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ÖZET 

ORANTILI ESNEK AÇIK ATÖLYE TİPİ ÇİZELGELEME İÇİN 

KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI 

Atölye çizelgeleme problemleri imalat ve hizmet sektörlerinin her birinde son derece geniş 

uygulama alanlarına sahiptir. Esnek açık atölye tipi çizelgeleme yaygın görülen atölye ortamları 

arasındadır. Birden fazla işlem istasyonu içeren bu atölye tipinde bu istasyonlardan en az biri 

aynı işlemi yapan paralel tezgahlara sahiptir. Bu işlem istasyonlarında tamamlanması gereken 𝑛 

tane iş bulunur ve işlerin istasyonları ziyaret etmede uymaları gereken bir rota kısıtı yoktur. Bu 

atölye tipi özellikle tıbbi teşhis test süreçlerinde, onarım ve bakım hizmetlerinde, denetim ve 

kalite kontrol işlemleri ve elektronik üretim süreçlerinde yaygın olarak bulunmaktadır. Ancak, 

bu atölye tipini çizelgeleme problemi literatürde çok az ilgi görmüştür. Son yıllarda 

araştırmaların sayısında artış görülmekle beraber, alan önemli ölçüde geliştirilmeye muhtaçtır. 

Bu tez çalışmasında, orantılı esnek açık atölye tipi ele alınmıştır. Burada orantılı ifadesi işlem 

istasyonlarının işlem sürelerinin her istasyon için sabit ve işten bağımsız olmasını ifade eder. Bu 

atölye tipini çizelgeleme problemi için bir karınca kolonisi algoritması önerilmiştir. Önerilen 

algoritma probleme uygun yeni ve çok etkili bir çözüm gösterimini temel alır. Algoritma ayrıca 

rassal arama ve yerel tarama (yerel aramaya benzer) rutinleri içerir. Geçmiş arama tecrübesinin 

ve probleme özel bilginin algoritmada kuvvetli ve etkin kullanımı özelleştirilmiş feremon iz 

bilgisi ve sezgisel bilgi yoluyla sağlanmıştır. Önerilen algoritma literatürden alınan 100 

problemli bir problem seti kullanılarak test edilmiştir. Yapılan karşılaştırmalar önerilen 

algoritmanın bu problem tipi için literatürdeki en iyi algoritma olan dağınık arama ve yeniden 

yol bağlama (scatter search with path relinking) algoritmasından hem çözüm kalitesi bakımından 

hem de süre bakımından daha iyi olduğunu göstermiştir. Algoritmanın büyük boyutlu 

problemlerdeki başarısı ve bu çözüm kalitesine daha kısa sürede ulaşması bilhassa önemlidir.   
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ABSTRACT 

AN ANT COLONY OPTIMIZATION APPROACH FOR THE 

PROPORTIONATE MULTIPROCESSOR OPEN SHOP 

Shop scheduling problems have exceptionally wide application fields both in manufacturing and 

service sectors. Multiprocessor open shop is among common shop environments and it consists 

of at least two machine centers with one or more center having parallel machines for the same 

task. There are 𝑛 jobs to visit the centers without a predefined route. The shop widely exists 

particularly in diagnostic medical testing, repair and maintenance services, inspection and quality 

control operations and electronics manufacturing processes. However, the problem gained little 

attention in the literature. There has been an increase in the number of researches in the field in 

recent years but still there is considerable room for improvement. In this thesis study, the 

proportionate multiprocessor open shop problem was considered where proportionate feature 

refers to processing times of machine centers being fixed and independent of the job. An Ant 

Colony Optimization algorithm was proposed for the problem. The algorithm is based on a very 

efficient novel solution representation of the problem. The proposed algorithm further employs 

random exploration and local exploration (analogous to local search) routines. Exploitation of 

search knowledge and problem-specific knowledge was incorporated with tailored uses of 

pheromone information and heuristic information, respectively. The algorithm was tested on 100 

benchmark instances from the literature. Comparisons showed that it outperformed the current 

state-of-the-art scatter search with path relinking algorithm both in solution quality and 

computational time. Of particular importance is its performance in large-scale instances and the 

relatively short time it required to reach the high-quality results.   
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CLAIM FOR ORIGINALITY 

This thesis study has the following important contributions to multiprocessor open shop (MPOS) 

and ant colony optimization literatures: 

1. A novel very efficient permutation representation, implicit-stage permutation, of a 

feasible solution of the proportionate multiprocessor open shop problem was developed.   

2. An ant colony optimization (ACO) approach was proposed for the problem for the first 

time. 

3. The ACO algorithm used a random exploration routine to search for good solution 

characteristics very rapidly. This random solution generation has been largely avoided 

in ACO algorithms in the literature due to typically inferior solution quality results. 

However, the novel solution representation enabled moderate-quality random solutions 

which helped in accumulating knowledge about favorable solution components. This 

random exploration phase resulted in a new approach in solution construction 

mechanism of ACO.  

4. The ACO algorithm employed an adopted Most Work Remaining Heuristic as the 

heuristic information and enabled strong exploitation of problem-specific knowledge. 

This is the first time this heuristic was tailored to use in proportionate MPOS problem. 

5. A local exploration (LE) engine was incorporated in the algorithm. It served similar 

purposes as a local search but was not a local search algorithm. No neighborhood 

function was used. It mainly generated several different schedules around a single 

permutation. The proposed LE routine is a powerful approach in schedule generation 

from a permutation and it can be utilized in many different heuristic and metaheuristic 

scheduling algorithms. 

6. The proposed algorithm was shown to be the new state-of-the-art algorithm for the 

proportionate MPOS problem considering the benchmark instances by Matta (2009). It 

reached new upper bounds and provably optimal solutions. 

7. Lastly, a rational explanation about the optimality of results for 2-stage benchmark 

problem instances of Matta (2009) is supplied in this thesis study.   
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SYMBOLS 

𝒂  : Parameter in minimum pheromone limit 

𝓐 : Set of ants in an ACO algorithm 

𝑪𝒋  : The time all operations of job 𝑗 completed 

𝑪𝒎𝒂𝒙 : The time all operations of all jobs completed 

𝒄𝒃𝒆𝒔𝒕 : Cost of the best solution (global best or iteration best) 
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𝒄𝒉 : Cost of the solution generated by ant ℎ 
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𝒇(⋅) : Objective function of a problem 
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𝒊  : Stage index 

𝒋 : Job index 

𝓙 : Set of jobs 

𝒌 : Machine index 

𝑳 : Length of permutation 

𝒎𝒊 : Number of machines in stage 𝑖 
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𝒏 : Number of jobs  

𝒏𝒊 : Number of remaining jobs still to be processed in stage 𝑖 

N : Number of operations 

𝓝𝝃 : Neighborhood of city 𝜉 in TSP 

𝓞  : Set of operations of all jobs 

𝓞𝒋  : Set of operations of job 𝑗 

𝑶𝒋𝒊 : Operation of processing of job 𝑗 at stage 𝑖  

𝒑𝒊 : Processing time of stage 𝑖 (proportionate shop) 

𝒑𝒋𝒊 : Processing time of job 𝑗 at stage 𝑖 (identical parallel machines) 

𝒑𝒋𝒊𝒌 : Processing time of job 𝑗 at stage 𝑖 in machine 𝑘 

𝒑𝝃𝝋 : Probability of moving to city 𝜑 while in city 𝜉 in ACO for TSP 



ix 
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𝒔𝝋 : Stage referred by implicit-stage representation 𝜑  

𝓢 : Set of stages 

�⃗�  : Binary vector to represent a solution for a combinatorial problem 

�⃗� 𝒃𝒆𝒔𝒕 : Solution vector for the best solution (global best or iteration best) 

𝒕 : Iteration index 
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𝒘  : Stage index 
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𝜶 : Parameter to determine influence of pheromone information 
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∆𝝉 : Amount of added pheromone 
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𝝅𝑮𝑩 : Global best permutation (solution) 

𝝅𝒉 : Permutation generated by ant ℎ 

𝝆 : Evaporation rate 

𝝉𝝃𝝋 : Pheromone information 

𝝉𝒎𝒂𝒙 : Maximum pheromone limit 



x 

𝝉𝒎𝒊𝒏 : Minimum pheromone limit 

𝝉𝟎 : Initial pheromone values 

𝚻 : Pheromone trails matrix 

𝝊  : Number of cities in TSP 

𝝋 : Column index in pheromone matrix | City index | Implicit-stage representation 

𝚽 : Random variable for the next solution component with random proportional rule 

probability distribution  

  



xi 

ABBREVIATIONS 

ACO : Ant Colony Optimization 

ACS : Ant Colony System 

AS : Ant System 

CV : Coefficient of Variation  

DE : Differential Evolution 

FPTAS : Fully Polynomial Time Approximation Schemes 

GA : Genetic Algorithm 

GB : Global-Best 

HCF : Hyper-Cube Framework 

HPSO : Hybrid Particle Swarm Optimization 

IB : Iteration-Best 

ICA : Imperialist Competitive Algorithm 

LB : Lower bound 

LE : Local exploration 

MA : Memetic Algorithm 

MMAS : Max-Min Ant System 

MILP : Mixed Integer Linear Programming 

MIP : Mixed Integer Programming 

MPOS : Multiprocessor Open Shop 

MWRH : Most Work Remaining Heuristic 

NN : Nearest neighbor heuristic for TSP 

PTAS : Polynomial Time Approximation Scheme 

SA : Simulated Annealing 

SD : Standard Deviation  

SS/PR : Scatter Search with Path Relinking 

TS : Tabu Search 

TSP : Travelling Salesman Problem 

  



xii 

LIST OF FIGURES 

Figure 4.1. Schedule of the sample permutation ....................................................................... 30 

Figure 4.2. Improved schedule after post-processing ................................................................ 31 

Figure 4.3. Different job assignments with same makespan value ........................................... 32 

Figure 4.4. A dense schedule for Problem 2 ............................................................................. 33 

Figure 4.5. Enhanced schedule for Problem 2 .......................................................................... 33 

Figure 4.6. Schedule of the stage permutation in (4.3) ............................................................. 35 

Figure 4.7. Different permutations with same makespan .......................................................... 42 

Figure 5.1. Change in computational time with increasing problem size ................................. 67 

Figure 5.2. Normal probability plots of Avg. Cmax differences for 4-stage instances ............... 69 

Figure 5.3. Normal probability plots of Avg. Cmax differences for 8-stage instances ............... 71 

Figure 5.4. Normal probability plots of Avg. Cmax differences for 16-stage instances ............. 72 

Figure 5.5. Representation of blocks and stage LBs for S2-P16 ............................................... 74 

Figure 5.6. Placement of time blocks in the optimal schedule for S2-P16 ................................ 75 

Figure 5.7. Alternative placement of time blocks in the optimal schedule for S2-P16 ............. 75 

 

  



xiii 

LIST OF TABLES 

Table 2.1. Description of notations ............................................................................................. 8 

Table 4.1. Sample proportionate MPOS problems.................................................................... 29 

Table 4.2. Numbers to represent operations of Problem 1 ........................................................ 29 

Table 4.3. Encoding to construct implicit-stage permutation of a stage permutation ............... 35 

Table 5.1. Weight of the positions for different γ values .......................................................... 45 

Table 5.2. Comparative results for makespan and computational time (sec.) for 2-stage problem 

set .............................................................................................................................................. 49 

Table 5.3. Comparative results for makespan and computational time (sec.) for 4-stage problem 

set .............................................................................................................................................. 51 

Table 5.4. Comparative results for makespan and computational time (sec.) for 8-stage problem 

set .............................................................................................................................................. 52 

Table 5.5. Comparative results for makespan and computational time (sec.) for 16-stage problem 

set .............................................................................................................................................. 54 

Table 5.6. Summary comparative statistics for the testbed ....................................................... 55 

Table 5.7. Contribution of local exploration routine in 8-stage instances ................................. 58 

Table 5.8. Contribution of local exploration routine in 16-stage instances ............................... 59 

Table 5.9. Run statistics for 2-stage instances ........................................................................... 61 

Table 5.10. Run statistics for 4-stage instances ......................................................................... 62 

Table 5.11. Run statistics for 8-stage instances ......................................................................... 63 

Table 5.12. Run statistics for 16-stage instances ....................................................................... 65 

Table 5.13. Computer configurations of algorithm runs ........................................................... 66 

Table 5.14. Differences between Avg. Cmax results of the algorithms ...................................... 68 

Table 5.15. p-values of the samples of differences for Kolmogorov-Smirnov test ................... 70 

Table 5.16. p-values of the samples of differences for Wilcoxon Signed Rank test ................. 73 



xiv 

Table 5.17. Shop parameters for sample instance ..................................................................... 73 

APPENDIX A-Table 1. 2-stage problems ................................................................................ 89 

APPENDIX A-Table 2. 4-stage problems ................................................................................ 91 

APPENDIX A-Table 3. 8-stage problems ................................................................................ 94 

APPENDIX A-Table 4. 16-stage problems .............................................................................. 99 

 



1 

1. INTRODUCTION 

A shop is a collection of machines dedicated for certain tasks. A single machine shop is also 

possible and common. Additionally, operators in service sector are regarded as machines and 

the environment is modelled as a shop environment. Single machine, parallel machines, flow 

shop, job shop, open shop and numerous extensions of them are common shop settings one 

can face both in manufacturing and service facilities. Each differ mainly in the way jobs visit 

the machines. The general purpose in dealing with a machine shop is to create a feasible 

schedule that minimizes (or maximizes) one or more objectives. A schedule consists of the set 

of beginning and ending times for each machine to process each required job. 

Open shop is a machine environment where jobs have no predefined routes to visit the 

machines. It is in contrary to a job shop -each job has its own route- and a flow shop -every 

job follows the same route. In an open shop, there are at least two machines each with its own 

task, and not all jobs are required to be processed by every machine. A machine can process 

a single job and a job can be processed in a single machine at a time. This form of an open 

shop is also referred as a classical open shop. Multiprocessor open shop (MPOS) is a 

generalization to the classical open shop and possesses machine centers (stages) that include 

parallel machines for the same task. It is also named as a flexible open shop, in line with its 

flexible job shop and flexible flow shop counterparts. MPOS was the machine environment 

considered in this study.  

1.1. Application Areas of MPOS 

MPOS environment is common in various industries. Health sector is a prominent one. 

Medical testing services carry out several tests on patients including X-ray exam, magnetic 

resonance imaging, computed tomography scan, blood draw, positron emission tomography 

scan, electrocardiogram, bone scan, echocardiogram, ultrasound imaging, bone survey, 

mammogram, pulmonary function test, barium enema and barium swallow (Matta, 2009). 

These examination processes also appear in emergency department laboratories (Azadeh et 



2 

al., 2014). The medical diagnostic process requires no order to take the tests, and some of the 

testing units may include more than one nurse/machine to carry out the test.  

Another area of application for MPOS environment is automotive repair and maintenance 

shops. An auto garage serves several operations. Brake service and replacement; car electrical 

system; engine tune up and rebuild; wheel alignments; lube, oil and filter change; tire repair, 

rotation and change; transmission clutch service and cooling system service are among those 

operations. A car visits the repair shops in any order, and no two operations can be carried out 

at the same time on the car. Moreover, it is common to meet more than one processor (worker) 

at each specialized shop. 

Electronics manufacturing, inspection and quality control operations are other industrial fields 

that one can encounter a MPOS setting.  

1.2. Overview of Previous Research 

Despite the wide application areas of the shop environment, the research on MPOS problem 

has been very limited and the field still requires to be explored and studied both theoretically 

and practically at various aspects. While referring to previous research, as well as the present 

study in MPOS scheduling, the 3-field notation by Graham et al. (1979) is used in this text. 

Definitions of this notation and of the shop features mentioned in this chapter can be found in 

Chapter 2.  

The 2-stage nonpreemptive MPOS problem with 𝑙 machines in each stage and makespan 

minimization objective, 𝑂2(𝑃𝑙)||𝐶𝑚𝑎𝑥, was shown to be NP-complete even when there are 2 

machines at each stage (Mao, 1995). Chen and Strusevich (1993) provided a heuristic 

approach for 𝑂(𝑃)||𝐶𝑚𝑎𝑥 that uses a heuristic for the parallel machine scheduling and a greedy 

heuristic for the classical open shop part of the problem. Their approximation algorithm had 

a worst-case bound of 1 + 𝑝𝐻 with 𝑝𝐻 being the worst-case bound of the heuristic used in 

parallel machine scheduling. They established a worst-case bound of strictly less than 2 for 

the 2-stage case. Schuurman and Woeginger (1999) showed that a dense schedule algorithm 

for the problem 𝑂(𝑃)||𝐶𝑚𝑎𝑥 had a worst-case ratio of 2. They also improved the worst-case 

ratio for the 2-stage case by providing a (3 2⁄ + 𝜀) – approximation algorithm. Later, several 
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polynomial time approximation schemes (PTAS) were proposed for the problem. A PTAS is 

a (1 + 𝜀) - approximation algorithm whose running time is polynomial on the size of the input. 

Following the PTAS by Jansen and Sviridenko (2000), an almost fully PTAS (FPTAS) -a 

PTAS whose running time is also polynomial on 1 𝜀⁄ - was proposed by Sevastianov and 

Woeginger (2001) for 𝑂(𝑃)||𝐶𝑚𝑎𝑥. Kononov and Sviridenko (2002) took operation release 

times into account, 𝑂(𝑃)|𝑟𝑗𝑖|𝐶𝑚𝑎𝑥, in their PTAS. 

Queyranne and Sviridenko (2002) provided new approximation bounds for 𝑂(𝑃)|𝑟𝑗| ∑𝑤𝑠𝐶𝑠 

and 𝑂(𝑃)|𝑟𝑗, 𝑝𝑚𝑡𝑛|∑𝑤𝑠𝐶𝑠. 

Lawler et al. (1982) considered preemptive MPOS with the objective of makespan 

minimization and with either single-operation or multiple-operation machines and provided 

optimal schedules for each case. They also considered machine speeds and provided a linear 

programming model for MPOS with unrelated parallel machines.  

Matta (2009) considered a proportionate MPOS for the first time and provided two different 

mixed integer programming (MIP) formulations for the problem 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥. She 

developed a Genetic Algorithm (GA) and created a testbed of difficult instances. This testbed 

was later used to test a tabu search (TS) algorithm by Abdelmaguid et al. (2014) and a hybrid 

of the TS with particle swarm optimization (HPSO) by Abdelmaguid (2014) for the problem. 

Matta and Elmaghraby (2010), on the other hand, provided polynomial-time optimum solution 

algorithms for two very special classes of the problem having stages with balanced work-

loads, 𝑂(𝑃)|𝑏𝑎𝑙. , 𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥. The proportionate shop was also studied by Zhang et al. (2019) 

to schedule medical examination laboratories, similar to Matta (2009), but with minimization 

of sum of job completion times objective, 𝑂(𝑃)|𝑝𝑟𝑜𝑝|∑𝐶𝑗. The MIP model was supplied and 

GA, Simulated Annealing (SA) and HPSO algorithms were compared based on large-scale 

test instances adopted from flexible job shop instances of Hurink et al. (1994). GA was showed 

to perform better than the other two algorithms in terms of convergence and stability.  

Abdelmaguid (2020) considered the general MPOS with unrelated parallel machines, 

𝑂(𝑅)||𝐶𝑚𝑎𝑥, supplied a MIP formulation and developed a scatter search with path relinking 

(SS/PR) algorithm for its solution. New neighborhood search functions and solution 
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combination functions were also provided. The benchmark testbed of Matta (2009) was used 

to test the algorithm on proportionate MPOS with parallel identical machines which 

constituted a special case for the problem studied. The algorithm improved solution quality, 

at the expense of increased computational time.             

The objective to minimize sum of job completion times was considered by Naderi et al. 

(2011), 𝑂(𝑃)|| ∑𝐶𝑗. They proposed a MIP formulation, as well as a memetic algorithm (MA) 

for the problem. They showed a hybrid MA-SA to perform better than pure applications of 

each single metaheuristic in randomly generated small and large-sized instances.  

Azadeh et al. (2014) modelled the scheduling of patients in an emergency department as a 

MPOS problem. They considered sum of weighted job completion times as the objective to 

minimize total waiting time of patients while taking the triage factor (urgency of a patient) 

into account. MIP model of the problem, 𝑂(𝑃)|| ∑𝑤𝑗𝐶𝑗, and a GA model were proposed. The 

GA increased the efficiency of the department compared to the actual system.    

Goldansaz et al. (2013) considered independent set-up times and sequence-dependent removal 

times in a MPOS environment with makespan objective, 𝑂(𝑃)|𝑆𝑇𝑠𝑑 , 𝑆𝑇𝑠𝑖|𝐶𝑚𝑎𝑥. A hybrid of 

imperialist competitive algorithm (ICA) with GA was proposed and tested on small to large-

sized instances generated. 

Bai et al. (2016) considered the MPOS problem with and without job release times to 

minimize makespan, 𝑂(𝑃)|𝑟𝑗|𝐶𝑚𝑎𝑥 and 𝑂(𝑃)||𝐶𝑚𝑎𝑥, respectively. They employed the 

differential evolution (DE) algorithm for moderate scale problems and proved the asymptotic 

optimality of general dense scheduling algorithm for very large-scale ones. 

Wang and Chou (2017) applied SA to a 4-stage problem with release times to minimize multi-

objectives of makespan and total weighted tardiness, 𝑂4(𝑃)|𝑟𝑗|𝐶𝑚𝑎𝑥, ∑𝑤𝑗𝑇𝑗. They compared 

two types of SA in terms of Pareto-optimality using small and large-scale instances they 

generate.  

More detailed information about the research on MPOS problem can be found in a recent 

review by Adak et al. (2020).  
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1.3. The Present Study   

In this thesis study, the proportionate MPOS problem with the objective of makespan 

minimization, 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥, was considered. An Ant Colony Optimization (ACO) 

algorithm was proposed for the problem for the first time. A novel very efficient way of 

solution representation was developed and used in the algorithm. Solution construction phase 

of the algorithm included random complete solution generation as a new approach. This 

enabled random, hence fast, exploration of the solution space. Full and effective use of search 

knowledge (intensification or exploitation) was ensured with informed selection of 

pheromone information. Problem-specific knowledge was also incorporated with tailored 

heuristic information. At the end of the solution construction phase, a local exploration routine 

was proposed to generate different schedules from a single permutation. It had a similar effect 

on solution quality as a local search. The proposed algorithm was tested on Matta (2009) 

benchmark problem set and further analysis on the results were carried out. Lastly, 

performance of the proposed algorithm was compared with the current state-of-the-art 

algorithm for the problem in these instances.  

