

M A R M A R A U N I V E R S I T Y

I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

A N A N T C O L O N Y O P T I M I Z A T I O N

A P P R O A C H F O R T H E P R O P O R T I O N A T E

M U L T I P R O C E S S O R O P E N S H O P

ZEYNEP ADAK

Ph.D. THESIS

Depar tment of Industr ia l Engineer ing

Thesis Supervisor

Prof . Dr . Serol BULKAN

Thesis CO-Supervisor

Asst. Prof. Dr. M. Övül ARIOĞLU

ISTANBUL, 2020

M A R M A R A U N I V E R S I T Y

I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

A N A N T C O L O N Y O P T I M I Z A T I O N

A P P R O A C H F O R T H E P R O P O R T I O N A T E

M U L T I P R O C E S S O R O P E N S H O P

ZEYNEP ADAK

(724416004)

Ph.D. THESIS

Depar tment of Industr ia l Engineer ing

Thesis Supervisor

Prof . Dr . Serol BULKAN

Thesis CO-Supervisor

Asst. Prof. Dr. M. Övül ARIOĞLU

ISTANBUL , 2020

i

ACKNOWLEDGMENT

I would like to express my greatest appreciation and gratitude to my supervisor Dr. Serol Bulkan

for his support and guidance throughout the preparation of this thesis.

I would also like to thank the committee members Dr. Çiğdem Alabaş Uslu and Dr. Ayla Gülcü

for their comments, suggestions, and assistance, and the defense committee members Dr. Ayhan

Demiriz and Dr. Bahar Sennaroğlu for their time and suggestions in general.

Finally, my sincere appreciation is extended to my mother Dr. Gülseren Adak and my father Dr.

Burhan Adak for their tireless patience, continuous encouragement, and great understanding

during the whole of my PhD training and this thesis study.

September, 2020 Zeynep Adak

ii

TABLE OF CONTENTS

ACKNOWLEDGMENT ... i

ÖZET .. v

ABSTRACT .. vi

CLAIM FOR ORIGINALITY .. vii

SYMBOLS .. viii

ABBREVIATIONS ... xi

LIST OF FIGURES .. xii

LIST OF TABLES ... xiii

1. INTRODUCTION .. 1

1.1. Application Areas of MPOS .. 1

1.2. Overview of Previous Research .. 2

1.3. The Present Study .. 5

1.4. Outline of Thesis ... 5

2. MULTIPROCESSOR OPEN SHOP PROBLEM ... 7

2.1. Definition of a MPOS Environment .. 7

2.2. Description of Several Shop Features ... 7

2.3. Mixed Integer Programming Formulation ... 10

3. ANT COLONY OPTIMIZATION ... 13

3.1. Origins and Basis of ACO ... 13

3.2. General Structure of an ACO Algorithm ... 14

3.2.1. Solution construction .. 14

3.2.2. Pheromone update .. 14

3.2.3. Central actions .. 15

iii

3.3. Travelling Salesman Problem .. 15

3.4. Coverage of the Section ... 16

3.5. Ant System .. 16

3.5.1. Pheromone initialization ... 16

3.5.2. Solution construction .. 17

3.5.3. Pheromone update .. 18

3.6. MAX-MIN Ant System ... 19

3.6.1. Pheromone update .. 19

3.6.2. Pheromone limits .. 20

3.6.3. Pheromone initialization and reinitialization .. 20

3.7. Ant Colony System .. 21

3.7.1. Solution construction .. 21

3.7.2. Pheromone update .. 21

3.8. Hyper-Cube Framework for ACO ... 22

3.9. Pheromone Summation Rule ... 24

4. ACO ALGORITHM FOR PROPORTIONATE MULTIPROCESSOR OPEN SHOP

PROBLEM ... 27

4.1. Problem Statement ... 27

4.2. Solution Representation ... 28

4.2.1. Operation-permutation representation .. 29

4.2.2. Inefficiencies of operation permutation in proportionate MPOS 30

4.2.3. A novel solution representation: Implicit-stage permutation 33

4.2.4. Random solution generation ... 36

4.3. ACO Algorithm ... 36

4.3.1. Solution construction .. 38

iv

4.3.2. Local exploration .. 39

4.3.3. Pheromone information .. 41

4.3.4. Heuristic information .. 42

4.3.5. Pheromone update .. 43

5. COMPUTATIONAL EXPERIMENTS .. 45

5.1. Parameter Estimation ... 45

5.2. Experimental Testbed .. 46

5.3. Lower Bounds.. 47

5.4. Test Results and Comparison .. 48

5.5. Analysis of Algorithm and Results .. 53

5.5.1. Problem size ... 53

5.5.2. Contributions of algorithm elements .. 56

5.5.3. Number of objective function evaluations .. 60

5.5.4. Robustness .. 62

5.5.5. Comparison of computer configurations .. 64

5.5.6. Runtime analysis... 66

5.5.7. Statistical significance of results .. 66

5.6. Optimality of Results for 2-Stage Instances .. 73

6. DISCUSSION ... 77

7. CONCLUSION ... 79

REFERENCES ... 81

APPENDIX ... 87

APPENDIX A. Test Problems.. 89

CURRICULUM VITAE ... 105

v

ÖZET

ORANTILI ESNEK AÇIK ATÖLYE TİPİ ÇİZELGELEME İÇİN

KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI

Atölye çizelgeleme problemleri imalat ve hizmet sektörlerinin her birinde son derece geniş

uygulama alanlarına sahiptir. Esnek açık atölye tipi çizelgeleme yaygın görülen atölye ortamları

arasındadır. Birden fazla işlem istasyonu içeren bu atölye tipinde bu istasyonlardan en az biri

aynı işlemi yapan paralel tezgahlara sahiptir. Bu işlem istasyonlarında tamamlanması gereken 𝑛

tane iş bulunur ve işlerin istasyonları ziyaret etmede uymaları gereken bir rota kısıtı yoktur. Bu

atölye tipi özellikle tıbbi teşhis test süreçlerinde, onarım ve bakım hizmetlerinde, denetim ve

kalite kontrol işlemleri ve elektronik üretim süreçlerinde yaygın olarak bulunmaktadır. Ancak,

bu atölye tipini çizelgeleme problemi literatürde çok az ilgi görmüştür. Son yıllarda

araştırmaların sayısında artış görülmekle beraber, alan önemli ölçüde geliştirilmeye muhtaçtır.

Bu tez çalışmasında, orantılı esnek açık atölye tipi ele alınmıştır. Burada orantılı ifadesi işlem

istasyonlarının işlem sürelerinin her istasyon için sabit ve işten bağımsız olmasını ifade eder. Bu

atölye tipini çizelgeleme problemi için bir karınca kolonisi algoritması önerilmiştir. Önerilen

algoritma probleme uygun yeni ve çok etkili bir çözüm gösterimini temel alır. Algoritma ayrıca

rassal arama ve yerel tarama (yerel aramaya benzer) rutinleri içerir. Geçmiş arama tecrübesinin

ve probleme özel bilginin algoritmada kuvvetli ve etkin kullanımı özelleştirilmiş feremon iz

bilgisi ve sezgisel bilgi yoluyla sağlanmıştır. Önerilen algoritma literatürden alınan 100

problemli bir problem seti kullanılarak test edilmiştir. Yapılan karşılaştırmalar önerilen

algoritmanın bu problem tipi için literatürdeki en iyi algoritma olan dağınık arama ve yeniden

yol bağlama (scatter search with path relinking) algoritmasından hem çözüm kalitesi bakımından

hem de süre bakımından daha iyi olduğunu göstermiştir. Algoritmanın büyük boyutlu

problemlerdeki başarısı ve bu çözüm kalitesine daha kısa sürede ulaşması bilhassa önemlidir.

vi

ABSTRACT

AN ANT COLONY OPTIMIZATION APPROACH FOR THE

PROPORTIONATE MULTIPROCESSOR OPEN SHOP

Shop scheduling problems have exceptionally wide application fields both in manufacturing and

service sectors. Multiprocessor open shop is among common shop environments and it consists

of at least two machine centers with one or more center having parallel machines for the same

task. There are 𝑛 jobs to visit the centers without a predefined route. The shop widely exists

particularly in diagnostic medical testing, repair and maintenance services, inspection and quality

control operations and electronics manufacturing processes. However, the problem gained little

attention in the literature. There has been an increase in the number of researches in the field in

recent years but still there is considerable room for improvement. In this thesis study, the

proportionate multiprocessor open shop problem was considered where proportionate feature

refers to processing times of machine centers being fixed and independent of the job. An Ant

Colony Optimization algorithm was proposed for the problem. The algorithm is based on a very

efficient novel solution representation of the problem. The proposed algorithm further employs

random exploration and local exploration (analogous to local search) routines. Exploitation of

search knowledge and problem-specific knowledge was incorporated with tailored uses of

pheromone information and heuristic information, respectively. The algorithm was tested on 100

benchmark instances from the literature. Comparisons showed that it outperformed the current

state-of-the-art scatter search with path relinking algorithm both in solution quality and

computational time. Of particular importance is its performance in large-scale instances and the

relatively short time it required to reach the high-quality results.

vii

CLAIM FOR ORIGINALITY

This thesis study has the following important contributions to multiprocessor open shop (MPOS)

and ant colony optimization literatures:

1. A novel very efficient permutation representation, implicit-stage permutation, of a

feasible solution of the proportionate multiprocessor open shop problem was developed.

2. An ant colony optimization (ACO) approach was proposed for the problem for the first

time.

3. The ACO algorithm used a random exploration routine to search for good solution

characteristics very rapidly. This random solution generation has been largely avoided

in ACO algorithms in the literature due to typically inferior solution quality results.

However, the novel solution representation enabled moderate-quality random solutions

which helped in accumulating knowledge about favorable solution components. This

random exploration phase resulted in a new approach in solution construction

mechanism of ACO.

4. The ACO algorithm employed an adopted Most Work Remaining Heuristic as the

heuristic information and enabled strong exploitation of problem-specific knowledge.

This is the first time this heuristic was tailored to use in proportionate MPOS problem.

5. A local exploration (LE) engine was incorporated in the algorithm. It served similar

purposes as a local search but was not a local search algorithm. No neighborhood

function was used. It mainly generated several different schedules around a single

permutation. The proposed LE routine is a powerful approach in schedule generation

from a permutation and it can be utilized in many different heuristic and metaheuristic

scheduling algorithms.

6. The proposed algorithm was shown to be the new state-of-the-art algorithm for the

proportionate MPOS problem considering the benchmark instances by Matta (2009). It

reached new upper bounds and provably optimal solutions.

7. Lastly, a rational explanation about the optimality of results for 2-stage benchmark

problem instances of Matta (2009) is supplied in this thesis study.

viii

SYMBOLS

𝒂 : Parameter in minimum pheromone limit

𝓐 : Set of ants in an ACO algorithm

𝑪𝒋 : The time all operations of job 𝑗 completed

𝑪𝒎𝒂𝒙 : The time all operations of all jobs completed

𝒄𝒃𝒆𝒔𝒕 : Cost of the best solution (global best or iteration best)

𝒄𝑮𝑩 : Cost of the best-so-far solution

𝒄𝒉 : Cost of the solution generated by ant ℎ

𝒄𝒏𝒏 : Cost of the TSP solution generated by Nearest Neighbor heuristic

𝒅𝝃𝝋 : Distance between cities 𝜉 and 𝜑

𝒅𝒋 : Desirability of job 𝑗

𝒇(⋅) : Objective function of a problem

𝒉 : Ant index

𝒊 : Stage index

𝒋 : Job index

𝓙 : Set of jobs

𝒌 : Machine index

𝑳 : Length of permutation

𝒎𝒊 : Number of machines in stage 𝑖

𝓜𝒊 : Set of machines in stage 𝑖

𝒏 : Number of jobs

𝒏𝒊 : Number of remaining jobs still to be processed in stage 𝑖

N : Number of operations

𝓝𝝃 : Neighborhood of city 𝜉 in TSP

𝓞 : Set of operations of all jobs

𝓞𝒋 : Set of operations of job 𝑗

𝑶𝒋𝒊 : Operation of processing of job 𝑗 at stage 𝑖

𝒑𝒊 : Processing time of stage 𝑖 (proportionate shop)

𝒑𝒋𝒊 : Processing time of job 𝑗 at stage 𝑖 (identical parallel machines)

𝒑𝒋𝒊𝒌 : Processing time of job 𝑗 at stage 𝑖 in machine 𝑘

𝒑𝝃𝝋 : Probability of moving to city 𝜑 while in city 𝜉 in ACO for TSP

ix

𝒒 : A random number uniformly distributed between [0,1]

𝒒𝟎 : Parameter to modulate exploration and exploitation level in ACS

𝑸𝝃𝝋 : Quality function

𝒓 : Job index

𝒔 : Number of stages

𝒔𝒋𝒊 : Start time of processing operation 𝑂𝑗𝑖

𝒔𝝋 : Stage referred by implicit-stage representation 𝜑

𝓢 : Set of stages

�⃗� : Binary vector to represent a solution for a combinatorial problem

�⃗� 𝒃𝒆𝒔𝒕 : Solution vector for the best solution (global best or iteration best)

𝒕 : Iteration index

𝓤 : Set of solutions generated in an iteration

𝒘 : Stage index

𝒙𝒋𝒊𝒘 : Binary variable that takes 1 if 𝑂𝑗𝑖 processed before 𝑂𝑗𝑤 and takes 0 otherwise

𝒚𝒋𝒊𝒌 : Binary variable that takes 1 if 𝑂𝑗𝑖 processed in machine 𝑘 and takes 0 otherwise

𝒛𝒋𝒓𝒊𝒌 : Binary variable that takes 1 if 𝑂𝑗𝑖 processed before 𝑂𝑟𝑖 in machine 𝑘 and takes 0

otherwise

𝜶 : Parameter to determine influence of pheromone information

𝜷 : Parameter to determine influence of heuristic information

𝜸 : Parameter in weighted pheromone summation rule

∆𝝉 : Amount of added pheromone

𝜼𝝃𝝋 : Heuristic information

𝚮 : Heuristic information matrix

𝛉 : Parameter in local pheromone update

𝜿 : Number of ants in ACO algorithm

𝝃 : Row index in pheromone matrix | City index | Position index in permutation

𝝅 : A permutation (solution)

𝝅𝑮𝑩 : Global best permutation (solution)

𝝅𝒉 : Permutation generated by ant ℎ

𝝆 : Evaporation rate

𝝉𝝃𝝋 : Pheromone information

𝝉𝒎𝒂𝒙 : Maximum pheromone limit

x

𝝉𝒎𝒊𝒏 : Minimum pheromone limit

𝝉𝟎 : Initial pheromone values

𝚻 : Pheromone trails matrix

𝝊 : Number of cities in TSP

𝝋 : Column index in pheromone matrix | City index | Implicit-stage representation

𝚽 : Random variable for the next solution component with random proportional rule

probability distribution

xi

ABBREVIATIONS

ACO : Ant Colony Optimization

ACS : Ant Colony System

AS : Ant System

CV : Coefficient of Variation

DE : Differential Evolution

FPTAS : Fully Polynomial Time Approximation Schemes

GA : Genetic Algorithm

GB : Global-Best

HCF : Hyper-Cube Framework

HPSO : Hybrid Particle Swarm Optimization

IB : Iteration-Best

ICA : Imperialist Competitive Algorithm

LB : Lower bound

LE : Local exploration

MA : Memetic Algorithm

MMAS : Max-Min Ant System

MILP : Mixed Integer Linear Programming

MIP : Mixed Integer Programming

MPOS : Multiprocessor Open Shop

MWRH : Most Work Remaining Heuristic

NN : Nearest neighbor heuristic for TSP

PTAS : Polynomial Time Approximation Scheme

SA : Simulated Annealing

SD : Standard Deviation

SS/PR : Scatter Search with Path Relinking

TS : Tabu Search

TSP : Travelling Salesman Problem

xii

LIST OF FIGURES

Figure 4.1. Schedule of the sample permutation ... 30

Figure 4.2. Improved schedule after post-processing .. 31

Figure 4.3. Different job assignments with same makespan value ... 32

Figure 4.4. A dense schedule for Problem 2 ... 33

Figure 4.5. Enhanced schedule for Problem 2 .. 33

Figure 4.6. Schedule of the stage permutation in (4.3) ... 35

Figure 4.7. Different permutations with same makespan .. 42

Figure 5.1. Change in computational time with increasing problem size 67

Figure 5.2. Normal probability plots of Avg. Cmax differences for 4-stage instances 69

Figure 5.3. Normal probability plots of Avg. Cmax differences for 8-stage instances 71

Figure 5.4. Normal probability plots of Avg. Cmax differences for 16-stage instances 72

Figure 5.5. Representation of blocks and stage LBs for S2-P16 ... 74

Figure 5.6. Placement of time blocks in the optimal schedule for S2-P16 75

Figure 5.7. Alternative placement of time blocks in the optimal schedule for S2-P16 75

xiii

LIST OF TABLES

Table 2.1. Description of notations ... 8

Table 4.1. Sample proportionate MPOS problems.. 29

Table 4.2. Numbers to represent operations of Problem 1 .. 29

Table 4.3. Encoding to construct implicit-stage permutation of a stage permutation 35

Table 5.1. Weight of the positions for different γ values .. 45

Table 5.2. Comparative results for makespan and computational time (sec.) for 2-stage problem

set .. 49

Table 5.3. Comparative results for makespan and computational time (sec.) for 4-stage problem

set .. 51

Table 5.4. Comparative results for makespan and computational time (sec.) for 8-stage problem

set .. 52

Table 5.5. Comparative results for makespan and computational time (sec.) for 16-stage problem

set .. 54

Table 5.6. Summary comparative statistics for the testbed ... 55

Table 5.7. Contribution of local exploration routine in 8-stage instances 58

Table 5.8. Contribution of local exploration routine in 16-stage instances 59

Table 5.9. Run statistics for 2-stage instances ... 61

Table 5.10. Run statistics for 4-stage instances ... 62

Table 5.11. Run statistics for 8-stage instances ... 63

Table 5.12. Run statistics for 16-stage instances ... 65

Table 5.13. Computer configurations of algorithm runs ... 66

Table 5.14. Differences between Avg. Cmax results of the algorithms 68

Table 5.15. p-values of the samples of differences for Kolmogorov-Smirnov test 70

Table 5.16. p-values of the samples of differences for Wilcoxon Signed Rank test 73

xiv

Table 5.17. Shop parameters for sample instance ... 73

APPENDIX A-Table 1. 2-stage problems .. 89

APPENDIX A-Table 2. 4-stage problems .. 91

APPENDIX A-Table 3. 8-stage problems .. 94

APPENDIX A-Table 4. 16-stage problems .. 99

1

1. INTRODUCTION

A shop is a collection of machines dedicated for certain tasks. A single machine shop is also

possible and common. Additionally, operators in service sector are regarded as machines and

the environment is modelled as a shop environment. Single machine, parallel machines, flow

shop, job shop, open shop and numerous extensions of them are common shop settings one

can face both in manufacturing and service facilities. Each differ mainly in the way jobs visit

the machines. The general purpose in dealing with a machine shop is to create a feasible

schedule that minimizes (or maximizes) one or more objectives. A schedule consists of the set

of beginning and ending times for each machine to process each required job.

Open shop is a machine environment where jobs have no predefined routes to visit the

machines. It is in contrary to a job shop -each job has its own route- and a flow shop -every

job follows the same route. In an open shop, there are at least two machines each with its own

task, and not all jobs are required to be processed by every machine. A machine can process

a single job and a job can be processed in a single machine at a time. This form of an open

shop is also referred as a classical open shop. Multiprocessor open shop (MPOS) is a

generalization to the classical open shop and possesses machine centers (stages) that include

parallel machines for the same task. It is also named as a flexible open shop, in line with its

flexible job shop and flexible flow shop counterparts. MPOS was the machine environment

considered in this study.

1.1. Application Areas of MPOS

MPOS environment is common in various industries. Health sector is a prominent one.

Medical testing services carry out several tests on patients including X-ray exam, magnetic

resonance imaging, computed tomography scan, blood draw, positron emission tomography

scan, electrocardiogram, bone scan, echocardiogram, ultrasound imaging, bone survey,

mammogram, pulmonary function test, barium enema and barium swallow (Matta, 2009).

These examination processes also appear in emergency department laboratories (Azadeh et

2

al., 2014). The medical diagnostic process requires no order to take the tests, and some of the

testing units may include more than one nurse/machine to carry out the test.

Another area of application for MPOS environment is automotive repair and maintenance

shops. An auto garage serves several operations. Brake service and replacement; car electrical

system; engine tune up and rebuild; wheel alignments; lube, oil and filter change; tire repair,

rotation and change; transmission clutch service and cooling system service are among those

operations. A car visits the repair shops in any order, and no two operations can be carried out

at the same time on the car. Moreover, it is common to meet more than one processor (worker)

at each specialized shop.

Electronics manufacturing, inspection and quality control operations are other industrial fields

that one can encounter a MPOS setting.

1.2. Overview of Previous Research

Despite the wide application areas of the shop environment, the research on MPOS problem

has been very limited and the field still requires to be explored and studied both theoretically

and practically at various aspects. While referring to previous research, as well as the present

study in MPOS scheduling, the 3-field notation by Graham et al. (1979) is used in this text.

Definitions of this notation and of the shop features mentioned in this chapter can be found in

Chapter 2.

The 2-stage nonpreemptive MPOS problem with 𝑙 machines in each stage and makespan

minimization objective, 𝑂2(𝑃𝑙)||𝐶𝑚𝑎𝑥, was shown to be NP-complete even when there are 2

machines at each stage (Mao, 1995). Chen and Strusevich (1993) provided a heuristic

approach for 𝑂(𝑃)||𝐶𝑚𝑎𝑥 that uses a heuristic for the parallel machine scheduling and a greedy

heuristic for the classical open shop part of the problem. Their approximation algorithm had

a worst-case bound of 1 + 𝑝𝐻 with 𝑝𝐻 being the worst-case bound of the heuristic used in

parallel machine scheduling. They established a worst-case bound of strictly less than 2 for

the 2-stage case. Schuurman and Woeginger (1999) showed that a dense schedule algorithm

for the problem 𝑂(𝑃)||𝐶𝑚𝑎𝑥 had a worst-case ratio of 2. They also improved the worst-case

ratio for the 2-stage case by providing a (3 2⁄ + 𝜀) – approximation algorithm. Later, several

3

polynomial time approximation schemes (PTAS) were proposed for the problem. A PTAS is

a (1 + 𝜀) - approximation algorithm whose running time is polynomial on the size of the input.

Following the PTAS by Jansen and Sviridenko (2000), an almost fully PTAS (FPTAS) -a

PTAS whose running time is also polynomial on 1 𝜀⁄ - was proposed by Sevastianov and

Woeginger (2001) for 𝑂(𝑃)||𝐶𝑚𝑎𝑥. Kononov and Sviridenko (2002) took operation release

times into account, 𝑂(𝑃)|𝑟𝑗𝑖|𝐶𝑚𝑎𝑥, in their PTAS.

