the size of

Cutr (s) ∩ {Pi, j , P ′
i, j |(i, j) ∈ [χ ]2} is bounded by O(χ).

Consider now some gadget Gi, j . We show that |Cutr (s) ∩ Gi, j | ∈ O(1). If s is
contained in Gi, j this follows immediately from Lemma 11, as Cutr (s) intersects
any path in T ∗

s at most twice. If s is not contained in Gi, j , Lemma 8 implies that
Cutr (s) ∩ Gi, j is a subset of

{

Cutr(h)

xhi, j
|h ∈ [4] and r(h):=r − dist(s, xhi, j )

}

∩ Gi, j .

Observe that every xhi, j is contained inGi, j , whichmeans that |Cutr(h)

xhi, j
∩Gi, j | ∈ O(1).

This means that the size of Cutr (s) ∩ {Gi, j |(i, j) ∈ [χ ]2} is bounded by O(χ).
Hence we have |Cutr (s)| ∈ O(χ) and it follows that GI has skeleton dimension κ ∈
O(χ). ��

Finally we bound the pathwidth of the graph GI .

Lemma 14 The graph GI has pathwidth pw ∈ O(χ).

Proof Consider the graph ĜI that arises when we contract4 all vertices of degree 2
except the vertices xhi, j . It is a well-known fact that for any graph of pathwidth at least
3, contracting a vertex of degree 2 does not decrease the pathwidth. Hence it suffices
to show that ĜI has pathwidth at most O(χ). For (i, j) ∈ [χ ]2 denote the gadget
Gi, j and the cycle Oi, j after the contraction by Ĝi, j and Ôi, j , respectively. We first
construct a path decomposition of constant width for every Ĝi, j . To this end, consider
the cycle Ôi, j , which (as every cycle) has a path decomposition where every bag has
size at most 3. For h ∈ {1, 3} and b ∈ [n], add uhb to every bag containing the portal
ρh
b . Finally, add yi, j and x1i, j , . . . , x

4
i, j to every bag. This yields a path decomposition

of Ĝi, j which has constant width.
We now combine the path decompositions of the gadgets Ĝi, j to a path decompo-

sition of ĜI . For (i, j) ∈ [χ ]2, consider the path decomposition of Ĝi, j and add the
vertices {x1i ′, j ′ , . . . x4i ′, j ′ |1 ≤ (i ′ − i) · χ + ( j ′ − j) ≤ χ} to every bag. According

to Fig. 1, these are the vertices xhi ′, j ′ of the χ gadgets after Ĝi, j when considering
the gadgets row-wise from left to right. Denote the resulting path decomposition by
P(i−1)·χ+ j . We can observe, that its width is bounded O(1) + 4χ . Concatenating all
these path decompositions as P1,P2, . . . ,Pχ2 then yields a path decomposition of

ĜI of width O(1) + 4χ , which concludes the proof. ��

4 When contracting a vertex v, we remove it from the graph and connect the neighbors of v to a clique.
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5 Conclusion

The properties shown in the previous section now imply Theorem 1. Our reduction
uses k = 5χ2 center vertices and the graph GI has highway dimension hd ∈ O(χ2),
skeleton dimension κ ∈ O(χ) and pw ∈ O(χ). As the GT≤ problem is W[1]-hard
for parameter χ , it follows that on planar graphs of constant doubling dimension, k-
Center is W[1]-hard for the combined parameter (k, pw, hd, κ). Assuming ETH
there is no f (χ) · no(χ) time algorithm for GT≤ and hence, k- Center has no
f (k, hd, pw, κ) · |V |o(pw+κ+√

k+hd) time algorithm unless ETH fails.
It follows that on planar graphs of constant doubling dimension, k- Center has

no fixed-parameter algorithm for parameter (k, pw, hd, κ) unless FPT = W[1]. This
means that we need to study approximation algorithms when parameterizing by any
of the four parameters k, pw, hd, and κ .

It is known that classic approximation algorithms for k- Center cannot achieve
any approximation factor better than 2, unless P = NP. This holds even for graphs
of highway dimension hd ∈ O(log2 |V |) (Feldmann 2019) or skeleton dimension
κ ∈ O(log2 |V |) (Blum 2019). However, combining the numbers of centers k with
the highway dimension or the skeleton dimension allows better approximation factors
than 2 in fixed-parameter time: There are EPASs for the combined parameter (k, hd)

(Becker et al. 2018) and the combined parameter (k, d), where d is the doubling
dimension (Feldmann and Marx 2020). As the doubling dimension d is bounded by
O(κ), the latter result implies the existence of an EPAS parameterized by k and the
skeleton dimension κ .

Still, parameterizing solely by the number of centers k does not help to overcome
the general inapproximability, as there is no (2 − ε)-approximation algorithm with
runtime f (k) · nO(1) for any ε > 0 and computable f unless FPT = W[2] (Feldmann
andMarx2020). It is not knownwhether there is a parameterized (2−ε)-approximation
algorithm depending only on the highway dimension hd or the skeleton dimension

κ , but it was shown that any such algorithm cannot run in time 22
o(

√
hd) · nO(1) or

22
o(

√
κ) · nO(1), respectively, unless ETH fails (Feldmann 2019; Blum 2019).
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