1.4. Outline of Thesis 

Multiprocessor open shop is defined in Chapter 2. Definitions, description of shop features 

and MIP formulation are supplied. Chapter 3 gives general information about ACO 

metaheuristic. MPOS environment studied in this thesis as well as the assumptions are stated 

in Chapter 4. In the same chapter, the proposed solution representation and the proposed 

algorithm are presented. Test results and analysis are given in Chapter 5. Comparison of the 

results with literature are also provided in that chapter. Chapter 6 further discuss the proposed 

algorithm and results. Lastly, Chapter 7 gives final conclusions about the study.  
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2. MULTIPROCESSOR OPEN SHOP PROBLEM 

This chapter introduces a formal statement of a general MPOS problem. Related definitions 

and descriptions are given. An adapted MIP formulation from the literature is also supplied. 

The specific MPOS environment studied in this thesis is described and the associated 

assumptions are stated in Chapter 4.  

2.1. Definition of a MPOS Environment  

MPOS defines an environment with 𝑠 stages and 𝑛 number of jobs. A stage is a machine center 

with parallel machines. Stage 𝑖 has 𝑚𝑖 parallel machines and at least one stage has 𝑚𝑖 ≥ 2. 

This constitutes the multiprocessor part of the problem. Generally, the parallel machines in a 

stage can perform a single identical task. That is, a stage is responsible of a certain task type. 

There are rare studies, however, that allow machines in a stage to do tasks of other stages, 

called multi-purpose machines. The parallel machines in a stage may have different speeds.  

They are called identical if they run at the same speed, while machines with different speeds 

are called uniform. If the speed of the machines also depend on the job then the machines are 

named as unrelated machines. 𝑝𝑗𝑖𝑘 is the processing time of job 𝑗 at stage 𝑖 in machine 𝑘. If 

identical parallel machines are assumed, the processing time notation reduces to 𝑝𝑗𝑖. 

Processing of job 𝑗 at stage 𝑖 is named as an operation and represented by 𝑂𝑗𝑖. Jobs do not 

follow a predefined route to visit the stages, and this is the open part of the problem. 

Additionally, all jobs may not be required to visit all stages. It is generally assumed that one 

machine can process a single job, and a job can be processed by a single machine at a time.  

2.2. Description of Several Shop Features 

Several shop features that one can come across in MPOS research are defined in the following. 

Preemption is the option to interrupt an operation in a machine and continue it on a later time 

not necessarily on the same machine. An environment that allows preemption is called 

preemptive. Otherwise, it is called nonpreemptive. Preemption brings flexibility to scheduling 
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of a shop environment and often allows polynomial-time optimum solution algorithms (see 

Section 1.2). 

Table 2.1. Description of notations 

𝛼-field: Machine environment 

Notation Description 

𝑂(𝑃)  Multiprocessor open shop with identical machines in a stage 

𝑂2(𝑃)  Multiprocessor open shop having 2 stages, each with identical parallel machines 

𝑂2(𝑃𝑙)  Multiprocessor open shop having 2 stages, each with 𝑙 identical parallel machines 

𝑂4(𝑃)  Multiprocessor open shop having 4 stages, each with identical parallel machines 

𝑂(𝑅)  Multiprocessor open shop with unrelated parallel machines in a stage 

  

𝛽-field: Job characteristics 

Notation Description 

𝑝𝑚𝑡𝑛  Preemption allowed 

𝑟𝑗  Job 𝑗 has release time 𝑟𝑗 

𝑟𝑗𝑖  𝑂𝑗𝑖 has release time 𝑟𝑗𝑖 

𝑝𝑟𝑜𝑝  Proportionate shop 

𝑏𝑎𝑙.  Balanced shop 

𝑆𝑇𝑠𝑑  Sequence-dependent setup times 

𝑆𝑇𝑠𝑖  Sequence-independent setup times 

  

𝛾-fied: Optimality criterion 

Notation Description 

𝐶𝑚𝑎𝑥  Makespan 

∑𝐶𝑗  Sum of job completion times 

∑𝑤𝑗𝐶𝑗  Total weighted job completion time 

∑𝑤𝑠𝐶𝑠  Total weighted stage completion time 

∑𝑤𝑗𝑇𝑗   Total weighted tardiness 

In a proportionate shop fixed stage processing times are present that do not change with job 

identity. That is, a stage processes any job in a fixed amount of time. Thus, the notation of  𝑝𝑗𝑖 

further reduces to 𝑝𝑖. Certainly, in proportionate shops the parallel machines should be 

identical.  
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In a balanced shop, number of machines at each stage are fixed a priori so as to balance supply 

with demand. It is a construct introduced by Matta and Elmaghraby (2010) for a MPOS 

setting. It allows workload balance between stages and prevents any stage to constitute a 

bottleneck in the problem. Otherwise, such a stage would have decisive role in resulting 

makespan value. 

Release time is the time when a job is allowed to start processing on any machine. No early 

than its release time a job can be considered for processing. Similarly, operation release time 

is also possible, and it restricts the earliest time an operation can be started. If release times 

are not of concern in an environment, then all jobs (/operations) are ready for processing at 

the start of the schedule. 

Setup time is the time required for a machine to be prepared before it becomes ready for 

processing. It may be a cleaning process, a configuration, or various other operations on the 

machine. It is also named as independent setup time or sequence-independent setup time.  

Sequence-dependent setup time or removal time is a similar setup time, but it depends on the 

exiting job from machine and the next entering job. Disengaging tools for a job, releasing a 

job from jigs and fixtures, dismantling fixtures, jigs and tools, inspecting and sharpening the 

tools are among common removal operations (Józefowska & Weglarz, 2006). Sometimes, 

these times are aggregated with the processing time of a job in the machine and the explicit 

removal times are ignored.  

Although there are numerous other shop features modelled in shop scheduling problems, 

above-mentioned features are now sufficient for both reviewing the MPOS literature (see 

Section 1.2) and defining the environment in this study.   

Once an environment is described with its features, one or more objective functions are 

considered while scheduling the shop. Most of previous research on the problem have been 

about minimizing makespan, the time all operations are completed. Total weighted stage 

completion times, weighted and unweighted sum of job completion times and total weighted 

tardiness have been other minimization objectives considered in MPOS literature.  
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The standard 3-field notation of Graham et al. (1979) used in this text is a shorthand 

representation of the shop environment and the objective function(s) of a problem at hand. 

The notation is in the form of 𝛼|𝛽|𝛾 where the 𝛼-field represents the machine environment, 

the 𝛽-field shows the job characteristics and the 𝛾-fied is for the optimality criterion (objective 

function). Table 2.1 gives several notations that can appear in each of the fields and are 

relevant in this thesis study.  

2.3. Mixed Integer Programming Formulation 

Several mixed integer linear and nonlinear programming formulations were proposed in the 

literature for the MPOS problem with various environmental features. In this study, an adapted 

version of the Mixed Integer Linear Programming (MILP) formulation by Abdelmaguid 

(2020) for 𝑂(𝑅)||𝐶𝑚𝑎𝑥 is given. For other MIP mathematical models, the reader is referred to 

Matta (2009) for 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥, to Naderi et al. (2011) for 𝑂(𝑃)|| ∑𝐶𝑗, to Goldansaz et al. 

(2013) for  𝑂(𝑃)|𝑆𝑇𝑠𝑑 , 𝑆𝑇𝑠𝑖|𝐶𝑚𝑎𝑥, to Azadeh et al. (2014) for 𝑂(𝑃)|| ∑𝑤𝑗𝐶𝑗, and to Zhang et al. 

(2019) for 𝑂(𝑃)|𝑝𝑟𝑜𝑝|∑𝐶𝑗.  

Although, unrelated parallel machines were considered in the original MIP model, identical 

parallel machines are assumed in the formulation here. This is due to the environment studied 

in this thesis, and for the sake of a more clear and simple representation. Another distinction 

of the model presented here from the original one is that all jobs are assumed to visit all stages. 

Thus, sets of stages and jobs that defined processing requirements are removed in the present 

formulation.  

The MILP model is presented next, where the sets, indexes, labels, parameters, and decision 

variables are defined first. It is a model for 𝑂(𝑃)||𝐶𝑚𝑎𝑥 MPOS setting. The proportionate 

property that is imposed in this study can be easily incorporated by simply making 𝑝𝑗𝑖 = 𝑝𝑖 

in the model.   

Sets: 

𝒮 Set of stages  

𝒥 Set of jobs 
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𝒪𝑗 = {𝑂𝑗1, 𝑂𝑗2, … , 𝑂𝑗𝑛} Set of operations of job 𝑗 ∈ 𝒥  

𝒪 = ⋃ 𝒪𝑗𝑗∈𝒥  Set of operations of all jobs 

ℳ𝑖 Set of machines in stage 𝑖 ∈ 𝒮 

Indexes and labels: 

𝑖, 𝑤 Stage indexes = {1, 2, … , 𝑠};  stages 𝑖, 𝑤 ∈ 𝒮 

𝑗, 𝑟 Job indexes = {1,2, … , 𝑛};  jobs 𝑗, 𝑟 ∈ 𝒥 

𝑘 Machine index, = {1,2, … ,𝑚𝑖} ; stage 𝑖 ∈ 𝒮 

𝑂𝑗𝑖 Operation of processing job 𝑗 ∈ 𝒥 in stage 𝑖 ∈ 𝒮 

Parameters: 

𝑝𝑗𝑖 Processing time of operation 𝑂𝑗𝑖 ∈ 𝒪 

Decision variables: 

𝑥𝑗𝑖𝑤 = {
1 𝑂𝑗𝑖 is processed before 𝑂𝑗𝑤
0 otherwise

           𝑗 ∈ 𝒥;    𝑖, 𝑤 ∈ 𝒮;   𝑤 > 𝑖 

𝑦𝑗𝑖𝑘 = {
1 𝑂𝑗𝑖 is processed on machine 𝑘

0 otherwise
       𝑗 ∈ 𝒥;   𝑖 ∈ 𝒮;   𝑘 ∈  ℳ𝑖  

𝑧𝑗𝑟𝑖𝑘 = {
1 𝑂𝑗𝑖 is processed before 𝑂𝑟𝑖 on machine 𝑘 

0 otherwise
  𝑗, 𝑟 ∈ 𝒥;  𝑖 ∈ 𝒮;  𝑘 ∈ℳ𝑖  

𝑠𝑗𝑖 Start time of processing operation 𝑂𝑗𝑖  

𝐶𝑗  The time all operations of job 𝑗 ∈ 𝒥  completed 

𝐶𝑚𝑎𝑥 The time all operations of all jobs completed; = max
 𝑗∈𝒥

𝐶𝑗 

Minimize 𝐶𝑚𝑎𝑥 (2.1) 

subject to:  

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗      ∀𝑗 ∈ 𝒥 (2.2) 

𝐶𝑗 ≥ 𝑠𝑗𝑖 + 𝑝𝑗𝑖     ∀𝑂𝑗𝑖 ∈  𝒪𝑗    ∀𝑗 ∈ 𝒥 (2.3) 

∑ 𝑦𝑗𝑖𝑘𝑘∈𝑀𝑖
= 1        ∀𝑂𝑗𝑖 ∈  𝒪  (2.4) 

𝑠𝑗𝑖 ≥ 𝑠𝑗𝑤 + 𝑝𝑗𝑤 −𝕄𝑥𝑗𝑖𝑤     ∀𝑖, 𝑤 ∈ 𝒮 ∶ 𝑤 > 𝑖     ∀𝑗 ∈ 𝒥 (2.5) 

𝑠𝑗𝑤 ≥ 𝑠𝑗𝑖 + 𝑝𝑗𝑖 −𝕄(1 − 𝑥𝑗𝑖𝑤)        ∀𝑖, 𝑤 ∈ 𝒮 ∶ 𝑤 > 𝑖     ∀𝑗 ∈ 𝒥 (2.6) 

𝑧𝑗𝑟𝑖𝑘 + 𝑧𝑟𝑗𝑖𝑘 ≤
1

2
(𝑦𝑗𝑖𝑘 + 𝑦𝑟𝑖𝑘)     ∀𝑖 ∈ 𝒮     ∀𝑘 ∈ ℳ𝑖     ∀𝑗, 𝑟 ∈ 𝒥 ∶ 𝑟 > 𝑗  (2.7) 
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𝑧𝑗𝑟𝑖𝑘 + 𝑧𝑟𝑗𝑖𝑘 ≥ 𝑦𝑗𝑖𝑘 + 𝑦𝑟𝑖𝑘 − 1     ∀𝑖 ∈ 𝒮     ∀𝑘 ∈ ℳ𝑖     ∀𝑗, 𝑟 ∈ 𝒥 ∶ 𝑟 > 𝑗 (2.8) 

𝑠𝑟𝑖 ≥ 𝑠𝑗𝑖 + 𝑝𝑗𝑖 −𝕄(1 − ∑ 𝑧𝑗𝑟𝑖𝑘𝑘∈ℳ𝑖
)    ∀𝑖 ∈ 𝒮    ∀𝑗, 𝑟 ∈ 𝒥 ∶ 𝑗 ≠ 𝑟    (2.9) 

𝑥𝑗𝑖𝑤 , 𝑦𝑗𝑖𝑘, 𝑧𝑗𝑟𝑖𝑘 ∈ {0,1}     ∀𝑖, 𝑗, 𝑘, 𝑟, 𝑤   (2.10) 

In the MILP formulation, (2.1) states the objective function as makespan minimization. 

Constraint (2.2) defines the makespan by its relationship with completion time of each job, 

where the completion times are defined by constraint (2.3). Constraint (2.4) introduces the 

requirement that every job to be processed by a single machine in each stage. (2.5) and (2.6) 

together are disjunctive constraints to associate starting time of operations with the order a job 

would visit the stages. The machine sequences in a stage are defined by constraints (2.7) and 

(2.8),  and together with (2.9) the disjunctive relationship is constructed. Lastly, (2.10) defines 

the binary decision variables. 
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3. ANT COLONY OPTIMIZATION 

This chapter gives general background information about Ant Colony Optimization (ACO). 

The ACO field extended dramatically since its first introduction in 1992. A Web of Science 

search of “Ant colony optimization” in the title returns 4,128 results as of September, 2020. 

Certainly, not all aspects of the field are covered in this chapter. Rather, the underlying 

principles of the approach, main building blocks of the algorithm and several variants of ACO 

that are relevant in this study are explained here. For more detailed information about the 

algorithm, reader is referred to the book by Dorigo and Stützle (2004). Additionally, an 

overview of ACO algorithms and the latest developments in the algorithm can be found in a 

recent chapter by the authors (Dorigo & Stützle, 2019).  

3.1. Origins and Basis of ACO 

Ant algorithms are based on ideas that inspire from foraging behaviors of real ants. Ants leave 

a chemical substance on the ground, called pheromone, while they are searching for food. 

Among the ants that find the food source, the one who uses the shortest path would return 

earliest to the nest, increasing the pheromone levels in this shortest path. As a certain path has 

increased levels of pheromone, then it is more likely to be chosen by the other ants to reach to 

a food source. This behavior of ants leads to discovery of the shortest path to the food source, 

and it inspired researchers to adapt it for the solution of combinatorial optimization problems 

which led to a class of ant algorithms. The building blocks of this approach include: 1) 

Collective search for a solution, 2) leaving a trace in the memory, 3) updating the memory to 

include good solution characteristics, 4) construction of a solution based on collective 

knowledge. 

The first ant algorithm was called Ant System and proposed by Dorigo (1992) (Dorigo et al., 

1991, 1996). A number of different improved ant algorithms were followed until a general 

framework was introduced as ACO (Dorigo & Caro, 1999; Dorigo et al., 1999) to describe 

the common structure of an ant algorithm. “ACO is a metaheuristic in which a colony of 

artificial ants cooperate in finding good solutions to difficult discrete optimization problems” 
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(Dorigo & Stützle, 2004). An artificial ant can be considered as an imaginary agent in a 

computer program that is responsible for carrying out algorithmic components.  

The general structure of an ACO algorithm is defined next, and several ACO variants are 

described in the following subsections. 

3.2. General Structure of an ACO Algorithm 

An ACO algorithm consists of three main phases: Solution construction, Pheromone update, 

and Central actions. Specification of each algorithm element, the ordering, and the interaction 

between them vary among different ACO algorithms. A general description of these 

algorithmic components is supplied in the following. 

3.2.1. Solution construction 

A group of solutions are constructed concurrently by artificial ants in Solution construction 

part. An artificial ant builds a solution by adding one solution component at every step. Choice 

of the solution component to be added is based on a stochastic decision-making process that 

uses pheromone information and heuristic information. Pheromone information is the 

collective memory of the ant colony that stores previous good/bad solution characteristics. A 

good solution component is reflected in the memory by high pheromone levels, while a bad 

one would have decreased levels of pheromone. Heuristic information is a problem-specific 

knowledge that allows building higher quality solutions. When an ant ends up with building 

its solution, it assesses the solution quality (that is the objective function is calculated).  

3.2.2. Pheromone update 

Pheromone is added to good solution components to increase their selection probability in 

future solution constructions. The choice of the solutions for pheromone update and the 

amount of pheromone to be added are part of the algorithm design. Pheromone is reflected as 

an added value in memory regions for that specific favorable solution pieces. Additionally, 

there is a process called pheromone evaporation that restricts too rapid accumulation of 

pheromone and convergence of the algorithm to a suboptimal/local best objective value. 
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3.2.3. Central actions 

These are procedures that are performed centrally by the algorithm and not by individual ants. 

One prominent example is applying local search at the end of solution construction, either to 

each single solution or to only the best one. Also, the selection of the ant that will deposit 

pheromone is another example of a central action.  

3.3. Travelling Salesman Problem 

To formally state how an algorithm works, it is best to show the definitions and steps of the 

algorithm over a representative example. Travelling Salesman Problem (TSP) is such a sample 

problem for ACO, which was used as the application problem in the first ant algorithm and as 

a test problem in the numerous ones followed. Different ACO algorithms given in this section 

are presented using TSP setting and terminology. However, fundamental concepts of the 

algorithm were adapted to various other combinatorial problems as well in the literature.     

TSP is the problem of constructing a shortest tour for a salesman that will visit several cities 

exactly once and will return to starting point of the tour. TSP is an archetype of NP-Hard 

combinatorial optimization problems, and it has gained significant attention in the literature 

(Lawler et al., 1985). There are 𝜐 number of cities, and 𝑑𝜉𝜑 is the distance between cities 𝜉 

and 𝜑. A solution 𝜋 to the problem is a tour, and can be represented as a permutation of 𝜐 

cities. If the road between cities 𝜉 and 𝜑 is traversed in the solution, that is if 𝜉 = 𝜋(𝑖) and 

𝜑 = 𝜋(𝑖 + 1), or vice versa, then (𝜉, 𝜑) is said to be a solution component and shown as 

(𝜉, 𝜑) ∈ 𝜋. The objective function of a permutation 𝜋 is computed by the function 𝑓(𝜋) as in 

(3.1), and the solution that gives the minimum function value is the optimum solution. 

𝑓(𝜋) = ∑𝑑𝜋(𝑖)𝜋(𝑖+1) + 𝑑𝜋(𝜐)𝜋(1)

𝜐−1

𝑖=1

 (3.1) 

where 𝜋(𝑖) is the 𝑖th city in the permutation.  

To construct a TSP solution, an artificial ant each time adds a next city to its partial solution 

to complete a tour. This next city is chosen stochastically among still unvisited cities. The 
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starting city is chosen randomly and is different for every ant. Pheromone trails 𝜏𝜉𝜑 for TSP 

is defined as the desirability of choosing city 𝜑 to move to while sitting in city 𝜉. Heuristic 

information is generally in favor of close cities and defined as 𝜂𝜉𝜑 = 1 𝑑𝜉𝜑⁄ . During 

implementation of an ACO algorithm, pheromone trails 𝜏𝜉𝜑 and heuristic information 𝜂𝜉𝜑 are 

stored in 𝜐 × 𝜐 matrices of Τ and Η, respectively.  

3.4. Coverage of the Section 

In the sequel, some prior ACO algorithms that are relevant in this study are elaborated. 

Namely, those ACO implementations are Ant System (AS), MAX-MIN AS (MMAS), Ant 

Colony System (ACS) and the hyper-cube framework (HCF) for ACO. Additionally, a 

pheromone evaluation rule, the pheromone summation rule, that is useful in scheduling 

problems is presented at the end.   

3.5. Ant System  

AS was proposed by Dorigo (1992) and it was the first ACO algorithm. In this subsection, 

pheromone initialization, solution construction and pheromone update procedures of the AS 

are described. 

3.5.1. Pheromone initialization   

Before an ant can construct a solution, pheromone trails, 𝜏𝜉𝜑, should be initialized. AS assigns 

the 𝜏0 values given in (3.2). 𝜏0 refers to initial pheromone entries.  

𝜏𝜉𝜑 = 𝜏0 =
𝜅

𝑐𝑛𝑛
 (3.2) 

where 𝜅 is the number of ants, and 𝑐𝑛𝑛 is the objective function value (cost) of the solution 

obtained by nearest neighbor (NN) heuristic. NN is a greedy heuristic which selects the closest 

city as the next city to move.  

A wise selection of initial pheromone values is important to prevent the search process from 

converging towards low-quality solutions generated in early iterations. Additionally, initial 
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pheromone entries should not obstruct the incorporation of the search experience which might 

occur in cases of high 𝜏0 choices for a long time until the pheromone memory is updated 

completely.  

3.5.2. Solution construction    

An ant constructs a solution city-by-city in a stepwise manner using the probabilistic rule 

given in (3.3). That is, in each step, the ant on city 𝜉 moves to a next unvisited city 𝜑 with a 

probability 𝑝𝜉𝜑. 