Queyranne and Sviridenko (2002) provided new approximation bounds for 𝑂(𝑃)|𝑟𝑗| ∑𝑤𝑠𝐶𝑠

and 𝑂(𝑃)|𝑟𝑗, 𝑝𝑚𝑡𝑛|∑𝑤𝑠𝐶𝑠.

Lawler et al. (1982) considered preemptive MPOS with the objective of makespan

minimization and with either single-operation or multiple-operation machines and provided

optimal schedules for each case. They also considered machine speeds and provided a linear

programming model for MPOS with unrelated parallel machines.

Matta (2009) considered a proportionate MPOS for the first time and provided two different

mixed integer programming (MIP) formulations for the problem 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥. She

developed a Genetic Algorithm (GA) and created a testbed of difficult instances. This testbed

was later used to test a tabu search (TS) algorithm by Abdelmaguid et al. (2014) and a hybrid

of the TS with particle swarm optimization (HPSO) by Abdelmaguid (2014) for the problem.

Matta and Elmaghraby (2010), on the other hand, provided polynomial-time optimum solution

algorithms for two very special classes of the problem having stages with balanced work-

loads, 𝑂(𝑃)|𝑏𝑎𝑙. , 𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥. The proportionate shop was also studied by Zhang et al. (2019)

to schedule medical examination laboratories, similar to Matta (2009), but with minimization

of sum of job completion times objective, 𝑂(𝑃)|𝑝𝑟𝑜𝑝|∑𝐶𝑗. The MIP model was supplied and

GA, Simulated Annealing (SA) and HPSO algorithms were compared based on large-scale

test instances adopted from flexible job shop instances of Hurink et al. (1994). GA was showed

to perform better than the other two algorithms in terms of convergence and stability.

Abdelmaguid (2020) considered the general MPOS with unrelated parallel machines,

𝑂(𝑅)||𝐶𝑚𝑎𝑥, supplied a MIP formulation and developed a scatter search with path relinking

(SS/PR) algorithm for its solution. New neighborhood search functions and solution

4

combination functions were also provided. The benchmark testbed of Matta (2009) was used

to test the algorithm on proportionate MPOS with parallel identical machines which

constituted a special case for the problem studied. The algorithm improved solution quality,

at the expense of increased computational time.

The objective to minimize sum of job completion times was considered by Naderi et al.

(2011), 𝑂(𝑃)|| ∑𝐶𝑗. They proposed a MIP formulation, as well as a memetic algorithm (MA)

for the problem. They showed a hybrid MA-SA to perform better than pure applications of

each single metaheuristic in randomly generated small and large-sized instances.

Azadeh et al. (2014) modelled the scheduling of patients in an emergency department as a

MPOS problem. They considered sum of weighted job completion times as the objective to

minimize total waiting time of patients while taking the triage factor (urgency of a patient)

into account. MIP model of the problem, 𝑂(𝑃)|| ∑𝑤𝑗𝐶𝑗, and a GA model were proposed. The

GA increased the efficiency of the department compared to the actual system.

Goldansaz et al. (2013) considered independent set-up times and sequence-dependent removal

times in a MPOS environment with makespan objective, 𝑂(𝑃)|𝑆𝑇𝑠𝑑 , 𝑆𝑇𝑠𝑖|𝐶𝑚𝑎𝑥. A hybrid of

imperialist competitive algorithm (ICA) with GA was proposed and tested on small to large-

sized instances generated.

Bai et al. (2016) considered the MPOS problem with and without job release times to

minimize makespan, 𝑂(𝑃)|𝑟𝑗|𝐶𝑚𝑎𝑥 and 𝑂(𝑃)||𝐶𝑚𝑎𝑥, respectively. They employed the

differential evolution (DE) algorithm for moderate scale problems and proved the asymptotic

optimality of general dense scheduling algorithm for very large-scale ones.

Wang and Chou (2017) applied SA to a 4-stage problem with release times to minimize multi-

objectives of makespan and total weighted tardiness, 𝑂4(𝑃)|𝑟𝑗|𝐶𝑚𝑎𝑥, ∑𝑤𝑗𝑇𝑗. They compared

two types of SA in terms of Pareto-optimality using small and large-scale instances they

generate.

More detailed information about the research on MPOS problem can be found in a recent

review by Adak et al. (2020).

5

1.3. The Present Study

In this thesis study, the proportionate MPOS problem with the objective of makespan

minimization, 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥, was considered. An Ant Colony Optimization (ACO)

algorithm was proposed for the problem for the first time. A novel very efficient way of

solution representation was developed and used in the algorithm. Solution construction phase

of the algorithm included random complete solution generation as a new approach. This

enabled random, hence fast, exploration of the solution space. Full and effective use of search

knowledge (intensification or exploitation) was ensured with informed selection of

pheromone information. Problem-specific knowledge was also incorporated with tailored

heuristic information. At the end of the solution construction phase, a local exploration routine

was proposed to generate different schedules from a single permutation. It had a similar effect

on solution quality as a local search. The proposed algorithm was tested on Matta (2009)

benchmark problem set and further analysis on the results were carried out. Lastly,

performance of the proposed algorithm was compared with the current state-of-the-art

algorithm for the problem in these instances.

1.4. Outline of Thesis

Multiprocessor open shop is defined in Chapter 2. Definitions, description of shop features

and MIP formulation are supplied. Chapter 3 gives general information about ACO

metaheuristic. MPOS environment studied in this thesis as well as the assumptions are stated

in Chapter 4. In the same chapter, the proposed solution representation and the proposed

algorithm are presented. Test results and analysis are given in Chapter 5. Comparison of the

results with literature are also provided in that chapter. Chapter 6 further discuss the proposed

algorithm and results. Lastly, Chapter 7 gives final conclusions about the study.

6

7

2. MULTIPROCESSOR OPEN SHOP PROBLEM

This chapter introduces a formal statement of a general MPOS problem. Related definitions

and descriptions are given. An adapted MIP formulation from the literature is also supplied.

The specific MPOS environment studied in this thesis is described and the associated

assumptions are stated in Chapter 4.

2.1. Definition of a MPOS Environment

MPOS defines an environment with 𝑠 stages and 𝑛 number of jobs. A stage is a machine center

with parallel machines. Stage 𝑖 has 𝑚𝑖 parallel machines and at least one stage has 𝑚𝑖 ≥ 2.

This constitutes the multiprocessor part of the problem. Generally, the parallel machines in a

stage can perform a single identical task. That is, a stage is responsible of a certain task type.

There are rare studies, however, that allow machines in a stage to do tasks of other stages,

called multi-purpose machines. The parallel machines in a stage may have different speeds.

They are called identical if they run at the same speed, while machines with different speeds

are called uniform. If the speed of the machines also depend on the job then the machines are

named as unrelated machines. 𝑝𝑗𝑖𝑘 is the processing time of job 𝑗 at stage 𝑖 in machine 𝑘. If

identical parallel machines are assumed, the processing time notation reduces to 𝑝𝑗𝑖.

Processing of job 𝑗 at stage 𝑖 is named as an operation and represented by 𝑂𝑗𝑖. Jobs do not

follow a predefined route to visit the stages, and this is the open part of the problem.

Additionally, all jobs may not be required to visit all stages. It is generally assumed that one

machine can process a single job, and a job can be processed by a single machine at a time.

2.2. Description of Several Shop Features

Several shop features that one can come across in MPOS research are defined in the following.

Preemption is the option to interrupt an operation in a machine and continue it on a later time

not necessarily on the same machine. An environment that allows preemption is called

preemptive. Otherwise, it is called nonpreemptive. Preemption brings flexibility to scheduling

8

of a shop environment and often allows polynomial-time optimum solution algorithms (see

Section 1.2).

Table 2.1. Description of notations

𝛼-field: Machine environment

Notation Description

𝑂(𝑃) Multiprocessor open shop with identical machines in a stage

𝑂2(𝑃) Multiprocessor open shop having 2 stages, each with identical parallel machines

𝑂2(𝑃𝑙) Multiprocessor open shop having 2 stages, each with 𝑙 identical parallel machines

𝑂4(𝑃) Multiprocessor open shop having 4 stages, each with identical parallel machines

𝑂(𝑅) Multiprocessor open shop with unrelated parallel machines in a stage

𝛽-field: Job characteristics

Notation Description

𝑝𝑚𝑡𝑛 Preemption allowed

𝑟𝑗 Job 𝑗 has release time 𝑟𝑗

𝑟𝑗𝑖 𝑂𝑗𝑖 has release time 𝑟𝑗𝑖

𝑝𝑟𝑜𝑝 Proportionate shop

𝑏𝑎𝑙. Balanced shop

𝑆𝑇𝑠𝑑 Sequence-dependent setup times

𝑆𝑇𝑠𝑖 Sequence-independent setup times

𝛾-fied: Optimality criterion

Notation Description

𝐶𝑚𝑎𝑥 Makespan

∑𝐶𝑗 Sum of job completion times

∑𝑤𝑗𝐶𝑗 Total weighted job completion time

∑𝑤𝑠𝐶𝑠 Total weighted stage completion time

∑𝑤𝑗𝑇𝑗 Total weighted tardiness

In a proportionate shop fixed stage processing times are present that do not change with job

identity. That is, a stage processes any job in a fixed amount of time. Thus, the notation of 𝑝𝑗𝑖

further reduces to 𝑝𝑖. Certainly, in proportionate shops the parallel machines should be

identical.

9

In a balanced shop, number of machines at each stage are fixed a priori so as to balance supply

with demand. It is a construct introduced by Matta and Elmaghraby (2010) for a MPOS

setting. It allows workload balance between stages and prevents any stage to constitute a

bottleneck in the problem. Otherwise, such a stage would have decisive role in resulting

makespan value.

Release time is the time when a job is allowed to start processing on any machine. No early

than its release time a job can be considered for processing. Similarly, operation release time

is also possible, and it restricts the earliest time an operation can be started. If release times

are not of concern in an environment, then all jobs (/operations) are ready for processing at

the start of the schedule.

Setup time is the time required for a machine to be prepared before it becomes ready for

processing. It may be a cleaning process, a configuration, or various other operations on the

machine. It is also named as independent setup time or sequence-independent setup time.

Sequence-dependent setup time or removal time is a similar setup time, but it depends on the

exiting job from machine and the next entering job. Disengaging tools for a job, releasing a

job from jigs and fixtures, dismantling fixtures, jigs and tools, inspecting and sharpening the

tools are among common removal operations (Józefowska & Weglarz, 2006). Sometimes,

these times are aggregated with the processing time of a job in the machine and the explicit

removal times are ignored.

Although there are numerous other shop features modelled in shop scheduling problems,

above-mentioned features are now sufficient for both reviewing the MPOS literature (see

Section 1.2) and defining the environment in this study.

Once an environment is described with its features, one or more objective functions are

considered while scheduling the shop. Most of previous research on the problem have been

about minimizing makespan, the time all operations are completed. Total weighted stage

completion times, weighted and unweighted sum of job completion times and total weighted

tardiness have been other minimization objectives considered in MPOS literature.

10

The standard 3-field notation of Graham et al. (1979) used in this text is a shorthand

representation of the shop environment and the objective function(s) of a problem at hand.

The notation is in the form of 𝛼|𝛽|𝛾 where the 𝛼-field represents the machine environment,

the 𝛽-field shows the job characteristics and the 𝛾-fied is for the optimality criterion (objective

function). Table 2.1 gives several notations that can appear in each of the fields and are

relevant in this thesis study.

2.3. Mixed Integer Programming Formulation

Several mixed integer linear and nonlinear programming formulations were proposed in the

literature for the MPOS problem with various environmental features. In this study, an adapted

version of the Mixed Integer Linear Programming (MILP) formulation by Abdelmaguid

(2020) for 𝑂(𝑅)||𝐶𝑚𝑎𝑥 is given. For other MIP mathematical models, the reader is referred to

Matta (2009) for 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥, to Naderi et al. (2011) for 𝑂(𝑃)|| ∑𝐶𝑗, to Goldansaz et al.

(2013) for 𝑂(𝑃)|𝑆𝑇𝑠𝑑 , 𝑆𝑇𝑠𝑖|𝐶𝑚𝑎𝑥, to Azadeh et al. (2014) for 𝑂(𝑃)|| ∑𝑤𝑗𝐶𝑗, and to Zhang et al.

(2019) for 𝑂(𝑃)|𝑝𝑟𝑜𝑝|∑𝐶𝑗.

Although, unrelated parallel machines were considered in the original MIP model, identical

parallel machines are assumed in the formulation here. This is due to the environment studied

in this thesis, and for the sake of a more clear and simple representation. Another distinction

of the model presented here from the original one is that all jobs are assumed to visit all stages.

Thus, sets of stages and jobs that defined processing requirements are removed in the present

formulation.

The MILP model is presented next, where the sets, indexes, labels, parameters, and decision

variables are defined first. It is a model for 𝑂(𝑃)||𝐶𝑚𝑎𝑥 MPOS setting. The proportionate

property that is imposed in this study can be easily incorporated by simply making 𝑝𝑗𝑖 = 𝑝𝑖

in the model.

Sets:

𝒮 Set of stages

𝒥 Set of jobs

11

𝒪𝑗 = {𝑂𝑗1, 𝑂𝑗2, … , 𝑂𝑗𝑛} Set of operations of job 𝑗 ∈ 𝒥

𝒪 = ⋃ 𝒪𝑗𝑗∈𝒥 Set of operations of all jobs

ℳ𝑖 Set of machines in stage 𝑖 ∈ 𝒮

Indexes and labels:

𝑖, 𝑤 Stage indexes = {1, 2, … , 𝑠}; stages 𝑖, 𝑤 ∈ 𝒮

𝑗, 𝑟 Job indexes = {1,2, … , 𝑛}; jobs 𝑗, 𝑟 ∈ 𝒥

𝑘 Machine index, = {1,2, … ,𝑚𝑖} ; stage 𝑖 ∈ 𝒮

𝑂𝑗𝑖 Operation of processing job 𝑗 ∈ 𝒥 in stage 𝑖 ∈ 𝒮

Parameters:

𝑝𝑗𝑖 Processing time of operation 𝑂𝑗𝑖 ∈ 𝒪

Decision variables:

𝑥𝑗𝑖𝑤 = {
1 𝑂𝑗𝑖 is processed before 𝑂𝑗𝑤
0 otherwise

 𝑗 ∈ 𝒥; 𝑖, 𝑤 ∈ 𝒮; 𝑤 > 𝑖

𝑦𝑗𝑖𝑘 = {
1 𝑂𝑗𝑖 is processed on machine 𝑘

0 otherwise
 𝑗 ∈ 𝒥; 𝑖 ∈ 𝒮; 𝑘 ∈ ℳ𝑖

𝑧𝑗𝑟𝑖𝑘 = {
1 𝑂𝑗𝑖 is processed before 𝑂𝑟𝑖 on machine 𝑘

0 otherwise
 𝑗, 𝑟 ∈ 𝒥; 𝑖 ∈ 𝒮; 𝑘 ∈ℳ𝑖

𝑠𝑗𝑖 Start time of processing operation 𝑂𝑗𝑖

𝐶𝑗 The time all operations of job 𝑗 ∈ 𝒥 completed

𝐶𝑚𝑎𝑥 The time all operations of all jobs completed; = max
 𝑗∈𝒥

𝐶𝑗

Minimize 𝐶𝑚𝑎𝑥 (2.1)

subject to:

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗 ∀𝑗 ∈ 𝒥 (2.2)

𝐶𝑗 ≥ 𝑠𝑗𝑖 + 𝑝𝑗𝑖 ∀𝑂𝑗𝑖 ∈ 𝒪𝑗 ∀𝑗 ∈ 𝒥 (2.3)

∑ 𝑦𝑗𝑖𝑘𝑘∈𝑀𝑖
= 1 ∀𝑂𝑗𝑖 ∈ 𝒪 (2.4)

𝑠𝑗𝑖 ≥ 𝑠𝑗𝑤 + 𝑝𝑗𝑤 −𝕄𝑥𝑗𝑖𝑤 ∀𝑖, 𝑤 ∈ 𝒮 ∶ 𝑤 > 𝑖 ∀𝑗 ∈ 𝒥 (2.5)

𝑠𝑗𝑤 ≥ 𝑠𝑗𝑖 + 𝑝𝑗𝑖 −𝕄(1 − 𝑥𝑗𝑖𝑤) ∀𝑖, 𝑤 ∈ 𝒮 ∶ 𝑤 > 𝑖 ∀𝑗 ∈ 𝒥 (2.6)

𝑧𝑗𝑟𝑖𝑘 + 𝑧𝑟𝑗𝑖𝑘 ≤
1

2
(𝑦𝑗𝑖𝑘 + 𝑦𝑟𝑖𝑘) ∀𝑖 ∈ 𝒮 ∀𝑘 ∈ ℳ𝑖 ∀𝑗, 𝑟 ∈ 𝒥 ∶ 𝑟 > 𝑗 (2.7)

12

𝑧𝑗𝑟𝑖𝑘 + 𝑧𝑟𝑗𝑖𝑘 ≥ 𝑦𝑗𝑖𝑘 + 𝑦𝑟𝑖𝑘 − 1 ∀𝑖 ∈ 𝒮 ∀𝑘 ∈ ℳ𝑖 ∀𝑗, 𝑟 ∈ 𝒥 ∶ 𝑟 > 𝑗 (2.8)

𝑠𝑟𝑖 ≥ 𝑠𝑗𝑖 + 𝑝𝑗𝑖 −𝕄(1 − ∑ 𝑧𝑗𝑟𝑖𝑘𝑘∈ℳ𝑖
) ∀𝑖 ∈ 𝒮 ∀𝑗, 𝑟 ∈ 𝒥 ∶ 𝑗 ≠ 𝑟 (2.9)

𝑥𝑗𝑖𝑤 , 𝑦𝑗𝑖𝑘, 𝑧𝑗𝑟𝑖𝑘 ∈ {0,1} ∀𝑖, 𝑗, 𝑘, 𝑟, 𝑤 (2.10)

In the MILP formulation, (2.1) states the objective function as makespan minimization.

Constraint (2.2) defines the makespan by its relationship with completion time of each job,

where the completion times are defined by constraint (2.3). Constraint (2.4) introduces the

requirement that every job to be processed by a single machine in each stage. (2.5) and (2.6)

together are disjunctive constraints to associate starting time of operations with the order a job

would visit the stages. The machine sequences in a stage are defined by constraints (2.7) and

(2.8), and together with (2.9) the disjunctive relationship is constructed. Lastly, (2.10) defines

the binary decision variables.

13

3. ANT COLONY OPTIMIZATION

This chapter gives general background information about Ant Colony Optimization (ACO).

The ACO field extended dramatically since its first introduction in 1992. A Web of Science

search of “Ant colony optimization” in the title returns 4,128 results as of September, 2020.

Certainly, not all aspects of the field are covered in this chapter. Rather, the underlying

principles of the approach, main building blocks of the algorithm and several variants of ACO

that are relevant in this study are explained here. For more detailed information about the

algorithm, reader is referred to the book by Dorigo and Stützle (2004). Additionally, an

overview of ACO algorithms and the latest developments in the algorithm can be found in a

recent chapter by the authors (Dorigo & Stützle, 2019).

3.1. Origins and Basis of ACO

Ant algorithms are based on ideas that inspire from foraging behaviors of real ants. Ants leave

a chemical substance on the ground, called pheromone, while they are searching for food.

Among the ants that find the food source, the one who uses the shortest path would return

earliest to the nest, increasing the pheromone levels in this shortest path. As a certain path has

increased levels of pheromone, then it is more likely to be chosen by the other ants to reach to

a food source. This behavior of ants leads to discovery of the shortest path to the food source,

and it inspired researchers to adapt it for the solution of combinatorial optimization problems

which led to a class of ant algorithms. The building blocks of this approach include: 1)

Collective search for a solution, 2) leaving a trace in the memory, 3) updating the memory to

include good solution characteristics, 4) construction of a solution based on collective

knowledge.

The first ant algorithm was called Ant System and proposed by Dorigo (1992) (Dorigo et al.,

1991, 1996). A number of different improved ant algorithms were followed until a general

framework was introduced as ACO (Dorigo & Caro, 1999; Dorigo et al., 1999) to describe

the common structure of an ant algorithm. “ACO is a metaheuristic in which a colony of

artificial ants cooperate in finding good solutions to difficult discrete optimization problems”

14

(Dorigo & Stützle, 2004). An artificial ant can be considered as an imaginary agent in a

computer program that is responsible for carrying out algorithmic components.

The general structure of an ACO algorithm is defined next, and several ACO variants are

described in the following subsections.

3.2. General Structure of an ACO Algorithm

An ACO algorithm consists of three main phases: Solution construction, Pheromone update,

and Central actions. Specification of each algorithm element, the ordering, and the interaction

between them vary among different ACO algorithms. A general description of these

algorithmic components is supplied in the following.

3.2.1. Solution construction

A group of solutions are constructed concurrently by artificial ants in Solution construction

part. An artificial ant builds a solution by adding one solution component at every step. Choice

of the solution component to be added is based on a stochastic decision-making process that

uses pheromone information and heuristic information. Pheromone information is the

collective memory of the ant colony that stores previous good/bad solution characteristics. A

good solution component is reflected in the memory by high pheromone levels, while a bad

one would have decreased levels of pheromone. Heuristic information is a problem-specific

knowledge that allows building higher quality solutions. When an ant ends up with building

its solution, it assesses the solution quality (that is the objective function is calculated).

3.2.2. Pheromone update

Pheromone is added to good solution components to increase their selection probability in

future solution constructions. The choice of the solutions for pheromone update and the

amount of pheromone to be added are part of the algorithm design. Pheromone is reflected as

an added value in memory regions for that specific favorable solution pieces. Additionally,

there is a process called pheromone evaporation that restricts too rapid accumulation of

pheromone and convergence of the algorithm to a suboptimal/local best objective value.

15

3.2.3. Central actions

These are procedures that are performed centrally by the algorithm and not by individual ants.

One prominent example is applying local search at the end of solution construction, either to

each single solution or to only the best one. Also, the selection of the ant that will deposit

pheromone is another example of a central action.

3.3. Travelling Salesman Problem

To formally state how an algorithm works, it is best to show the definitions and steps of the

algorithm over a representative example. Travelling Salesman Problem (TSP) is such a sample

problem for ACO, which was used as the application problem in the first ant algorithm and as

a test problem in the numerous ones followed. Different ACO algorithms given in this section

are presented using TSP setting and terminology. However, fundamental concepts of the

algorithm were adapted to various other combinatorial problems as well in the literature.