𝑝𝜉𝜑 =
𝜏𝜉𝜑
𝛼 𝜂𝜉𝜑

𝛽

∑ 𝜏𝜉𝑘
𝛼 𝜂

𝜉𝑘
𝛽

𝑘∈𝒩𝜉

 ,   if  𝜑 ∈ 𝒩𝜉  (3.3) 

where 𝒩𝜉  is the set of cities still unvisited by the ant standing on city 𝜉, also named as the 

neighborhood, and 𝛼 and 𝛽 are parameters that state the influences of search experience 

(pheromone information) and problem-specific knowledge (heuristic information) on a 

solution construction, respectively. Indeed, neighborhoods 𝒩𝜉  and the probabilities 𝑝𝜉𝜑 are 

defined ant-specific, i.e. 𝒩𝜉
ℎ for ant ℎ. However, for the sake of simplicity ant index is dropped 

in the formulations in this text, keeping in mind that every ant generates a different solution 

by its own, having its individual solution construction memory till completing the full 

permutation and calculating the objective function. 

The definition of the neighborhood restricts the process to result with only feasible solutions. 

The stochastic rule of (3.3) assigns higher probabilities of selection to cities with elevated 

pheromone levels and with higher heuristic desirability. If 𝛽 is taken to be null, then heuristic 

information is not present, and the next city is decided based only on pheromone trails. This, 

however, may lead to inferior solution quality as a stagnation case may occur as a result of 

rapid pheromone accumulation. Stagnation is referred to a situation where the solution 

construction process would always result with the same solution. In that case, no exploration 

of the search space would take place, and the algorithm is stagnated. 
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3.5.3. Pheromone update 

Once the solution construction phase is completed and 𝜅 ants produced 𝜅 number of different 

solutions, pheromone trails are updated to reflect the latest search experience on the collective 

memory. First, before adding any pheromone, some of the previously accumulated pheromone 

is evaporated from all entries 𝜏𝜉𝜑 of the pheromone matrix as in (3.4). This evaporation avoids 

excessive pheromone accumulation and prevents the process to get stagnated. It is a kind of 

forgetting, and solution components that are not chosen by the ants become increasingly less 

pheromone intense.     

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 ,      ∀(𝜉, 𝜑) ∈ Τ (3.4) 

where 𝜌 is a parameter called the evaporation rate,  0 < 𝜌 ≤ 1. Followingly, every ant 

deposits pheromone to solution components of its solution as:  

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 + ∆𝜏𝜉𝜑
ℎ ,     ∀(𝜉, 𝜑) ∈ 𝜋ℎ (3.5) 

The amount of pheromone ∆𝜏𝜉𝜑
ℎ  ant ℎ deposits is a function of its objective function value 

and is defined for TSP by 

∆𝜏𝜉𝜑
ℎ = {

1 𝑐ℎ⁄ , if (𝜉, 𝜑) ∈ 𝜋ℎ
0 otherwise

 (3.6) 

where 𝑐ℎ is the cost (tour length) of the solution 𝜋ℎ generated by ant ℎ. Thus, the higher the 

solution quality, the more pheromone is deposited. Once all ants finish their pheromone 

updates, the resulting pheromone entries would become as in (3.7). 

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 +∑∆𝜏𝜉𝜑
ℎ

𝜅

ℎ=1

,      ∀(𝜉, 𝜑) ∈ 𝜋ℎ (3.7) 

Common solution components among ant solutions would reach higher levels of pheromone, 

being more desirable in future solution generations. 
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3.6. MAX-MIN Ant System 

MMAS (Stützle & Hoos, 1997; 2000) greatly improved the performance of the earlier ACO 

algorithms, namely AS and its variants. Opposed to AS where all ants add pheromone, MMAS 

requires only the ant with the best solution quality to update the pheromone trails. This best 

can be chosen to be iteration-best or global-best. As their names imply, an iteration-best (IB) 

solution is the one with the lowest objective value among the solutions generated in an 

iteration, while a global-best (GB) is the best over all iterations that have been completed until 

that GB. 

Allowing only a best solution to deposit pheromone would result in too rapid pheromone 

accumulation in the solution components that are common in best solutions and would lead to 

a situation of stagnation in solution construction process. This is due to the high desirability 

of good solution components forcing every ant to build the same but suboptimal solution. To 

avoid this very possible stagnation case, MMAS imposes limits on the amount of pheromone 

that each entry in the pheromone matrix can have. The algorithm does not neither allow too 

low pheromone values. That is, it defines [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] limits on the value of every 𝜏𝜉𝜑. This 

is also where the name of the algorithm (Max-Min Ant System) comes from. Additional to 

pheromone limits, MMAS further proposes a reinitialization routine to avoid stagnation. The 

algorithm requires the pheromone entries to be reinitialized at any time the search process 

shows signs of stagnation or fails to generate improved-quality solutions for a predefined 

number of consecutive iterations.    

In MMAS, the pheromone trails are initialized to 𝜏𝑚𝑎𝑥 to obtain a higher rate of exploration 

at early iterations.  

3.6.1. Pheromone update 

Following evaporation on all solution components, pheromone deposit in MMAS is formally 

performed according to (3.8), which enables only the best ant to deposit pheromone, as stated 

before. 
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𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 + ∆𝜏𝜉𝜑
𝑏𝑒𝑠𝑡,     ∀(𝜉, 𝜑) ∈ 𝜋𝑏𝑒𝑠𝑡 (3.8) 

where ∆𝜏𝜉𝜑
𝑏𝑒𝑠𝑡 = 1 𝑐𝑏𝑒𝑠𝑡⁄ , for TSP, and 𝑐𝑏𝑒𝑠𝑡 is the cost of the solution generated by the best 

ant -may be selected to be IB, GB or both in an alternating way. During initial iterations of 

the algorithm, it is preferable to make a wider exploration of the search space. This can be 

achieved by using IB solutions instead of GB in that phase of the algorithm. GB solutions can 

be used with an increasing rate as the algorithm proceeds, focusing more on good quality 

regions of the search space. 

3.6.2. Pheromone limits    

Limiting the pheromone trails prevents solution components from having extreme 

probabilities (low or high) in the probability distribution of solution construction phase, see 

Equation (3.3). In MMAS, 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 are defined as in (3.9). 

𝜏𝑚𝑎𝑥 = 1 𝜌𝑐𝐺𝐵⁄ ;           𝜏𝑚𝑖𝑛 = 𝜏𝑚𝑎𝑥 𝑎⁄  (3.9) 

where 𝑎 is a parameter. The definition of 𝜏𝑚𝑎𝑥 requires it to be a dynamic value: updated 

whenever a new GB is reached.  

3.6.3. Pheromone initialization and reinitialization 

To let the solution components have close probabilities at early iterations, pheromone trails 

are initialized to an estimate of 𝜏𝑚𝑎𝑥. This way, no components would have a decisive role in 

solution constructions and a wide exploration of the search space would be allowed. 

Pheromone trails can be initialized again in later phases to the values they had at the start of 

the algorithm to enable the search process escape from a possible stagnation behavior. This 

reinitialization is based on the relative values of the pheromone trails. For detailed information 

on reinitialization of pheromone trails, reader is referred to Stützle and Hoos (2000).  
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3.7. Ant Colony System 

ACS was proposed by Dorigo and Gambardella (1997) and it has structural differences from 

AS. It offers more efficient solution construction and pheromone update procedures. While 

constructing a solution, ACS allows increased exploitation of accumulated knowledge. 

Additionally, to deposit pheromone, only the global best ant is used. Pheromone evaporation 

is also carried out by that ant only. This is in contrast with both AS and MMAS where 

evaporation takes place on all entries of the pheromone matrix, regardless of the solutions 

produced in the iteration. A local pheromone evaporation is also present in ACS, which 

requires an ant to decrease the pheromone on the component it just added to its partial solution. 

This would allow different solutions to be generated by the ants in an iteration, hence an 

enhanced capability of searching the solution space.  

3.7.1. Solution construction  

While constructing a solution in ACS, an ant on city 𝜉 uses (3.10) to choose the next city 𝜑 to 

move to. The rule given in (3.10) is called the pseudorandom proportional rule. 

𝜑 = {
arg max

𝑘∈𝒩𝜉

𝜏𝜉𝑘𝜂𝜉𝑘
𝛽

if 𝑞 ≤ 𝑞0

Φ otherwise

 (3.10) 

where 𝑞 is a uniformly distributed random number and 𝑞0 is a parameter, both of them 

between [0,1], and Φ is a random variable having the probability distribution in (3.3) with 

𝛼 = 1.  

Thus, if the algorithm is needed to be more explorative 𝑞0 is kept low, while a higher 

exploitation of accumulated search knowledge can be ensured with a high 𝑞0.  

3.7.2. Pheromone update 

ACS brings significant structural differences to pheromone update process compared to AS. 

It carries out two different update routines in a single iteration. The first update takes place 

while an ant constructs a solution. After an ant adds a solution component (𝜉𝜑) to its partial 
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solution, it updates the pheromone entry of that solution component as in (3.11). This routine 

is known as the local pheromone update.  

𝜏𝜉𝜑 ⟵ (1 − 𝜃)𝜏𝜉𝜑 + 𝜃𝜏0 (3.11) 

where 𝜃 is a parameter: 0 < 𝜃 < 1. Thus, the pheromone trail becomes a weighted average 

of the initial pheromone value and the latest value before the update. This decreases the 

intensity of the pheromone on the solution components used by an ant, making their selection 

probability lower during the solution construction of the other ants. The main advantage of 

this kind of an update is allowing a diversification among the solutions generated in an 

iteration, hence an increased exploration of the search space.  

Once the solution construction process is completed by all ants, the second pheromone update 

procedure is applied. It is called the global pheromone update and carried out by only the GB 

ant. This GB ant both evaporates and deposits pheromone on the components of the solution 

it generated. This way, evaporation takes place only on that components and not on all 

components of the system, reducing the complexity of the algorithm from 𝒪(𝑛2) to 𝒪(𝑛), 

where 𝑛 is the problem size. The global pheromone update rule is given in (3.12). 

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌∆𝜏𝜉𝜑
𝐺𝐵 ,             ∀(𝜉, 𝜑) ∈ 𝜋𝐺𝐵 (3.12) 

Similar to previous formulations, ∆𝜏𝜉𝜑
𝐺𝐵 = 1 𝑐𝐺𝐵⁄ . The update rule requires the multiplication 

of the deposited pheromone amount with the parameter 𝜌, differently from AS. 

3.8. Hyper-Cube Framework for ACO 

HCF (Blum & Dorigo, 2004) proposed for ACO enables a more effective handling of 

pheromone values and a more robust update of the pheromone entries. It makes the pheromone 

trails to take value in the interval [0,1].  

The HCF idea is based on the following. A solution for a combinatorial optimization can be 

defined as an 𝜐-dimensional binary vector 𝑠 , where 𝜐 is the number of all solution components 

in the system. If an element of the vector is part of the solution then it takes value 1, or it takes 
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value 0 otherwise. That enables regarding a solution as a corner of the 𝜐-dimensional 

hypercube. A subset of the corners of the hypercube would be the set of feasible solutions. In 

that context, the set of pheromone values can be defined as an 𝜐-dimensional vector. HCF 

proposes to make the pheromone update in AS as  

𝜏 ⟵ (1 − 𝜌) ⋅ 𝜏 + 𝜌 ⋅ �⃗�  (3.13) 

where �⃗�  is a 𝜐-dimensional vector with 

�⃗� = ∑ 𝜓ℎ
ℎ∈𝒜

⋅ 𝑠 ℎ (3.14) 

where 𝑠 ℎ is the solution constructed by ant ℎ, 𝒜 is the set of all ants in the algorithm and 𝜓ℎ 

is given as 

𝜓ℎ =
𝑐ℎ

∑ 𝑐ℎ′ℎ′∈𝒜
 (3.15) 

The pheromone update rule of (3.13) can be shown in index notation as the following: 

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌 ⋅ ∑
𝑐ℎ

∑ 𝑐ℎ′ℎ′∈𝒜
{ℎ∈𝒜|(𝜉,𝜑)∈𝜋ℎ}

               ∀(𝜉, 𝜑) ∈ Τ (3.16) 

The difference with the pheromone update rule of HCF with AS is 1) the multiplication of the 

deposited pheromone with a factor 𝜌, and 2) the normalization of the amount of pheromone 

added by each ant. This makes pheromone trail values not to be dependent on the cost value, 

neither on the problem instance.  

In MMAS, which uses a single solution to update the trails, HCF is applied as follows: 

𝜏 ⟵ (1 − 𝜌)𝜏 + 𝜌𝑠 𝑏𝑒𝑠𝑡 (3.17) 

The pheromone deposit part of (3.17) is shown in index notation as 

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 + 𝜌,        ∀(𝜉, 𝜑) ∈ 𝜋𝑏𝑒𝑠𝑡 (3.18) 
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HCF also simplifies to define the maximum and minimum pheromone limits in MMAS. It 

already makes 𝜏𝜉𝜑 to take values between [0,1] which enables to assign the limits as 0.999 

for the upper bound and 0.001 for the lower bound (Blum & Dorigo, 2004). 

Lastly, global pheromone update of ACS, which uses the GB to both evaporate and deposit 

pheromone, is shown in HCF as follows 

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌,        ∀(𝜉, 𝜑) ∈ 𝜋𝐺𝐵 (3.19) 

3.9. Pheromone Summation Rule 

When ACO algorithm is adapted to scheduling problems, it is common to define 𝜏𝜉𝜑 as the 

desirability to assign job 𝜑 to position 𝜉 in the permutation. In this type of problems, the exact 

or at least the approximate position of a job in the permutation comes to be important and 

scheduling the job to a further away position results in degraded solution quality. However, 

while an ant constructs a solution, it is possible for the ant to schedule a job other than job 𝜑, 

albeit job 𝜑 had a higher 𝜏𝜉𝜑 value,  to that specific position 𝜉 because of the stochastic nature 

of the algorithm. Moreover, the algorithm may not even assign the job until the end sections 

of the permutation if its pheromone intensity is low for the positions after 𝜉. This is quite 

possible since there might be no previous iterations that assign job 𝜑 to positions further than 

𝜉, resulting in low pheromone values for that positions, hence low probability of selection. 

Such a scenario would result in inferior solution quality because of not assigning a job to its 

most desirable place but rather assigning it to a further away position. To overcome that 

problem, Merkle and Middendorf (2000) proposed a useful rule in using pheromone 

information, called the pheromone summation rule. This rule offers use of 𝜏𝜉𝜑 given in (3.20) 

while constructing a solution.  

𝜏𝜉𝜑 ∶=∑𝜏𝑘𝜑

𝜉

𝑘=1

 (3.20) 
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This enables job 𝜑 not assigned to a desirable position 𝜉 to be assigned to a close position, 

since 𝜏𝜉𝜑 would be still effective in pheromone considerations of the later places. Thus, the 

next solution component is chosen in ACS according to  

𝜑 =

{
 

 
arg max

𝑘∈𝒩𝜉

(∑𝜏𝑟𝑘

𝜉

𝑟=1

)

𝛼

𝜂𝜉𝑘
𝛽

if 𝑞 ≤ 𝑞0

Φ otherwise

 (3.21) 

where Φ has the following probability distribution 

𝑝𝜉𝜑 =
(∑ 𝜏𝑘𝜑

𝜉
𝑘=1 )

𝛼

𝜂𝜉𝜑
𝛽

∑ (∑ 𝜏𝑟𝑘
𝜉
𝑟=1 )

𝛼

𝜂
𝜉𝑘
𝛽

𝑘∈𝒩𝜉

 ,   if  𝜑 ∈ 𝒩𝜉 (3.22) 

Additionally, a weighted pheromone summation rule is followed by Merkle et al. (2000) that 

gives different influences to each pheromone entry up to position 𝜉: 

𝜏𝜉𝜑 ∶=∑𝛾𝜉−𝑘𝜏𝑘𝜑

𝜉

𝑘=1

 (3.23) 

where 𝛾 is a parameter with 𝛾 > 0. If 𝛾 < 1, then pheromone values close to position 𝜉 would 

have more influence, and inversely, if 𝛾 > 1 earlier pheromone values become more effective. 

If  𝛾 = 1, then basically no weights are assigned, and the rule is the one in (3.20) where every 

place in the permutation up to position 𝜉 would have the same influence on the resulting 

pheromone evaluation 𝜏𝜉𝜑.  
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4. ACO ALGORITHM FOR PROPORTIONATE MULTIPROCESSOR 

OPEN SHOP PROBLEM 

In this chapter, an ACO algorithm for the proportionate MPOS problem is proposed. 

Pheromone information, solution construction and pheromone update procedures together 

with the central actions proposed in the algorithm are fully described. Experimental test results 

are given in Chapter 5. 

Before going in details of the algorithm, the specific MPOS environment studied in this thesis 

and the assumptions of the model are stated in the following subsection. 

4.1. Problem Statement 

A proportionate MPOS is considered in this study. Proportionate property refers that the 

processing times are dependent on stages but not on jobs (see Section 2.2). Other assumptions 

about the shop are listed as follows: 

1. All jobs are required to be processed in all stages. 

2. There are infinite capacity buffers between all stages.  

3. A machine can process a single job, and a job can be processed on a single machine at 

a time. 

4. Preemption is not allowed. 

5. All jobs are ready for processing at the beginning; release times are zero. 

6. The parallel machines in a stage are identical.   

7. All machines are always available. 

8. Machines of a stage can perform the task of only that stage and not of other stages. 

9. Due dates for completion of jobs are not present. 

10. All jobs are equally important. 

11. Precedence relations do not exist between neither jobs nor operations. 

12. All types of setup and travel times are ignored. 

The problem is about constructing a schedule for proportionate MPOS that minimizes the 

makespan 𝐶𝑚𝑎𝑥, the time all operations are completed. The problem is shown in 3-field 
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notation as 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥. The schedule that would be offered as a solution for the 

problem should incorporate three elements: 1) Route of each job to visit the stages, 2) For any 

job, the machine that will be used to process it in a stage, 3) Processing sequence of relevant 

jobs in any machine in a stage. 

4.2. Solution Representation 

One of the most important part of developing a solution approach for a combinatorial problem 

is the use of an efficient way to represent a feasible solution of the problem. It is especially 

important in metaheuristic algorithms where the sub-routines are based on the particular 

solution representation. Neighborhood structures, for example, are defined on the solution 

representation at hand, and they are crucial in finding high-quality solutions if chosen 

appropriately. The importance of the representation is also apparent in memory-based 

approaches. That type of algorithms keeps promising solution characteristics at mind to refer 

them later again. These favorable characteristics are defined over the representation of the 

solution. Thus, to correctly encode the feature of the solution which makes it good, an effective 

representation of the solution should be used. 

For some problems, such as the TSP and single machine problems, there is a natural, obvious 

way to represent a feasible solution for the problem. This is due to the number of dimensions 

the solutions of these problems require. That is, for TSP the solution should supply only the 

information of where to go after visiting a city and, thus, the representation is simply a 

permutation of cities. Again, for single machine problems, it is important only to know at what 

order the jobs would be processed, making a sequence of the jobs sufficient for the 

representation. However, in case of MPOS, a solution representation should supply three 

different information: 1) at what order each job would visit the stages, 2) at which machine 

each job would be processed in each stage, and 3) at what order each machine in each stage 

would process the relevant jobs. Thus, defining an efficient way of representing a solution of 

MPOS is relatively hard.  
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4.2.1. Operation-permutation representation 

In the literature, operation-permutation is the commonly used representation among MPOS 

researches (Azadeh et al., 2014; Bai et al., 2016; Goldansaz et al., 2013; Matta, 2009; Naderi 

et al., 2011). It was proposed by Liaw (2000) for the classical open shop and adapted to MPOS 

by Matta (2009). It is a permutation of operations 𝑂𝑗𝑖. Permutation is read from left to right 

and the respective operation is assigned to the first available machine in the respective stage. 

For an example, consider the following operation permutation for Problem 1 given in Table 

4.1. 

𝑂11𝑂41𝑂42𝑂22𝑂12𝑂32𝑂31𝑂21𝑂51𝑂52 (4.1) 

For the sake of simplicity, it is common to number the operations from 1 to 𝑁, where 𝑁 is the 

total number of operations, hence 𝑁 = 𝑛 × 𝑠. Thus, the operations of Problem 1 can be 

represented by the numbers shown in Table 4.2. This makes the permutation in (4.1) to be re-

written as 

1 − 4 − 9 − 7 − 6 − 8 − 3 − 2 − 5 − 10 (4.2) 

Table 4.1. Sample proportionate MPOS problems 

Problem 1 Problem 2 Problem 3 

s = 2; n = 5 s = 2; n = 33 s = 3; n = 5 

m1 = 3; m2 = 2 m1 = 23; m2 = 10 m1 = 2; m2 = 2; m3 = 1 

p1 = 7; p2 = 5 p1 = 10; p2 = 4 p1 = 7; p2 = 6; p3 = 4 

Table 4.2. Numbers to represent operations of Problem 1 

𝑂11 𝑂21 𝑂31 𝑂41 𝑂51 𝑂12 𝑂22 𝑂32 𝑂42 𝑂52 

1 2 3 4 5 6 7 8 9 10 

Encoding the permutation from left to right creates the schedule in Figure 4.1. It is a semi-

active schedule. Naderi et al. (2011) tested a different decoding which schedules the operation 
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as early as possible even if it is in a later position in the permutation. Hence a non-delay 

schedule resulted. However, the solution quality became degraded in average.  

 

Figure 4.1. Schedule of the sample permutation 

4.2.2. Inefficiencies of operation permutation in proportionate MPOS 

In this subsection, it is explained why operation permutation is not an efficient way of 

representing a solution of proportionate MPOS. It is presented in three main topics: 1) 

Excessive idle time in machines, 2) Extra time for transforming the schedule into an active 

one, 3) Problems due to including the job identities in the permutation.  

Consider the schedule given in Figure 4.1 for the operation permutation in (4.2). One can 

easily notice unnecessary idle times in both stages that cause increased makespan value. It is 

a result of the ordering in the permutation which requires job 3 first to be scheduled in stage 

2 after jobs 4, 2 and 1, and then be scheduled in stage 1. Two solutions can be considered here: 

1) Creating a non-delay schedule: An operation can be scheduled to earlier available machines 

even if it appears in a later position in the permutation, 2) Postprocessing: Converting the 

resulting schedule (Figure 4.1) into an active one. The first solution has been mentioned earlier 

in this section to lead to a degraded solution quality. The second option is necessary and 

detailed next. 