TSP is the problem of constructing a shortest tour for a salesman that will visit several cities

exactly once and will return to starting point of the tour. TSP is an archetype of NP-Hard

combinatorial optimization problems, and it has gained significant attention in the literature

(Lawler et al., 1985). There are 𝜐 number of cities, and 𝑑𝜉𝜑 is the distance between cities 𝜉

and 𝜑. A solution 𝜋 to the problem is a tour, and can be represented as a permutation of 𝜐

cities. If the road between cities 𝜉 and 𝜑 is traversed in the solution, that is if 𝜉 = 𝜋(𝑖) and

𝜑 = 𝜋(𝑖 + 1), or vice versa, then (𝜉, 𝜑) is said to be a solution component and shown as

(𝜉, 𝜑) ∈ 𝜋. The objective function of a permutation 𝜋 is computed by the function 𝑓(𝜋) as in

(3.1), and the solution that gives the minimum function value is the optimum solution.

𝑓(𝜋) = ∑𝑑𝜋(𝑖)𝜋(𝑖+1) + 𝑑𝜋(𝜐)𝜋(1)

𝜐−1

𝑖=1

 (3.1)

where 𝜋(𝑖) is the 𝑖th city in the permutation.

To construct a TSP solution, an artificial ant each time adds a next city to its partial solution

to complete a tour. This next city is chosen stochastically among still unvisited cities. The

16

starting city is chosen randomly and is different for every ant. Pheromone trails 𝜏𝜉𝜑 for TSP

is defined as the desirability of choosing city 𝜑 to move to while sitting in city 𝜉. Heuristic

information is generally in favor of close cities and defined as 𝜂𝜉𝜑 = 1 𝑑𝜉𝜑⁄ . During

implementation of an ACO algorithm, pheromone trails 𝜏𝜉𝜑 and heuristic information 𝜂𝜉𝜑 are

stored in 𝜐 × 𝜐 matrices of Τ and Η, respectively.

3.4. Coverage of the Section

In the sequel, some prior ACO algorithms that are relevant in this study are elaborated.

Namely, those ACO implementations are Ant System (AS), MAX-MIN AS (MMAS), Ant

Colony System (ACS) and the hyper-cube framework (HCF) for ACO. Additionally, a

pheromone evaluation rule, the pheromone summation rule, that is useful in scheduling

problems is presented at the end.

3.5. Ant System

AS was proposed by Dorigo (1992) and it was the first ACO algorithm. In this subsection,

pheromone initialization, solution construction and pheromone update procedures of the AS

are described.

3.5.1. Pheromone initialization

Before an ant can construct a solution, pheromone trails, 𝜏𝜉𝜑, should be initialized. AS assigns

the 𝜏0 values given in (3.2). 𝜏0 refers to initial pheromone entries.

𝜏𝜉𝜑 = 𝜏0 =
𝜅

𝑐𝑛𝑛
 (3.2)

where 𝜅 is the number of ants, and 𝑐𝑛𝑛 is the objective function value (cost) of the solution

obtained by nearest neighbor (NN) heuristic. NN is a greedy heuristic which selects the closest

city as the next city to move.

A wise selection of initial pheromone values is important to prevent the search process from

converging towards low-quality solutions generated in early iterations. Additionally, initial

17

pheromone entries should not obstruct the incorporation of the search experience which might

occur in cases of high 𝜏0 choices for a long time until the pheromone memory is updated

completely.

3.5.2. Solution construction

An ant constructs a solution city-by-city in a stepwise manner using the probabilistic rule

given in (3.3). That is, in each step, the ant on city 𝜉 moves to a next unvisited city 𝜑 with a

probability 𝑝𝜉𝜑.

𝑝𝜉𝜑 =
𝜏𝜉𝜑
𝛼 𝜂𝜉𝜑

𝛽

∑ 𝜏𝜉𝑘
𝛼 𝜂

𝜉𝑘
𝛽

𝑘∈𝒩𝜉

 , if 𝜑 ∈ 𝒩𝜉 (3.3)

where 𝒩𝜉 is the set of cities still unvisited by the ant standing on city 𝜉, also named as the

neighborhood, and 𝛼 and 𝛽 are parameters that state the influences of search experience

(pheromone information) and problem-specific knowledge (heuristic information) on a

solution construction, respectively. Indeed, neighborhoods 𝒩𝜉 and the probabilities 𝑝𝜉𝜑 are

defined ant-specific, i.e. 𝒩𝜉
ℎ for ant ℎ. However, for the sake of simplicity ant index is dropped

in the formulations in this text, keeping in mind that every ant generates a different solution

by its own, having its individual solution construction memory till completing the full

permutation and calculating the objective function.

The definition of the neighborhood restricts the process to result with only feasible solutions.

The stochastic rule of (3.3) assigns higher probabilities of selection to cities with elevated

pheromone levels and with higher heuristic desirability. If 𝛽 is taken to be null, then heuristic

information is not present, and the next city is decided based only on pheromone trails. This,

however, may lead to inferior solution quality as a stagnation case may occur as a result of

rapid pheromone accumulation. Stagnation is referred to a situation where the solution

construction process would always result with the same solution. In that case, no exploration

of the search space would take place, and the algorithm is stagnated.

18

3.5.3. Pheromone update

Once the solution construction phase is completed and 𝜅 ants produced 𝜅 number of different

solutions, pheromone trails are updated to reflect the latest search experience on the collective

memory. First, before adding any pheromone, some of the previously accumulated pheromone

is evaporated from all entries 𝜏𝜉𝜑 of the pheromone matrix as in (3.4). This evaporation avoids

excessive pheromone accumulation and prevents the process to get stagnated. It is a kind of

forgetting, and solution components that are not chosen by the ants become increasingly less

pheromone intense.

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 , ∀(𝜉, 𝜑) ∈ Τ (3.4)

where 𝜌 is a parameter called the evaporation rate, 0 < 𝜌 ≤ 1. Followingly, every ant

deposits pheromone to solution components of its solution as:

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 + ∆𝜏𝜉𝜑
ℎ , ∀(𝜉, 𝜑) ∈ 𝜋ℎ (3.5)

The amount of pheromone ∆𝜏𝜉𝜑
ℎ ant ℎ deposits is a function of its objective function value

and is defined for TSP by

∆𝜏𝜉𝜑
ℎ = {

1 𝑐ℎ⁄ , if (𝜉, 𝜑) ∈ 𝜋ℎ
0 otherwise

 (3.6)

where 𝑐ℎ is the cost (tour length) of the solution 𝜋ℎ generated by ant ℎ. Thus, the higher the

solution quality, the more pheromone is deposited. Once all ants finish their pheromone

updates, the resulting pheromone entries would become as in (3.7).

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 +∑∆𝜏𝜉𝜑
ℎ

𝜅

ℎ=1

, ∀(𝜉, 𝜑) ∈ 𝜋ℎ (3.7)

Common solution components among ant solutions would reach higher levels of pheromone,

being more desirable in future solution generations.

19

3.6. MAX-MIN Ant System

MMAS (Stützle & Hoos, 1997; 2000) greatly improved the performance of the earlier ACO

algorithms, namely AS and its variants. Opposed to AS where all ants add pheromone, MMAS

requires only the ant with the best solution quality to update the pheromone trails. This best

can be chosen to be iteration-best or global-best. As their names imply, an iteration-best (IB)

solution is the one with the lowest objective value among the solutions generated in an

iteration, while a global-best (GB) is the best over all iterations that have been completed until

that GB.

Allowing only a best solution to deposit pheromone would result in too rapid pheromone

accumulation in the solution components that are common in best solutions and would lead to

a situation of stagnation in solution construction process. This is due to the high desirability

of good solution components forcing every ant to build the same but suboptimal solution. To

avoid this very possible stagnation case, MMAS imposes limits on the amount of pheromone

that each entry in the pheromone matrix can have. The algorithm does not neither allow too

low pheromone values. That is, it defines [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] limits on the value of every 𝜏𝜉𝜑. This

is also where the name of the algorithm (Max-Min Ant System) comes from. Additional to

pheromone limits, MMAS further proposes a reinitialization routine to avoid stagnation. The

algorithm requires the pheromone entries to be reinitialized at any time the search process

shows signs of stagnation or fails to generate improved-quality solutions for a predefined

number of consecutive iterations.

In MMAS, the pheromone trails are initialized to 𝜏𝑚𝑎𝑥 to obtain a higher rate of exploration

at early iterations.

3.6.1. Pheromone update

Following evaporation on all solution components, pheromone deposit in MMAS is formally

performed according to (3.8), which enables only the best ant to deposit pheromone, as stated

before.

20

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 + ∆𝜏𝜉𝜑
𝑏𝑒𝑠𝑡, ∀(𝜉, 𝜑) ∈ 𝜋𝑏𝑒𝑠𝑡 (3.8)

where ∆𝜏𝜉𝜑
𝑏𝑒𝑠𝑡 = 1 𝑐𝑏𝑒𝑠𝑡⁄ , for TSP, and 𝑐𝑏𝑒𝑠𝑡 is the cost of the solution generated by the best

ant -may be selected to be IB, GB or both in an alternating way. During initial iterations of

the algorithm, it is preferable to make a wider exploration of the search space. This can be

achieved by using IB solutions instead of GB in that phase of the algorithm. GB solutions can

be used with an increasing rate as the algorithm proceeds, focusing more on good quality

regions of the search space.

3.6.2. Pheromone limits

Limiting the pheromone trails prevents solution components from having extreme

probabilities (low or high) in the probability distribution of solution construction phase, see

Equation (3.3). In MMAS, 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 are defined as in (3.9).

𝜏𝑚𝑎𝑥 = 1 𝜌𝑐𝐺𝐵⁄ ; 𝜏𝑚𝑖𝑛 = 𝜏𝑚𝑎𝑥 𝑎⁄ (3.9)

where 𝑎 is a parameter. The definition of 𝜏𝑚𝑎𝑥 requires it to be a dynamic value: updated

whenever a new GB is reached.

3.6.3. Pheromone initialization and reinitialization

To let the solution components have close probabilities at early iterations, pheromone trails

are initialized to an estimate of 𝜏𝑚𝑎𝑥. This way, no components would have a decisive role in

solution constructions and a wide exploration of the search space would be allowed.

Pheromone trails can be initialized again in later phases to the values they had at the start of

the algorithm to enable the search process escape from a possible stagnation behavior. This

reinitialization is based on the relative values of the pheromone trails. For detailed information

on reinitialization of pheromone trails, reader is referred to Stützle and Hoos (2000).

21

3.7. Ant Colony System

ACS was proposed by Dorigo and Gambardella (1997) and it has structural differences from

AS. It offers more efficient solution construction and pheromone update procedures. While

constructing a solution, ACS allows increased exploitation of accumulated knowledge.

Additionally, to deposit pheromone, only the global best ant is used. Pheromone evaporation

is also carried out by that ant only. This is in contrast with both AS and MMAS where

evaporation takes place on all entries of the pheromone matrix, regardless of the solutions

produced in the iteration. A local pheromone evaporation is also present in ACS, which

requires an ant to decrease the pheromone on the component it just added to its partial solution.

This would allow different solutions to be generated by the ants in an iteration, hence an

enhanced capability of searching the solution space.

3.7.1. Solution construction

While constructing a solution in ACS, an ant on city 𝜉 uses (3.10) to choose the next city 𝜑 to

move to. The rule given in (3.10) is called the pseudorandom proportional rule.

𝜑 = {
arg max

𝑘∈𝒩𝜉

𝜏𝜉𝑘𝜂𝜉𝑘
𝛽

if 𝑞 ≤ 𝑞0

Φ otherwise

 (3.10)

where 𝑞 is a uniformly distributed random number and 𝑞0 is a parameter, both of them

between [0,1], and Φ is a random variable having the probability distribution in (3.3) with

𝛼 = 1.

Thus, if the algorithm is needed to be more explorative 𝑞0 is kept low, while a higher

exploitation of accumulated search knowledge can be ensured with a high 𝑞0.

3.7.2. Pheromone update

ACS brings significant structural differences to pheromone update process compared to AS.

It carries out two different update routines in a single iteration. The first update takes place

while an ant constructs a solution. After an ant adds a solution component (𝜉𝜑) to its partial

22

solution, it updates the pheromone entry of that solution component as in (3.11). This routine

is known as the local pheromone update.

𝜏𝜉𝜑 ⟵ (1 − 𝜃)𝜏𝜉𝜑 + 𝜃𝜏0 (3.11)

where 𝜃 is a parameter: 0 < 𝜃 < 1. Thus, the pheromone trail becomes a weighted average

of the initial pheromone value and the latest value before the update. This decreases the

intensity of the pheromone on the solution components used by an ant, making their selection

probability lower during the solution construction of the other ants. The main advantage of

this kind of an update is allowing a diversification among the solutions generated in an

iteration, hence an increased exploration of the search space.

Once the solution construction process is completed by all ants, the second pheromone update

procedure is applied. It is called the global pheromone update and carried out by only the GB

ant. This GB ant both evaporates and deposits pheromone on the components of the solution

it generated. This way, evaporation takes place only on that components and not on all

components of the system, reducing the complexity of the algorithm from 𝒪(𝑛2) to 𝒪(𝑛),

where 𝑛 is the problem size. The global pheromone update rule is given in (3.12).

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌∆𝜏𝜉𝜑
𝐺𝐵 , ∀(𝜉, 𝜑) ∈ 𝜋𝐺𝐵 (3.12)

Similar to previous formulations, ∆𝜏𝜉𝜑
𝐺𝐵 = 1 𝑐𝐺𝐵⁄ . The update rule requires the multiplication

of the deposited pheromone amount with the parameter 𝜌, differently from AS.

3.8. Hyper-Cube Framework for ACO

HCF (Blum & Dorigo, 2004) proposed for ACO enables a more effective handling of

pheromone values and a more robust update of the pheromone entries. It makes the pheromone

trails to take value in the interval [0,1].

The HCF idea is based on the following. A solution for a combinatorial optimization can be

defined as an 𝜐-dimensional binary vector 𝑠 , where 𝜐 is the number of all solution components

in the system. If an element of the vector is part of the solution then it takes value 1, or it takes

23

value 0 otherwise. That enables regarding a solution as a corner of the 𝜐-dimensional

hypercube. A subset of the corners of the hypercube would be the set of feasible solutions. In

that context, the set of pheromone values can be defined as an 𝜐-dimensional vector. HCF

proposes to make the pheromone update in AS as

𝜏 ⟵ (1 − 𝜌) ⋅ 𝜏 + 𝜌 ⋅ �⃗� (3.13)

where �⃗� is a 𝜐-dimensional vector with

�⃗� = ∑ 𝜓ℎ
ℎ∈𝒜

⋅ 𝑠 ℎ (3.14)

where 𝑠 ℎ is the solution constructed by ant ℎ, 𝒜 is the set of all ants in the algorithm and 𝜓ℎ

is given as

𝜓ℎ =
𝑐ℎ

∑ 𝑐ℎ′ℎ′∈𝒜
 (3.15)

The pheromone update rule of (3.13) can be shown in index notation as the following:

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌 ⋅ ∑
𝑐ℎ

∑ 𝑐ℎ′ℎ′∈𝒜
{ℎ∈𝒜|(𝜉,𝜑)∈𝜋ℎ}

 ∀(𝜉, 𝜑) ∈ Τ (3.16)

The difference with the pheromone update rule of HCF with AS is 1) the multiplication of the

deposited pheromone with a factor 𝜌, and 2) the normalization of the amount of pheromone

added by each ant. This makes pheromone trail values not to be dependent on the cost value,

neither on the problem instance.

In MMAS, which uses a single solution to update the trails, HCF is applied as follows:

𝜏 ⟵ (1 − 𝜌)𝜏 + 𝜌𝑠 𝑏𝑒𝑠𝑡 (3.17)

The pheromone deposit part of (3.17) is shown in index notation as

𝜏𝜉𝜑 ⟵ 𝜏𝜉𝜑 + 𝜌, ∀(𝜉, 𝜑) ∈ 𝜋𝑏𝑒𝑠𝑡 (3.18)

24

HCF also simplifies to define the maximum and minimum pheromone limits in MMAS. It

already makes 𝜏𝜉𝜑 to take values between [0,1] which enables to assign the limits as 0.999

for the upper bound and 0.001 for the lower bound (Blum & Dorigo, 2004).

Lastly, global pheromone update of ACS, which uses the GB to both evaporate and deposit

pheromone, is shown in HCF as follows

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌, ∀(𝜉, 𝜑) ∈ 𝜋𝐺𝐵 (3.19)

3.9. Pheromone Summation Rule

When ACO algorithm is adapted to scheduling problems, it is common to define 𝜏𝜉𝜑 as the

desirability to assign job 𝜑 to position 𝜉 in the permutation. In this type of problems, the exact

or at least the approximate position of a job in the permutation comes to be important and

scheduling the job to a further away position results in degraded solution quality. However,

while an ant constructs a solution, it is possible for the ant to schedule a job other than job 𝜑,

albeit job 𝜑 had a higher 𝜏𝜉𝜑 value, to that specific position 𝜉 because of the stochastic nature

of the algorithm. Moreover, the algorithm may not even assign the job until the end sections

of the permutation if its pheromone intensity is low for the positions after 𝜉. This is quite

possible since there might be no previous iterations that assign job 𝜑 to positions further than

𝜉, resulting in low pheromone values for that positions, hence low probability of selection.

Such a scenario would result in inferior solution quality because of not assigning a job to its

most desirable place but rather assigning it to a further away position. To overcome that

problem, Merkle and Middendorf (2000) proposed a useful rule in using pheromone

information, called the pheromone summation rule. This rule offers use of 𝜏𝜉𝜑 given in (3.20)

while constructing a solution.

𝜏𝜉𝜑 ∶=∑𝜏𝑘𝜑

𝜉

𝑘=1

 (3.20)

25

This enables job 𝜑 not assigned to a desirable position 𝜉 to be assigned to a close position,

since 𝜏𝜉𝜑 would be still effective in pheromone considerations of the later places. Thus, the

next solution component is chosen in ACS according to

𝜑 =

{

arg max

𝑘∈𝒩𝜉

(∑𝜏𝑟𝑘

𝜉

𝑟=1

)

𝛼

𝜂𝜉𝑘
𝛽

if 𝑞 ≤ 𝑞0

Φ otherwise

 (3.21)

where Φ has the following probability distribution

𝑝𝜉𝜑 =
(∑ 𝜏𝑘𝜑

𝜉
𝑘=1)

𝛼

𝜂𝜉𝜑
𝛽

∑ (∑ 𝜏𝑟𝑘
𝜉
𝑟=1)

𝛼

𝜂
𝜉𝑘
𝛽

𝑘∈𝒩𝜉

 , if 𝜑 ∈ 𝒩𝜉 (3.22)

Additionally, a weighted pheromone summation rule is followed by Merkle et al. (2000) that

gives different influences to each pheromone entry up to position 𝜉:

𝜏𝜉𝜑 ∶=∑𝛾𝜉−𝑘𝜏𝑘𝜑

𝜉

𝑘=1

 (3.23)

where 𝛾 is a parameter with 𝛾 > 0. If 𝛾 < 1, then pheromone values close to position 𝜉 would

have more influence, and inversely, if 𝛾 > 1 earlier pheromone values become more effective.

If 𝛾 = 1, then basically no weights are assigned, and the rule is the one in (3.20) where every

place in the permutation up to position 𝜉 would have the same influence on the resulting

pheromone evaluation 𝜏𝜉𝜑.

26

27

4. ACO ALGORITHM FOR PROPORTIONATE MULTIPROCESSOR

OPEN SHOP PROBLEM

In this chapter, an ACO algorithm for the proportionate MPOS problem is proposed.

Pheromone information, solution construction and pheromone update procedures together

with the central actions proposed in the algorithm are fully described. Experimental test results

are given in Chapter 5.

Before going in details of the algorithm, the specific MPOS environment studied in this thesis

and the assumptions of the model are stated in the following subsection.

4.1. Problem Statement

A proportionate MPOS is considered in this study. Proportionate property refers that the

processing times are dependent on stages but not on jobs (see Section 2.2). Other assumptions

about the shop are listed as follows:

1. All jobs are required to be processed in all stages.

2. There are infinite capacity buffers between all stages.

3. A machine can process a single job, and a job can be processed on a single machine at

a time.

4. Preemption is not allowed.

5. All jobs are ready for processing at the beginning; release times are zero.

6. The parallel machines in a stage are identical.

7. All machines are always available.

8. Machines of a stage can perform the task of only that stage and not of other stages.

9. Due dates for completion of jobs are not present.

10. All jobs are equally important.

11. Precedence relations do not exist between neither jobs nor operations.

12. All types of setup and travel times are ignored.

The problem is about constructing a schedule for proportionate MPOS that minimizes the

makespan 𝐶𝑚𝑎𝑥, the time all operations are completed. The problem is shown in 3-field

28

notation as 𝑂(𝑃)|𝑝𝑟𝑜𝑝|𝐶𝑚𝑎𝑥. The schedule that would be offered as a solution for the

problem should incorporate three elements: 1) Route of each job to visit the stages, 2) For any

job, the machine that will be used to process it in a stage, 3) Processing sequence of relevant

jobs in any machine in a stage.

4.2. Solution Representation

One of the most important part of developing a solution approach for a combinatorial problem

is the use of an efficient way to represent a feasible solution of the problem. It is especially

important in metaheuristic algorithms where the sub-routines are based on the particular

solution representation. Neighborhood structures, for example, are defined on the solution

representation at hand, and they are crucial in finding high-quality solutions if chosen

appropriately. The importance of the representation is also apparent in memory-based

approaches. That type of algorithms keeps promising solution characteristics at mind to refer

them later again. These favorable characteristics are defined over the representation of the

solution. Thus, to correctly encode the feature of the solution which makes it good, an effective

representation of the solution should be used.

For some problems, such as the TSP and single machine problems, there is a natural, obvious

way to represent a feasible solution for the problem. This is due to the number of dimensions

the solutions of these problems require. That is, for TSP the solution should supply only the

information of where to go after visiting a city and, thus, the representation is simply a

permutation of cities. Again, for single machine problems, it is important only to know at what

order the jobs would be processed, making a sequence of the jobs sufficient for the

representation. However, in case of MPOS, a solution representation should supply three

different information: 1) at what order each job would visit the stages, 2) at which machine

each job would be processed in each stage, and 3) at what order each machine in each stage

would process the relevant jobs. Thus, defining an efficient way of representing a solution of

MPOS is relatively hard.

29

4.2.1. Operation-permutation representation

In the literature, operation-permutation is the commonly used representation among MPOS

researches (Azadeh et al., 2014; Bai et al., 2016; Goldansaz et al., 2013; Matta, 2009; Naderi

et al., 2011). It was proposed by Liaw (2000) for the classical open shop and adapted to MPOS

by Matta (2009). It is a permutation of operations 𝑂𝑗𝑖. Permutation is read from left to right

and the respective operation is assigned to the first available machine in the respective stage.

For an example, consider the following operation permutation for Problem 1 given in Table

4.1.

𝑂11𝑂41𝑂42𝑂22𝑂12𝑂32𝑂31𝑂21𝑂51𝑂52 (4.1)

For the sake of simplicity, it is common to number the operations from 1 to 𝑁, where 𝑁 is the

total number of operations, hence 𝑁 = 𝑛 × 𝑠. Thus, the operations of Problem 1 can be

represented by the numbers shown in Table 4.2. This makes the permutation in (4.1) to be re-

written as

1 − 4 − 9 − 7 − 6 − 8 − 3 − 2 − 5 − 10 (4.2)

Table 4.1. Sample proportionate MPOS problems

Problem 1 Problem 2 Problem 3

s = 2; n = 5 s = 2; n = 33 s = 3; n = 5

m1 = 3; m2 = 2 m1 = 23; m2 = 10 m1 = 2; m2 = 2; m3 = 1

p1 = 7; p2 = 5 p1 = 10; p2 = 4 p1 = 7; p2 = 6; p3 = 4

Table 4.2. Numbers to represent operations of Problem 1

𝑂11 𝑂21 𝑂31 𝑂41 𝑂51 𝑂12 𝑂22 𝑂32 𝑂42 𝑂52

1 2 3 4 5 6 7 8 9 10

Encoding the permutation from left to right creates the schedule in Figure 4.1. It is a semi-

active schedule. Naderi et al. (2011) tested a different decoding which schedules the operation

30

as early as possible even if it is in a later position in the permutation. Hence a non-delay

schedule resulted. However, the solution quality became degraded in average.

Figure 4.1. Schedule of the sample permutation

4.2.2. Inefficiencies of operation permutation in proportionate MPOS

In this subsection, it is explained why operation permutation is not an efficient way of

representing a solution of proportionate MPOS. It is presented in three main topics: 1)

Excessive idle time in machines, 2) Extra time for transforming the schedule into an active

one, 3) Problems due to including the job identities in the permutation.

Consider the schedule given in Figure 4.1 for the operation permutation in (4.2). One can

easily notice unnecessary idle times in both stages that cause increased makespan value. It is

a result of the ordering in the permutation which requires job 3 first to be scheduled in stage

2 after jobs 4, 2 and 1, and then be scheduled in stage 1. Two solutions can be considered here:

1) Creating a non-delay schedule: An operation can be scheduled to earlier available machines

even if it appears in a later position in the permutation, 2) Postprocessing: Converting the

resulting schedule (Figure 4.1) into an active one. The first solution has been mentioned earlier

in this section to lead to a degraded solution quality. The second option is necessary and

detailed next.

To get rid of the meaningless idle times in the schedule, it must be converted to an active one.

An active schedule can be formed by moving a job to an earlier position in the stage without

delaying the current start time of any operation. Thus, job 3 is moved to be processed between

times 0-7 in the same machine in stage 1, and job 5 is moved to times 0-5 to machine 1 in

stage 2. The resulting improved schedule is shown in Figure 4.2, which is an optimal one in

this case. However, post-processing the schedule to make it active and repeating this action

31

for every single solution generated requires excessive computational time in an algorithm. The

time required to compute the objective function is already a headache in this type of

scheduling problems. Thus, such an additional post-processing requirement is not favorable.

Another problem with post-processing is that the ultimate schedule reached is different from

what the permutation encodes. This poses a challenge particularly in memory-based

algorithms, such as the ACO proposed in this study, which inherit good solution

characteristics in future generations.

Figure 4.2. Improved schedule after post-processing

Another inefficiency in using the operation permutation in proportionate MPOS is due to the

call of job identities in the permutation. That is, the permutation enforces a certain job to be

scheduled. However, in proportionate MPOS the processing time of a stage is independent of

the job, bringing a flexibility to the schedule. Restricting this flexibility may lead to degraded

solution quality. Figure 4.3 illustrates different job assignments to have the same makespan

value for Problem 1. Again, consider the dense schedule given in Figure 4.4 for Problem 2

(see Table 4.1). A dense schedule leaves no machine idle if there is an available job to be

processed. An allocation of job bundles creates the schedule in the figure and no explicit call

to job identities is present. By using the template and assigning different jobs for the bundles

each time, numerous different schedules with the same makespan of 22 can be created.

The dense schedule of Figure 4.4 can be improved as in Figure 4.5, saving 2 time points and

resulting in the optimum makespan.

32

Figure 4.3. Different job assignments with same makespan value

33

Figure 4.4. A dense schedule for Problem 2

An important implication that can be drawn out from the enhanced schedule in Figure 4.5 is

that what is important in scheduling a proportionate MPOS is to determine how many jobs to

allocate to each stage at distinct time points for a lower makespan. However, operation

permutation does not encode this information, causing inefficiencies in extracting good

solution characteristics.

Figure 4.5. Enhanced schedule for Problem 2

4.2.3. A novel solution representation: Implicit-stage permutation

A novel way to represent a feasible solution of a proportionate MPOS is proposed in this

study. The representation is named as implicit-stage permutation. It is a permutation of

numbers that represent cumulative number of job assignments to a respective stage. It is

indeed a higher-level representation of a stage permutation. Thus, to introduce the proposed

solution representation, first stage permutation is defined as the following. Consider Problem

3 given in Table 4.1. It requires 5 jobs to be processed in 3 stages. Thus, a schedule would

make 5 job assignments for each stage. Since, in the preceding subsection, it made clear that

34

job identities do not have a direct role in the resulting objective function value, it is proposed

to include only calls to stages in a solution representation. 𝑛 number of calls for each stage is

needed, requiring a stage permutation to have 𝑛 × 𝑠 number of elements. Thus, a stage

permutation is a permutation of 𝑠 stages, where each stage repeats 𝑛 times. The following is

a sample stage permutation for Problem 3.

2 − 2 − 1 − 3 − 1 − 2 − 3 − 2 − 1 − 1 − 3 − 3 − 2 − 1 − 3 (4.3)

The permutation is decoded as follows: Assign a job to stage 2, assign a job again to stage 2,

then assign a job to stage 1, and so on. At any step, the job to be assigned can be chosen

arbitrarily as long as it is an eligible job: still not processed in that stage and not under process

in some other machine, hence available. Although arbitrary choice of a job is sufficient to

construct a feasible schedule, more informed rules of job selection are proposed in this study

to allow for improved solutions.

One of two rules to select a job while constructing the schedule of a permutation is making

the selection based on job desirability, 𝑑𝑗, which is introduced as the number of stages that

still needs job 𝑗. A job with lower desirability is preferred to allow non-empty future eligible

job sets as much as possible. If job desirability values are equal for two jobs, then the selection

is made in numerical order. Unless stated otherwise, job desirability is applied as the default

rule for job selection in decoding a permutation.

The second rule to select a job is proposed as selecting a random job from an eligible job set.

Although, at first glance, the rule seems to serve no purpose, it plays a significant role in

decreasing the makespan in large scale instances that have many perfectly balanced stages.

The notion is further explained in Section 4.3.2.

After a job is selected to assign for the respective stage, it is scheduled to earliest available

machine. The final schedule of permutation (4.3) is shown in Figure 4.6.

Use of stage-permutation as the solution representation, however, has two problems. First, it

includes repetition of elements, which makes it hard to extract knowledge about favorable

patterns in good solutions. This knowledge would be kept in the memory of the ACO

35

algorithm and it is essential. Second, it does not encode how many assignments have been

made to a stage up to a point, since this information is shown, in the previous subsection, to

reflect an important feature of a solution. To overcome these problems, it is proposed to

represent the stage permutation in a higher-level form by substituting every stage

representation by a number referring to its cumulative number of appearances in the

permutation. This higher-level form is named as the implicit-stage permutation and described

next.

Figure 4.6. Schedule of the stage permutation in (4.3)

To construct the implicit-stage permutation from a simple stage permutation, the encoding

given in Table 4.3 is used. Thus, the implicit-stage permutation representation of the

permutation in (4.3) is as the following:

6 − 7 − 1 − 11 − 2 − 8 − 12 − 9 − 3 − 4 − 13 − 14 − 10 − 5 − 15 (4.4)

Table 4.3. Encoding to construct implicit-stage permutation of a stage permutation

 1st assignment 2nd assignment … nth assignment

Stage 1 1 2 … 𝑛

Stage 2 𝑛 + 1 𝑛 + 2 … 2𝑛

Stage 3 2𝑛 + 1 2𝑛 + 2 … 3𝑛

⁞ ⁞ ⁞ … ⁞

Stage 𝒊 𝑛(𝑖 − 1) + 1 𝑛(𝑖 − 1) + 2 … 𝑛 × 𝑖

⁞ ⁞ ⁞ … ⁞

Stage 𝒔 𝑛(𝑠 − 1) + 1 𝑛(𝑠 − 1) + 2 … 𝑛 × 𝑠

36

The permutation in (4.4) is decoded as follows. 6 = 𝑛 + 1: from the table, 𝑛 + 1 is read as

the first assignment to stage 2, then 6 is decoded as: make a first assignment to stage 2.

Similarly, 7 is decoded as: make a second assignment to stage 2, and 1 as: make a first

assignment to stage 1. As can be realized, the representation encodes the cumulative number

of assignments to a stage.

4.2.4. Random solution generation

In this subsection, it is presented how to generate a random solution for a proportionate MPOS

problem using the implicit-stage permutation. Random solution generation is intentionally

described here, since it is part of the ACO algorithm proposed in this study.

Since the representation is a permutation of numbers from 1 to 𝑛 × 𝑠, the first thing that comes

to mind is to generate a random permutation for a random solution. However, that would result

in an infeasible permutation, because the cumulative numbering for a stage may not be

obeyed. That is, the numbers used to represent the total number of assignments to a distinct

stage should appear in order in a permutation. The number representing a second assignment

for a stage, for instance, should not appear in the permutation earlier from the number

representing the first assignment. For example, considering Problem 3, encoding 10 is not

allowed to precede encoding 7 in a permutation. Because, the information given by such a

permutation would be read as: assign a fifth job to stage 2, then assign a second job to stage

2. This renders the representation without function and makes it meaningless.

To correctly generate a random solution, first a random stage permutation should be generated

and then it should be converted to an implicit-stage permutation. Generating a random stage

permutation is straightforward: it would be a random permutation of 𝑠 stages, where each

stage repeats 𝑛 times. Once a random stage permutation is available, Table 4.3 can be used to

construct the respective implicit-stage representation.

4.3. ACO Algorithm

An ACO algorithm for the proportionate MPOS is proposed based on the novel solution

representation. Pseudocode of the algorithm is given in Algorithm 1.

37

Algorithm 1: ACO proposal for proportionate MPOS

ACO()

// Initialization

𝛼, 𝛽, 𝛾, 𝜌, 𝜅, 𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥;

𝐿 ← 𝑛 × 𝑠; %permutation length

𝜏𝜉𝜑 ← 0.5 𝜉 = 1,⋯ , 𝐿 𝜑 = 1,⋯ , 𝐿; %pheromone information

𝜂𝜉𝜑 ← 1; %heuristic information

while time limit not exceeded do

Solution Construction() {

output 𝑠𝑜𝑙𝑛𝑡 %solution(s) generated in iteration 𝑡

𝜏𝜉𝜑 ← ∑ [𝛾𝜉−𝑖 ⋅ 𝜏𝑖𝜑]
𝜉
𝑖=1 ;

// Global exploration

for 𝑖 = 1 until 𝜅 do

GenRandSoln(); %generate random solutions

ConstructSchedule(){

input RandSoln output Schedule, 𝐶𝑚𝑎𝑥

JobDesirabilityBasedSelectionFromEligibleJobSet();

 }

return 𝜅 random solutions

//Exploitation

for 𝑖 = 1 until 𝐿 do

𝑄𝜉𝜑 ← 𝜏𝜉𝜑
𝛼 ⋅ 𝜂𝜉𝜑

𝛽
; %quality function

𝜑 ← argmax𝑄𝜉𝑢 𝑢 ∈ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡_𝑠𝑡𝑎𝑔𝑒𝑠; %next solution component to

assign at the 𝜉𝑡ℎ order in the

permutation

𝜂𝜉𝜑 ← 𝑛𝑠𝑣 𝑛⁄ ; %Update dynamic heuristic information

return 𝐴𝑛𝑡𝑆𝑜𝑙𝑛; %one single solution

//Local exploration

ConstructSchedule(){

input 𝐴𝑛𝑡𝑆𝑜𝑙𝑛 output Schedule, 𝐶𝑚𝑎𝑥

RandomSelectionFromEligibleJobSet();

 }

 𝑠𝑜𝑙𝑛𝑡 ← argmin𝑓(𝑠𝑜𝑙𝑛) 𝑠𝑜𝑙𝑛 ∈ (𝐴𝑛𝑡𝑆𝑜𝑙𝑛 ∪ 𝜅 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠);

 }

if 𝑓(𝑠𝑜𝑙𝑛𝑡) = 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 then

break

if 𝑓(𝑠𝑜𝑙𝑛𝑡) ≤ 𝑓(𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡) then

updatePheromone();

updateGlobalBest();

return 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡;

38

The subroutines of the algorithm are described next under the following topics: Solution

construction, Local exploration, Pheromone information, Heuristic information, and

Pheromone update.

4.3.1. Solution construction

The random proportional rule given in (3.3) is the common rule used in constructing ant

solutions. It mainly aims to perform a search that is biased towards good regions of the

solution space. Otherwise, a totally random search would make no help in achieving favorable

solutions as it is typically unlikely to reach a good random solution in a combinatorial

problem. However, in this study, it is proposed to make a complete random search in solution

space instead of a pseudorandom one, in contrary to ACO algorithms in the literature. The

idea is a result of the good quality random solution potential that the proposed solution

representation offers.

The proposed implicit-stage permutation representation is based on stage permutation. For

any randomly generated stage permutation, it is highly unlikely to have all calls to a stage

placed consecutively. That is, a permutation of, for example, 2-2-2-2-2-3-3-3-3-3-1-1-1-1-1

for Problem 3 is nearly impossible to be generated randomly. Such a solution would schedule

repeatedly for the same stage causing great delays in the final schedule. Instead, any random

permutation would shuttle between stages generating moderate to good quality solutions. For

small instances, the quality would be good and for large scale ones it would be moderate.

Since the exploration of the solution space is proposed to be carried out by complete random

solutions, then the component-by-component solution construction is proposed to be

performed based only on full exploitation of previous search knowledge. The stochasticity of

the solution construction routine is, thus, only due to random solutions. The procedure is

formally defined as follows:

𝒰 = 𝜅 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ∪ 𝐴𝑛𝑡𝑠𝑜𝑙𝑛 (4.5)

39

where 𝒰 is the set of solutions generated in an iteration, 𝜅 is the number of complete random

solutions and 𝐴𝑛𝑡𝑠𝑜𝑙𝑛 is the single solution constructed component-by-component by one ant

according to

𝜑 = arg max
𝑘∈𝒩𝜉

𝜏𝜉𝑘
𝛼 𝜂𝜉𝑘

𝛽
 (4.6)

where 𝜑 is the next implicit-stage representation to be added to the partial solution. Definitions

for the pheromone and heuristic information are given in the upcoming subsections. The rule

in (4.6) is part of the solution construction rule that was proposed in literature for ACS (see

Section 3.7.1).

A total of 𝜅 + 1 solutions are generated in an iteration and among them, the solution(s) with

minimum makespan value are returned. This is formally shown as

𝑠𝑜𝑙𝑛𝑡 = arg min
𝑠𝑜𝑙𝑛∈𝒰

𝑓(𝑠𝑜𝑙𝑛) (4.7)

where 𝑠𝑜𝑙𝑛𝑡 is the solution(s) returned by the solution construction routine of iteration 𝑡. If

more than one solution has the minimum makespan value, then all those solutions are returned.

4.3.2. Local exploration

Workload balance between machines is an important element in scheduling a shop in general.

If there is a machine with workload much higher than the remaining machines in the shop, it

becomes decisive in the final makespan of any schedule. Because it would constitute a

bottleneck in the system. To avoid such a scenario, it is vital to balance the workload between

machines. In case of the proportionate MPOS, stage workloads should be balanced, and this

can be achieved by allocating sufficient number of parallel machines to each stage. Number

of machines can be determined according to processing time requirement of the stage as

follows:

𝑝𝑖
𝑚𝑖

=
𝑝𝑤
𝑚𝑤

⇒ 𝑚𝑖 = ⌈𝑝𝑖
𝑚𝑤

𝑝𝑤
⌉ ∀ 𝑖, 𝑤 ∈ 𝒮 (4.8)

40

Number of jobs to be processed in a stage is not taken into account in (4.8) since it is assumed

all jobs to be processed in all stages (see Section 4.1).

Due to the integrality requirement of 𝑚𝑖, the balance may or may not be a perfect balance.

When number of perfectly balanced stages in a proportionate MPOS increases, the problem

becomes increasingly non-trivial to solve. The reason is as the following: Perfectly balanced

stages complete their processing at close time points and require new jobs to be loaded almost

simultaneously. After a while, through the end sections of a schedule, one stage waits for the

other to process the remaining few jobs. This idle waiting times cause great delays in the final

schedule. One solution to this problem is to distribute the jobs among those stages in such a

way that they would require the same job at different time points. Thus, through the end of the

schedule, one would not wait for the other since, although they need new jobs at close time

points, this need would be for different jobs. To ensure this solution to take place in a schedule,

an approach named as local exploration is proposed.

As explained in Section 4.2.3, the schedule of a permutation is constructed by selecting jobs

according to job desirability. Once a job is assigned to a stage its desirability decreases by

one, making it less desirable in the next assignment. Thus, indirectly, an ordering between

jobs arises in selecting them. This order causes the perfectly balanced stages require

approximately the same set of jobs when they become available at close time points. To create

a distributed job assignment, as proposed above, it is proposed to select jobs randomly from

an eligible job set instead of the default job desirability-based selection. The random selection

rule leads to a family of schedules that a single permutation encodes. These schedules can be

viewed as the neighboring schedules, and the resulting effect of such an approach is similar

to a local search. Thus, the approach is named as local exploration.

Local exploration is applied only to the permutation constructed by the single ant, and not on

randomly generated permutations. This is analogous to applying local search to the solutions

constructed by the ants, common in the literature. However, different from a local search

application, generating schedule based on local exploration is not repeated in an iteration.

Instead, the favorable effect of this procedure is gained over several iterations. The reasoning

behind this approach is as follows: The ACO algorithm proposed here performs random

41

exploration to search the solution space, and the search knowledge is kept in the memory to

be used to build a single permutation that fully exploits this knowledge. Thus, the component-

by-component permutation construction of the single ant is a deterministic process (see

Equation (4.6)). If the random exploration phase does not produce better or at least same

quality solutions for several iterations, the memory would not be updated and the algorithm

would end up with the same solution each time, hence get stagnated. However, since it is

proposed to apply local exploration to the permutation constructed by the ant, the algorithm

continues to explore the neighborhood of the constructed permutation and continue to generate

different schedules at those times. This is why local exploration is not repeated in the same

iteration.

One consideration while applying local exploration to a permutation is that the schedule to be

created would change for different random numbers and the procedure is not deterministic,

cannot be repeated to get the same solution. Thus, instead of returning a permutation as the

best solution at the end of the algorithm, the schedule which gives this best solution is returned.

4.3.3. Pheromone information

Pheromone information, 𝜏𝜉𝜑, is defined in line with the definition of the solution

representation. Thus, 𝜏𝜉𝜑 is the desirability to place implicit-stage representation 𝜑 at the 𝜉th

position in the permutation.

Because of the nature of the proportionate MPOS, many different schedules can be

constructed with the same makespan value. This is due to the processing times of stages being

independent of the jobs. This feature of the problem can be observed in sample permutations

given in Figure 4.7 for Problem 3. The permutations are different but their makespan equals

to each other. This characteristic of the problem allows to make inferences about the position

of a number (an implicit stage representation) in the permutation. It can be easily recognized

that rather than the exact position, the approximate position of a number is important in a

permutation. This leads to use of weighted pheromone summation rule given in (3.23) to

evaluate the pheromone information (see Section 3.9). It is a useful rule if the positions of

numbers are similar in permutations of good schedules (Merkle & Middendorf, 2002). The

42

rule is only for evaluating the pheromone information; thus it is only used in solution

construction and not in pheromone update.

Figure 4.7. Different permutations with same makespan

4.3.4. Heuristic information

Heuristic information, 𝜂𝜉𝜑, is problem-specific knowledge that is supplied to algorithm to

help it converge to better quality solutions. 𝜂𝜉𝜑 is defined as the heuristic desirability to place

implicit-stage representation 𝜑 at the 𝜉th position in the permutation.

For the proportionate MPOS problem, a permutation that requires to schedule for the same

stage successively, having many consecutive calls to a stage, may lead to idle times in other

stages and cause a delay in the final schedule. Example of such a stage permutation for

Problem 3 is 2-2-2-2-2-3-3-3-3-3-1-1-1-1-1. Based on this knowledge, a heuristic information

called “Most Work Remaining Heuristic (MWRH)” is proposed for the problem. The heuristic

can be found in other scheduling applications in the literature. But it is adapted for the

proportionate MPOS for the first time and in the context of the new solution representation in

this study.

MWRH prioritize stages that have greater number of jobs still to be processed compared to

other stages. Then, 𝜂𝜉𝜑 is defined formally as follows

𝜂𝜉𝜑 =
𝑛𝑠𝜑

𝑛
 (4.9)

where 𝑠𝜑 is the corresponding stage referred by the implicit-stage representation 𝜑, and 𝑛𝑖 is

the number of remaining jobs still to be processed in stage 𝑖.

43

4.3.5. Pheromone update

Only the global-best solution(s) (GB) is used to make an update in pheromone trails. Among

𝜅 + 1 solutions constructed in an iteration, iteration-best solution(s) (IB) is compared with the

current GB, and update is performed if IB equals to GB or constitutes a new GB. In an

iteration, it is possible to have more than one solution with minimum IB value, coming from

the exploration part especially in early phases of the algorithm. However, the permutations of

such solutions are different. Thus, all those solutions are used to make the update.

Before adding pheromone to entries corresponding to GB solutions, pheromone evaporation

is carried out in all entries of the pheromone matrix. Pheromone update is performed in HCF

of Blum and Dorigo (2004) -explained in Section 3.8. Since more than one solution can be

used in the update, the procedure given in (3.16) should be used. However, here the solutions

have the same makespan value. Thus, the following adapted rule is applied in the update

𝜏𝜉𝜑 ⟵ (1 − 𝜌)𝜏𝜉𝜑 + 𝜌 ∑ 𝑢𝜋
𝜋∈𝐺𝐵

 where 𝑢𝜋 = {
1 if (𝜉, 𝜑) ∈ 𝜋
0 otherwise

 (4.10)

Minimum and maximum limits, 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥, are imposed on pheromone values as

proposed by Stützle and Hoos (1997). After the update is completed, any 𝜏𝜉𝜑 greater than

𝜏𝑚𝑎𝑥 is made equal to 𝜏𝑚𝑎𝑥, and similarly, any 𝜏𝜉𝜑 smaller than 𝜏𝑚𝑖𝑛 is made equal to 𝜏𝑚𝑖𝑛.