To get rid of the meaningless idle times in the schedule, it must be converted to an active one. 

An active schedule can be formed by moving a job to an earlier position in the stage without 

delaying the current start time of any operation. Thus, job 3 is moved to be processed between 

times 0-7 in the same machine in stage 1, and job 5 is moved to times 0-5 to machine 1 in 

stage 2. The resulting improved schedule is shown in Figure 4.2, which is an optimal one in 

this case. However, post-processing the schedule to make it active and repeating this action 
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for every single solution generated requires excessive computational time in an algorithm. The 

time required to compute the objective function is already a headache in this type of 

scheduling problems. Thus, such an additional post-processing requirement is not favorable. 

Another problem with post-processing is that the ultimate schedule reached is different from 

what the permutation encodes. This poses a challenge particularly in memory-based 

algorithms, such as the ACO proposed in this study, which inherit good solution 

characteristics in future generations. 

 

Figure 4.2. Improved schedule after post-processing 

Another inefficiency in using the operation permutation in proportionate MPOS is due to the 

call of job identities in the permutation. That is, the permutation enforces a certain job to be 

scheduled. However, in proportionate MPOS the processing time of a stage is independent of 

the job, bringing a flexibility to the schedule. Restricting this flexibility may lead to degraded 

solution quality. Figure 4.3 illustrates different job assignments to have the same makespan 

value for Problem 1. Again, consider the dense schedule given in Figure 4.4 for Problem 2 

(see Table 4.1). A dense schedule leaves no machine idle if there is an available job to be 

processed. An allocation of job bundles creates the schedule in the figure and no explicit call 

to job identities is present. By using the template and assigning different jobs for the bundles 

each time, numerous different schedules with the same makespan of 22 can be created. 

The dense schedule of Figure 4.4 can be improved as in Figure 4.5, saving 2 time points and 

resulting in the optimum makespan. 
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Figure 4.3. Different job assignments with same makespan value 
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Figure 4.4. A dense schedule for Problem 2 

An important implication that can be drawn out from the enhanced schedule in Figure 4.5 is 

that what is important in scheduling a proportionate MPOS is to determine how many jobs to 

allocate to each stage at distinct time points for a lower makespan. However, operation 

permutation does not encode this information, causing inefficiencies in extracting good 

solution characteristics.  

 

Figure 4.5. Enhanced schedule for Problem 2 

4.2.3. A novel solution representation: Implicit-stage permutation 

A novel way to represent a feasible solution of a proportionate MPOS is proposed in this 

study. The representation is named as implicit-stage permutation. It is a permutation of 

numbers that represent cumulative number of job assignments to a respective stage. It is 

indeed a higher-level representation of a stage permutation. Thus, to introduce the proposed 

solution representation, first stage permutation is defined as the following. Consider Problem 

3 given in Table 4.1. It requires 5 jobs to be processed in 3 stages. Thus, a schedule would 

make 5 job assignments for each stage. Since, in the preceding subsection, it made clear that 
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job identities do not have a direct role in the resulting objective function value, it is proposed 

to include only calls to stages in a solution representation. 𝑛 number of calls for each stage is 

needed, requiring a stage permutation to have 𝑛 × 𝑠 number of elements. Thus, a stage 

permutation is a permutation of 𝑠 stages, where each stage repeats 𝑛 times. The following is 

a sample stage permutation for Problem 3.  

2 − 2 − 1 − 3 − 1 − 2 − 3 − 2 − 1 − 1 − 3 − 3 − 2 − 1 − 3 (4.3) 

The permutation is decoded as follows: Assign a job to stage 2, assign a job again to stage 2, 

then assign a job to stage 1, and so on. At any step, the job to be assigned can be chosen 

arbitrarily as long as it is an eligible job: still not processed in that stage and not under process 

in some other machine, hence available. Although arbitrary choice of a job is sufficient to 

construct a feasible schedule, more informed rules of job selection are proposed in this study 

to allow for improved solutions.  

One of two rules to select a job while constructing the schedule of a permutation is making 

the selection based on job desirability, 𝑑𝑗, which is introduced as the number of stages that 

still needs job 𝑗. A job with lower desirability is preferred to allow non-empty future eligible 

job sets as much as possible. If job desirability values are equal for two jobs, then the selection 

is made in numerical order. Unless stated otherwise, job desirability is applied as the default 

rule for job selection in decoding a permutation.  

The second rule to select a job is proposed as selecting a random job from an eligible job set. 

Although, at first glance, the rule seems to serve no purpose, it plays a significant role in 

decreasing the makespan in large scale instances that have many perfectly balanced stages. 

The notion is further explained in Section 4.3.2. 

After a job is selected to assign for the respective stage, it is scheduled to earliest available 

machine. The final schedule of permutation (4.3) is shown in Figure 4.6.  

Use of stage-permutation as the solution representation, however, has two problems. First, it 

includes repetition of elements, which makes it hard to extract knowledge about favorable 

patterns in good solutions. This knowledge would be kept in the memory of the ACO 
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algorithm and it is essential. Second, it does not encode how many assignments have been 

made to a stage up to a point, since this information is shown, in the previous subsection, to 

reflect an important feature of a solution. To overcome these problems, it is proposed to 

represent the stage permutation in a higher-level form by substituting every stage 

representation by a number referring to its cumulative number of appearances in the 

permutation. This higher-level form is named as the implicit-stage permutation and described 

next. 

 

Figure 4.6. Schedule of the stage permutation in (4.3) 

To construct the implicit-stage permutation from a simple stage permutation, the encoding 

given in Table 4.3 is used. Thus, the implicit-stage permutation representation of the 

permutation in (4.3) is as the following: 

6 − 7 − 1 − 11 − 2 − 8 − 12 − 9 − 3 − 4 − 13 − 14 − 10 − 5 − 15 (4.4) 

Table 4.3. Encoding to construct implicit-stage permutation of a stage permutation 

 

 

   

  

 1st assignment 2nd assignment … nth assignment 

Stage 1 1 2 … 𝑛 

Stage 2 𝑛 + 1 𝑛 + 2 … 2𝑛 

Stage 3 2𝑛 + 1 2𝑛 + 2 … 3𝑛 

⁞ ⁞ ⁞ … ⁞ 

Stage 𝒊 𝑛(𝑖 − 1) + 1 𝑛(𝑖 − 1) + 2 … 𝑛 × 𝑖 

⁞ ⁞ ⁞ … ⁞ 

Stage 𝒔 𝑛(𝑠 − 1) + 1 𝑛(𝑠 − 1) + 2 … 𝑛 × 𝑠 
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The permutation in (4.4) is decoded as follows. 6 = 𝑛 + 1: from the table, 𝑛 + 1 is read as 

the first assignment to stage 2, then 6 is decoded as: make a first assignment to stage 2. 

Similarly, 7 is decoded as: make a second assignment to stage 2, and 1 as: make a first 

assignment to stage 1. As can be realized, the representation encodes the cumulative number 

of assignments to a stage.  

4.2.4. Random solution generation  

In this subsection, it is presented how to generate a random solution for a proportionate MPOS 

problem using the implicit-stage permutation. Random solution generation is intentionally 

described here, since it is part of the ACO algorithm proposed in this study.  

Since the representation is a permutation of numbers from 1 to 𝑛 × 𝑠, the first thing that comes 

to mind is to generate a random permutation for a random solution. However, that would result 

in an infeasible permutation, because the cumulative numbering for a stage may not be 

obeyed. That is, the numbers used to represent the total number of assignments to a distinct 

stage should appear in order in a permutation. The number representing a second assignment 

for a stage, for instance, should not appear in the permutation earlier from the number 

representing the first assignment. For example, considering Problem 3, encoding 10 is not 

allowed to precede encoding 7 in a permutation. Because, the information given by such a 

permutation would be read as: assign a fifth job to stage 2, then assign a second job to stage 

2. This renders the representation without function and makes it meaningless.  

To correctly generate a random solution, first a random stage permutation should be generated 

and then it should be converted to an implicit-stage permutation. Generating a random stage 

permutation is straightforward: it would be a random permutation of 𝑠 stages, where each 

stage repeats 𝑛 times. Once a random stage permutation is available, Table 4.3 can be used to 

construct the respective implicit-stage representation. 

4.3. ACO Algorithm 

An ACO algorithm for the proportionate MPOS is proposed based on the novel solution 

representation. Pseudocode of the algorithm is given in Algorithm 1.  
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Algorithm 1: ACO proposal for proportionate MPOS  

ACO( ) 

// Initialization  

𝛼, 𝛽, 𝛾, 𝜌, 𝜅, 𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥; 

𝐿 ← 𝑛 × 𝑠; %permutation length 

𝜏𝜉𝜑 ← 0.5     𝜉 = 1,⋯ , 𝐿     𝜑 = 1,⋯ , 𝐿; %pheromone information 

𝜂𝜉𝜑 ← 1; %heuristic information 

while time limit not exceeded do 

Solution Construction() {  

output 𝑠𝑜𝑙𝑛𝑡 %solution(s) generated in iteration 𝑡 

𝜏𝜉𝜑 ← ∑ [𝛾𝜉−𝑖 ⋅ 𝜏𝑖𝜑]
𝜉
𝑖=1  ; 

// Global exploration 

for 𝑖 = 1 until 𝜅 do 

GenRandSoln(); %generate random solutions 

ConstructSchedule(){ 

input RandSoln  output Schedule, 𝐶𝑚𝑎𝑥 

JobDesirabilityBasedSelectionFromEligibleJobSet();  

 } 

return 𝜅 random solutions 

//Exploitation 

for 𝑖 = 1 until 𝐿 do 

𝑄𝜉𝜑 ← 𝜏𝜉𝜑
𝛼 ⋅ 𝜂𝜉𝜑

𝛽
;  %quality function 

𝜑 ← argmax𝑄𝜉𝑢     𝑢 ∈ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡_𝑠𝑡𝑎𝑔𝑒𝑠; %next solution component to 

assign at the 𝜉𝑡ℎ order in the 

permutation 

𝜂𝜉𝜑 ← 𝑛𝑠𝑣 𝑛⁄  ;    %Update dynamic heuristic information 

return 𝐴𝑛𝑡𝑆𝑜𝑙𝑛; %one single solution  

//Local exploration 

ConstructSchedule(){ 

input 𝐴𝑛𝑡𝑆𝑜𝑙𝑛 output Schedule, 𝐶𝑚𝑎𝑥 

RandomSelectionFromEligibleJobSet(); 

               } 

    𝑠𝑜𝑙𝑛𝑡 ← argmin𝑓(𝑠𝑜𝑙𝑛)           𝑠𝑜𝑙𝑛 ∈ (𝐴𝑛𝑡𝑆𝑜𝑙𝑛 ∪ 𝜅 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠);  

  } 

if 𝑓(𝑠𝑜𝑙𝑛𝑡) = 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 then 

break 

if 𝑓(𝑠𝑜𝑙𝑛𝑡) ≤ 𝑓(𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡) then 

updatePheromone(); 

updateGlobalBest();  

return 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡; 
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The subroutines of the algorithm are described next under the following topics: Solution 

construction, Local exploration, Pheromone information, Heuristic information, and 

Pheromone update. 

4.3.1. Solution construction 

The random proportional rule given in (3.3) is the common rule used in constructing ant 

solutions. It mainly aims to perform a search that is biased towards good regions of the 

solution space. Otherwise, a totally random search would make no help in achieving favorable 

solutions as it is typically unlikely to reach a good random solution in a combinatorial 

problem. However, in this study, it is proposed to make a complete random search in solution 

space instead of a pseudorandom one, in contrary to ACO algorithms in the literature. The 

idea is a result of the good quality random solution potential that the proposed solution 

representation offers.  

The proposed implicit-stage permutation representation is based on stage permutation. For 

any randomly generated stage permutation, it is highly unlikely to have all calls to a stage 

placed consecutively. That is, a permutation of, for example, 2-2-2-2-2-3-3-3-3-3-1-1-1-1-1 

for Problem 3 is nearly impossible to be generated randomly. Such a solution would schedule 

repeatedly for the same stage causing great delays in the final schedule. Instead, any random 

permutation would shuttle between stages generating moderate to good quality solutions. For 

small instances, the quality would be good and for large scale ones it would be moderate.  

Since the exploration of the solution space is proposed to be carried out by complete random 

solutions, then the component-by-component solution construction is proposed to be 

performed based only on full exploitation of previous search knowledge. The stochasticity of 

the solution construction routine is, thus, only due to random solutions. The procedure is 

formally defined as follows: 

𝒰 = 𝜅 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ∪ 𝐴𝑛𝑡𝑠𝑜𝑙𝑛 (4.5) 
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where 𝒰 is the set of solutions generated in an iteration, 𝜅 is the number of complete random 

solutions and 𝐴𝑛𝑡𝑠𝑜𝑙𝑛 is the single solution constructed component-by-component by one ant 

according to   

𝜑 = arg max
𝑘∈𝒩𝜉

𝜏𝜉𝑘
𝛼 𝜂𝜉𝑘

𝛽
 (4.6) 

where 𝜑 is the next implicit-stage representation to be added to the partial solution. Definitions 

for the pheromone and heuristic information are given in the upcoming subsections. The rule 

in (4.6) is part of the solution construction rule that was proposed in literature for ACS (see 

Section 3.7.1).  

A total of 𝜅 + 1 solutions are generated in an iteration and among them, the solution(s) with 

minimum makespan value are returned. This is formally shown as 

𝑠𝑜𝑙𝑛𝑡 = arg min
𝑠𝑜𝑙𝑛∈𝒰

𝑓(𝑠𝑜𝑙𝑛) (4.7) 

where 𝑠𝑜𝑙𝑛𝑡 is the solution(s) returned by the solution construction routine of iteration 𝑡. If 

more than one solution has the minimum makespan value, then all those solutions are returned.  

4.3.2. Local exploration 

Workload balance between machines is an important element in scheduling a shop in general. 

If there is a machine with workload much higher than the remaining machines in the shop, it 

becomes decisive in the final makespan of any schedule. Because it would constitute a 

bottleneck in the system. To avoid such a scenario, it is vital to balance the workload between 

machines. In case of the proportionate MPOS, stage workloads should be balanced, and this 

can be achieved by allocating sufficient number of parallel machines to each stage. Number 

of machines can be determined according to processing time requirement of the stage as 

follows:   

𝑝𝑖
𝑚𝑖

=
𝑝𝑤
𝑚𝑤

⇒ 𝑚𝑖 = ⌈𝑝𝑖
𝑚𝑤

𝑝𝑤
⌉         ∀ 𝑖, 𝑤 ∈ 𝒮 (4.8) 
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Number of jobs to be processed in a stage is not taken into account in (4.8) since it is assumed 

all jobs to be processed in all stages (see Section 4.1).  

Due to the integrality requirement of 𝑚𝑖, the balance may or may not be a perfect balance. 

When number of perfectly balanced stages in a proportionate MPOS increases, the problem 

becomes increasingly non-trivial to solve. The reason is as the following: Perfectly balanced 

stages complete their processing at close time points and require new jobs to be loaded almost 

simultaneously. After a while, through the end sections of a schedule, one stage waits for the 

other to process the remaining few jobs. This idle waiting times cause great delays in the final 

schedule. One solution to this problem is to distribute the jobs among those stages in such a 

way that they would require the same job at different time points. Thus, through the end of the 

schedule, one would not wait for the other since, although they need new jobs at close time 

points, this need would be for different jobs. To ensure this solution to take place in a schedule, 

an approach named as local exploration is proposed. 

As explained in Section 4.2.3, the schedule of a permutation is constructed by selecting jobs 

according to job desirability. Once a job is assigned to a stage its desirability decreases by 

one, making it less desirable in the next assignment. Thus, indirectly, an ordering between 

jobs arises in selecting them. This order causes the perfectly balanced stages require 

approximately the same set of jobs when they become available at close time points. To create 

a distributed job assignment, as proposed above, it is proposed to select jobs randomly from 

an eligible job set instead of the default job desirability-based selection. The random selection 

rule leads to a family of schedules that a single permutation encodes. These schedules can be 

viewed as the neighboring schedules, and the resulting effect of such an approach is similar 

to a local search. Thus, the approach is named as local exploration. 

Local exploration is applied only to the permutation constructed by the single ant, and not on 

randomly generated permutations. This is analogous to applying local search to the solutions 

constructed by the ants, common in the literature. However, different from a local search 

application, generating schedule based on local exploration is not repeated in an iteration. 

Instead, the favorable effect of this procedure is gained over several iterations. The reasoning 

behind this approach is as follows: The ACO algorithm proposed here performs random 
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exploration to search the solution space, and the search knowledge is kept in the memory to 

be used to build a single permutation that fully exploits this knowledge. Thus, the component-

by-component permutation construction of the single ant is a deterministic process (see 

Equation (4.6)). If the random exploration phase does not produce better or at least same 

quality solutions for several iterations, the memory would not be updated and the algorithm 

would end up with the same solution each time, hence get stagnated. However, since it is 

proposed to apply local exploration to the permutation constructed by the ant, the algorithm 

continues to explore the neighborhood of the constructed permutation and continue to generate 

different schedules at those times. This is why local exploration is not repeated in the same 

iteration. 

One consideration while applying local exploration to a permutation is that the schedule to be 

created would change for different random numbers and the procedure is not deterministic, 

cannot be repeated to get the same solution. Thus, instead of returning a permutation as the 

best solution at the end of the algorithm, the schedule which gives this best solution is returned.  

4.3.3. Pheromone information 

Pheromone information, 𝜏𝜉𝜑, is defined in line with the definition of the solution 

representation. Thus, 𝜏𝜉𝜑 is the desirability to place implicit-stage representation 𝜑 at the 𝜉th 

position in the permutation.  

Because of the nature of the proportionate MPOS, many different schedules can be 

constructed with the same makespan value. This is due to the processing times of stages being 

independent of the jobs. This feature of the problem can be observed in sample permutations 

given in Figure 4.7 for Problem 3. The permutations are different but their makespan equals 

to each other. This characteristic of the problem allows to make inferences about the position 

of a number (an implicit stage representation) in the permutation. It can be easily recognized 

that rather than the exact position, the approximate position of a number is important in a 

permutation. This leads to use of weighted pheromone summation rule given in (3.23) to 

evaluate the pheromone information (see Section 3.9). It is a useful rule if the positions of 

numbers are similar in permutations of good schedules (Merkle & Middendorf, 2002). The 
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rule is only for evaluating the pheromone information; thus it is only used in solution 

construction and not in pheromone update.   

 

Figure 4.7. Different permutations with same makespan 

4.3.4. Heuristic information 

Heuristic information, 𝜂𝜉𝜑, is problem-specific knowledge that is supplied to algorithm to 

help it converge to better quality solutions. 𝜂𝜉𝜑 is defined as the heuristic desirability to place 

implicit-stage representation 𝜑 at the 𝜉th position in the permutation.  

For the proportionate MPOS problem, a permutation that requires to schedule for the same 

stage successively, having many consecutive calls to a stage, may lead to idle times in other 

stages and cause a delay in the final schedule. Example of such a stage permutation for 

Problem 3 is 2-2-2-2-2-3-3-3-3-3-1-1-1-1-1. Based on this knowledge, a heuristic information 

called “Most Work Remaining Heuristic (MWRH)” is proposed for the problem. The heuristic 

can be found in other scheduling applications in the literature. But it is adapted for the 

proportionate MPOS for the first time and in the context of the new solution representation in 

this study.  

MWRH prioritize stages that have greater number of jobs still to be processed compared to 

other stages. Then, 𝜂𝜉𝜑 is defined formally as follows 

𝜂𝜉𝜑 =
𝑛𝑠𝜑

𝑛
 (4.9) 

where 𝑠𝜑 is the corresponding stage referred by the implicit-stage representation 𝜑, and 𝑛𝑖 is 

the number of remaining jobs still to be processed in stage 𝑖.  
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4.3.5. Pheromone update 

Only the global-best solution(s) (GB) is used to make an update in pheromone trails. Among 

𝜅 + 1 solutions constructed in an iteration, iteration-best solution(s) (IB) is compared with the 

current GB, and update is performed if IB equals to GB or constitutes a new GB. In an 

iteration, it is possible to have more than one solution with minimum IB value, coming from 

the exploration part especially in early phases of the algorithm. However, the permutations of 

such solutions are different. Thus, all those solutions are used to make the update. 

Before adding pheromone to entries corresponding to GB solutions, pheromone evaporation 

is carried out in all entries of the pheromone matrix. Pheromone update is performed in HCF 

of Blum and Dorigo (2004) -explained in Section 3.8. Since more than one solution can be 

used in the update, the procedure given in (3.16) should be used. However, here the solutions 

have the same makespan value. Thus, the following adapted rule is applied in the update 

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌 ∑ 𝑢𝜋
𝜋∈𝐺𝐵

        where 𝑢𝜋 = {
1 if (𝜉, 𝜑) ∈ 𝜋
0 otherwise

 (4.10) 

Minimum and maximum limits, 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥, are imposed on pheromone values as 

proposed by Stützle and Hoos (1997). After the update is completed, any 𝜏𝜉𝜑 greater than 

𝜏𝑚𝑎𝑥 is made equal to 𝜏𝑚𝑎𝑥, and similarly, any 𝜏𝜉𝜑 smaller than 𝜏𝑚𝑖𝑛 is made equal to 𝜏𝑚𝑖𝑛. 
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5. COMPUTATIONAL EXPERIMENTS 

Computational tests are carried out to measure the performance of proposed ACO algorithm. 

This chapter presents the test results, comparison with literature and finally analysis and 

discussion of the results. Parameter estimation procedures and the testbed are explained first.  

5.1. Parameter Estimation 

Before performing computational tests, algorithm-specific parameters are estimated. To 

determine the parameters, commonly used values in literature are referred or initial pilot 

experiments are carried out. 𝛼 = 1 and 𝛽 = 2, since these values are widely accepted 

favorable values (den Besten et al., 2000; Dorigo & Gambardella, 1997; Merkle & 

Middendorf, 2002; Stützle & Hoos, 2000).  

Initial pilot experiments revealed 𝛾 = 0.70 and 𝜌 = 0.30. The values are reasonable since 𝛾, 

the weight parameter in pheromone summation rule, is preferred to be less than 1 to allow 

positions close to position 𝜉 to have higher effect in value of 𝜏𝜉𝜑, see Equation (3.23). 

Moreover, it is preferred to be greater than 0.50 to avoid further positions having a negligible 

effect, but less than 0.90 to efficiently discriminate between the effects of close and far 

positions. The reasoning is made clear with the numerical example in Table 5.1 that gives the 

weight values for each position up to position 7 for which the pheromone value is evaluated. 

Position 7 is chosen arbitrarily and only for representative purposes.  

Table 5.1. Weight of the positions for different γ values 

Position in permutation 1 2 3 4 5 6 7 

Weight multiplier 𝛾6 𝛾5 𝛾4 𝛾3 𝛾2 𝛾1 𝛾0 

𝛾 = 0.5 0.016 0.031 0.063 0.125 0.25 0.5 1 

𝛾 = 0.7 0.118 0.168 0.240 0.343 0.49 0.7 1 

𝛾 = 0.9 0.531 0.590 0.656 0.729 0.81 0.9 1 

The estimated 0.30 value for 𝜌 is also reasonable considering the structure of the algorithm. 

A low rate of evaporation allows the algorithm to accumulate the search knowledge. A higher 

evaporation rate would be preferable in the classical solution construction approach, where 
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evaporation allows the algorithm to search for the solution region and prevents it to converge 

to an early suboptimal solution. However, in the ACO algorithm proposed here, it is not the 

evaporation rate that enables the search of the solution space, since the algorithm uses a 

random exploration routine. Thus, a low evaporation rate is favorable to increase the 

exploitation of accumulated experience. On the other hand, a too low evaporation would make 

the solution construction process to concentrate more on initial solutions, and new knowledge 

gained during the later phases of the algorithm would have no decisive effect (see Equation 

(4.10)).  

𝜅, number of random solutions in an iteration, is taken to be 10 analogous to the commonly 

used 10 number of ants to construct solutions in an iteration.  

Lastly, 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the remaining parameters to be estimated. Since HCF is used in 

pheromone update, 𝜏𝜉𝜑 entries can take values between [0,1]. This allows fixing the minimum 

and maximum limits to 0.001 and 0.999, respectively, as proposed by Blum and Dorigo 

(2004). 

5.2. Experimental Testbed 

Only one benchmark testbed exists in the literature for the proportionate MPOS problem. This 

testbed is used in this study to carry out the experimental tests. The testbed was created by 

Matta (2009) and given in Appendix A. It includes 100 proportionate MPOS instances. The 

instances were grouped according to the number of stages they have: 2-stage, 4-stage, 8-stage 

and 16-stage are the four different stage numbers considered. Among them 2-stage problems 

are regarded as small instances, 4-stage medium and 8 and 16-stage problems are large 

instances. Each group have 25 instances in it. A single problem instance was constructed as 

follows by assigning 3 features of the problem: 1) number of machines in each stage, 2) 

processing times of each stage, 3) number of jobs in the shop.  Number of machines in a stage 

was randomly chosen from the set {2, … ,25} for 2, 4 and 8-stage problems, and from 

{2, … ,10} for 16-stage problems. The stages of a problem were then sorted in descending 

order of the number of machines they included. That is, stage 1 always has the greatest number 
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of machines, then comes stage 2, and so on. Processing times of stages were assigned so as to 

allow a balanced shop (see Section 2.2). This was achieved by applying the approach given in 

Equation (4.8). However, since the number of machines were determined first, revised form 

of the equation was used to assign processing times to stages as in (5.1). 

𝑝𝑖 = ⌊𝑚𝑖

𝑝1
𝑚1
⌋         ∀ 𝑖 ∈ 𝒮 (5.1) 

 where 𝑝1 is the integer processing time for stage 1 chosen randomly from the set {5, … ,15}. 

Number of jobs in the shop was taken to be equal to total number of machines across the 

stages, 𝑛 = ∑ 𝑚𝑖𝑖 . This allowed a “square” shop and, along with the balanced property, 

created difficult instances. Otherwise, if the number of jobs were too small, then the abundant 

number of resources (machines) would make the problem trivial to solve. Number of jobs 

ranges from 10 to 40 in 2-stage instances, from 28 to 90 in 4-stage instances, from 72 to 161 

in 8-stage instances, and from 78 to 112 in 16-stage instances. Matta (2009) also assigned a 

relative deadline for each problem instance, which indicated the time to complete all work. 

This time is not taken into account in this study, since it may not be feasible to complete all 

the work by this deadline and it is allowed, both here and in Matta (2009), for a shop to run 

past time the deadline. Also, it was not referred in the performance analysis of neither Matta 

(2009) nor the other researchers.  

5.3. Lower Bounds 

The solution quality is evaluated using a lower bound on makespan value for each problem 

instance. Lower bound computations are based on the minimal requirement that must be 

established whatever the schedule is. In the current problem, every stage is required to process 

all jobs, which creates a lower bound of ⌈𝑛 𝑚𝑖⁄ ⌉ × 𝑝𝑖 on the time for a stage to complete its 

workload. Considering all stages, the following overall lower bound is computed for each 

problem instance.   

max
𝑖∈𝒮

⌈𝑛 𝑚𝑖⁄ ⌉ × 𝑝𝑖 (5.2) 
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The computed lower bounds for the problem instances are given in 𝐿𝐵 columns in Table 5.2 - 

Table 5.5 in the next subsection.  

5.4. Test Results and Comparison 

ACO algorithm is run 10 times for each instance and statistics are collected over these runs. 

These statistics include, but not restricted to, average 𝐶𝑚𝑎𝑥, best 𝐶𝑚𝑎𝑥, average deviation from 

lower bound and average execution time, given in Table 5.2 - Table 5.5 as Avg. 𝐶𝑚𝑎𝑥, Best 

𝐶𝑚𝑎𝑥, Mean dev. (%) and Avg. Time, respectively. Time limit is used as the termination 

criterion in a run, and it is set to 60 seconds for 2-stage and 4-stage problems, to 130 seconds 

for 8-stage and 180 seconds for 16-stage ones.  

The same testbed was used in several other research papers on scheduling MPOS, as 

mentioned earlier in Section 1.2. TS algorithm proposed by Abdelmaguid et al. (2014) greatly 

improved the results of Matta (2009) both in solution quality and computational time. This TS 

algorithm results are referred for comparison in this study. Besides, a recent study by 

Abdelmaguid (2020) proposed an SS/PR algorithm and improved the results further, not in 

computational time but in solution quality in most instances. Thus, this SS/PR algorithm is 

also used in performance evaluations of the current ACO algorithm.  

The results of the experiments are given in Table 5.2 - Table 5.5 together with the results of 

the TS and SS/PR for performance comparisons. The tables show Avg. 𝐶𝑚𝑎𝑥, Best 𝐶𝑚𝑎𝑥 and 

Mean dev. (%) as makespan related statistics and Avg. Time for time performance of the 

algorithms. Number of jobs (𝑛) and lower bound (𝐿𝐵) values are also given for each instance. 

The asterisk symbol (*) is used to represent a provably optimal solution which is a makespan 

value that equals the LB. A bold face is used to emphasis the best result among the compared 

algorithms for the related instance.  

Table 5.2 gives the results for 2-stage instances. SS/PR results are not included, since they 

were not provided in the original paper and they were claimed to be same as the TS results. 

ACO also produces exactly the same makespan value as the TS for each instance within 

similar computational time. Same results had been also reported by Matta (2009). Indeed, it 
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is claimed in this study that the makespan values reported in Table 5.2 for 2-stage instances 

are the optimum ones. The reasoning of this claim is elaborated in Section 5.6. 

Table 5.2. Comparative results for makespan and computational time (sec.) for 2-stage 

problem set 

Problem 𝑛  LB 

   TS   ACO 

  
Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. 

% 

Avg.  

Time 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. 

% 

Avg.  

Time 

S2-P1 22 30 
 

30 30* 0.0 0.02 
 

30 30* 0.0 0.03 

S2-P2 32 10 
 

11 11 10.0 0.05 
 

11 11 10.0 0.03 

S2-P3 24 18 
 

18 18* 0.0 0.00 
 

18 18* 0.0 0.03 

S2-P4 20 16 
 

18 18 12.5 0.02 
 

18 18 12.5 0.02 

S2-P5 29 27 
 

31 31 14.8 0.04 
 

31 31 14.8 0.02 

S2-P6 30 12 
 

12 12* 0.0 0.00 
 

12 12* 0.0 0.04 

S2-P7 28 27 
 

30 30 11.1 0.02 
 

30 30 11.1 0.03 

S2-P8 10 16 
 

16 16* 0.0 0.00 
 

16 16* 0.0 0.01 

S2-P9 30 22 
 

22 22* 0.0 0.00 
 

22 22* 0.0 0.03 

S2-P10 16 28 
 

28 28* 0.0 0.02 
 

28 28* 0.0 0.02 

S2-P11 40 14 
 

14 14* 0.0 0.00 
 

14 14* 0.0 0.04 

S2-P12 34 36 
 

39 39 8.3 0.04 
 

39 39 8.3 0.03 

S2-P13 12 26 
 

26 26* 0.0 0.00 
 

26 26* 0.0 0.02 

S2-P14 14 24 
 

24 24* 0.0 0.00 
 

24 24* 0.0 0.02 

S2-P15 32 30 
 

33 33 10.0 0.05 
 

33 33 10.0 0.03 

S2-P16 34 30 
 

33 33 10.0 0.04 
 

33 33 10.0 0.03 

S2-P17 15 18 
 

18 18* 0.0 0.00 
 

18 18* 0.0 0.02 

S2-P18 13 22 
 

22 22* 0.0 0.02 
 

22 22* 0.0 0.02 

S2-P19 16 26 
 

26 26* 0.0 0.02 
 

26 26* 0.0 0.02 

S2-P20 12 12 
 

12 12* 0.0 0.00 
 

12 12* 0.0 0.02 

S2-P21 22 28 
 

32 32 14.3 0.05 
 

32 32 14.3 0.03 

S2-P22 25 22 
 

22 22* 0.0 0.03 
 

22 22* 0.0 0.03 

S2-P23 22 18 
 

21 21 16.7 0.04 
 

21 21 16.7 0.02 

S2-P24 12 18 
 

18 18* 18.0 0.00 
 

18 18* 0.0 0.02 

S2-P25 21 10   10 10* 0.0 0.02   10 10* 0.0 0.03 

Performance of the ACO algorithm in 4-stage instances is illustrated in Table 5.3, together 

with the performances of the TS and SS/PR. Execution time statistics are not present under 

SS/PR in the table because they were not supplied in the paper as instance-based. Rather the 

overall average computational time was supplied, which is referred later in Table 5.6 for 

comparison of overall performance of the algorithms. Instead, results of the TS algorithm are 
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included in this table to compare the execution time of the algorithms. It is reasonable to use 

the instance-based time statistics of TS as a replacement for SS/PR, since the average 

computational time for 4-stage instances is higher in SS/PR than TS (Table 5.6). As can be 

observed from Table 5.3, ACO algorithm manages to reach the best makespan value in all 

instances. It reaches 3 new upper bounds, where 2 of them are provably optimal solutions. 

Average 𝐶𝑚𝑎𝑥 values are also the lowest in ACO, except for S4-P1, where the difference with 

SS/PR is minimal and can be ignored. ACO is able to find up to 10% better makespan values 

(S4-P6) in average. The algorithm produces these favorable results in much less time than 

SS/PR. In 22 instances, it takes less than a second for ACO to reach the solution. The 

exceptionally high computational time in instance S4-P1 is due to problem structure. This 

issue is discussed further in Chapter 6. 

Comparative results for 8-stage instances are given in Table 5.4. ACO reaches 4 new upper 

bounds, where 3 of them are optimum solutions. There is a single instance, S8-P3, where 

SS/PR had a lower makespan, also an optimum one. ACO produces lower makespan values 

in average. The three instances where average 𝐶𝑚𝑎𝑥 is lower in SS/PR; S8-P3, S8-P8, S8-P24 

had insignificantly small differences. Computational times required by ACO are much lower 

than the TS (also SS/PR, since it reported higher average values, see Table 5.6), as much as a 

98% decrease can be observed. ACO reaches the solution in less than a second in 10 instances, 

and only in 5 instances the time is higher than 10 seconds.  

Performance of the algorithm is particularly remarkable in the large-scale 16-stage instances, 

as given in Table 5.5. It reaches 9 new upper bounds, where 6 of them are provably optimal 

solutions. There are only 2 instances where the upper bounds provided by SS/PR are not 

reached. ACO produces lower makespan values in average. Again, the time performance of 

the algorithm is much better than TS. A decrease in computational time requirement is 

especially important in these large-scale instances. A 98% decrease is observable in average 

time.  

 



 

Table 5.3. Comparative results for makespan and computational time (sec.) for 4-stage problem set 

Problem 𝑛  LB 

  TS   SS/PR   ACO 

  
Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 

Avg.  

Time 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 

Avg.  

Time 

S4-P1 49 26 
 

33.0 33 26.9 19.59 
 

29.4 29 13.1 
 

29.5 29 13.5 11.37 

S4-P2 39 21 
 

21.0 21* 0.0 0.00 
 

21.0 21* 0.0 
 

21.0 21* 0.0 0.07 

S4-P3 63 48 
 

54.0 51 12.5 3.79 
 

51.0 51 6.3 
 

50.4 48* 5.0 6.07 

S4-P4 38 27 
 

30.0 30 11.1 7.15 
 

27.0 27* 0.0 
 

27.0 27* 0.0 0.16 

S4-P5 56 32 
 

32.0 32* 0.0 0.00 
 

32.0 32* 0.0 
 

32.0 32* 0.0 0.12 

S4-P6 60 25 
 

28.1 28 12.4 12.39 
 

28.0 28 12.0 
 

25.0 25* 0.0 0.67 

S4-P7 53 36 
 

40.0 40 11.1 10.33 
 

36.0 36* 0.0 
 

36.0 36* 0.0 0.07 

S4-P8 40 33 
 

34.0 34 3.0 14.46 
 

33.0 33* 0.0 
 

33.0 33* 0.0 0.07 

S4-P9 65 39 
 

48.0 47 23.1 26.00 
 

41.9 41 7.4 
 

41.0 41 5.1 0.16 

S4-P10 53 56 
 

56.0 56* 0.0 0.00 
 

56.0 56* 0.0 
 

56.0 56* 0.0 0.09 

S4-P11 55 40 
 

40.6 40* 1.5 0.00 
 

40.0 40* 0.0 
 

40.0 40* 0.0 0.10 

S4-P12 58 30 
 

37.2 36 24.0 1.10 
 

32.0 32 6.7 
 

32.0 32 6.7 0.08 

S4-P13 37 40 
 

40.0 40* 0.0 0.00 
 

40.0 40* 0.0 
 

40.0 40* 0.0 0.06 

S4-P14 42 45 
 

48.0 48 6.7 16.80 
 

45.0 45* 0.0 
 

45.0 45* 0.0 0.08 

S4-P15 28 36 
 

36.0 36* 0.0 0.00 
 

36.0 36* 0.0 
 

36.0 36* 0.0 0.05 

S4-P16 28 32 
 

34.0 34 6.3 0.14 
 

32.0 32* 0.0 
 

32.0 32* 0.0 0.11 

S4-P17 90 32 
 

37.6 36 17.5 36.00 
 

36.0 36 12.5 
 

36.0 36 12.5 0.13 

S4-P18 30 24 
 

28.0 28 16.7 3.40 
 

24.0 24* 0.0 
 

24.0 24* 0.0 0.08 

S4-P19 63 36 
 

37.0 37 2.8 7.64 
 

36.0 36* 0.0 
 

36.0 36* 0.0 0.09 

S4-P20 62 60 
 

68.5 63 14.2 3.27 
 

63.0 63 5.0 
 

63.0 63 5.0 0.10 

S4-P21 64 32 
 

37.0 34 15.6 7.32 
 

34.0 34 6.3 
 

34.0 34 6.3 0.09 

S4-P22 58 35 
 

36.7 35* 4.9 0.30 
 

35.0 35* 0.0 
 

35.0 35* 0.0 0.08 

S4-P23 61 21 
 

24.6 24 17.1 5.14 
 

24.0 24 14.3 
 

22.0 22 4.8 1.09 

S4-P24 54 44 
 

46.6 46 5.9 17.72 
 

44.0 44* 0.0 
 

44.0 44* 0.0 0.10 

S4-P25 34 21   23.5 22 11.9 8.79   21.0 21* 0.0   21.0 21* 0.0 0.17 

5
1
 



 

Table 5.4. Comparative results for makespan and computational time (sec.) for 8-stage problem set 

Problem 𝑛 LB 

 TS  SS/PR  ACO 

  
Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 

Avg.  

Time 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 

Avg.  

Time 

S8-P1 146 48 
 

55.9 53 16.5 116.80 
 

52.0 52 8.3 
 

52.0 52 8.3 1.61 

S8-P2 144 32 
 

35.0 35 9.4 115.20 
 

34.8 34 8.7 
 

34.0 34 6.3 4.13 

S8-P3 87 32 
 

34.9 34 9.1 69.60 
 

32.8 32* 2.5 
 

33.0 33 3.1 5.04 

S8-P4 161 108 
 

120.3 120 11.4 128.80 
 

111.3 111 3.1 
 

109.2 108* 1.1 18.44 

S8-P5 117 78 
 

78.0 78* 0.0 0.00 
 

78.0 78* 0.0 
 

78.0 78* 0.0 0.56 

S8-P6 99 63 
 

64.3 64 2.1 79.20 
 

63.0 63* 0.0 
 

63.0 63* 0.0 0.48 

S8-P7 84 36 
 

36.3 36* 0.8 26.88 
 

36.0 36* 0.0 
 

36.0 36* 0.0 0.45 

S8-P8 110 55 
 

64.3 59 16.9 88.00 
 

58.0 58 5.5 
 

58.9 58 7.1 3.80 

S8-P9 128 42 
 

43.6 43 3.8 61.44 
 

42.1 42* 0.2 
 

42.0 42* 0.0 9.74 

S8-P10 90 32 
 

37.3 36 16.6 72.00 
 

34.0 34 6.3 
 

34.0 34 6.3 4.25 

S8-P11 102 45 
 

45.0 45* 0.0 0.00 
 

45.0 45* 0.0 
 

45.0 45* 0.0 0.47 

S8-P12 92 60 
 

62.8 61 4.7 73.60 
 

60.2 60* 0.3 
 

60.0 60* 0.0 3.86 

S8-P13 101 35 
 

38.1 36 8.9 80.80 
 

36.0 36 2.9 
 

35.5 35* 1.4 28.39 

S8-P14 72 84 
 

85.1 84* 1.3 28.80 
 

84.0 84* 0.0 
 

84.0 84* 0.0 0.34 

S8-P15 100 60 
 

61.9 61 3.2 32.00 
 

60.0 60* 0.0 
 

60.0 60* 0.0 3.04 

S8-P16 81 70 
 

76.2 76 8.9 64.80 
 

75.0 75 7.1 
 

74.6 73 6.6 14.39 

S8-P17 100 60 
 

60.2 60* 0.3 16.00 
 

60.0 60* 0.0 
 

60.0 60* 0.0 0.42 

S8-P18 106 56 
 

58.0 56* 3.6 25.44 
 

56.0 56* 0.0 
 

56.0 56* 0.0 0.58 

S8-P19 108 75 
 

78.0 78 4.0 86.40 
 

77.1 75* 2.8 
 

75.0 75* 0.0 7.33 

S8-P20 105 49 
 

49.9 49* 1.8 25.20 
 

49.0 49* 0.0 
 

49.0 49* 0.0 0.41 

S8-P21 152 42 
 

42.5 42* 1.2 36.48 
 

42.0 42* 0.0 
 

42.0 42* 0.0 1.19 

S8-P22 104 30 
 

30.0 30* 0.0 0.00 
 

30.0 30* 0.0 
 

30.0 30* 0.0 0.41 

S8-P23 97 75 
 

75.0 75* 0.0 0.00 
 

75.0 75* 0.0 
 

75.0 75* 0.0 0.47 

S8-P24 104 35 
 

38.0 36 8.6 83.20 
 

36.0 36 2.9 
 

36.1 36 3.1 35.10 

S8-P25 101 35   37.2 36 6.3 80.80   36.0 36 2.9   35.5 35* 1.4 34.75 

5
2
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Overall performance of the algorithms is compared in Table 5.6. In all four statistics compared 

in the table, ACO has the highest performance in all problem sizes. Its performance in reaching 

optimal solutions is particularly prevalent, even in the large size 16-stage instances. The time 

performance of the algorithm is very favorable, even a 10-fold decrease can be observed. 

Although, SS/PR produced higher quality results than TS, it required more time to accomplish 

this. However, it is quite the opposite for ACO. It manages to produce higher quality results 

than both TS and SS/PR in much less time. Further runtime analysis of the algorithm is given 

in Section 5.5.6. 

5.5. Analysis of Algorithm and Results 

This subsection introduces several further analyses about the proposed ACO algorithm to 

analyze the dynamics of the algorithm and assess the strengths and weakness of it.  

How problem size can be defined in MPOS problem and are size of the test problems realistic 

or are they imaginary small cases not applicable in real life? These questions are dealt with in 

Section 5.5.1. Contributions of algorithm elements are analyzed in Section 5.5.2. The 

algorithm visits how many different solutions until it returns the best? Associated analysis is 

reported as instance-based in Section 5.5.3. The algorithm’s stability across several runs on 

the same instance is assessed in Section 5.5.4. The succeeding Section 5.5.5 compares the 

configurations of the computers used in the algorithms referred in performance comparisons 

in the previous section. Section 5.5.6 gives a graphical runtime analysis of the algorithms. 

Lastly, statistical significance of algorithm results is evaluated in Section 5.5.7. 

5.5.1. Problem size 

Problem size is defined by the size of the input. In MPOS problem, input includes number of 

stages (𝑠), number of jobs (𝑛), number of machines (𝑚𝑖) in each stage and processing times 

of jobs in stages (𝑝𝑗𝑖). Hence, the problem size is defined as in (5.3).