44

45

5. COMPUTATIONAL EXPERIMENTS

Computational tests are carried out to measure the performance of proposed ACO algorithm.

This chapter presents the test results, comparison with literature and finally analysis and

discussion of the results. Parameter estimation procedures and the testbed are explained first.

5.1. Parameter Estimation

Before performing computational tests, algorithm-specific parameters are estimated. To

determine the parameters, commonly used values in literature are referred or initial pilot

experiments are carried out. 𝛼 = 1 and 𝛽 = 2, since these values are widely accepted

favorable values (den Besten et al., 2000; Dorigo & Gambardella, 1997; Merkle &

Middendorf, 2002; Stützle & Hoos, 2000).

Initial pilot experiments revealed 𝛾 = 0.70 and 𝜌 = 0.30. The values are reasonable since 𝛾,

the weight parameter in pheromone summation rule, is preferred to be less than 1 to allow

positions close to position 𝜉 to have higher effect in value of 𝜏𝜉𝜑, see Equation (3.23).

Moreover, it is preferred to be greater than 0.50 to avoid further positions having a negligible

effect, but less than 0.90 to efficiently discriminate between the effects of close and far

positions. The reasoning is made clear with the numerical example in Table 5.1 that gives the

weight values for each position up to position 7 for which the pheromone value is evaluated.

Position 7 is chosen arbitrarily and only for representative purposes.

Table 5.1. Weight of the positions for different γ values

Position in permutation 1 2 3 4 5 6 7

Weight multiplier 𝛾6 𝛾5 𝛾4 𝛾3 𝛾2 𝛾1 𝛾0

𝛾 = 0.5 0.016 0.031 0.063 0.125 0.25 0.5 1

𝛾 = 0.7 0.118 0.168 0.240 0.343 0.49 0.7 1

𝛾 = 0.9 0.531 0.590 0.656 0.729 0.81 0.9 1

The estimated 0.30 value for 𝜌 is also reasonable considering the structure of the algorithm.

A low rate of evaporation allows the algorithm to accumulate the search knowledge. A higher

evaporation rate would be preferable in the classical solution construction approach, where

46

evaporation allows the algorithm to search for the solution region and prevents it to converge

to an early suboptimal solution. However, in the ACO algorithm proposed here, it is not the

evaporation rate that enables the search of the solution space, since the algorithm uses a

random exploration routine. Thus, a low evaporation rate is favorable to increase the

exploitation of accumulated experience. On the other hand, a too low evaporation would make

the solution construction process to concentrate more on initial solutions, and new knowledge

gained during the later phases of the algorithm would have no decisive effect (see Equation

(4.10)).

𝜅, number of random solutions in an iteration, is taken to be 10 analogous to the commonly

used 10 number of ants to construct solutions in an iteration.

Lastly, 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the remaining parameters to be estimated. Since HCF is used in

pheromone update, 𝜏𝜉𝜑 entries can take values between [0,1]. This allows fixing the minimum

and maximum limits to 0.001 and 0.999, respectively, as proposed by Blum and Dorigo

(2004).

5.2. Experimental Testbed

Only one benchmark testbed exists in the literature for the proportionate MPOS problem. This

testbed is used in this study to carry out the experimental tests. The testbed was created by

Matta (2009) and given in Appendix A. It includes 100 proportionate MPOS instances. The

instances were grouped according to the number of stages they have: 2-stage, 4-stage, 8-stage

and 16-stage are the four different stage numbers considered. Among them 2-stage problems

are regarded as small instances, 4-stage medium and 8 and 16-stage problems are large

instances. Each group have 25 instances in it. A single problem instance was constructed as

follows by assigning 3 features of the problem: 1) number of machines in each stage, 2)

processing times of each stage, 3) number of jobs in the shop. Number of machines in a stage

was randomly chosen from the set {2, … ,25} for 2, 4 and 8-stage problems, and from

{2, … ,10} for 16-stage problems. The stages of a problem were then sorted in descending

order of the number of machines they included. That is, stage 1 always has the greatest number

47

of machines, then comes stage 2, and so on. Processing times of stages were assigned so as to

allow a balanced shop (see Section 2.2). This was achieved by applying the approach given in

Equation (4.8). However, since the number of machines were determined first, revised form

of the equation was used to assign processing times to stages as in (5.1).

𝑝𝑖 = ⌊𝑚𝑖

𝑝1
𝑚1
⌋ ∀ 𝑖 ∈ 𝒮 (5.1)

 where 𝑝1 is the integer processing time for stage 1 chosen randomly from the set {5, … ,15}.

Number of jobs in the shop was taken to be equal to total number of machines across the

stages, 𝑛 = ∑ 𝑚𝑖𝑖 . This allowed a “square” shop and, along with the balanced property,

created difficult instances. Otherwise, if the number of jobs were too small, then the abundant

number of resources (machines) would make the problem trivial to solve. Number of jobs

ranges from 10 to 40 in 2-stage instances, from 28 to 90 in 4-stage instances, from 72 to 161

in 8-stage instances, and from 78 to 112 in 16-stage instances. Matta (2009) also assigned a

relative deadline for each problem instance, which indicated the time to complete all work.

This time is not taken into account in this study, since it may not be feasible to complete all

the work by this deadline and it is allowed, both here and in Matta (2009), for a shop to run

past time the deadline. Also, it was not referred in the performance analysis of neither Matta

(2009) nor the other researchers.

5.3. Lower Bounds

The solution quality is evaluated using a lower bound on makespan value for each problem

instance. Lower bound computations are based on the minimal requirement that must be

established whatever the schedule is. In the current problem, every stage is required to process

all jobs, which creates a lower bound of ⌈𝑛 𝑚𝑖⁄ ⌉ × 𝑝𝑖 on the time for a stage to complete its

workload. Considering all stages, the following overall lower bound is computed for each

problem instance.

max
𝑖∈𝒮

⌈𝑛 𝑚𝑖⁄ ⌉ × 𝑝𝑖 (5.2)

48

The computed lower bounds for the problem instances are given in 𝐿𝐵 columns in Table 5.2 -

Table 5.5 in the next subsection.

5.4. Test Results and Comparison

ACO algorithm is run 10 times for each instance and statistics are collected over these runs.

These statistics include, but not restricted to, average 𝐶𝑚𝑎𝑥, best 𝐶𝑚𝑎𝑥, average deviation from

lower bound and average execution time, given in Table 5.2 - Table 5.5 as Avg. 𝐶𝑚𝑎𝑥, Best

𝐶𝑚𝑎𝑥, Mean dev. (%) and Avg. Time, respectively. Time limit is used as the termination

criterion in a run, and it is set to 60 seconds for 2-stage and 4-stage problems, to 130 seconds

for 8-stage and 180 seconds for 16-stage ones.

The same testbed was used in several other research papers on scheduling MPOS, as

mentioned earlier in Section 1.2. TS algorithm proposed by Abdelmaguid et al. (2014) greatly

improved the results of Matta (2009) both in solution quality and computational time. This TS

algorithm results are referred for comparison in this study. Besides, a recent study by

Abdelmaguid (2020) proposed an SS/PR algorithm and improved the results further, not in

computational time but in solution quality in most instances. Thus, this SS/PR algorithm is

also used in performance evaluations of the current ACO algorithm.

The results of the experiments are given in Table 5.2 - Table 5.5 together with the results of

the TS and SS/PR for performance comparisons. The tables show Avg. 𝐶𝑚𝑎𝑥, Best 𝐶𝑚𝑎𝑥 and

Mean dev. (%) as makespan related statistics and Avg. Time for time performance of the

algorithms. Number of jobs (𝑛) and lower bound (𝐿𝐵) values are also given for each instance.

The asterisk symbol (*) is used to represent a provably optimal solution which is a makespan

value that equals the LB. A bold face is used to emphasis the best result among the compared

algorithms for the related instance.

Table 5.2 gives the results for 2-stage instances. SS/PR results are not included, since they

were not provided in the original paper and they were claimed to be same as the TS results.

ACO also produces exactly the same makespan value as the TS for each instance within

similar computational time. Same results had been also reported by Matta (2009). Indeed, it

49

is claimed in this study that the makespan values reported in Table 5.2 for 2-stage instances

are the optimum ones. The reasoning of this claim is elaborated in Section 5.6.

Table 5.2. Comparative results for makespan and computational time (sec.) for 2-stage

problem set

Problem 𝑛 LB

 TS ACO

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev.

%

Avg.

Time

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev.

%

Avg.

Time

S2-P1 22 30

30 30* 0.0 0.02

30 30* 0.0 0.03

S2-P2 32 10

11 11 10.0 0.05

11 11 10.0 0.03

S2-P3 24 18

18 18* 0.0 0.00

18 18* 0.0 0.03

S2-P4 20 16

18 18 12.5 0.02

18 18 12.5 0.02

S2-P5 29 27

31 31 14.8 0.04

31 31 14.8 0.02

S2-P6 30 12

12 12* 0.0 0.00

12 12* 0.0 0.04

S2-P7 28 27

30 30 11.1 0.02

30 30 11.1 0.03

S2-P8 10 16

16 16* 0.0 0.00

16 16* 0.0 0.01

S2-P9 30 22

22 22* 0.0 0.00

22 22* 0.0 0.03

S2-P10 16 28

28 28* 0.0 0.02

28 28* 0.0 0.02

S2-P11 40 14

14 14* 0.0 0.00

14 14* 0.0 0.04

S2-P12 34 36

39 39 8.3 0.04

39 39 8.3 0.03

S2-P13 12 26

26 26* 0.0 0.00

26 26* 0.0 0.02

S2-P14 14 24

24 24* 0.0 0.00

24 24* 0.0 0.02

S2-P15 32 30

33 33 10.0 0.05

33 33 10.0 0.03

S2-P16 34 30

33 33 10.0 0.04

33 33 10.0 0.03

S2-P17 15 18

18 18* 0.0 0.00

18 18* 0.0 0.02

S2-P18 13 22

22 22* 0.0 0.02

22 22* 0.0 0.02

S2-P19 16 26

26 26* 0.0 0.02

26 26* 0.0 0.02

S2-P20 12 12

12 12* 0.0 0.00

12 12* 0.0 0.02

S2-P21 22 28

32 32 14.3 0.05

32 32 14.3 0.03

S2-P22 25 22

22 22* 0.0 0.03

22 22* 0.0 0.03

S2-P23 22 18

21 21 16.7 0.04

21 21 16.7 0.02

S2-P24 12 18

18 18* 18.0 0.00

18 18* 0.0 0.02

S2-P25 21 10 10 10* 0.0 0.02 10 10* 0.0 0.03

Performance of the ACO algorithm in 4-stage instances is illustrated in Table 5.3, together

with the performances of the TS and SS/PR. Execution time statistics are not present under

SS/PR in the table because they were not supplied in the paper as instance-based. Rather the

overall average computational time was supplied, which is referred later in Table 5.6 for

comparison of overall performance of the algorithms. Instead, results of the TS algorithm are

50

included in this table to compare the execution time of the algorithms. It is reasonable to use

the instance-based time statistics of TS as a replacement for SS/PR, since the average

computational time for 4-stage instances is higher in SS/PR than TS (Table 5.6). As can be

observed from Table 5.3, ACO algorithm manages to reach the best makespan value in all

instances. It reaches 3 new upper bounds, where 2 of them are provably optimal solutions.

Average 𝐶𝑚𝑎𝑥 values are also the lowest in ACO, except for S4-P1, where the difference with

SS/PR is minimal and can be ignored. ACO is able to find up to 10% better makespan values

(S4-P6) in average. The algorithm produces these favorable results in much less time than

SS/PR. In 22 instances, it takes less than a second for ACO to reach the solution. The

exceptionally high computational time in instance S4-P1 is due to problem structure. This

issue is discussed further in Chapter 6.

Comparative results for 8-stage instances are given in Table 5.4. ACO reaches 4 new upper

bounds, where 3 of them are optimum solutions. There is a single instance, S8-P3, where

SS/PR had a lower makespan, also an optimum one. ACO produces lower makespan values

in average. The three instances where average 𝐶𝑚𝑎𝑥 is lower in SS/PR; S8-P3, S8-P8, S8-P24

had insignificantly small differences. Computational times required by ACO are much lower

than the TS (also SS/PR, since it reported higher average values, see Table 5.6), as much as a

98% decrease can be observed. ACO reaches the solution in less than a second in 10 instances,

and only in 5 instances the time is higher than 10 seconds.

Performance of the algorithm is particularly remarkable in the large-scale 16-stage instances,

as given in Table 5.5. It reaches 9 new upper bounds, where 6 of them are provably optimal

solutions. There are only 2 instances where the upper bounds provided by SS/PR are not

reached. ACO produces lower makespan values in average. Again, the time performance of

the algorithm is much better than TS. A decrease in computational time requirement is

especially important in these large-scale instances. A 98% decrease is observable in average

time.

Table 5.3. Comparative results for makespan and computational time (sec.) for 4-stage problem set

Problem 𝑛 LB

 TS SS/PR ACO

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

Time

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

Time

S4-P1 49 26

33.0 33 26.9 19.59

29.4 29 13.1

29.5 29 13.5 11.37

S4-P2 39 21

21.0 21* 0.0 0.00

21.0 21* 0.0

21.0 21* 0.0 0.07

S4-P3 63 48

54.0 51 12.5 3.79

51.0 51 6.3

50.4 48* 5.0 6.07

S4-P4 38 27

30.0 30 11.1 7.15

27.0 27* 0.0

27.0 27* 0.0 0.16

S4-P5 56 32

32.0 32* 0.0 0.00

32.0 32* 0.0

32.0 32* 0.0 0.12

S4-P6 60 25

28.1 28 12.4 12.39

28.0 28 12.0

25.0 25* 0.0 0.67

S4-P7 53 36

40.0 40 11.1 10.33

36.0 36* 0.0

36.0 36* 0.0 0.07

S4-P8 40 33

34.0 34 3.0 14.46

33.0 33* 0.0

33.0 33* 0.0 0.07

S4-P9 65 39

48.0 47 23.1 26.00

41.9 41 7.4

41.0 41 5.1 0.16

S4-P10 53 56

56.0 56* 0.0 0.00

56.0 56* 0.0

56.0 56* 0.0 0.09

S4-P11 55 40

40.6 40* 1.5 0.00

40.0 40* 0.0

40.0 40* 0.0 0.10

S4-P12 58 30

37.2 36 24.0 1.10

32.0 32 6.7

32.0 32 6.7 0.08

S4-P13 37 40

40.0 40* 0.0 0.00

40.0 40* 0.0

40.0 40* 0.0 0.06

S4-P14 42 45

48.0 48 6.7 16.80

45.0 45* 0.0

45.0 45* 0.0 0.08

S4-P15 28 36

36.0 36* 0.0 0.00

36.0 36* 0.0

36.0 36* 0.0 0.05

S4-P16 28 32

34.0 34 6.3 0.14

32.0 32* 0.0

32.0 32* 0.0 0.11

S4-P17 90 32

37.6 36 17.5 36.00

36.0 36 12.5

36.0 36 12.5 0.13

S4-P18 30 24

28.0 28 16.7 3.40

24.0 24* 0.0

24.0 24* 0.0 0.08

S4-P19 63 36

37.0 37 2.8 7.64

36.0 36* 0.0

36.0 36* 0.0 0.09

S4-P20 62 60

68.5 63 14.2 3.27

63.0 63 5.0

63.0 63 5.0 0.10

S4-P21 64 32

37.0 34 15.6 7.32

34.0 34 6.3

34.0 34 6.3 0.09

S4-P22 58 35

36.7 35* 4.9 0.30

35.0 35* 0.0

35.0 35* 0.0 0.08

S4-P23 61 21

24.6 24 17.1 5.14

24.0 24 14.3

22.0 22 4.8 1.09

S4-P24 54 44

46.6 46 5.9 17.72

44.0 44* 0.0

44.0 44* 0.0 0.10

S4-P25 34 21 23.5 22 11.9 8.79 21.0 21* 0.0 21.0 21* 0.0 0.17

5
1

Table 5.4. Comparative results for makespan and computational time (sec.) for 8-stage problem set

Problem 𝑛 LB

 TS SS/PR ACO

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

Time

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

Time

S8-P1 146 48

55.9 53 16.5 116.80

52.0 52 8.3

52.0 52 8.3 1.61

S8-P2 144 32

35.0 35 9.4 115.20

34.8 34 8.7

34.0 34 6.3 4.13

S8-P3 87 32

34.9 34 9.1 69.60

32.8 32* 2.5

33.0 33 3.1 5.04

S8-P4 161 108

120.3 120 11.4 128.80

111.3 111 3.1

109.2 108* 1.1 18.44

S8-P5 117 78

78.0 78* 0.0 0.00

78.0 78* 0.0

78.0 78* 0.0 0.56

S8-P6 99 63

64.3 64 2.1 79.20

63.0 63* 0.0

63.0 63* 0.0 0.48

S8-P7 84 36

36.3 36* 0.8 26.88

36.0 36* 0.0

36.0 36* 0.0 0.45

S8-P8 110 55

64.3 59 16.9 88.00

58.0 58 5.5

58.9 58 7.1 3.80

S8-P9 128 42

43.6 43 3.8 61.44

42.1 42* 0.2

42.0 42* 0.0 9.74

S8-P10 90 32

37.3 36 16.6 72.00

34.0 34 6.3

34.0 34 6.3 4.25

S8-P11 102 45

45.0 45* 0.0 0.00

45.0 45* 0.0

45.0 45* 0.0 0.47

S8-P12 92 60

62.8 61 4.7 73.60

60.2 60* 0.3

60.0 60* 0.0 3.86

S8-P13 101 35

38.1 36 8.9 80.80

36.0 36 2.9

35.5 35* 1.4 28.39

S8-P14 72 84

85.1 84* 1.3 28.80

84.0 84* 0.0

84.0 84* 0.0 0.34

S8-P15 100 60

61.9 61 3.2 32.00

60.0 60* 0.0

60.0 60* 0.0 3.04

S8-P16 81 70

76.2 76 8.9 64.80

75.0 75 7.1

74.6 73 6.6 14.39

S8-P17 100 60

60.2 60* 0.3 16.00

60.0 60* 0.0

60.0 60* 0.0 0.42

S8-P18 106 56

58.0 56* 3.6 25.44

56.0 56* 0.0

56.0 56* 0.0 0.58

S8-P19 108 75

78.0 78 4.0 86.40

77.1 75* 2.8

75.0 75* 0.0 7.33

S8-P20 105 49

49.9 49* 1.8 25.20

49.0 49* 0.0

49.0 49* 0.0 0.41

S8-P21 152 42

42.5 42* 1.2 36.48

42.0 42* 0.0

42.0 42* 0.0 1.19

S8-P22 104 30

30.0 30* 0.0 0.00

30.0 30* 0.0

30.0 30* 0.0 0.41

S8-P23 97 75

75.0 75* 0.0 0.00

75.0 75* 0.0

75.0 75* 0.0 0.47

S8-P24 104 35

38.0 36 8.6 83.20

36.0 36 2.9

36.1 36 3.1 35.10

S8-P25 101 35 37.2 36 6.3 80.80 36.0 36 2.9 35.5 35* 1.4 34.75

5
2

53

Overall performance of the algorithms is compared in Table 5.6. In all four statistics compared

in the table, ACO has the highest performance in all problem sizes. Its performance in reaching

optimal solutions is particularly prevalent, even in the large size 16-stage instances. The time

performance of the algorithm is very favorable, even a 10-fold decrease can be observed.

Although, SS/PR produced higher quality results than TS, it required more time to accomplish

this. However, it is quite the opposite for ACO. It manages to produce higher quality results

than both TS and SS/PR in much less time. Further runtime analysis of the algorithm is given

in Section 5.5.6.

5.5. Analysis of Algorithm and Results

This subsection introduces several further analyses about the proposed ACO algorithm to

analyze the dynamics of the algorithm and assess the strengths and weakness of it.

How problem size can be defined in MPOS problem and are size of the test problems realistic

or are they imaginary small cases not applicable in real life? These questions are dealt with in

Section 5.5.1. Contributions of algorithm elements are analyzed in Section 5.5.2. The

algorithm visits how many different solutions until it returns the best? Associated analysis is

reported as instance-based in Section 5.5.3. The algorithm’s stability across several runs on

the same instance is assessed in Section 5.5.4. The succeeding Section 5.5.5 compares the

configurations of the computers used in the algorithms referred in performance comparisons

in the previous section. Section 5.5.6 gives a graphical runtime analysis of the algorithms.

Lastly, statistical significance of algorithm results is evaluated in Section 5.5.7.

5.5.1. Problem size

Problem size is defined by the size of the input. In MPOS problem, input includes number of

stages (𝑠), number of jobs (𝑛), number of machines (𝑚𝑖) in each stage and processing times

of jobs in stages (𝑝𝑗𝑖). Hence, the problem size is defined as in (5.3).

Table 5.5. Comparative results for makespan and computational time (sec.) for 16-stage problem set

Problem 𝑛 LB

 TS SS/PR ACO

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

Time

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

𝐶𝑚𝑎𝑥

Best

𝐶𝑚𝑎𝑥

Mean

dev. %

Avg.

Time

S16-P1 88 135

144.6 144 7.1 140.80

144.0 144 6.7

141.0 141 4.4 58.98

S16-P2 102 99

100.0 99* 1.0 16.32

99.0 99* 0.0

99.0 99* 0.0 6.33

S16-P3 99 140

146.2 144 4.4 158.40

143.0 143 2.1

140.9 140* 0.6 43.13

S16-P4 90 104

108.2 106 4.0 144.00

107.3 107 3.2

107.2 107 3.1 22.65

S16-P5 96 100

108.2 104 8.2 153.60

104.0 104 4.0

104.0 104 4.0 3.72

S16-P6 104 143

147.1 145 2.9 166.40

144.0 144 0.7

143.2 143* 0.1 8.57

S16-P7 106 121

124.2 123 2.6 166.90

122.9 122 1.6

122.6 121* 1.3 56.75

S16-P8 81 63

63.0 63* 0.0 0.00

63.0 63* 0.0

63.0 63* 0.0 2.48

S16-P9 101 121

124.2 121* 2.6 129.28

121.9 121* 0.7

121.0 121* 0.0 3.56

S16-P10 96 120

122.2 121 1.8 153.60

121.0 121 0.8

120.0 120* 0.0 35.81

S16-P11 93 80

80.0 80* 0.0 0.00

80.0 80* 0.0

80.0 80* 0.0 5.58

S16-P12 110 154

166.7 166 8.2 176.00

164.0 163 6.5

162.0 162 5.2 65.34

S16-P13 112 180

188.1 183 4.5 180.00

181.8 180* 1.0

180.0 180* 0.0 16.94

S16-P14 97 84

88.0 88 4.8 155.20

86.0 85 2.4

85.0 84* 1.2 66.12

S16-P15 86 126

130.3 127 3.4 137.60

127.1 127 0.9

127.7 127 1.3 28.49

S16-P16 106 56

59.2 57 5.7 169.60

57.3 57 2.3

57.0 57 1.8 5.79

S16-P17 94 70

71.3 70* 1.9 45.12

70.3 70* 0.4

70.2 70* 0.3 48.13

S16-P18 102 110

115.0 112 4.5 163.20

110.2 110* 0.2

110.0 110* 0.0 6.11

S16-P19 80 112

124.6 117 11.3 128.00

115.9 115 3.5

117.9 117 5.3 51.56

S16-P20 84 90

94.2 92 4.7 134.40

92.0 92 2.2

92.0 92 2.2 1.86

S16-P21 78 88

94.3 90 7.2 124.80

90.0 90 2.3

92.3 92 4.9 33.72

S16-P22 79 60

62.2 60* 3.7 50.56

60.0 60* 0.0

60.0 60* 0.0 5.42

S16-P23 97 70

74.7 73 6.7 155.20

73.0 73 4.3

72.9 72 4.1 49.45

S16-P24 93 60

60.5 60* 0.8 14.88

60.0 60* 0.0

60.0 60* 0.0 6.08

S16-P25 96 120 122.6 121 2.2 153.60 121.0 121 0.8 120.1 120* 0.1 33.08

5
4

Table 5.6. Summary comparative statistics for the testbed

 2-stage 4-stage 8-stage 16-stage

TSϑ ACO

TSϑ SS/PRδ ACO

TSϑ SS/PRδ ACO

TSϑ SS/PRδ ACO

Average deviation of mean

𝐶𝑚𝑎𝑥 from LB (%)
4.31 4.31

9.80 3.30 2.35

5.56 2.10 1.79

4.17 1.9 1.6

Average deviation of best

𝐶𝑚𝑎𝑥 from LB (%)
4.31 4.31

7.63 3.18 2.07

3.41 1.79 1.46

2.08 1.6 1.33

No. of provably optimal

solutions (out of 25)
16 16

7 16 18

10 16 18

7 9 15

Average computational

time (sec.)
0.02 0.02

8.05 9.33 0.85

55.66 59.68 7.19

120.81 207.93 26.63

ϑ: TS proposed by Abdelmaguid et al. (2014)

δ: SS/PR proposed by Abdelmaguid (2020)

5
5

56

Problem size ∶= 𝑠 ∪ 𝑛 ∪𝑚𝑖 ∪ 𝑝𝑗𝑖 𝑗 ∈ 𝒥; 𝑖 ∈ 𝒮 (5.3)

However, if total number of machines across stages exceeds 𝑛, then the problem becomes

trivial to solve; if it is less than 𝑛, a bottleneck occurs in the problem. Thus, min(𝑛, ∑𝑚𝑖) can

be considered as a determinant in problem size. Time-complexity of the problem -defined by

an approximation algorithm- would be in order of the problem size elements.

Real-world cases of the MPOS problem at hand are exemplified in Section 1.1. It can be seen

that the size of the problems dealt with in this study -up to 16 stages with up to 10 machines

in a stage- is sufficiently large to enable the application of the current proposal to real-world

sized problems.

5.5.2. Contributions of algorithm elements

The proposed ACO has the following structural algorithm elements that are specifically

defined for the current proposal. Each element is either a completely new approach or an

adopted version of an existing approach.

Algorithm elements:

• Implicit-stage permutation representation

• Generation of complete random solutions (Random exploration)

• Pheromone information

• Heuristic information

• Local exploration

To assess the contribution of an element to overall performance of the algorithm, only that

element should be excluded or replaced by an alternative engine and remaining parts of the

algorithm should be kept the same, then the algorithm should be re-run. However, this is not

possible for any element except for the local exploration. Replacing the current solution

representation with operation-permutation representation, for example, would require the

pheromone and heuristic information to be re-defined for the new representation, as they are

tailored approaches for implicit-stage permutation representation. That means one or more

57

algorithm elements would be changed concurrently, which would prevent examining the exact

contribution of an element. Again, to evaluate the contribution of the random exploration

routine, instead can be used the commonly applied biased stochastic exploration where the

probability of a solution component depends on the value of quality function, 𝑄𝜉𝜑 = 𝜏𝜉𝜑
𝛼 𝜂𝜉𝜑

𝛽
.

Thus, the contributing effects of the pheromone and heuristic information would again be

present in the replacing exploration routine. That would again prevent examining the exact

contribution of an element.

Local exploration routine contributed significantly to improve the results for large-scale

instances, especially 16-stage ones. To observe the favorable contribution of the module, the

algorithm is run with and without local exploration routine for 8 and 16-stage instances.

Table 5.7 gives the percent change caused by local exploration in best makespan and average

makespan values of the 10 runs for 8-stage instances. Average computational times are also

included in the table. LE enabled the algorithm to reach 2 new upperbounds; one of them

being a provably optimal solution. However, there is an instance, S8-P10, where ACO without

LE reaches a lower upperbound. Average solution quality produced by the algorithm does not

necessarily improve with the inclusion of LE. Indeed, an apparent contribution of the LE

module to solution quality is not present in 8-stage instances. However, there are considerable

decreases in computational time caused by LE in certain instances. But the decreasing trend

in average time is not common in all instances. There are cases where the inclusion of the

module increases the computational time.

The changing effect of LE in solution quality is due to working principles of the module. LE

serves the following purpose in the algorithm. It generates schedules where jobs have a

distributed view of their respective locations in machines. If this has no role in decreasing

makespan of the problem instance at hand (either perfectly balanced stages are few in number

or the problem size is small and not being affected from the presence of those stages), then it

may serve no purpose. However, when the problem size becomes increasingly large, searching

for a better solution around a single permutation generates better schedules most of the time.

Also, the presence of perfectly balanced stages causes great delay if the problem size is large,

and LE routine does have a decreasing role in makespan (see Section 4.3.2).

58

Table 5.7. Contribution of local exploration routine in 8-stage instances

ACO (No LE) ACO + LE

 Percent

Improvement by

LE

LB

 Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Avg.

Time

 Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Avg.

Time

 Best

𝐶𝑚𝑎𝑥

(%)

Avg.

𝐶𝑚𝑎𝑥

(%)

S8-P1 48 52 52.5 29.60 52 52 1.61 -- 0.95

S8-P2 32 34 34 30.99 34 34 4.13 -- --

S8-P3 32 33 33 2.89 33 33 5.04 -- --

S8-P4 108 111 111 12.57 108* 109.2 18.44 2.70 1.62

S8-P5 78 78* 78 0.54 78* 78 0.56 -- --

S8-P6 63 63* 63 0.68 63* 63 0.48 -- --

S8-P7 36 36* 36 0.40 36* 36 0.45 -- --

S8-P8 55 58 59.1 50.29 58 58.9 3.80 -- 0.34

S8-P9 42 42* 42.1 40.11 42* 42 9.74 -- 0.24

S8-P10 32 33 33.9 13.90 34 34 4.25 -3.03 -0.29

S8-P11 45 45* 45 0.45 45* 45 0.47 -- --

S8-P12 60 60* 60 4.12 60* 60 3.86 -- --

S8-P13 35 35* 35.6 22.60 35* 35.5 28.39 -- 0.28

S8-P14 84 84* 84 1.33 84* 84 0.34 -- --

S8-P15 60 60* 60 22.71 60* 60 3.04 -- --

S8-P16 70 74 74.3 36.69 73 74.6 14.39 1.35 -0.40

S8-P17 60 60* 60 0.44 60* 60 0.42 -- --

S8-P18 56 56* 56 0.78 56* 56 0.58 -- --

S8-P19 75 75* 75 7.24 75* 75 7.33 -- --

S8-P20 49 49* 49 0.45 49* 49 0.41 -- --

S8-P21 42 42* 42 1.14 42* 42 1.19 -- --

S8-P22 30 30* 30 0.44 30* 30 0.41 -- --

S8-P23 75 75* 75 0.40 75* 75 0.47 -- --

S8-P24 35 36 36 17.38 36 36.1 35.10 -- -0.28

S8-P25 35 35* 35.3 34.40 35* 35.5 34.75 -- -0.57

The favorable contribution of the routine in large problem size can be observed in the results

of 16-stage instances given in Table 5.8. In 13 instances LE causes the algorithm to reach a

lower makespan, where 6 of them are provably optimal solutions. In 8 of these instances, even

a shorter time is required to reach the higher quality results, while the improvements in the

remaining instances are achieved at the expense of a higher computational time. 68% of the

time, ACO with LE produces decreased makespan values in average. There are some cases

59

where the same solution quality is obtained in a shorter time with LE. This means that the

algorithm without LE indeed reaches the permutation which would produce that solution.

However, since LE is not in action different schedules around the permutation are not searched

for, hence the computational time is increased. Again, there are cases where ACO with LE

reaches same quality solution but in increased time. This is explained by the problem structure.

If the problem instance at hand is a relatively simple one, then incorporating additional

modules in the algorithm leads to increased computational time.

Table 5.8. Contribution of local exploration routine in 16-stage instances

ACO (No LE) ACO + LE

 Percent

Improvement by

LE

LB

 Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Avg.

Time

 Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Avg.

Time

 Best

𝐶𝑚𝑎𝑥

(%)

Avg.

𝐶𝑚𝑎𝑥

(%)

S16-P1 135 150 150 0.84 141 141 58.98 6.00 6.00

S16-P2 99 99* 99 1.80 99* 99 6.33 -- --

S16-P3 140 145 146.8 9.66 140* 140.9 43.13 3.45 4.02

S16-P4 104 108 109.7 69.22 107 107.2 22.65 0.93 2.28

S16-P5 100 108 108.2 77.21 104 104 3.72 3.70 3.88

S16-P6 143 143* 145.2 10.45 143* 143.2 8.57 -- 1.38

S16-P7 121 123 123.3 75.47 121* 122.6 56.75 1.63 0.57

S16-P8 63 63* 63 2.14 63* 63 2.48 -- --

S16-P9 121 121* 121 27.32 121* 121 3.56 -- --

S16-P10 120 120* 121 49.66 120* 120 35.81 -- 0.83

S16-P11 80 80* 80 43.04 80* 80 5.58 -- --

S16-P12 154 167 167.9 8.84 162 162 65.34 2.99 3.51

S16-P13 180 189 189.9 18.81 180* 180 16.94 4.76 5.21

S16-P14 84 88 88 20.42 84* 85 66.12 4.55 3.41

S16-P15 126 126* 126 1.46 127 127.7 28.49 -0.79 -1.35

S16-P16 56 58 59.4 45.06 57 57 5.79 1.72 4.04

S16-P17 70 70* 70.2 81.71 70* 70.2 48.13 -- --

S16-P18 110 114 114.6 74.09 110* 110 6.11 3.51 4.01

S16-P19 112 117 117.9 3.80 117 117.9 51.56 -- --

S16-P20 90 94 94 48.58 92 92 1.86 2.13 2.13

S16-P21 88 91 92.2 59.65 92 92.3 33.72 -1.10 -0.11

S16-P22 60 60* 60.3 87.36 60* 60 5.42 -- 0.50

S16-P23 70 75 75.7 38.19 72 72.9 49.45 4.00 3.70

S16-P24 60 60* 60.4 65.99 60* 60 6.08 -- 0.66

S16-P25 120 121 121.8 81.16 120* 120.1 33.08 0.83 1.40

60

5.5.3. Number of objective function evaluations

One of the important analysis about an algorithm is its capability to reach the solution in a

reasonable number of solutions visited. It is already possible for most of the search algorithms

to reach a high-quality solution if it is given a sufficiently long time. It would visit millions of

solutions, even may return the optimum. There are convergence analyses of various

algorithms in the literature to prove that the algorithm would yield an optimal solution if it is

allowed enough time.

The strength of an algorithm is about searching the solution space -which is typically

extremely large- in an efficient manner to reach a high-quality solution. Otherwise, it would

return to a process of simple enumerating. To measure the performance of the algorithm in

this regard, it is common to report the number of objective function evaluations. It is an

indicator of how many solutions the algorithm has dealt with.

Table 5.9 gives the minimum, maximum and average number of objective function

evaluations in 10 runs for 2-stage instances. Remind that 11 solutions are visited in each

iteration of the algorithm. The table shows that at each 2-stage instance ACO finds the solution

-the optimum as explained in Section 5.6- in the first iteration. This makes 2-stage problem

size trivial to solve for the algorithm. Also, note that the 2-stage problem sizes of the testbed

may not be regarded as very small-sized since they include up to 40 number of jobs and 20

machines in a stage.

In 12 of 25 4-stage instances, ACO manages to find the solution in the first iteration in all the

10 runs, as given in Table 5.10. 8 of those solutions are provably optimal solutions. There are

only 2 instances where the maximum number of solutions visited exceeds 1000. Average

number of evaluations are very favorable even in these instances. Overall, the algorithm visits

minimal number of solutions to find the reported high-quality solutions. This feature of the

algorithm continues to exist even in large-sized 8 and 16-stage instances as can be observed

in Table 5.11 and Table 5.12, respectively. There are still 8 8-stage instances where ACO

finds the solution -the optimum in all 8- in the first iteration at every run. It was reported only

in 4 instances in TS (as the Avg. Time column in Table 5.4 implies). The maximum number

61

Table 5.9. Run statistics for 2-stage instances

Variation

 Number of objective

function evaluations

Problem LB

Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Standard

deviation

Coefficient

of variation

(CV)

Min Max Avg.

S2-P1 30 30* 30 0.00 0.00 11 11 11

S2-P2 10 11 11 0.00 0.00 11 11 11

S2-P3 18 18* 18 0.00 0.00 11 11 11

S2-P4 16 18 18 0.00 0.00 11 11 11

S2-P5 27 31 31 0.00 0.00 11 11 11

S2-P6 12 12* 12 0.00 0.00 11 11 11

S2-P7 27 30 30 0.00 0.00 11 11 11

S2-P8 16 16* 16 0.00 0.00 11 11 11

S2-P9 22 22* 22 0.00 0.00 11 11 11

S2-P10 28 28* 28 0.00 0.00 11 11 11

S2-P11 14 14* 14 0.00 0.00 11 11 11

S2-P12 36 39 39 0.00 0.00 11 11 11

S2-P13 26 26* 26 0.00 0.00 11 11 11

S2-P14 24 24* 24 0.00 0.00 11 11 11

S2-P15 30 33 33 0.00 0.00 11 11 11

S2-P16 30 33 33 0.00 0.00 11 11 11

S2-P17 18 18* 18 0.00 0.00 11 11 11

S2-P18 22 22* 22 0.00 0.00 11 11 11

S2-P19 26 26* 26 0.00 0.00 11 11 11

S2-P20 12 12* 12 0.00 0.00 11 11 11

S2-P21 28 32 32 0.00 0.00 11 11 11

S2-P22 22 22* 22 0.00 0.00 11 11 11

S2-P23 18 21 21 0.00 0.00 11 11 11

S2-P24 18 18* 18 0.00 0.00 11 11 11

S2-P25 10 10* 10 0.00 0.00 11 11 11

of objective function evaluations required in the remaining 8-stage instances are also

remarkable by not exceeding 3000 in any instance, with an average of at most 500s.

In most of 16-stage problem instances, there are runs where the algorithm finds the solution

at the first iteration. However, it is not the case for all runs in no instance. That is, ACO visits

15 to 610 number of solutions in average to find the solution. The numbers are quite low,

particularly for a MPOS problem of that size. The high performance of the algorithm in this

62

regard is due to very efficient representation of solution, intense use of problem knowledge

and high exploit of search knowledge.

Table 5.10. Run statistics for 4-stage instances

Variation

 Number of objective

function evaluations

Problem LB

Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Standard

deviation

Coefficient

of variation

(CV)

Min Max Avg.

S4-P1 26 29 29.5 0.53 1.79 55 6600 1786.4

S4-P2 21 21* 21.0 0.00 0.00 11 11 11

S4-P3 48 48* 50.4 1.26 2.51 11 2750 492.8

S4-P4 27 27* 27.0 0.00 0.00 11 286 67.1

S4-P5 32 32* 32.0 0.00 0.00 11 22 14.3

S4-P6 25 25* 25.0 0.00 0.00 11 209 48.4

S4-P7 36 36* 36.0 0.00 0.00 11 11 11

S4-P8 33 33* 33.0 0.00 0.00 11 11 11

S4-P9 39 41 41.0 0.00 0.00 11 121 36.3

S4-P10 56 56* 56.0 0.00 0.00 11 44 15.4

S4-P11 40 40* 40.0 0.00 0.00 11 22 13.2

S4-P12 30 32 32.0 0.00 0.00 11 11 11

S4-P13 40 40* 40.0 0.00 0.00 11 11 11

S4-P14 45 45* 45.0 0.00 0.00 11 66 18.7

S4-P15 36 36* 36.0 0.00 0.00 11 11 11

S4-P16 32 32* 32.0 0.00 0.00 11 44 20.9

S4-P17 32 36 36.0 0.00 0.00 11 11 11

S4-P18 24 24* 24.0 0.00 0.00 11 44 20.9

S4-P19 36 36* 36.0 0.00 0.00 11 11 11

S4-P20 60 63 63.0 0.00 0.00 11 11 11

S4-P21 32 34 34.0 0.00 0.00 11 11 11

S4-P22 35 35* 35.0 0.00 0.00 11 11 11

S4-P23 21 22 22.0 0.00 0.00 22 352 118.8

S4-P24 44 44* 44.0 0.00 0.00 11 11 11

S4-P25 21 21* 21.0 0.00 0.00 11 143 42.9

5.5.4. Robustness

It is vital for a solution approach to produce similar quality solutions across several runs on

the same instance. This makes the method more robust and trustworthy. To measure the

robustness of the algorithm, variation in the results of 10 runs are analyzed for each of 100

63

problem instances. Standard deviation (SD) and coefficient of variation (CV) are the two

measures of variation calculated in this study.

Table 5.11. Run statistics for 8-stage instances

Variation

 Number of objective

function evaluations

Problem LB

Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Standard

deviation

Coefficient

of variation

(CV)

Min Max Avg.

S8-P1 48 52 52.0 0.00 0.00 11 242 49.5

S8-P2 32 34 34.0 0.00 0.00 11 154 52.8

S8-P3 32 33 33.0 0.00 0.00 11 374 108.9

S8-P4 108 108* 109.2 1.55 1.42 11 737 115.5

S8-P5 78 78* 78.0 0.00 0.00 11 11 11

S8-P6 63 63* 63.0 0.00 0.00 11 11 11

S8-P7 36 36* 36.0 0.00 0.00 11 33 17.6

S8-P8 55 58 58.9 0.32 0.54 44 165 90.2

S8-P9 42 42* 42.0 0.00 0.00 11 88 29.7

S8-P10 32 34 34.0 0.00 0.00 11 55 25.3

S8-P11 45 45* 45.0 0.00 0.00 11 11 11

S8-P12 60 60* 60.0 0.00 0.00 11 594 205.7

S8-P13 35 35* 35.5 0.53 1.48 11 1749 397.1

S8-P14 84 84* 84.0 0.00 0.00 11 11 11

S8-P15 60 60* 60.0 0.00 0.00 11 1287 250.8

S8-P16 70 73 74.6 0.70 0.94 11 2365 563.2

S8-P17 60 60* 60.0 0.00 0.00 11 11 11

S8-P18 56 56* 56.0 0.00 0.00 11 22 12.1

S8-P19 75 75* 75.0 0.00 0.00 77 682 226.6

S8-P20 49 49* 49.0 0.00 0.00 11 22 13.2

S8-P21 42 42* 42.0 0.00 0.00 11 11 11

S8-P22 30 30* 30.0 0.00 0.00 11 11 11

S8-P23 75 75* 75.0 0.00 0.00 11 11 11

S8-P24 35 36 36.1 0.32 0.88 11 2002 954.8

S8-P25 35 35* 35.5 0.53 1.48 11 2233 795.3

SD measures the variance among the elements of a sample by considering the distance of each

element from the sample mean. It is in units of the mean and calculated by the following

formula.

64

𝑆𝐷 = √
∑ [(𝐶𝑚𝑎𝑥)𝑟𝑢𝑛 − 𝐴𝑣𝑔. 𝐶𝑚𝑎𝑥]2𝑟𝑢𝑛

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 − 1
 (5.4)

where the sample is the set of 10 runs carried out on every instance.

CV is the representation of the variation in a sample as a proportion, hence a unitless measure

of variation. It is used to compare the deviation in different samples with different means. It

is the ratio of the SD to the sample mean, expressed as a percentage. Then the formula for CV

is as follows:

𝐶𝑉 =
𝑆𝐷

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛
× 100 (5.5)

SD and CV calculations for the runs of 2-stage instances are given in Table 5.9. Since, the

proposed ACO gives the optimum at every run of those instances, the SD and CV values are

all zero. For 4-stage instances, SD and CV are given in Table 5.10. ACO algorithm shows a

robust behavior and produces same results in almost all 4-stage problems, as there are only 2

instances where SD is greater than zero. However, the deviation is minimal in these 2 instances

with a CV of less than 3%.

The robust behavior of the algorithm continues, even more strongly, in the larger 8 and 16-

stage instances, as can be observed in Table 5.11 and Table 5.12, respectively. In only 6 of 8-

stage instances SD is greater than zero: a variation of below 2% at most. In 16-stage ones,

there is only a single instance where the variation goes beyond 1%, which is already minimal.

5.5.5. Comparison of computer configurations

When the computational times required by different algorithms are compared for a process,

configurations of the computers should be assessed to be fair. It should be differentiated

whether the speed superiority of the algorithm is due to effectiveness of subroutines or it is a

benefit derived by a high-performance computer.

65

Table 5.12. Run statistics for 16-stage instances

Variation

 Number of objective

function evaluations

Problem LB

Best

𝐶𝑚𝑎𝑥

Avg.

𝐶𝑚𝑎𝑥

Standard

deviation

Coefficient

of variation

(CV)

Min Max Avg.