 

Table 5.5. Comparative results for makespan and computational time (sec.) for 16-stage problem set 

Problem 𝑛  LB  

  TS   SS/PR   ACO 

  
Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 

Avg.  

Time 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 
  

Avg. 

𝐶𝑚𝑎𝑥 

Best  

𝐶𝑚𝑎𝑥 

Mean  

dev. % 

Avg.  

Time 

S16-P1 88 135 
 

144.6 144 7.1 140.80 
 

144.0 144 6.7 
 

141.0 141 4.4 58.98 

S16-P2 102 99 
 

100.0 99* 1.0 16.32 
 

99.0 99* 0.0 
 

99.0 99* 0.0 6.33 

S16-P3 99 140 
 

146.2 144 4.4 158.40 
 

143.0 143 2.1 
 

140.9 140* 0.6 43.13 

S16-P4 90 104 
 

108.2 106 4.0 144.00 
 

107.3 107 3.2 
 

107.2 107 3.1 22.65 

S16-P5 96 100 
 

108.2 104 8.2 153.60 
 

104.0 104 4.0 
 

104.0 104 4.0 3.72 

S16-P6 104 143 
 

147.1 145 2.9 166.40 
 

144.0 144 0.7 
 

143.2 143* 0.1 8.57 

S16-P7 106 121 
 

124.2 123 2.6 166.90 
 

122.9 122 1.6 
 

122.6 121* 1.3 56.75 

S16-P8 81 63 
 

63.0 63* 0.0 0.00 
 

63.0 63* 0.0 
 

63.0 63* 0.0 2.48 

S16-P9 101 121 
 

124.2 121* 2.6 129.28 
 

121.9 121* 0.7 
 

121.0 121* 0.0 3.56 

S16-P10 96 120 
 

122.2 121 1.8 153.60 
 

121.0 121 0.8 
 

120.0 120* 0.0 35.81 

S16-P11 93 80 
 

80.0 80* 0.0 0.00 
 

80.0 80* 0.0 
 

80.0 80* 0.0 5.58 

S16-P12 110 154 
 

166.7 166 8.2 176.00 
 

164.0 163 6.5 
 

162.0 162 5.2 65.34 

S16-P13 112 180 
 

188.1 183 4.5 180.00 
 

181.8 180* 1.0 
 

180.0 180* 0.0 16.94 

S16-P14 97 84 
 

88.0 88 4.8 155.20 
 

86.0 85 2.4 
 

85.0 84* 1.2 66.12 

S16-P15 86 126 
 

130.3 127 3.4 137.60 
 

127.1 127 0.9 
 

127.7 127 1.3 28.49 

S16-P16 106 56 
 

59.2 57 5.7 169.60 
 

57.3 57 2.3 
 

57.0 57 1.8 5.79 

S16-P17 94 70 
 

71.3 70* 1.9 45.12 
 

70.3 70* 0.4 
 

70.2 70* 0.3 48.13 

S16-P18 102 110 
 

115.0 112 4.5 163.20 
 

110.2 110* 0.2 
 

110.0 110* 0.0 6.11 

S16-P19 80 112 
 

124.6 117 11.3 128.00 
 

115.9 115 3.5 
 

117.9 117 5.3 51.56 

S16-P20 84 90 
 

94.2 92 4.7 134.40 
 

92.0 92 2.2 
 

92.0 92 2.2 1.86 

S16-P21 78 88 
 

94.3 90 7.2 124.80 
 

90.0 90 2.3 
 

92.3 92 4.9 33.72 

S16-P22 79 60 
 

62.2 60* 3.7 50.56 
 

60.0 60* 0.0 
 

60.0 60* 0.0 5.42 

S16-P23 97 70 
 

74.7 73 6.7 155.20 
 

73.0 73 4.3 
 

72.9 72 4.1 49.45 

S16-P24 93 60 
 

60.5 60* 0.8 14.88 
 

60.0 60* 0.0 
 

60.0 60* 0.0 6.08 

S16-P25 96 120   122.6 121 2.2 153.60   121.0 121 0.8   120.1 120* 0.1 33.08 

5
4
 



 

Table 5.6. Summary comparative statistics for the testbed 

 2-stage  4-stage  8-stage  16-stage 

 
TSϑ ACO 

 
TSϑ SS/PRδ ACO 

 
TSϑ SS/PRδ ACO  

 
TSϑ SS/PRδ ACO 

Average deviation of mean 

𝐶𝑚𝑎𝑥 from LB (%) 
4.31 4.31 

 
9.80 3.30 2.35 

 
5.56 2.10 1.79 

 
4.17 1.9 1.6 

Average deviation of best 

𝐶𝑚𝑎𝑥 from LB (%) 
4.31 4.31 

 
7.63 3.18 2.07 

 
3.41 1.79 1.46 

 
2.08 1.6 1.33 

No. of provably optimal 

solutions (out of 25) 
16 16 

 
7 16 18 

 
10 16 18 

 
7 9 15 

Average computational 

time (sec.) 
0.02 0.02 

 
8.05 9.33 0.85 

 
55.66 59.68 7.19 

 
120.81 207.93 26.63 

ϑ: TS proposed by Abdelmaguid et al. (2014) 

δ: SS/PR proposed by Abdelmaguid (2020) 

 

5
5
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Problem size  ∶= 𝑠 ∪ 𝑛 ∪𝑚𝑖 ∪ 𝑝𝑗𝑖         𝑗 ∈ 𝒥;   𝑖 ∈ 𝒮   (5.3) 

However, if total number of machines across stages exceeds 𝑛, then the problem becomes 

trivial to solve; if it is less than 𝑛, a bottleneck occurs in the problem. Thus, min(𝑛, ∑𝑚𝑖) can 

be considered as a determinant in problem size. Time-complexity of the problem -defined by 

an approximation algorithm- would be in order of the problem size elements. 

Real-world cases of the MPOS problem at hand are exemplified in Section 1.1. It can be seen 

that the size of the problems dealt with in this study -up to 16 stages with up to 10 machines 

in a stage- is sufficiently large to enable the application of the current proposal to real-world 

sized problems. 

5.5.2. Contributions of algorithm elements 

The proposed ACO has the following structural algorithm elements that are specifically 

defined for the current proposal. Each element is either a completely new approach or an 

adopted version of an existing approach. 

Algorithm elements: 

• Implicit-stage permutation representation 

• Generation of complete random solutions (Random exploration) 

• Pheromone information  

• Heuristic information 

• Local exploration 

To assess the contribution of an element to overall performance of the algorithm, only that 

element should be excluded or replaced by an alternative engine and remaining parts of the 

algorithm should be kept the same, then the algorithm should be re-run. However, this is not 

possible for any element except for the local exploration. Replacing the current solution 

representation with operation-permutation representation, for example, would require the 

pheromone and heuristic information to be re-defined for the new representation, as they are 

tailored approaches for implicit-stage permutation representation. That means one or more 
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algorithm elements would be changed concurrently, which would prevent examining the exact 

contribution of an element. Again, to evaluate the contribution of the random exploration 

routine, instead can be used the commonly applied biased stochastic exploration where the 

probability of a solution component depends on the value of quality function, 𝑄𝜉𝜑 = 𝜏𝜉𝜑
𝛼 𝜂𝜉𝜑

𝛽
. 

Thus, the contributing effects of the pheromone and heuristic information would again be 

present in the replacing exploration routine. That would again prevent examining the exact 

contribution of an element.    

Local exploration routine contributed significantly to improve the results for large-scale 

instances, especially 16-stage ones. To observe the favorable contribution of the module, the 

algorithm is run with and without local exploration routine for 8 and 16-stage instances.  

Table 5.7 gives the percent change caused by local exploration in best makespan and average 

makespan values of the 10 runs for 8-stage instances. Average computational times are also 

included in the table. LE enabled the algorithm to reach 2 new upperbounds; one of them 

being a provably optimal solution. However, there is an instance, S8-P10, where ACO without 

LE reaches a lower upperbound. Average solution quality produced by the algorithm does not 

necessarily improve with the inclusion of LE. Indeed, an apparent contribution of the LE 

module to solution quality is not present in 8-stage instances. However, there are considerable 

decreases in computational time caused by LE in certain instances. But the decreasing trend 

in average time is not common in all instances. There are cases where the inclusion of the 

module increases the computational time.  

The changing effect of LE in solution quality is due to working principles of the module. LE 

serves the following purpose in the algorithm. It generates schedules where jobs have a 

distributed view of their respective locations in machines. If this has no role in decreasing 

makespan of the problem instance at hand (either perfectly balanced stages are few in number 

or the problem size is small and not being affected from the presence of those stages), then it 

may serve no purpose. However, when the problem size becomes increasingly large, searching 

for a better solution around a single permutation generates better schedules most of the time. 

Also, the presence of perfectly balanced stages causes great delay if the problem size is large, 

and LE routine does have a decreasing role in makespan (see Section 4.3.2).  
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Table 5.7. Contribution of local exploration routine in 8-stage instances 
  

 

ACO (No LE)  ACO + LE 

 Percent 

Improvement by 

LE  

LB 

 Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Avg. 

Time 

 Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Avg. 

Time 

 Best 

𝐶𝑚𝑎𝑥 

(%) 

Avg. 

𝐶𝑚𝑎𝑥 

(%) 

S8-P1 48  52 52.5 29.60  52 52 1.61  -- 0.95 

S8-P2 32  34 34 30.99  34 34 4.13  -- -- 

S8-P3 32  33 33 2.89  33 33 5.04  -- -- 

S8-P4 108  111 111 12.57  108* 109.2 18.44  2.70 1.62 

S8-P5 78  78* 78 0.54  78* 78 0.56  -- -- 

S8-P6 63  63* 63 0.68  63* 63 0.48  -- -- 

S8-P7 36  36* 36 0.40  36* 36 0.45  -- -- 

S8-P8 55  58 59.1 50.29  58 58.9 3.80  -- 0.34 

S8-P9 42  42* 42.1 40.11  42* 42 9.74  -- 0.24 

S8-P10 32  33 33.9 13.90  34 34 4.25  -3.03 -0.29 

S8-P11 45  45* 45 0.45  45* 45 0.47  -- -- 

S8-P12 60  60* 60 4.12  60* 60 3.86  -- -- 

S8-P13 35  35* 35.6 22.60  35* 35.5 28.39  -- 0.28 

S8-P14 84  84* 84 1.33  84* 84 0.34  -- -- 

S8-P15 60  60* 60 22.71  60* 60 3.04  -- -- 

S8-P16 70  74 74.3 36.69  73 74.6 14.39  1.35 -0.40 

S8-P17 60  60* 60 0.44  60* 60 0.42  -- -- 

S8-P18 56  56* 56 0.78  56* 56 0.58  -- -- 

S8-P19 75  75* 75 7.24  75* 75 7.33  -- -- 

S8-P20 49  49* 49 0.45  49* 49 0.41  -- -- 

S8-P21 42  42* 42 1.14  42* 42 1.19  -- -- 

S8-P22 30  30* 30 0.44  30* 30 0.41  -- -- 

S8-P23 75  75* 75 0.40  75* 75 0.47  -- -- 

S8-P24 35  36 36 17.38  36 36.1 35.10  -- -0.28 

S8-P25 35  35* 35.3 34.40  35* 35.5 34.75  -- -0.57 

The favorable contribution of the routine in large problem size can be observed in the results 

of 16-stage instances given in Table 5.8. In 13 instances LE causes the algorithm to reach a 

lower makespan, where 6 of them are provably optimal solutions. In 8 of these instances, even 

a shorter time is required to reach the higher quality results, while the improvements in the 

remaining instances are achieved at the expense of a higher computational time. 68% of the 

time, ACO with LE produces decreased makespan values in average. There are some cases 
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where the same solution quality is obtained in a shorter time with LE. This means that the 

algorithm without LE indeed reaches the permutation which would produce that solution. 

However, since LE is not in action different schedules around the permutation are not searched 

for, hence the computational time is increased. Again, there are cases where ACO with LE 

reaches same quality solution but in increased time. This is explained by the problem structure. 

If the problem instance at hand is a relatively simple one, then incorporating additional 

modules in the algorithm leads to increased computational time. 

Table 5.8. Contribution of local exploration routine in 16-stage instances 
  

 

ACO (No LE)  ACO + LE 

 Percent 

Improvement by 

LE  

LB 

 Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Avg. 

Time 

 Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Avg. 

Time 

 Best 

𝐶𝑚𝑎𝑥 

(%) 

Avg. 

𝐶𝑚𝑎𝑥 

(%) 

S16-P1 135  150 150 0.84  141 141 58.98  6.00 6.00 

S16-P2 99  99* 99 1.80  99* 99 6.33  -- -- 

S16-P3 140  145 146.8 9.66  140* 140.9 43.13  3.45 4.02 

S16-P4 104  108 109.7 69.22  107 107.2 22.65  0.93 2.28 

S16-P5 100  108 108.2 77.21  104 104 3.72  3.70 3.88 

S16-P6 143  143* 145.2 10.45  143* 143.2 8.57  -- 1.38 

S16-P7 121  123 123.3 75.47  121* 122.6 56.75  1.63 0.57 

S16-P8 63  63* 63 2.14  63* 63 2.48  -- -- 

S16-P9 121  121* 121 27.32  121* 121 3.56  -- -- 

S16-P10 120  120* 121 49.66  120* 120 35.81  -- 0.83 

S16-P11 80  80* 80 43.04  80* 80 5.58  -- -- 

S16-P12 154  167 167.9 8.84  162 162 65.34  2.99 3.51 

S16-P13 180  189 189.9 18.81  180* 180 16.94  4.76 5.21 

S16-P14 84  88 88 20.42  84* 85 66.12  4.55 3.41 

S16-P15 126  126* 126 1.46  127 127.7 28.49  -0.79 -1.35 

S16-P16 56  58 59.4 45.06  57 57 5.79  1.72 4.04 

S16-P17 70  70* 70.2 81.71  70* 70.2 48.13  -- -- 

S16-P18 110  114 114.6 74.09  110* 110 6.11  3.51 4.01 

S16-P19 112  117 117.9 3.80  117 117.9 51.56  -- -- 

S16-P20 90  94 94 48.58  92 92 1.86  2.13 2.13 

S16-P21 88  91 92.2 59.65  92 92.3 33.72  -1.10 -0.11 

S16-P22 60  60* 60.3 87.36  60* 60 5.42  -- 0.50 

S16-P23 70  75 75.7 38.19  72 72.9 49.45  4.00 3.70 

S16-P24 60  60* 60.4 65.99  60* 60 6.08  -- 0.66 

S16-P25 120  121 121.8 81.16  120* 120.1 33.08  0.83 1.40 
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5.5.3. Number of objective function evaluations 

One of the important analysis about an algorithm is its capability to reach the solution in a 

reasonable number of solutions visited. It is already possible for most of the search algorithms 

to reach a high-quality solution if it is given a sufficiently long time. It would visit millions of 

solutions, even may return the optimum. There are convergence analyses of various 

algorithms in the literature to prove that the algorithm would yield an optimal solution if it is 

allowed enough time.  

The strength of an algorithm is about searching the solution space -which is typically 

extremely large- in an efficient manner to reach a high-quality solution. Otherwise, it would 

return to a process of simple enumerating. To measure the performance of the algorithm in 

this regard, it is common to report the number of objective function evaluations. It is an 

indicator of how many solutions the algorithm has dealt with.  

Table 5.9 gives the minimum, maximum and average number of objective function 

evaluations in 10 runs for 2-stage instances. Remind that 11 solutions are visited in each 

iteration of the algorithm. The table shows that at each 2-stage instance ACO finds the solution 

-the optimum as explained in Section 5.6- in the first iteration. This makes 2-stage problem 

size trivial to solve for the algorithm. Also, note that the 2-stage problem sizes of the testbed 

may not be regarded as very small-sized since they include up to 40 number of jobs and 20 

machines in a stage.   

In 12 of 25 4-stage instances, ACO manages to find the solution in the first iteration in all the 

10 runs, as given in Table 5.10. 8 of those solutions are provably optimal solutions. There are 

only 2 instances where the maximum number of solutions visited exceeds 1000. Average 

number of evaluations are very favorable even in these instances. Overall, the algorithm visits 

minimal number of solutions to find the reported high-quality solutions. This feature of the 

algorithm continues to exist even in large-sized 8 and 16-stage instances as can be observed 

in Table 5.11 and Table 5.12, respectively. There are still 8 8-stage instances where ACO 

finds the solution -the optimum in all 8- in the first iteration at every run. It was reported only 

in 4 instances in TS (as the Avg. Time column in Table 5.4 implies). The maximum number  
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Table 5.9. Run statistics for 2-stage instances 

        
Variation 

 Number of objective 

function evaluations 

Problem LB 

Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Standard 

deviation 

Coefficient 

of variation 

(CV) 

 

Min Max Avg. 

S2-P1 30 30* 30 0.00 0.00  11 11 11 

S2-P2 10 11 11 0.00 0.00  11 11 11 

S2-P3 18 18* 18 0.00 0.00  11 11 11 

S2-P4 16 18 18 0.00 0.00  11 11 11 

S2-P5 27 31 31 0.00 0.00  11 11 11 

S2-P6 12 12* 12 0.00 0.00  11 11 11 

S2-P7 27 30 30 0.00 0.00  11 11 11 

S2-P8 16 16* 16 0.00 0.00  11 11 11 

S2-P9 22 22* 22 0.00 0.00  11 11 11 

S2-P10 28 28* 28 0.00 0.00  11 11 11 

S2-P11 14 14* 14 0.00 0.00  11 11 11 

S2-P12 36 39 39 0.00 0.00  11 11 11 

S2-P13 26 26* 26 0.00 0.00  11 11 11 

S2-P14 24 24* 24 0.00 0.00  11 11 11 

S2-P15 30 33 33 0.00 0.00  11 11 11 

S2-P16 30 33 33 0.00 0.00  11 11 11 

S2-P17 18 18* 18 0.00 0.00  11 11 11 

S2-P18 22 22* 22 0.00 0.00  11 11 11 

S2-P19 26 26* 26 0.00 0.00  11 11 11 

S2-P20 12 12* 12 0.00 0.00  11 11 11 

S2-P21 28 32 32 0.00 0.00  11 11 11 

S2-P22 22 22* 22 0.00 0.00  11 11 11 

S2-P23 18 21 21 0.00 0.00  11 11 11 

S2-P24 18 18* 18 0.00 0.00  11 11 11 

S2-P25 10 10* 10 0.00 0.00  11 11 11 

of objective function evaluations required in the remaining 8-stage instances are also 

remarkable by not exceeding 3000 in any instance, with an average of at most 500s.  

In most of 16-stage problem instances, there are runs where the algorithm finds the solution 

at the first iteration. However, it is not the case for all runs in no instance. That is, ACO visits 

15 to 610 number of solutions in average to find the solution. The numbers are quite low, 

particularly for a MPOS problem of that size. The high performance of the algorithm in this 
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regard is due to very efficient representation of solution, intense use of problem knowledge 

and high exploit of search knowledge. 

Table 5.10. Run statistics for 4-stage instances 

        
Variation 

 Number of objective 

function evaluations 

Problem LB 

Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Standard 

deviation 

Coefficient 

of variation 

(CV) 

 

Min Max Avg. 

S4-P1 26 29 29.5 0.53 1.79  55 6600 1786.4 

S4-P2 21 21* 21.0 0.00 0.00  11 11 11 

S4-P3 48 48* 50.4 1.26 2.51  11 2750 492.8 

S4-P4 27 27* 27.0 0.00 0.00  11 286 67.1 

S4-P5 32 32* 32.0 0.00 0.00  11 22 14.3 

S4-P6 25 25* 25.0 0.00 0.00  11 209 48.4 

S4-P7 36 36* 36.0 0.00 0.00  11 11 11 

S4-P8 33 33* 33.0 0.00 0.00  11 11 11 

S4-P9 39 41 41.0 0.00 0.00  11 121 36.3 

S4-P10 56 56* 56.0 0.00 0.00  11 44 15.4 

S4-P11 40 40* 40.0 0.00 0.00  11 22 13.2 

S4-P12 30 32 32.0 0.00 0.00  11 11 11 

S4-P13 40 40* 40.0 0.00 0.00  11 11 11 

S4-P14 45 45* 45.0 0.00 0.00  11 66 18.7 

S4-P15 36 36* 36.0 0.00 0.00  11 11 11 

S4-P16 32 32* 32.0 0.00 0.00  11 44 20.9 

S4-P17 32 36 36.0 0.00 0.00  11 11 11 

S4-P18 24 24* 24.0 0.00 0.00  11 44 20.9 

S4-P19 36 36* 36.0 0.00 0.00  11 11 11 

S4-P20 60 63 63.0 0.00 0.00  11 11 11 

S4-P21 32 34 34.0 0.00 0.00  11 11 11 

S4-P22 35 35* 35.0 0.00 0.00  11 11 11 

S4-P23 21 22 22.0 0.00 0.00  22 352 118.8 

S4-P24 44 44* 44.0 0.00 0.00  11 11 11 

S4-P25 21 21* 21.0 0.00 0.00  11 143 42.9 

5.5.4. Robustness  

It is vital for a solution approach to produce similar quality solutions across several runs on 

the same instance. This makes the method more robust and trustworthy. To measure the 

robustness of the algorithm, variation in the results of 10 runs are analyzed for each of 100 
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problem instances. Standard deviation (SD) and coefficient of variation (CV) are the two 

measures of variation calculated in this study.  

Table 5.11. Run statistics for 8-stage instances 

        
Variation 

 Number of objective 

function evaluations 

Problem LB 

Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Standard 

deviation 

Coefficient 

of variation 

(CV) 

 

Min Max Avg. 

S8-P1 48 52 52.0 0.00 0.00  11 242 49.5 

S8-P2 32 34 34.0 0.00 0.00  11 154 52.8 

S8-P3 32 33 33.0 0.00 0.00  11 374 108.9 

S8-P4 108 108* 109.2 1.55 1.42  11 737 115.5 

S8-P5 78 78* 78.0 0.00 0.00  11 11 11 

S8-P6 63 63* 63.0 0.00 0.00  11 11 11 

S8-P7 36 36* 36.0 0.00 0.00  11 33 17.6 

S8-P8 55 58 58.9 0.32 0.54  44 165 90.2 

S8-P9 42 42* 42.0 0.00 0.00  11 88 29.7 

S8-P10 32 34 34.0 0.00 0.00  11 55 25.3 

S8-P11 45 45* 45.0 0.00 0.00  11 11 11 

S8-P12 60 60* 60.0 0.00 0.00  11 594 205.7 

S8-P13 35 35* 35.5 0.53 1.48  11 1749 397.1 

S8-P14 84 84* 84.0 0.00 0.00  11 11 11 

S8-P15 60 60* 60.0 0.00 0.00  11 1287 250.8 

S8-P16 70 73 74.6 0.70 0.94  11 2365 563.2 

S8-P17 60 60* 60.0 0.00 0.00  11 11 11 

S8-P18 56 56* 56.0 0.00 0.00  11 22 12.1 

S8-P19 75 75* 75.0 0.00 0.00  77 682 226.6 

S8-P20 49 49* 49.0 0.00 0.00  11 22 13.2 

S8-P21 42 42* 42.0 0.00 0.00  11 11 11 

S8-P22 30 30* 30.0 0.00 0.00  11 11 11 

S8-P23 75 75* 75.0 0.00 0.00  11 11 11 

S8-P24 35 36 36.1 0.32 0.88  11 2002 954.8 

S8-P25 35 35* 35.5 0.53 1.48  11 2233 795.3 

SD measures the variance among the elements of a sample by considering the distance of each 

element from the sample mean. It is in units of the mean and calculated by the following 

formula. 
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𝑆𝐷 = √
∑ [ (𝐶𝑚𝑎𝑥)𝑟𝑢𝑛 − 𝐴𝑣𝑔. 𝐶𝑚𝑎𝑥]2𝑟𝑢𝑛

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 − 1
 (5.4) 

where the sample is the set of 10 runs carried out on every instance.  

CV is the representation of the variation in a sample as a proportion, hence a unitless measure 

of variation. It is used to compare the deviation in different samples with different means. It 

is the ratio of the SD to the sample mean, expressed as a percentage. Then the formula for CV 

is as follows:  

𝐶𝑉 =
𝑆𝐷

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛
× 100 (5.5) 

SD and CV calculations for the runs of 2-stage instances are given in Table 5.9. Since, the 

proposed ACO gives the optimum at every run of those instances, the SD and CV values are 

all zero. For 4-stage instances, SD and CV are given in Table 5.10. ACO algorithm shows a 

robust behavior and produces same results in almost all 4-stage problems, as there are only 2 

instances where SD is greater than zero. However, the deviation is minimal in these 2 instances 

with a CV of less than 3%.  

The robust behavior of the algorithm continues, even more strongly, in the larger 8 and 16-

stage instances, as can be observed in Table 5.11 and Table 5.12, respectively. In only 6 of 8-

stage instances SD is greater than zero: a variation of below 2% at most. In 16-stage ones, 

there is only a single instance where the variation goes beyond 1%, which is already minimal. 

5.5.5. Comparison of computer configurations 

When the computational times required by different algorithms are compared for a process, 

configurations of the computers should be assessed to be fair. It should be differentiated 

whether the speed superiority of the algorithm is due to effectiveness of subroutines or it is a 

benefit derived by a high-performance computer.  
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Table 5.12. Run statistics for 16-stage instances 

        
Variation 

 Number of objective 

function evaluations 

Problem LB 

Best 

𝐶𝑚𝑎𝑥 

Avg. 

𝐶𝑚𝑎𝑥 

Standard 

deviation 

Coefficient 

of variation 

(CV) 

 

Min Max Avg. 

S16-P1 135 141 141.0 0.00 0.00  11 2398 610.5 

S16-P2 99 99* 99.0 0.00 0.00  11 66 40.7 

S16-P3 140 140* 140.9 1.29 0.91  33 704 347.6 

S16-P4 104 107 107.2 0.63 0.59  55 1804 430.1 

S16-P5 100 104 104.0 0.00 0.00  11 44 18.7 

S16-P6 143 143* 143.2 0.63 0.44  11 55 29.7 

S16-P7 121 121* 122.6 0.97 0.79  11 693 184.8 

S16-P8 63 63* 63.0 0.00 0.00  11 99 40.7 

S16-P9 121 121* 121.0 0.00 0.00  11 187 45.1 

S16-P10 120 120* 120.0 0.00 0.00  11 891 226.6 

S16-P11 80 80* 80.0 0.00 0.00  33 275 133.1 

S16-P12 154 162 162.0 0.00 0.00  132 682 333.3 

S16-P13 180 180* 180.0 0.00 0.00  33 198 90.2 

S16-P14 84 84* 85.0 0.94 1.11  44 913 282.7 

S16-P15 126 127 127.7 0.48 0.38  11 616 214.5 

S16-P16 56 57 57.0 0.00 0.00  11 44 20.9 

S16-P17 70 70* 70.2 0.42 0.60  55 1683 485.1 

S16-P18 110 110* 110.0 0.00 0.00  11 88 45.1 

S16-P19 112 117 117.9 0.32 0.27  110 825 390.5 

S16-P20 90 92 92.0 0.00 0.00  11 33 15.4 

S16-P21 88 92 92.3 0.48 0.52  11 1760 293.7 

S16-P22 60 60* 60.0 0.00 0.00  11 1089 201.3 

S16-P23 70 72 72.9 0.57 0.78  11 814 180.4 

S16-P24 60 60* 60.0 0.00 0.00  11 187 69.3 

S16-P25 120 120* 120.1 0.32 0.26  11 484 137.5 

The solution quality produced by the proposed ACO was compared with the state-of-the-art 

SS/PR algorithm on the problem testbed, as reported in Section 5.4. SS/PR research reported 

only the overall stage-based average time statistics, not the instance-based ones. These overall 

results implied that SS/PR required higher computational times than the previous best 

algorithm, TS. ACO produced better quality results than SS/PR in much less computational 

time. 
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Table 5.13 gives the configurations of the computers used in TS and SS/PR research as well 

as the one used in this study for ACO. The table shows that although the computer used to 

program ACO in this study had a lower quality compared to the one used for SS/PR, the 

algorithm managed to find higher quality results in less computational time. Thus, it is not the 

computer qualifications that lead to rapid and high-quality results of this study but rather it is 

the good performance of the proposed algorithm.  

Table 5.13. Computer configurations of algorithm runs  

 Programming 

language 
Processor 

CPU 

speed 

RAM / Cache 

size 

Operating 

system 

TS Visual C# 2010 Intel Core 2 Duo 1.83 GHz 2 MB Cache  -- 

SS/PR C++ Intel Core i7 2.7 GHz 8 GB RAM Windows 10 

ACO MATLAB 9.3 Intel Core i5 2.40 GHz 8 GB RAM Windows 10 

5.5.6. Runtime analysis 

Figure 5.1 shows a graphical interpretation of how runtime changes with increasing problem 

size for ACO and other algorithms referred in this study: GA, TS and SS/PR. As the figure 

reveals out, SS/PR shows nearly an exponential increase in computational time and reported 

runtimes as high as the initial GA algorithm for large instances. The graph indicates that it 

may pass further GA if the problem size increases beyond 16 stages. Although it produced the 

highest quality results in the literature, it is certain that the runtime performance of the SS/PR 

algorithm should be enhanced. The ACO proposed in this study, on the other hand, shows a 

very favorable trend in its runtime increase as the problem size gets larger, as can be observed 

in the figure. The increase in runtime is almost linear with a very gentle slope.   

5.5.7. Statistical significance of results 

To assess whether the differences between the results of ACO and TS, and ACO and SS/PR 

are statistically significant, statistical analysis is conducted and presented in this subsection.  
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Figure 5.1. Change in computational time with increasing problem size 

Paired t-test is the common statistical test used to measure whether the mean difference in 

paired values of two samples are significantly different. However, one important assumption 

of paired t-test is that the differences are required to follow a normal distribution. That is, the 

instance-based differences between Avg. 𝐶𝑚𝑎𝑥 results of ACO and TS, and between ACO and 

SS/PR should follow a normal distribution to apply the parametric paired t-test. The instance-

based Avg. 𝐶𝑚𝑎𝑥 differences are given in Table 5.14 for ACO-TS and ACO-SS/PR. Note that, 

each of the 3 problem sizes (4, 8 and 16-stage problems) are considered as separate samples 

and the statistical tests are repeated for each, both for TS and SS/PR, which makes a total of 

6 samples to carry out tests on. 2-stage problem set is not considered since all the three 

algorithms reported the same results for this set.  

To observe whether each of the 6 samples of differences in Table 5.14 comes from a normally 

distributed population, normal probability plots are generated as given in Figure 5.2, Figure 

5.3 and Figure 5.4. Neither of the plots suggest a normal distribution of the data points as they 

do not form a linear pattern. In ACO-TS plots, although the centers are more linear, tails show 

considerable departures from the fitted line. ACO-SS/PR plots, on the other hand, are 
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completely far from resembling a normal distribution. To further test the normality assumption 

of the populations, Kolmogorov-Smirnov test is also carried out.  

Table 5.14. Differences between Avg. Cmax results of the algorithms  

Problem 

Avg. 𝐶𝑚𝑎𝑥  

Problem 

Avg. 𝐶𝑚𝑎𝑥  

Problem 

Avg. 𝐶𝑚𝑎𝑥 

Differences  Differences  Differences 

ACO − 

TS 

ACO −

SS/PR  

 ACO − 

TS 

ACO − 

SS/PR 

 ACO − 

TS 

ACO − 

SS/PR 

S4-P1 -3.5 0.1  S8-P1 -3.9 0  S16-P1 -3.6 -3 

S4-P2 0 0  S8-P2 -1 -0.8  S16-P2 -1 0 

S4-P3 -3.6 -0.6  S8-P3 -1.9 0.2  S16-P3 -5.3 -2.1 

S4-P4 -3 0  S8-P4 -11.1 -2.1  S16-P4 -1 -0.1 

S4-P5 0 0  S8-P5 0 0  S16-P5 -4.2 0 

S4-P6 -3.1 -3  S8-P6 -1.3 0  S16-P6 -3.9 -0.8 

S4-P7 -4 0  S8-P7 -0.3 0  S16-P7 -1.6 -0.3 

S4-P8 -1 0  S8-P8 -5.4 0.9  S16-P8 0 0 

S4-P9 -7 -0.9  S8-P9 -1.6 -0.1  S16-P9 -3.2 -0.9 

S4-P10 0 0  S8-P10 -3.3 0  S16-P10 -2.2 -1 

S4-P11 -0.6 0  S8-P11 0 0  S16-P11 0 0 

S4-P12 -5.2 0  S8-P12 -2.8 -0.2  S16-P12 -4.7 -2 

S4-P13 0 0  S8-P13 -2.6 -0.5  S16-P13 -8.1 -1.8 

S4-P14 -3 0  S8-P14 -1.1 0  S16-P14 -3 -1 

S4-P15 0 0  S8-P15 -1.9 0  S16-P15 -2.6 0.6 

S4-P16 -2 0  S8-P16 -1.6 -0.4  S16-P16 -2.2 -0.3 

S4-P17 -1.6 0  S8-P17 -0.2 0  S16-P17 -1.1 -0.1 

S4-P18 -4 0  S8-P18 -2 0  S16-P18 -5 -0.2 

S4-P19 -1 0  S8-P19 -3 -2.1  S16-P19 -6.7 2 

S4-P20 -5.5 0  S8-P20 -0.9 0  S16-P20 -2.2 0 

S4-P21 -3 0  S8-P21 -0.5 0  S16-P21 -2 2.3 

S4-P22 -1.7 0  S8-P22 0 0  S16-P22 -2.2 0 

S4-P23 -2.6 -2  S8-P23 0 0  S16-P23 -1.8 -0.1 

S4-P24 -2.6 0  S8-P24 -1.9 0.1  S16-P24 -0.5 0 

S4-P25 -2.5 0  S8-P25 -1.7 -0.5  S16-P25 -2.5 -0.9 
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ACO - TS

 

ACO – SS/PR 

 

Figure 5.2. Normal probability plots of Avg. Cmax differences for 4-stage instances 
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Kolmogorov-Smirnov test is a nonparametric test used to decide whether a sample is from a 

population with a hypothesized distribution. Here, it is hypothesized that the sample of 

differences is coming from a population with standard normal distribution. Thus, 

Kolmogorov-Smirnov tests the null hypothesis that the data follows a standard normal 

distribution against the alternative one. The test is applied for the 6 samples separately and the 

p-values are given in Table 5.15. p-values lead to strongly reject the null hypothesis at any 

significance level and conclude that the samples cannot be assumed to come from normally 

distributed populations. 

Table 5.15. p-values of the samples of differences for Kolmogorov-Smirnov test 

Sample p-value 

4-stage ACO – TS 1.96 × 10−9 

4-stage ACO – SS/PR 2.30 × 10−5 

8-stage ACO – TS 3.06 × 10−7 

8-stage ACO – SS/PR 0.000909 

16-stage ACO – TS 2.04 × 10−12 

16-stage ACO – SS/PR 0.000937 

Since normal distribution cannot be assumed for difference populations, non-parametric 

Wilcoxon Signed Rank test is used instead of the paired t-test to test whether the mean 

differences are significantly different from zero. It tests the null hypothesis that the median 

difference is zero against the alternative that it is positive. 

p-values of the 6 samples for the Wilcoxon Signed Rank tests are given in Table 5.16. The p-

values indicate that ACO produces significantly different results than TS at any significance 

level in all problem sizes. The difference between average 𝐶𝑚𝑎𝑥 results of ACO and SS/PR is 

significant at 13% level for 4-stage problem size and at 1% level for 8-stage size. The levels 

of significance are high for these problem sizes and it may be regarded as the performance of 

ACO over SS/PR is insignificant. However, that is wrong because there remained little room 

for improvement, particularly in 4-stage instances, by the implementation of the SS/PR 

algorithm on the testbed. Despite, ACO manages to produce higher quality results where 
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ACO - TS

 

ACO – SS/PR 

 

Figure 5.3. Normal probability plots of Avg. Cmax differences for 8-stage instances 
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ACO - TS

 

ACO – SS/PR 

 

Figure 5.4. Normal probability plots of Avg. Cmax differences for 16-stage instances 
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possible or reaches the previously reported provably optimal solution or the best result (may 

already be an optimum).  

For the large-scale 16-stage instances, ACO produces significantly better average 𝐶𝑚𝑎𝑥 results 

than SS/PR at 5% significance level.   

Table 5.16. p-values of the samples of differences for Wilcoxon Signed Rank test 

Sample p-value 

4-stage ACO – TS 8.77 × 10−5 

4-stage ACO – SS/PR 0.1250 

8-stage ACO – TS 5.92 × 10−5 

8-stage ACO – SS/PR 0.095703 

16-stage ACO – TS 2.67 × 10−5 

16-stage ACO – SS/PR 0.040481 

5.6. Optimality of Results for 2-Stage Instances  

Provably optimal solutions are reached in 16 of the 25 2-stage instances. It is claimed in this 

study that the Best 𝐶𝑚𝑎𝑥 values reported for the remaining 9 instances are also the optimal 

solutions. The reasoning behind this claim is explained in this subsection. It is a rational 

explanation based on making the minimum possible deviation from the LB, with no technical 

proofs provided. Also, the other three algorithms in the literature, GA, TS, SS/PR, reported 

the same solutions for 2-stage instances, which supports the optimality claim here.  

Statement is presented on a sample instance, S2-P16, while the same reasoning holds for all 

remaining 2-stage instances. Shop parameters for the problem is given in Table 5.17.  

Table 5.17. Shop parameters for sample instance 

S2-P16 

𝑛 = 34  

 𝑚𝑖 𝑝𝑖 

Stage 1 19 13 

Stage 2 15 10 
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There are 34 jobs to be processed in each of two stages. There are 19 machines in the first 

stage. Since the number of jobs is greater than the number of machines in the stage, at least 

two time-blocks are required to complete processing of all jobs in stage 1. A block is defined 

as a 𝑝𝑖-length time period in stage 𝑖. This creates a LB of 26 time units for stage 1 to complete 

processing of all jobs. Similarly, 3 blocks are required in stage 2, where there are 15 machines 

to process 34 jobs. Thus, LB for stage 2 is 30, leading to an overall LB of 30 time units for 

the shop. Schematic representation of the blocks and stage LBs are shown in Figure 5.5. The 

blocks for stage 1 are B1-1 and B1-2, and for stage 2 are B2-1, B2-2 and B2-3.  

 
Figure 5.5. Representation of blocks and stage LBs for S2-P16 

For a schedule to have an optimal makespan, it should either equal to problem LB for the 

makespan or, if not possible, should have a minimum deviation from the LB. Considering 

problem S2-P16, 34 jobs should be processed in one of the three blocks in stage 2 for the 

problem to have a makespan equal to LB 30. This requires processing at least 4 jobs in block 

B2-2. However, since a job can be processed on a single machine at a time, these 4 jobs cannot 

be processed in neither of the blocks in stage 1 once assigned to block B2-2 in stage 2. Thus, 

one of the two blocks in stage 1 should be shifted to prevent B2-2 from intersecting with both 

two blocks of stage 1. There is 4 units of slack time in stage 1 that allow shifting the blocks 

by at most 4 time units and still preserving the problem LB of 30. However, to remove the 

intersection of B2-2 with both of stage 1 blocks, at least 7 units shift to right in B1-2 is 

required. This creates a 3 time unit increase in the makespan. Alternatively, instead of B1-2, 
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B2-2 can be shifted to right by 3 time units. In either case, the resulting makespan is 33, which 

is the optimum since an increase of less than 3 units above the LB is not possible. The optimal 

makespan value of 33 is consistent with the algorithm results. Two optimal placements of time 

blocks are shown in Figure 5.6 and Figure 5.7. 

 

Figure 5.6. Placement of time blocks in the optimal schedule for S2-P16 

 

Figure 5.7. Alternative placement of time blocks in the optimal schedule for S2-P16 
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6. DISCUSSION 

The proposed ACO algorithm showed a remarkable performance in reaching high solution 

quality within favorably short computational times. This performance is explained by 5 four 

factors in the algorithm. First, the ACO algorithm is based on a method of solution 

representation that encodes critical solution knowledge very efficiently. Second, it 

incorporates a random exploration routine which simplifies and speeds up the search in the 

solution space, contributing to low execution time. Third, during solution construction it 

exploits the accumulated search knowledge by selecting only the solution component that 

maximizes the quality function. Fourth, the algorithm also exploits the problem knowledge by 

applying Most Work Remaining Heuristic as the heuristic information. Lastly, the proposed 

local exploration routine allows both for searching different schedules around a permutation 

and for a distributed view of jobs in the final schedule to decrease the makespan.   

The novel solution representation efficiently encodes schedule-specific knowledge and 

provides significant help in memory-based algorithms. The representation is mainly based on 

stage selection and job identities are not referred to. Thus, it is also adoptable to problem types 

other than MPOS where job identity is not a determinant of the value of the objective function. 

This is mostly the case in proportionate environments. Proportionate versions of the flow shop, 

job shop and open shop are three possible shop environments that the novel solution 

representation can be used. However, while making a job assignment to a stage, eligible job 

set should be formed by taking into account the machine route in flow shop and the job route 

in job shop.  

Having the proportionate property in a MPOS has advantageous effects on scheduling the 

shop to minimize the makespan. It decreases the problem size as the number of inputs for 

processing times reduces significantly. Also, it enables multiple schedules with optimum 

makespan value. However, multiple schedules also exist for every makespan value. This may 

cause an algorithm to spend numerous iterations generating different schedules, with no 

improvement in makespan though. Thus, it also poses a challenge for an algorithm.  
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Deviation from LB is used as a performance evaluation point in assessing results of the tests 

carried out. It should be noted that these deviations underestimate the true performance of the 

algorithm if the optimal makespan is far from the LB. This can be exemplified by the apparent 

4% average deviation in 2-stage instances, where, however, the results are shown to be optimal 

and the actual mean deviation is zero. Thus, the actual deviations for 4, 8 and 16-stage problem 

sets are very likely to be lower than what is reported.  

The high performance of the algorithm in large problem size is particularly important since 

various solution approaches proposed in the literature showed poor performance in large-sized 

MPOS problems (Goldansaz et al., 2013; Matta, 2009). ACO managed to reach significantly 

higher solution quality in large-scale instances than the state-of-the-art SS/PR algorithm for 

the current testbed. It accomplished this in very favorable computational times, however 

SS/PR required considerable improvement in terms of computational time in large problem 

size. 

One element that affects the performance of proposed ACO algorithm is the problem structure. 

Workload balance between stages is part of the structure and as the balance gets close to 

perfect equality the problem gets increasingly harder. A problem with many perfectly 

balanced stages would have little room for change in the optimal schedule. In this type of 

problems, the solution landscape has very narrow valleys for the optimal solution, while there 

are wide valleys of suboptimal solutions in the landscape. The shape of the landscape makes 

it hard for the algorithm to reach the narrow optimal region and easily get stuck in large 

suboptimal areas. This behavior explains why the algorithm manages to find a provably 

optimal solution for S16-P8 within 3 seconds while it finds a solution for S16-P1 with 4.4% 

deviation in 59 seconds.  

The procedure described to explain the optimality of results for 2-stage instances is not limited 

to current problem set and it can be applied for every 2-stage proportionate MPOS problem to 

find an optimal solution. It is an easy and straightforward method based on constructing an 

optimal placement of time blocks in stages where the problem LB is preserved as the 

makespan or the minimum possible expansion is chosen. 
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7. CONCLUSION 

Proportionate multiprocessor open shop is considered in this study. It is a shop environment 

appears widely in medical testing facilities, emergency units of hospitals, auto repair shops 

and inspection and quality control operations. Despite it is common appearance in service and 

production sectors, scheduling of this shop model has gained little attention in the literature.  