S16-P1 135 141 141.0 0.00 0.00 11 2398 610.5

S16-P2 99 99* 99.0 0.00 0.00 11 66 40.7

S16-P3 140 140* 140.9 1.29 0.91 33 704 347.6

S16-P4 104 107 107.2 0.63 0.59 55 1804 430.1

S16-P5 100 104 104.0 0.00 0.00 11 44 18.7

S16-P6 143 143* 143.2 0.63 0.44 11 55 29.7

S16-P7 121 121* 122.6 0.97 0.79 11 693 184.8

S16-P8 63 63* 63.0 0.00 0.00 11 99 40.7

S16-P9 121 121* 121.0 0.00 0.00 11 187 45.1

S16-P10 120 120* 120.0 0.00 0.00 11 891 226.6

S16-P11 80 80* 80.0 0.00 0.00 33 275 133.1

S16-P12 154 162 162.0 0.00 0.00 132 682 333.3

S16-P13 180 180* 180.0 0.00 0.00 33 198 90.2

S16-P14 84 84* 85.0 0.94 1.11 44 913 282.7

S16-P15 126 127 127.7 0.48 0.38 11 616 214.5

S16-P16 56 57 57.0 0.00 0.00 11 44 20.9

S16-P17 70 70* 70.2 0.42 0.60 55 1683 485.1

S16-P18 110 110* 110.0 0.00 0.00 11 88 45.1

S16-P19 112 117 117.9 0.32 0.27 110 825 390.5

S16-P20 90 92 92.0 0.00 0.00 11 33 15.4

S16-P21 88 92 92.3 0.48 0.52 11 1760 293.7

S16-P22 60 60* 60.0 0.00 0.00 11 1089 201.3

S16-P23 70 72 72.9 0.57 0.78 11 814 180.4

S16-P24 60 60* 60.0 0.00 0.00 11 187 69.3

S16-P25 120 120* 120.1 0.32 0.26 11 484 137.5

The solution quality produced by the proposed ACO was compared with the state-of-the-art

SS/PR algorithm on the problem testbed, as reported in Section 5.4. SS/PR research reported

only the overall stage-based average time statistics, not the instance-based ones. These overall

results implied that SS/PR required higher computational times than the previous best

algorithm, TS. ACO produced better quality results than SS/PR in much less computational

time.

66

Table 5.13 gives the configurations of the computers used in TS and SS/PR research as well

as the one used in this study for ACO. The table shows that although the computer used to

program ACO in this study had a lower quality compared to the one used for SS/PR, the

algorithm managed to find higher quality results in less computational time. Thus, it is not the

computer qualifications that lead to rapid and high-quality results of this study but rather it is

the good performance of the proposed algorithm.

Table 5.13. Computer configurations of algorithm runs

 Programming

language
Processor

CPU

speed

RAM / Cache

size

Operating

system

TS Visual C# 2010 Intel Core 2 Duo 1.83 GHz 2 MB Cache --

SS/PR C++ Intel Core i7 2.7 GHz 8 GB RAM Windows 10

ACO MATLAB 9.3 Intel Core i5 2.40 GHz 8 GB RAM Windows 10

5.5.6. Runtime analysis

Figure 5.1 shows a graphical interpretation of how runtime changes with increasing problem

size for ACO and other algorithms referred in this study: GA, TS and SS/PR. As the figure

reveals out, SS/PR shows nearly an exponential increase in computational time and reported

runtimes as high as the initial GA algorithm for large instances. The graph indicates that it

may pass further GA if the problem size increases beyond 16 stages. Although it produced the

highest quality results in the literature, it is certain that the runtime performance of the SS/PR

algorithm should be enhanced. The ACO proposed in this study, on the other hand, shows a

very favorable trend in its runtime increase as the problem size gets larger, as can be observed

in the figure. The increase in runtime is almost linear with a very gentle slope.

5.5.7. Statistical significance of results

To assess whether the differences between the results of ACO and TS, and ACO and SS/PR

are statistically significant, statistical analysis is conducted and presented in this subsection.

67

Figure 5.1. Change in computational time with increasing problem size

Paired t-test is the common statistical test used to measure whether the mean difference in

paired values of two samples are significantly different. However, one important assumption

of paired t-test is that the differences are required to follow a normal distribution. That is, the

instance-based differences between Avg. 𝐶𝑚𝑎𝑥 results of ACO and TS, and between ACO and

SS/PR should follow a normal distribution to apply the parametric paired t-test. The instance-

based Avg. 𝐶𝑚𝑎𝑥 differences are given in Table 5.14 for ACO-TS and ACO-SS/PR. Note that,

each of the 3 problem sizes (4, 8 and 16-stage problems) are considered as separate samples

and the statistical tests are repeated for each, both for TS and SS/PR, which makes a total of

6 samples to carry out tests on. 2-stage problem set is not considered since all the three

algorithms reported the same results for this set.

To observe whether each of the 6 samples of differences in Table 5.14 comes from a normally

distributed population, normal probability plots are generated as given in Figure 5.2, Figure

5.3 and Figure 5.4. Neither of the plots suggest a normal distribution of the data points as they

do not form a linear pattern. In ACO-TS plots, although the centers are more linear, tails show

considerable departures from the fitted line. ACO-SS/PR plots, on the other hand, are

68

completely far from resembling a normal distribution. To further test the normality assumption

of the populations, Kolmogorov-Smirnov test is also carried out.

Table 5.14. Differences between Avg. Cmax results of the algorithms

Problem

Avg. 𝐶𝑚𝑎𝑥

Problem

Avg. 𝐶𝑚𝑎𝑥

Problem

Avg. 𝐶𝑚𝑎𝑥

Differences Differences Differences

ACO −

TS

ACO −

SS/PR

 ACO −

TS

ACO −

SS/PR

 ACO −

TS

ACO −

SS/PR

S4-P1 -3.5 0.1 S8-P1 -3.9 0 S16-P1 -3.6 -3

S4-P2 0 0 S8-P2 -1 -0.8 S16-P2 -1 0

S4-P3 -3.6 -0.6 S8-P3 -1.9 0.2 S16-P3 -5.3 -2.1

S4-P4 -3 0 S8-P4 -11.1 -2.1 S16-P4 -1 -0.1

S4-P5 0 0 S8-P5 0 0 S16-P5 -4.2 0

S4-P6 -3.1 -3 S8-P6 -1.3 0 S16-P6 -3.9 -0.8

S4-P7 -4 0 S8-P7 -0.3 0 S16-P7 -1.6 -0.3

S4-P8 -1 0 S8-P8 -5.4 0.9 S16-P8 0 0

S4-P9 -7 -0.9 S8-P9 -1.6 -0.1 S16-P9 -3.2 -0.9

S4-P10 0 0 S8-P10 -3.3 0 S16-P10 -2.2 -1

S4-P11 -0.6 0 S8-P11 0 0 S16-P11 0 0

S4-P12 -5.2 0 S8-P12 -2.8 -0.2 S16-P12 -4.7 -2

S4-P13 0 0 S8-P13 -2.6 -0.5 S16-P13 -8.1 -1.8

S4-P14 -3 0 S8-P14 -1.1 0 S16-P14 -3 -1

S4-P15 0 0 S8-P15 -1.9 0 S16-P15 -2.6 0.6

S4-P16 -2 0 S8-P16 -1.6 -0.4 S16-P16 -2.2 -0.3

S4-P17 -1.6 0 S8-P17 -0.2 0 S16-P17 -1.1 -0.1

S4-P18 -4 0 S8-P18 -2 0 S16-P18 -5 -0.2

S4-P19 -1 0 S8-P19 -3 -2.1 S16-P19 -6.7 2

S4-P20 -5.5 0 S8-P20 -0.9 0 S16-P20 -2.2 0

S4-P21 -3 0 S8-P21 -0.5 0 S16-P21 -2 2.3

S4-P22 -1.7 0 S8-P22 0 0 S16-P22 -2.2 0

S4-P23 -2.6 -2 S8-P23 0 0 S16-P23 -1.8 -0.1

S4-P24 -2.6 0 S8-P24 -1.9 0.1 S16-P24 -0.5 0

S4-P25 -2.5 0 S8-P25 -1.7 -0.5 S16-P25 -2.5 -0.9

69

ACO - TS

ACO – SS/PR

Figure 5.2. Normal probability plots of Avg. Cmax differences for 4-stage instances

70

Kolmogorov-Smirnov test is a nonparametric test used to decide whether a sample is from a

population with a hypothesized distribution. Here, it is hypothesized that the sample of

differences is coming from a population with standard normal distribution. Thus,

Kolmogorov-Smirnov tests the null hypothesis that the data follows a standard normal

distribution against the alternative one. The test is applied for the 6 samples separately and the

p-values are given in Table 5.15. p-values lead to strongly reject the null hypothesis at any

significance level and conclude that the samples cannot be assumed to come from normally

distributed populations.

Table 5.15. p-values of the samples of differences for Kolmogorov-Smirnov test

Sample p-value

4-stage ACO – TS 1.96 × 10−9

4-stage ACO – SS/PR 2.30 × 10−5

8-stage ACO – TS 3.06 × 10−7

8-stage ACO – SS/PR 0.000909

16-stage ACO – TS 2.04 × 10−12

16-stage ACO – SS/PR 0.000937

Since normal distribution cannot be assumed for difference populations, non-parametric

Wilcoxon Signed Rank test is used instead of the paired t-test to test whether the mean

differences are significantly different from zero. It tests the null hypothesis that the median

difference is zero against the alternative that it is positive.

p-values of the 6 samples for the Wilcoxon Signed Rank tests are given in Table 5.16. The p-

values indicate that ACO produces significantly different results than TS at any significance

level in all problem sizes. The difference between average 𝐶𝑚𝑎𝑥 results of ACO and SS/PR is

significant at 13% level for 4-stage problem size and at 1% level for 8-stage size. The levels

of significance are high for these problem sizes and it may be regarded as the performance of

ACO over SS/PR is insignificant. However, that is wrong because there remained little room

for improvement, particularly in 4-stage instances, by the implementation of the SS/PR

algorithm on the testbed. Despite, ACO manages to produce higher quality results where

71

ACO - TS

ACO – SS/PR

Figure 5.3. Normal probability plots of Avg. Cmax differences for 8-stage instances

72

ACO - TS

ACO – SS/PR

Figure 5.4. Normal probability plots of Avg. Cmax differences for 16-stage instances

73

possible or reaches the previously reported provably optimal solution or the best result (may

already be an optimum).

For the large-scale 16-stage instances, ACO produces significantly better average 𝐶𝑚𝑎𝑥 results

than SS/PR at 5% significance level.

Table 5.16. p-values of the samples of differences for Wilcoxon Signed Rank test

Sample p-value

4-stage ACO – TS 8.77 × 10−5

4-stage ACO – SS/PR 0.1250

8-stage ACO – TS 5.92 × 10−5

8-stage ACO – SS/PR 0.095703

16-stage ACO – TS 2.67 × 10−5

16-stage ACO – SS/PR 0.040481

5.6. Optimality of Results for 2-Stage Instances

Provably optimal solutions are reached in 16 of the 25 2-stage instances. It is claimed in this

study that the Best 𝐶𝑚𝑎𝑥 values reported for the remaining 9 instances are also the optimal

solutions. The reasoning behind this claim is explained in this subsection. It is a rational

explanation based on making the minimum possible deviation from the LB, with no technical

proofs provided. Also, the other three algorithms in the literature, GA, TS, SS/PR, reported

the same solutions for 2-stage instances, which supports the optimality claim here.

Statement is presented on a sample instance, S2-P16, while the same reasoning holds for all

remaining 2-stage instances. Shop parameters for the problem is given in Table 5.17.

Table 5.17. Shop parameters for sample instance

S2-P16

𝑛 = 34

 𝑚𝑖 𝑝𝑖

Stage 1 19 13

Stage 2 15 10

74

There are 34 jobs to be processed in each of two stages. There are 19 machines in the first

stage. Since the number of jobs is greater than the number of machines in the stage, at least

two time-blocks are required to complete processing of all jobs in stage 1. A block is defined

as a 𝑝𝑖-length time period in stage 𝑖. This creates a LB of 26 time units for stage 1 to complete

processing of all jobs. Similarly, 3 blocks are required in stage 2, where there are 15 machines

to process 34 jobs. Thus, LB for stage 2 is 30, leading to an overall LB of 30 time units for

the shop. Schematic representation of the blocks and stage LBs are shown in Figure 5.5. The

blocks for stage 1 are B1-1 and B1-2, and for stage 2 are B2-1, B2-2 and B2-3.

Figure 5.5. Representation of blocks and stage LBs for S2-P16

For a schedule to have an optimal makespan, it should either equal to problem LB for the

makespan or, if not possible, should have a minimum deviation from the LB. Considering

problem S2-P16, 34 jobs should be processed in one of the three blocks in stage 2 for the

problem to have a makespan equal to LB 30. This requires processing at least 4 jobs in block

B2-2. However, since a job can be processed on a single machine at a time, these 4 jobs cannot

be processed in neither of the blocks in stage 1 once assigned to block B2-2 in stage 2. Thus,

one of the two blocks in stage 1 should be shifted to prevent B2-2 from intersecting with both

two blocks of stage 1. There is 4 units of slack time in stage 1 that allow shifting the blocks

by at most 4 time units and still preserving the problem LB of 30. However, to remove the

intersection of B2-2 with both of stage 1 blocks, at least 7 units shift to right in B1-2 is

required. This creates a 3 time unit increase in the makespan. Alternatively, instead of B1-2,

75

B2-2 can be shifted to right by 3 time units. In either case, the resulting makespan is 33, which

is the optimum since an increase of less than 3 units above the LB is not possible. The optimal

makespan value of 33 is consistent with the algorithm results. Two optimal placements of time

blocks are shown in Figure 5.6 and Figure 5.7.

Figure 5.6. Placement of time blocks in the optimal schedule for S2-P16

Figure 5.7. Alternative placement of time blocks in the optimal schedule for S2-P16

76

77

6. DISCUSSION

The proposed ACO algorithm showed a remarkable performance in reaching high solution

quality within favorably short computational times. This performance is explained by 5 four

factors in the algorithm. First, the ACO algorithm is based on a method of solution

representation that encodes critical solution knowledge very efficiently. Second, it

incorporates a random exploration routine which simplifies and speeds up the search in the

solution space, contributing to low execution time. Third, during solution construction it

exploits the accumulated search knowledge by selecting only the solution component that

maximizes the quality function. Fourth, the algorithm also exploits the problem knowledge by

applying Most Work Remaining Heuristic as the heuristic information. Lastly, the proposed

local exploration routine allows both for searching different schedules around a permutation

and for a distributed view of jobs in the final schedule to decrease the makespan.

The novel solution representation efficiently encodes schedule-specific knowledge and

provides significant help in memory-based algorithms. The representation is mainly based on

stage selection and job identities are not referred to. Thus, it is also adoptable to problem types

other than MPOS where job identity is not a determinant of the value of the objective function.

This is mostly the case in proportionate environments. Proportionate versions of the flow shop,

job shop and open shop are three possible shop environments that the novel solution

representation can be used. However, while making a job assignment to a stage, eligible job

set should be formed by taking into account the machine route in flow shop and the job route

in job shop.

Having the proportionate property in a MPOS has advantageous effects on scheduling the

shop to minimize the makespan. It decreases the problem size as the number of inputs for

processing times reduces significantly. Also, it enables multiple schedules with optimum

makespan value. However, multiple schedules also exist for every makespan value. This may

cause an algorithm to spend numerous iterations generating different schedules, with no

improvement in makespan though. Thus, it also poses a challenge for an algorithm.

78

Deviation from LB is used as a performance evaluation point in assessing results of the tests

carried out. It should be noted that these deviations underestimate the true performance of the

algorithm if the optimal makespan is far from the LB. This can be exemplified by the apparent

4% average deviation in 2-stage instances, where, however, the results are shown to be optimal

and the actual mean deviation is zero. Thus, the actual deviations for 4, 8 and 16-stage problem

sets are very likely to be lower than what is reported.

The high performance of the algorithm in large problem size is particularly important since

various solution approaches proposed in the literature showed poor performance in large-sized

MPOS problems (Goldansaz et al., 2013; Matta, 2009). ACO managed to reach significantly

higher solution quality in large-scale instances than the state-of-the-art SS/PR algorithm for

the current testbed. It accomplished this in very favorable computational times, however

SS/PR required considerable improvement in terms of computational time in large problem

size.

One element that affects the performance of proposed ACO algorithm is the problem structure.

Workload balance between stages is part of the structure and as the balance gets close to

perfect equality the problem gets increasingly harder. A problem with many perfectly

balanced stages would have little room for change in the optimal schedule. In this type of

problems, the solution landscape has very narrow valleys for the optimal solution, while there

are wide valleys of suboptimal solutions in the landscape. The shape of the landscape makes

it hard for the algorithm to reach the narrow optimal region and easily get stuck in large

suboptimal areas. This behavior explains why the algorithm manages to find a provably

optimal solution for S16-P8 within 3 seconds while it finds a solution for S16-P1 with 4.4%

deviation in 59 seconds.

The procedure described to explain the optimality of results for 2-stage instances is not limited

to current problem set and it can be applied for every 2-stage proportionate MPOS problem to

find an optimal solution. It is an easy and straightforward method based on constructing an

optimal placement of time blocks in stages where the problem LB is preserved as the

makespan or the minimum possible expansion is chosen.

79

7. CONCLUSION

Proportionate multiprocessor open shop is considered in this study. It is a shop environment

appears widely in medical testing facilities, emergency units of hospitals, auto repair shops

and inspection and quality control operations. Despite it is common appearance in service and

production sectors, scheduling of this shop model has gained little attention in the literature.

This study proposes an Ant Colony Optimization algorithm to find a schedule for the shop to

minimize the makespan. The algorithm is based on a novel very efficient way of solution

representation that is also adoptable to proportionate flow shop, job shop and open shop

problems. It is a permutation representation with ease of use and straightforward encoding and

decoding procedures, making it useful for many heuristic and metaheuristic applications. The

proposed ACO algorithm uses complete random solutions to search the solution space as part

of its solution construction phase. The random search, which is untypical of an ACO

algorithm, is allowed by moderate-good solution quality the representation supplies and is

enabled a speed up in the algorithm. Solution construction also includes exploit of problem

knowledge by implementing Most Work Remaining Heuristic and of accumulated search

knowledge by selecting only the component that maximizes the quality function. As a

supporting subroutine in the algorithm, a procedure named local exploration is proposed

which enables assessment of different schedules around a single permutation. The routine also

provides a distributed view of job placements in the final schedule which is shown to increase

solution quality in instances with many perfectly balanced stages. Local exploration proposal

in the algorithm is shown to be useful particularly in large-size instances.

The proposed ACO algorithm is tested on 100 benchmark instances -ranging from small to

large in size- from the literature and the performance of the algorithm is compared with results

of current state-of-the-art scatter search and path relinking algorithm. ACO is shown to

outperform the SS/PR algorithm in terms of both solution quality and computational time. Its

performance in particularly large-size instances is remarkable with significantly decreased

makespan values reached in much less runtime. The relatively low difference in solution

quality between ACO and SS/PR in 4 and 8-stage problem size is due to little room left for

improvement in these instances. Still ACO manages to find reduced objective function values

80

where possible. The algorithm’s performance in finding provably optimal solutions is also

better than SS/PR.

ACO produced solutions with 2.51% average deviation from the lower bound in 100

instances, while the ratio was reported as 2.90% for SS/PR. Out of 100 instances, 67 provably

optimal solutions were reached with ACO, while it was 57 for SS/PR. ACO required an

average of 8.67 seconds computational time, which is 87% lower than the 69.24 seconds

computational time in SS/PR. It should be noted that ACO managed such a significant

decrease in computational time with a technically less capable computer used in this study.

Overall, the proposed ACO algorithm proves to be an efficient near-optimal solver for the

proportionate multiprocessor open shop. There are several lines of research for future studies.

First, the proposed solution representation can be adopted for other possible shop

environments. Even can be used to improve the results of the previous research on present

shop model. Its implementation in different search algorithms should also be investigated.

Second, for the present benchmark testbed, optimal solutions for small and medium sized

instances should be produced even if it takes extended periods of time for a MIP solver. This

would enable a more correct evaluation of the algorithm performance. Third, the performance

of the proposed ACO should be further assessed on different problem sets. Fourth, the

algorithm should be revised for the solution of the more general multiprocessor open shop

where the proportionate property is not assumed. Finally, the procedure described in this study

for the optimality of 2-stage results should be re-stated as a formal polynomial-time optimum

solution algorithm for 2-stage proportionate multiprocessor open shop.

81

REFERENCES

Abdelmaguid, T. F. (2014). A hybrid PSO-TS approach for proportionate multiprocessor open

shop scheduling. 2014 IEEE International Conference on Industrial Engineering and

Engineering Management, 107-111, 9-12 Dec., Bandar Sunway, Malaysia.

Abdelmaguid, T. F. (2020). Scatter search with path relinking for multiprocessor open shop

scheduling. Computers & Industrial Engineering, 141, 106292.

Abdelmaguid, T. F., Shalaby, M. A., & Awwad, M. A. (2014). A tabu search approach for

proportionate multiprocessor open shop scheduling. Computational Optimization and

Applications, 58(1), 187-203.

Adak, Z., Arıoğlu Akan, M. Ö., & Bulkan, S. (2020). Multiprocessor open shop problem:

literature review and future directions. Journal of Combinatorial Optimization, 40(2), 547-

569.

Azadeh, A., Hosseinabadi Farahani, M., Torabzadeh, S., & Baghersad, M. (2014). Scheduling

prioritized patients in emergency department laboratories. Computer Methods and Programs

in Biomedicine, 117(2), 61-70.

Bai, D., Zhang, Z.-H., & Zhang, Q. (2016). Flexible open shop scheduling problem to

minimize makespan. Computers & Operations Research, 67, 207-215.

Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2), 1161-1172.

Chen, B., & Strusevich, V. A. (1993). Worst-case analysis of heuristics for open shops with

parallel machines. European Journal of Operational Research, 70(3), 379-390.

den Besten, M., Stützle, T., & Dorigo, M. (2000). Ant Colony Optimization for the Total

Weighted Tardiness Problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.

J. Merelo, & H.-P. Schwefel (eds), Parallel Problem Solving from Nature PPSN VI. PPSN

2000. Lecture Notes in Computer Science, Vol. 1917, 611-620, Springer, Berlin, Heidelberg.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD Thesis, Politecnico

di Milano, Milan.

82

Dorigo, M., & Caro, G. D. (1999). Ant colony optimization: a new meta-heuristic.

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406), 1470-1477, 6-9 July, Washington, DC, USA.

Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant Algorithms for Discrete

Optimization. Artificial Life, 5(2), 137-172.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1(1), 53-66.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The Ant System: An autocatalytic optimizing

process. Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 26(1), 29-41.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge.

Dorigo, M., & Stützle, T. (2019). Ant Colony Optimization: Overview and Recent Advances.

In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 311-351). Springer

International Publishing.

Goldansaz, S. M., Jolai, F., & Zahedi Anaraki, A. H. (2013). A hybrid imperialist competitive

algorithm for minimizing makespan in a multi-processor open shop. Applied Mathematical

Modelling, 37(23), 9603-9616.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and

Approximation in Deterministic Sequencing and Scheduling: a Survey. In P. L. Hammer, E.

L. Johnson, & B. H. Korte (Eds.), Annals of Discrete Mathematics (Vol. 5, pp. 287-326).

Elsevier.

Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem

with multi-purpose machines. Operations-Research-Spektrum, 15(4), 205-215.