This study proposes an Ant Colony Optimization algorithm to find a schedule for the shop to 

minimize the makespan. The algorithm is based on a novel very efficient way of solution 

representation that is also adoptable to proportionate flow shop, job shop and open shop 

problems. It is a permutation representation with ease of use and straightforward encoding and 

decoding procedures, making it useful for many heuristic and metaheuristic applications. The 

proposed ACO algorithm uses complete random solutions to search the solution space as part 

of its solution construction phase. The random search, which is untypical of an ACO 

algorithm, is allowed by moderate-good solution quality the representation supplies and is 

enabled a speed up in the algorithm. Solution construction also includes exploit of problem 

knowledge by implementing Most Work Remaining Heuristic and of accumulated search 

knowledge by selecting only the component that maximizes the quality function. As a 

supporting subroutine in the algorithm, a procedure named local exploration is proposed 

which enables assessment of different schedules around a single permutation. The routine also 

provides a distributed view of job placements in the final schedule which is shown to increase 

solution quality in instances with many perfectly balanced stages. Local exploration proposal 

in the algorithm is shown to be useful particularly in large-size instances.  

The proposed ACO algorithm is tested on 100 benchmark instances -ranging from small to 

large in size- from the literature and the performance of the algorithm is compared with results 

of current state-of-the-art scatter search and path relinking algorithm. ACO is shown to 

outperform the SS/PR algorithm in terms of both solution quality and computational time. Its 

performance in particularly large-size instances is remarkable with significantly decreased 

makespan values reached in much less runtime. The relatively low difference in solution 

quality between ACO and SS/PR in 4 and 8-stage problem size is due to little room left for 

improvement in these instances. Still ACO manages to find reduced objective function values 
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where possible. The algorithm’s performance in finding provably optimal solutions is also 

better than SS/PR.  

ACO produced solutions with 2.51% average deviation from the lower bound in 100 

instances, while the ratio was reported as 2.90% for SS/PR. Out of 100 instances, 67 provably 

optimal solutions were reached with ACO, while it was 57 for SS/PR. ACO required an 

average of 8.67 seconds computational time, which is 87% lower than the 69.24 seconds 

computational time in SS/PR. It should be noted that ACO managed such a significant 

decrease in computational time with a technically less capable computer used in this study.  

Overall, the proposed ACO algorithm proves to be an efficient near-optimal solver for the 

proportionate multiprocessor open shop. There are several lines of research for future studies. 

First, the proposed solution representation can be adopted for other possible shop 

environments. Even can be used to improve the results of the previous research on present 

shop model. Its implementation in different search algorithms should also be investigated. 

Second, for the present benchmark testbed, optimal solutions for small and medium sized 

instances should be produced even if it takes extended periods of time for a MIP solver. This 

would enable a more correct evaluation of the algorithm performance. Third, the performance 

of the proposed ACO should be further assessed on different problem sets. Fourth, the 

algorithm should be revised for the solution of the more general multiprocessor open shop 

where the proportionate property is not assumed. Finally, the procedure described in this study 

for the optimality of 2-stage results should be re-stated as a formal polynomial-time optimum 

solution algorithm for 2-stage proportionate multiprocessor open shop. 
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APPENDIX A. Test Problems 

This appendix presents test problems used in this study. The testbed is a benchmark testbed 

and was constructed by Matta (2009). It includes 100 problems: 25 for each of 2, 4, 8, and 16 

stage cases. A problem is defined by four features: 1) Number of stages, 2) Number of jobs, 

3) Number of machines in each stage, and 4) Processing time of each stage.   

APPENDIX A-Table 1. 2-stage problems 

 

 

  

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S2-P1 2 22 Stage 1 15 15 

   Stage 2 7 7 

S2-P2 2 32 Stage 1 20 5 

   Stage 2 12 3 

S2-P3 2 24 Stage 1 18 9 

   Stage 2 6 3 

S2-P4 2 20 Stage 1 12 8 

   Stage 2 8 5 

S2-P5 2 29 Stage 1 17 13 

   Stage 2 12 9 

S2-P6 2 30 Stage 1 20 6 

   Stage 2 10 3 

S2-P7 2 28 Stage 1 16 12 

   Stage 2 12 9 

S2-P8 2 10 Stage 1 5 8 

   Stage 2 5 8 

S2-P9 2 30 Stage 1 15 11 

   Stage 2 15 11 

S2-P10 2 16 Stage 1 13 14 

   Stage 2 3 3 

S2-P11 2 40 Stage 1 20 7 

   Stage 2 20 7 

S2-P12 2 34 Stage 1 19 15 

   Stage 2 15 12 
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APPENDIX A-Table 1. 2-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S2-P13 2 12 Stage 1 8 13 

   Stage 2 4 6 

S2-P14 2 14 Stage 1 10 12 

   Stage 2 4 4 

S2-P15 2 32 Stage 1 20 15 

   Stage 2 12 9 

S2-P16 2 34 Stage 1 19 13 

   Stage 2 15 10 

S2-P17 2 15 Stage 1 12 9 

   Stage 2 3 2 

S2-P18 2 13 Stage 1 10 11 

   Stage 2 3 3 

S2-P19 2 16 Stage 1 13 13 

   Stage 2 3 3 

S2-P20 2 12 Stage 1 8 6 

   Stage 2 4 3 

S2-P21 2 22 Stage 1 13 14 

   Stage 2 9 9 

S2-P22 2 25 Stage 1 18 11 

   Stage 2 7 4 

S2-P23 2 22 Stage 1 13 9 

   Stage 2 9 6 

S2-P24 2 12 Stage 1 8 9 

   Stage 2 4 4 

S2-P25 2 21 Stage 1 15 5 

   Stage 2 6 2 
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APPENDIX A-Table 2. 4-stage problems 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S4-P1 4 49 Stage 1 25 13 

   Stage 2 10 5 

   Stage 3 10 5 

   Stage 4 4 2 

S4-P2 4 39 Stage 1 19 7 

   Stage 2 11 4 

   Stage 3 6 2 

   Stage 4 3 1 

S4-P3 4 63 Stage 1 22 15 

   Stage 2 18 12 

   Stage 3 14 9 

   Stage 4 9 6 

S4-P4 4 38 Stage 1 14 9 

   Stage 2 14 9 

   Stage 3 5 3 

   Stage 4 5 3 

S4-P5 4 56 Stage 1 17 8 

   Stage 2 13 6 

   Stage 3 13 6 

   Stage 4 13 6 

S4-P6 4 60 Stage 1 20 7 

   Stage 2 20 7 

   Stage 3 14 5 

   Stage 4 6 2 

S4-P7 4 53 Stage 1 17 9 

   Stage 2 17 9 

   Stage 3 11 6 

   Stage 4 8 4 

S4-P8 4 40 Stage 1 19 11 

   Stage 2 10 6 

   Stage 3 7 4 

   Stage 4 4 2 

S4-P9 4 65 Stage 1 24 13 

   Stage 2 24 13 

   Stage 3 13 7 

   Stage 4 4 2 

  



92 

APPENDIX A-Table 2. 4-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S4-P10 4 53 Stage 1 17 14 

   Stage 2 12 10 

   Stage 3 12 10 

   Stage 4 12 10 

S4-P11 4 55 Stage 1 22 13 

   Stage 2 17 10 

   Stage 3 12 7 

   Stage 4 4 2 

S4-P12 4 58 Stage 1 22 10 

   Stage 2 22 10 

   Stage 3 9 4 

   Stage 4 5 2 

S4-P13 4 37 Stage 1 14 12 

   Stage 2 9 8 

   Stage 3 9 8 

   Stage 4 5 4 

S4-P14 4 42 Stage 1 17 15 

   Stage 2 13 11 

   Stage 3 8 7 

   Stage 4 4 3 

S4-P15 4 28 Stage 1 12 12 

   Stage 2 8 8 

   Stage 3 4 4 

   Stage 4 4 4 

S4-P16 4 56 Stage 1 21 10 

   Stage 2 17 8 

   Stage 3 13 6 

   Stage 4 5 2 

S4-P17 4 90 Stage 1 24 8 

   Stage 2 24 8 

   Stage 3 24 8 

   Stage 4 18 6 

S4-P18 4 30 Stage 1 15 12 

   Stage 2 5 4 

   Stage 3 5 4 

   Stage 4 5 4 
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APPENDIX A-Table 2. 4-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S4-P19 4 63 Stage 1 20 9 

   Stage 2 20 9 

   Stage 3 16 7 

   Stage 4 7 3 

S4-P20 4 62 Stage 1 18 15 

   Stage 2 18 15 

   Stage 3 13 11 

   Stage 4 13 11 

S4-P21 4 64 Stage 1 18 8 

   Stage 2 18 8 

   Stage 3 14 6 

   Stage 4 14 6 

S4-P22 4 58 Stage 1 20 10 

   Stage 2 14 7 

   Stage 3 14 7 

   Stage 4 10 5 

S4-P23 4 61 Stage 1 23 7 

   Stage 2 17 5 

   Stage 3 17 5 

   Stage 4 4 1 

S4-P24 4 54 Stage 1 17 11 

   Stage 2 17 11 

   Stage 3 12 8 

   Stage 4 8 5 

S4-P25 4 34 Stage 1 14 7 

   Stage 2 8 4 

   Stage 3 8 4 

   Stage 4 4 2 

  



94 

APPENDIX A-Table 3. 8-stage problems 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S8-P1 8 146 Stage 1 25 8 

   Stage 2 25 8 

   Stage 3 25 8 

   Stage 4 25 8 

   Stage 5 13 4 

   Stage 6 13 4 

   Stage 7 10 3 

   Stage 8 10 3 

S8-P2 8 144 Stage 1 24 5 

   Stage 2 24 5 

   Stage 3 24 5 

   Stage 4 19 4 

   Stage 5 19 4 

   Stage 6 19 4 

   Stage 7 10 2 

   Stage 8 5 1 

S8-P3 8 87 Stage 1 18 6 

   Stage 2 18 6 

   Stage 3 12 4 

   Stage 4 12 4 

   Stage 5 12 4 

   Stage 6 9 3 

   Stage 7 3 1 

   Stage 8 3 1 

S8-P4 8 161 Stage 1 24 15 

   Stage 2 24 15 

   Stage 3 24 15 

   Stage 4 24 15 

   Stage 5 20 12 

   Stage 6 20 12 

   Stage 7 15 9 

   Stage 8 10 6 

S8-P5 8 117 Stage 1 23 13 

   Stage 2 23 13 

   Stage 3 18 10 

   Stage 4 18 10 

   Stage 5 13 7 

   Stage 6 9 5 

   Stage 7 9 5 

   Stage 8 4 2 
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APPENDIX A-Table 3. 8-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S8-P6 8 99 Stage 1 22 12 

   Stage 2 16 9 

   Stage 3 16 9 

   Stage 4 16 9 

   Stage 5 13 7 

   Stage 6 8 4 

   Stage 7 4 2 

   Stage 8 4 2 

S8-P7 8 84 Stage 1 25 9 

   Stage 2 19 7 

   Stage 3 19 7 

   Stage 4 9 3 

   Stage 5 3 1 

   Stage 6 3 1 

   Stage 7 3 1 

   Stage 8 3 1 

S8-P8 8 110 Stage 1 23 11 

   Stage 2 23 11 

   Stage 3 23 11 

   Stage 4 13 6 

   Stage 5 9 4 

   Stage 6 9 4 

   Stage 7 5 2 

   Stage 8 5 2 

S8-P9 8 128 Stage 1 24 7 

   Stage 2 24 7 

   Stage 3 24 7 

   Stage 4 17 5 

   Stage 5 14 4 

   Stage 6 14 4 

   Stage 7 7 2 

   Stage 8 4 1 

S8-P10 8 90 Stage 1 18 6 

   Stage 2 18 6 

   Stage 3 12 4 

   Stage 4 12 4 

   Stage 5 9 3 

   Stage 6 9 3 

   Stage 7 9 3 

   Stage 8 3 1 
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APPENDIX A-Table 3. 8-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S8-P11 8 102 Stage 1 25 9 

   Stage 2 19 7 

   Stage 3 19 7 

   Stage 4 9 3 

   Stage 5 9 3 

   Stage 6 9 3 

   Stage 7 9 3 

   Stage 8 3 1 

S8-P12 8 92 Stage 1 17 10 

   Stage 2 12 7 

   Stage 3 12 7 

   Stage 4 12 7 

   Stage 5 12 7 

   Stage 6 9 5 

   Stage 7 9 5 

   Stage 8 9 5 

S8-P13 8 101 Stage 1 22 7 

   Stage 2 22 7 

   Stage 3 16 5 

   Stage 4 13 4 

   Stage 5 13 4 

   Stage 6 7 2 

   Stage 7 4 1 

   Stage 8 4 1 

S8-P14 8 72 Stage 1 14 14 

   Stage 2 14 14 

   Stage 3 14 14 

   Stage 4 9 9 

   Stage 5 9 9 

   Stage 6 4 4 

   Stage 7 4 4 

   Stage 8 4 4 

S8-P15 8 100 Stage 1 23 12 

   Stage 2 23 12 

   Stage 3 17 9 

   Stage 4 17 9 

   Stage 5 8 4 

   Stage 6 4 2 

   Stage 7 4 2 

   Stage 8 4 2 
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APPENDIX A-Table 3. 8-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S8-P16 8 81 Stage 1 17 14 

   Stage 2 17 14 

   Stage 3 12 10 

   Stage 4 9 7 

   Stage 5 9 7 

   Stage 6 9 7 

   Stage 7 4 3 

   Stage 8 4 3 

S8-P17 8 100 Stage 1 24 12 

   Stage 2 14 7 

   Stage 3 14 7 

   Stage 4 14 7 

   Stage 5 14 7 

   Stage 6 8 4 

   Stage 7 8 4 

   Stage 8 4 2 

S8-P18 8 106 Stage 1 22 10 

   Stage 2 22 10 

   Stage 3 17 8 

   Stage 4 13 6 

   Stage 5 13 6 

   Stage 6 9 4 

   Stage 7 5 2 

   Stage 8 5 2 

S8-P19 8 108 Stage 1 24 15 

   Stage 2 19 12 

   Stage 3 15 9 

   Stage 4 15 9 

   Stage 5 10 6 

   Stage 6 10 6 

   Stage 7 10 6 

   Stage 8 5 3 

S8-P20 8 105 Stage 1 22 9 

   Stage 2 17 7 

   Stage 3 17 7 

   Stage 4 17 7 

   Stage 5 8 3 

   Stage 6 8 3 

   Stage 7 8 3 

   Stage 8 8 3 

  



98 

APPENDIX A-Table 3. 8-stage problems (continued) 

Problem ID 
Number 

of stages 

Number 

of jobs 
Number of machines 

Processing 

time 

S8-P21 8 152 Stage 1 25 6 

   Stage 2 25 6 

   Stage 3 25 6 

   Stage 4 25 6 

   Stage 5 17 4 

   Stage 6 13 3 

   Stage 7 13 3 

   Stage 8 9 2 

S8-P22 8 104 Stage 1 25 6 

   Stage 2 17 4 

   Stage 3 13 3 

   Stage 4 13 3 

   Stage 5 13 3 

   Stage 6 9 2 

   Stage 7 9 2 

   Stage 8 5 1 

S8-P23 8 97 Stage 1 24 15 

   Stage 2 19 12 

   Stage 3 19 12 

   Stage 4 10 6 

   Stage 5 10 6 

   Stage 6 5 3 

   Stage 7 5 3 

   Stage 8 5 3 

S8-P24 8 104 Stage 1 22 7 

   Stage 2 16 5 

   Stage 3 16 5 

   Stage 4 16 5 

   Stage 5 13 4 

   Stage 6 13 4 

   Stage 7 4 1 

   Stage 8 4 1 

S8-P25 8 101 Stage 1 22 7 

   Stage 2 22 7 

   Stage 3 16 5 

   Stage 4 13 4 

   Stage 5 13 4 

   Stage 6 7 2 

   Stage 7 4 1 

   Stage 8 4 1 
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APPENDIX A-Table 4. 16-stage problems 

Problem 

ID:  

S16-P1 

Number of stages: 16    Number of jobs: 88     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 8 8 6 6 6 6 6 6 4 4 4 4 4 4 2 

Processing 

Time 
15 12 12 9 9 9 9 9 9 6 6 6 6 6 6 3 

Problem 

ID:  

S16-P2 

Number of stages: 16    Number of jobs: 102     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 10 8 6 6 6 6 4 4 4 4 2 2 

Processing 

Time 
9 9 9 9 9 7 5 5 5 5 3 3 3 3 1 1 

Problem 

ID:  

S16-P3 

Number of stages: 16    Number of jobs: 99     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 8 8 8 8 8 5 5 5 4 4 2 2 2 

Processing 

Time 
13 13 13 10 10 10 10 10 7 7 7 5 5 2 2 2 

Problem 

ID:  

S16-P4 

Number of stages: 16    Number of jobs: 90     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 7 7 7 7 6 6 4 4 4 2 2 2 2 

Processing 

Time 
11 11 11 8 8 8 8 6 6 4 4 4 2 2 2 2 

Problem 

ID:  

S16-P5 

Number of stages: 16    Number of jobs: 96     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 8 8 6 4 4 4 4 4 2 2 2 

Processing 

Time 
10 10 10 10 8 8 8 6 4 4 4 4 4 2 2 2 
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APPENDIX A-Table 4. 16-stage problems (continued) 

Problem 

ID:  

S16-P6 

Number of stages: 16    Number of jobs: 104     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 8 6 6 6 6 6 4 4 4 4 2 

Processing 

Time 
13 13 13 13 10 10 7 7 7 7 7 5 5 5 5 2 

Problem 

ID:  

S16-P7 

Number of stages: 16    Number of jobs: 106     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 8 8 8 8 6 4 4 4 4 2 2 

Processing 

Time 
11 11 11 11 8 8 8 8 8 6 4 4 4 4 2 2 

Problem 

ID:  

S16-P8 

Number of stages: 16    Number of jobs: 81      

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 7 7 6 6 6 3 3 3 2 2 2 2 2 

Processing 

Time 
7 7 7 5 5 4 4 4 2 2 2 1 1 1 1 1 

Problem 

ID:  

S16-P9 

Number of stages: 16    Number of jobs: 101     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 10 10 7 6 6 4 4 4 4 2 2 2 

Processing 

Time 
11 11 11 11 11 11 8 6 6 4 4 4 4 2 2 2 

Problem 

ID:  

S16-P10 

Number of stages: 16    Number of jobs: 96     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 8 8 8 8 8 6 6 6 4 4 4 2 2 2 

Processing 

Time 
12 12 9 9 9 9 9 7 7 7 4 4 4 2 2 2 
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APPENDIX A-Table 4. 16-stage problems (continued) 

Problem 

ID:  

S16-P11 

Number of stages: 16    Number of jobs: 93     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 8 8 5 5 5 4 2 2 2 2 2 

Processing 

Time 
8 8 8 8 6 6 6 4 4 4 3 1 1 1 1 1 

Problem 

ID:  

S16-P12 

Number of stages: 16    Number of jobs: 110     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 8 8 8 8 8 8 8 8 6 4 2 2 2 

Processing 

Time 
14 14 14 11 11 11 11 11 11 11 11 8 5 2 2 2 

Problem 

ID:  

S16-P13 

Number of stages: 16    Number of jobs: 112     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 10 10 8 8 8 6 6 6 4 2 2 2 

Processing 

Time 
15 15 15 15 15 15 12 12 12 9 9 9 6 3 3 3 

Problem 

ID:  

S16-P14 

Number of stages: 16    Number of jobs: 97     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 10 7 7 5 5 5 4 4 4 2 2 2 

Processing 

Time 
8 8 8 8 8 6 6 4 4 4 3 3 3 1 1 1 

Problem 

ID:  

S16-P15 

Number of stages: 16    Number of jobs: 86      

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 4 4 4 4 4 4 4 4 2 2 2 

Processing 

Time 
14 14 14 14 11 5 5 5 5 5 5 5 5 2 2 2 
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APPENDIX A-Table 4. 16-stage problems (continued) 

Problem 

ID:  

S16-P16 

Number of stages: 16    Number of jobs: 106      

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 8 8 8 8 6 6 6 2 2 2 2 

Processing 

Time 
5 5 5 5 4 4 4 4 4 3 3 3 1 1 1 1 

Problem 

ID:  

S16-P17 

Number of stages: 16    Number of jobs: 94     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 10 6 6 6 6 6 3 3 2 2 2 2 

Processing 

Time 
7 7 7 7 7 4 4 4 4 4 2 2 1 1 1 1 

Problem 

ID:  

S16-P18 

Number of stages: 16    Number of jobs: 102     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 10 8 8 6 6 6 6 4 2 2 2 2 

Processing 

Time 
10 10 10 10 10 8 8 6 6 6 6 4 2 2 2 2 

Problem 

ID:  

S16-P19 

Number of stages: 16    Number of jobs: 80     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 8 6 6 6 4 4 4 2 2 2 2 2 2 

Processing 

Time 
14 14 14 11 8 8 8 5 5 5 2 2 2 2 2 2 

Problem 

ID:  

S16-P20 

Number of stages: 16    Number of jobs: 84     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 8 8 8 8 6 6 6 2 2 2 2 2 2 2 

Processing 

Time 
10 10 8 8 8 8 6 6 6 2 2 2 2 2 2 2 
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APPENDIX A-Table 4. 16-stage problems (continued) 

Problem 

ID:  

S16-P21 

Number of stages: 16    Number of jobs: 78     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 10 8 4 4 4 4 2 2 2 2 2 2 2 

Processing 

Time 
11 11 11 11 8 4 4 4 4 2 2 2 2 2 2 2 

Problem 

ID:  

S16-P22 

Number of stages: 16    Number of jobs: 79     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 7 7 6 6 6 6 3 3 3 3 3 2 2 2 

Processing 

Time 
7 7 5 5 4 4 4 4 2 2 2 2 2 1 1 1 

Problem 

ID:  

S16-P23 

Number of stages: 16    Number of jobs: 97     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 7 7 7 7 7 6 6 6 3 3 3 3 2 

Processing 

Time 
7 7 7 5 5 5 5 5 4 4 4 2 2 2 2 1 

Problem 

ID:  

S16-P24 

Number of stages: 16    Number of jobs: 93     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 10 7 7 7 7 5 5 5 4 4 4 4 2 2 

Processing 

Time 
6 6 6 4 4 4 4 3 3 3 2 2 2 2 1 1 

Problem 

ID:  

S16-P25 

Number of stages: 16    Number of jobs: 96     

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of 

Machines 
10 10 8 8 8 8 8 6 6 6 4 4 4 2 2 2 

Processing 

Time 
12 12 9 9 9 9 9 7 7 7 4 4 4 2 2 2 
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