83

Jansen, K., & Sviridenko, M. I. (2000). Polynomial Time Approximation Schemes for the

Multiprocessor Open and Flow Shop Scheduling Problem. In H. Reichel & S. Tison (eds),

STACS 2000. Lecture Notes in Computer Science, Vol. 1770, 455-465, Springer, Berlin,

Heidelberg.

Józefowska, J., & Weglarz, J. (2006). Perspectives in modern project scheduling (Vol. 92).

Springer US.

Kononov, A., & Sviridenko, M. (2002). A linear time approximation scheme for makespan

minimization in an open shop with release dates. Operations Research Letters, 30(4), 276-

280.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1985). The Traveling

Salesman Problem. John Wiley & Sons, Chichester, UK.

Lawler, E. L., Luby, M. G., & Vazirani, V. V. (1982). Scheduling open shops with parallel

machines. Operations Research Letters, 1(4), 161-164.

Liaw, C.-F. (2000). A hybrid genetic algorithm for the open shop scheduling problem.

European Journal of Operational Research, 124(1), 28-42.

Mao, W. (1995). Multi-operation multi-machine scheduling. In B. Hertzberger & G. Serazzi

(eds), High-Performance Computing and Networking. HPCN-Europe 1995. Lecture Notes in

Computer Science, Vol. 919, 33-38, Springer, Berlin, Heidelberg.

Matta, M. E. (2009). A genetic algorithm for the proportionate multiprocessor open shop.

Computers & Operations Research, 36(9), 2601-2618.

Matta, M. E., & Elmaghraby, S. E. (2010). Polynomial time algorithms for two special classes

of the proportionate multiprocessor open shop. European Journal of Operational Research,

201(3), 720-728.

Merkle, D., & Middendorf, M. (2000). An Ant Algorithm with a New Pheromone Evaluation

Rule for Total Tardiness Problems. In S. Cagnoni (eds), Real-World Applications of

Evolutionary Computing. EvoWorkshops 2000. Lecture Notes in Computer Science, Vol.

1803, 290-299, Springer, Berlin, Heidelberg.

84

Merkle, D., & Middendorf, M. (2002). Ant Colony Optimization with the Relative Pheromone

Evaluation Method. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, & G. R. Raidl (eds),

Applications of Evolutionary Computing. EvoWorkshops 2002. Lecture Notes in Computer

Science, Vol. 2279, 325-333, Springer, Berlin, Heidelberg.

Merkle, D., Middendorf, M., & Schmeck, H. (2000). Pheromone evaluation in Ant Colony

Optimization. 2000 26th Annual Conference of the IEEE Industrial Electronics Society.

IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and

Instrumentation. 21st Century Technologies, Vol. 4, 2726-2731, Nagoya, Japan.

Naderi, B., Fatemi Ghomi, S. M. T., Aminnayeri, M., & Zandieh, M. (2011). Scheduling open

shops with parallel machines to minimize total completion time. Journal of Computational

and Applied Mathematics, 235(5), 1275-1287.

Queyranne, M., & Sviridenko, M. (2002). Approximation algorithms for shop scheduling

problems with minsum objective. Journal of Scheduling, 5(4), 287-305.

Schuurman, P., & Woeginger, G. J. (1999). Approximation algorithms for the multiprocessor

open shop scheduling problem. Operations Research Letters, 24(4), 157-163.

Sevastianov, S. V., & Woeginger, G. J. (2001). Linear time approximation scheme for the

multiprocessor open shop problem. Discrete Applied Mathematics, 114(1), 273-288.

Stützle, T., & Hoos, H. H. (1997). MAX-MIN Ant System and local search for the traveling

salesman problem. Proceedings of 1997 IEEE International Conference on Evolutionary

Computation (ICEC '97), 309-314, Indianapolis, IN, USA.

Stützle, T., & Hoos, H. H. (2000). MAX–MIN Ant System. Future Generation Computer

Systems, 16(8), 889-914.

Wang, Y. T., & Chou, F. D. (2017). A Bi-criterion Simulated Annealing Method to Solve

Four-Stage Multiprocessor Open Shops with Dynamic Job Release Time. 2017 International

Conference on Computing Intelligence and Information System (CIIS), 13-17, Nanjing.

85

Zhang, J., Wang, L., & Xing, L. (2019). Large-scale medical examination scheduling

technology based on intelligent optimization. Journal of Combinatorial Optimization, 37(1),

385-404.

86

87

APPENDIX

88

89

APPENDIX A. Test Problems

This appendix presents test problems used in this study. The testbed is a benchmark testbed

and was constructed by Matta (2009). It includes 100 problems: 25 for each of 2, 4, 8, and 16

stage cases. A problem is defined by four features: 1) Number of stages, 2) Number of jobs,

3) Number of machines in each stage, and 4) Processing time of each stage.

APPENDIX A-Table 1. 2-stage problems

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S2-P1 2 22 Stage 1 15 15

 Stage 2 7 7

S2-P2 2 32 Stage 1 20 5

 Stage 2 12 3

S2-P3 2 24 Stage 1 18 9

 Stage 2 6 3

S2-P4 2 20 Stage 1 12 8

 Stage 2 8 5

S2-P5 2 29 Stage 1 17 13

 Stage 2 12 9

S2-P6 2 30 Stage 1 20 6

 Stage 2 10 3

S2-P7 2 28 Stage 1 16 12

 Stage 2 12 9

S2-P8 2 10 Stage 1 5 8

 Stage 2 5 8

S2-P9 2 30 Stage 1 15 11

 Stage 2 15 11

S2-P10 2 16 Stage 1 13 14

 Stage 2 3 3

S2-P11 2 40 Stage 1 20 7

 Stage 2 20 7

S2-P12 2 34 Stage 1 19 15

 Stage 2 15 12

90

APPENDIX A-Table 1. 2-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S2-P13 2 12 Stage 1 8 13

 Stage 2 4 6

S2-P14 2 14 Stage 1 10 12

 Stage 2 4 4

S2-P15 2 32 Stage 1 20 15

 Stage 2 12 9

S2-P16 2 34 Stage 1 19 13

 Stage 2 15 10

S2-P17 2 15 Stage 1 12 9

 Stage 2 3 2

S2-P18 2 13 Stage 1 10 11

 Stage 2 3 3

S2-P19 2 16 Stage 1 13 13

 Stage 2 3 3

S2-P20 2 12 Stage 1 8 6

 Stage 2 4 3

S2-P21 2 22 Stage 1 13 14

 Stage 2 9 9

S2-P22 2 25 Stage 1 18 11

 Stage 2 7 4

S2-P23 2 22 Stage 1 13 9

 Stage 2 9 6

S2-P24 2 12 Stage 1 8 9

 Stage 2 4 4

S2-P25 2 21 Stage 1 15 5

 Stage 2 6 2

91

APPENDIX A-Table 2. 4-stage problems

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S4-P1 4 49 Stage 1 25 13

 Stage 2 10 5

 Stage 3 10 5

 Stage 4 4 2

S4-P2 4 39 Stage 1 19 7

 Stage 2 11 4

 Stage 3 6 2

 Stage 4 3 1

S4-P3 4 63 Stage 1 22 15

 Stage 2 18 12

 Stage 3 14 9

 Stage 4 9 6

S4-P4 4 38 Stage 1 14 9

 Stage 2 14 9

 Stage 3 5 3

 Stage 4 5 3

S4-P5 4 56 Stage 1 17 8

 Stage 2 13 6

 Stage 3 13 6

 Stage 4 13 6

S4-P6 4 60 Stage 1 20 7

 Stage 2 20 7

 Stage 3 14 5

 Stage 4 6 2

S4-P7 4 53 Stage 1 17 9

 Stage 2 17 9

 Stage 3 11 6

 Stage 4 8 4

S4-P8 4 40 Stage 1 19 11

 Stage 2 10 6

 Stage 3 7 4

 Stage 4 4 2

S4-P9 4 65 Stage 1 24 13

 Stage 2 24 13

 Stage 3 13 7

 Stage 4 4 2

92

APPENDIX A-Table 2. 4-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S4-P10 4 53 Stage 1 17 14

 Stage 2 12 10

 Stage 3 12 10

 Stage 4 12 10

S4-P11 4 55 Stage 1 22 13

 Stage 2 17 10

 Stage 3 12 7

 Stage 4 4 2

S4-P12 4 58 Stage 1 22 10

 Stage 2 22 10

 Stage 3 9 4

 Stage 4 5 2

S4-P13 4 37 Stage 1 14 12

 Stage 2 9 8

 Stage 3 9 8

 Stage 4 5 4

S4-P14 4 42 Stage 1 17 15

 Stage 2 13 11

 Stage 3 8 7

 Stage 4 4 3

S4-P15 4 28 Stage 1 12 12

 Stage 2 8 8

 Stage 3 4 4

 Stage 4 4 4

S4-P16 4 56 Stage 1 21 10

 Stage 2 17 8

 Stage 3 13 6

 Stage 4 5 2

S4-P17 4 90 Stage 1 24 8

 Stage 2 24 8

 Stage 3 24 8

 Stage 4 18 6

S4-P18 4 30 Stage 1 15 12

 Stage 2 5 4

 Stage 3 5 4

 Stage 4 5 4

93

APPENDIX A-Table 2. 4-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S4-P19 4 63 Stage 1 20 9

 Stage 2 20 9

 Stage 3 16 7

 Stage 4 7 3

S4-P20 4 62 Stage 1 18 15

 Stage 2 18 15

 Stage 3 13 11

 Stage 4 13 11

S4-P21 4 64 Stage 1 18 8

 Stage 2 18 8

 Stage 3 14 6

 Stage 4 14 6

S4-P22 4 58 Stage 1 20 10

 Stage 2 14 7

 Stage 3 14 7

 Stage 4 10 5

S4-P23 4 61 Stage 1 23 7

 Stage 2 17 5

 Stage 3 17 5

 Stage 4 4 1

S4-P24 4 54 Stage 1 17 11

 Stage 2 17 11

 Stage 3 12 8

 Stage 4 8 5

S4-P25 4 34 Stage 1 14 7

 Stage 2 8 4

 Stage 3 8 4

 Stage 4 4 2

94

APPENDIX A-Table 3. 8-stage problems

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S8-P1 8 146 Stage 1 25 8

 Stage 2 25 8

 Stage 3 25 8

 Stage 4 25 8

 Stage 5 13 4

 Stage 6 13 4

 Stage 7 10 3

 Stage 8 10 3

S8-P2 8 144 Stage 1 24 5

 Stage 2 24 5

 Stage 3 24 5

 Stage 4 19 4

 Stage 5 19 4

 Stage 6 19 4

 Stage 7 10 2

 Stage 8 5 1

S8-P3 8 87 Stage 1 18 6

 Stage 2 18 6

 Stage 3 12 4

 Stage 4 12 4

 Stage 5 12 4

 Stage 6 9 3

 Stage 7 3 1

 Stage 8 3 1

S8-P4 8 161 Stage 1 24 15

 Stage 2 24 15

 Stage 3 24 15

 Stage 4 24 15

 Stage 5 20 12

 Stage 6 20 12

 Stage 7 15 9

 Stage 8 10 6

S8-P5 8 117 Stage 1 23 13

 Stage 2 23 13

 Stage 3 18 10

 Stage 4 18 10

 Stage 5 13 7

 Stage 6 9 5

 Stage 7 9 5

 Stage 8 4 2

95

APPENDIX A-Table 3. 8-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S8-P6 8 99 Stage 1 22 12

 Stage 2 16 9

 Stage 3 16 9

 Stage 4 16 9

 Stage 5 13 7

 Stage 6 8 4

 Stage 7 4 2

 Stage 8 4 2

S8-P7 8 84 Stage 1 25 9

 Stage 2 19 7

 Stage 3 19 7

 Stage 4 9 3

 Stage 5 3 1

 Stage 6 3 1

 Stage 7 3 1

 Stage 8 3 1

S8-P8 8 110 Stage 1 23 11

 Stage 2 23 11

 Stage 3 23 11

 Stage 4 13 6

 Stage 5 9 4

 Stage 6 9 4

 Stage 7 5 2

 Stage 8 5 2

S8-P9 8 128 Stage 1 24 7

 Stage 2 24 7

 Stage 3 24 7

 Stage 4 17 5

 Stage 5 14 4

 Stage 6 14 4

 Stage 7 7 2

 Stage 8 4 1

S8-P10 8 90 Stage 1 18 6

 Stage 2 18 6

 Stage 3 12 4

 Stage 4 12 4

 Stage 5 9 3

 Stage 6 9 3

 Stage 7 9 3

 Stage 8 3 1

96

APPENDIX A-Table 3. 8-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S8-P11 8 102 Stage 1 25 9

 Stage 2 19 7

 Stage 3 19 7

 Stage 4 9 3

 Stage 5 9 3

 Stage 6 9 3

 Stage 7 9 3

 Stage 8 3 1

S8-P12 8 92 Stage 1 17 10

 Stage 2 12 7

 Stage 3 12 7

 Stage 4 12 7

 Stage 5 12 7

 Stage 6 9 5

 Stage 7 9 5

 Stage 8 9 5

S8-P13 8 101 Stage 1 22 7

 Stage 2 22 7

 Stage 3 16 5

 Stage 4 13 4

 Stage 5 13 4

 Stage 6 7 2

 Stage 7 4 1

 Stage 8 4 1

S8-P14 8 72 Stage 1 14 14

 Stage 2 14 14

 Stage 3 14 14

 Stage 4 9 9

 Stage 5 9 9

 Stage 6 4 4

 Stage 7 4 4

 Stage 8 4 4

S8-P15 8 100 Stage 1 23 12

 Stage 2 23 12

 Stage 3 17 9

 Stage 4 17 9

 Stage 5 8 4

 Stage 6 4 2

 Stage 7 4 2

 Stage 8 4 2

97

APPENDIX A-Table 3. 8-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S8-P16 8 81 Stage 1 17 14

 Stage 2 17 14

 Stage 3 12 10

 Stage 4 9 7

 Stage 5 9 7

 Stage 6 9 7

 Stage 7 4 3

 Stage 8 4 3

S8-P17 8 100 Stage 1 24 12

 Stage 2 14 7

 Stage 3 14 7

 Stage 4 14 7

 Stage 5 14 7

 Stage 6 8 4

 Stage 7 8 4

 Stage 8 4 2

S8-P18 8 106 Stage 1 22 10

 Stage 2 22 10

 Stage 3 17 8

 Stage 4 13 6

 Stage 5 13 6

 Stage 6 9 4

 Stage 7 5 2

 Stage 8 5 2

S8-P19 8 108 Stage 1 24 15

 Stage 2 19 12

 Stage 3 15 9

 Stage 4 15 9

 Stage 5 10 6

 Stage 6 10 6

 Stage 7 10 6

 Stage 8 5 3

S8-P20 8 105 Stage 1 22 9

 Stage 2 17 7

 Stage 3 17 7

 Stage 4 17 7

 Stage 5 8 3

 Stage 6 8 3

 Stage 7 8 3

 Stage 8 8 3

98

APPENDIX A-Table 3. 8-stage problems (continued)

Problem ID
Number

of stages

Number

of jobs
Number of machines

Processing

time

S8-P21 8 152 Stage 1 25 6

 Stage 2 25 6

 Stage 3 25 6

 Stage 4 25 6

 Stage 5 17 4

 Stage 6 13 3

 Stage 7 13 3

 Stage 8 9 2

S8-P22 8 104 Stage 1 25 6

 Stage 2 17 4

 Stage 3 13 3

 Stage 4 13 3

 Stage 5 13 3

 Stage 6 9 2

 Stage 7 9 2

 Stage 8 5 1

S8-P23 8 97 Stage 1 24 15

 Stage 2 19 12

 Stage 3 19 12

 Stage 4 10 6

 Stage 5 10 6

 Stage 6 5 3

 Stage 7 5 3

 Stage 8 5 3

S8-P24 8 104 Stage 1 22 7

 Stage 2 16 5

 Stage 3 16 5

 Stage 4 16 5

 Stage 5 13 4

 Stage 6 13 4

 Stage 7 4 1

 Stage 8 4 1

S8-P25 8 101 Stage 1 22 7

 Stage 2 22 7

 Stage 3 16 5

 Stage 4 13 4

 Stage 5 13 4

 Stage 6 7 2

 Stage 7 4 1

 Stage 8 4 1

99

APPENDIX A-Table 4. 16-stage problems

Problem

ID:

S16-P1

Number of stages: 16 Number of jobs: 88

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 8 8 6 6 6 6 6 6 4 4 4 4 4 4 2

Processing

Time
15 12 12 9 9 9 9 9 9 6 6 6 6 6 6 3

Problem

ID:

S16-P2

Number of stages: 16 Number of jobs: 102

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 10 8 6 6 6 6 4 4 4 4 2 2

Processing

Time
9 9 9 9 9 7 5 5 5 5 3 3 3 3 1 1

Problem

ID:

S16-P3

Number of stages: 16 Number of jobs: 99

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 8 8 8 8 8 5 5 5 4 4 2 2 2

Processing

Time
13 13 13 10 10 10 10 10 7 7 7 5 5 2 2 2

Problem

ID:

S16-P4

Number of stages: 16 Number of jobs: 90

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 7 7 7 7 6 6 4 4 4 2 2 2 2

Processing

Time
11 11 11 8 8 8 8 6 6 4 4 4 2 2 2 2

Problem

ID:

S16-P5

Number of stages: 16 Number of jobs: 96

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 8 8 6 4 4 4 4 4 2 2 2

Processing

Time
10 10 10 10 8 8 8 6 4 4 4 4 4 2 2 2

100

APPENDIX A-Table 4. 16-stage problems (continued)

Problem

ID:

S16-P6

Number of stages: 16 Number of jobs: 104

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 8 6 6 6 6 6 4 4 4 4 2

Processing

Time
13 13 13 13 10 10 7 7 7 7 7 5 5 5 5 2

Problem

ID:

S16-P7

Number of stages: 16 Number of jobs: 106

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 8 8 8 8 6 4 4 4 4 2 2

Processing

Time
11 11 11 11 8 8 8 8 8 6 4 4 4 4 2 2

Problem

ID:

S16-P8

Number of stages: 16 Number of jobs: 81

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 7 7 6 6 6 3 3 3 2 2 2 2 2

Processing

Time
7 7 7 5 5 4 4 4 2 2 2 1 1 1 1 1

Problem

ID:

S16-P9

Number of stages: 16 Number of jobs: 101

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 10 10 7 6 6 4 4 4 4 2 2 2

Processing

Time
11 11 11 11 11 11 8 6 6 4 4 4 4 2 2 2

Problem

ID:

S16-P10

Number of stages: 16 Number of jobs: 96

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 8 8 8 8 8 6 6 6 4 4 4 2 2 2

Processing

Time
12 12 9 9 9 9 9 7 7 7 4 4 4 2 2 2

101

APPENDIX A-Table 4. 16-stage problems (continued)

Problem

ID:

S16-P11

Number of stages: 16 Number of jobs: 93

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 8 8 5 5 5 4 2 2 2 2 2

Processing

Time
8 8 8 8 6 6 6 4 4 4 3 1 1 1 1 1

Problem

ID:

S16-P12

Number of stages: 16 Number of jobs: 110

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 8 8 8 8 8 8 8 8 6 4 2 2 2

Processing

Time
14 14 14 11 11 11 11 11 11 11 11 8 5 2 2 2

Problem

ID:

S16-P13

Number of stages: 16 Number of jobs: 112

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 10 10 8 8 8 6 6 6 4 2 2 2

Processing

Time
15 15 15 15 15 15 12 12 12 9 9 9 6 3 3 3

Problem

ID:

S16-P14

Number of stages: 16 Number of jobs: 97

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 10 7 7 5 5 5 4 4 4 2 2 2

Processing

Time
8 8 8 8 8 6 6 4 4 4 3 3 3 1 1 1

Problem

ID:

S16-P15

Number of stages: 16 Number of jobs: 86

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 4 4 4 4 4 4 4 4 2 2 2

Processing

Time
14 14 14 14 11 5 5 5 5 5 5 5 5 2 2 2

102

APPENDIX A-Table 4. 16-stage problems (continued)

Problem

ID:

S16-P16

Number of stages: 16 Number of jobs: 106

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 8 8 8 8 6 6 6 2 2 2 2

Processing

Time
5 5 5 5 4 4 4 4 4 3 3 3 1 1 1 1

Problem

ID:

S16-P17

Number of stages: 16 Number of jobs: 94

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 10 6 6 6 6 6 3 3 2 2 2 2

Processing

Time
7 7 7 7 7 4 4 4 4 4 2 2 1 1 1 1

Problem

ID:

S16-P18

Number of stages: 16 Number of jobs: 102

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 10 8 8 6 6 6 6 4 2 2 2 2

Processing

Time
10 10 10 10 10 8 8 6 6 6 6 4 2 2 2 2

Problem

ID:

S16-P19

Number of stages: 16 Number of jobs: 80

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 8 6 6 6 4 4 4 2 2 2 2 2 2

Processing

Time
14 14 14 11 8 8 8 5 5 5 2 2 2 2 2 2

Problem

ID:

S16-P20

Number of stages: 16 Number of jobs: 84

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 8 8 8 8 6 6 6 2 2 2 2 2 2 2

Processing

Time
10 10 8 8 8 8 6 6 6 2 2 2 2 2 2 2

103

APPENDIX A-Table 4. 16-stage problems (continued)

Problem

ID:

S16-P21

Number of stages: 16 Number of jobs: 78

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 10 8 4 4 4 4 2 2 2 2 2 2 2

Processing

Time
11 11 11 11 8 4 4 4 4 2 2 2 2 2 2 2

Problem

ID:

S16-P22

Number of stages: 16 Number of jobs: 79

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 7 7 6 6 6 6 3 3 3 3 3 2 2 2

Processing

Time
7 7 5 5 4 4 4 4 2 2 2 2 2 1 1 1

Problem

ID:

S16-P23

Number of stages: 16 Number of jobs: 97

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 7 7 7 7 7 6 6 6 3 3 3 3 2

Processing

Time
7 7 7 5 5 5 5 5 4 4 4 2 2 2 2 1

Problem

ID:

S16-P24

Number of stages: 16 Number of jobs: 93

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 10 7 7 7 7 5 5 5 4 4 4 4 2 2

Processing

Time
6 6 6 4 4 4 4 3 3 3 2 2 2 2 1 1

Problem

ID:

S16-P25

Number of stages: 16 Number of jobs: 96

Stages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of

Machines
10 10 8 8 8 8 8 6 6 6 4 4 4 2 2 2

Processing

Time
12 12 9 9 9 9 9 7 7 7 4 4 4 2 2 2

104

CURRICULUM VITAE

Education

PhD Marmara University | Industrial Engineering | 2017-2020

Master’s Boğaziçi University | Computational Science and Engineering | 2008-2011

Bachelor’s Marmara University | Industrial Engineering | 2003-2007

Employment

Research Assistant Gebze Technical University | 2017-

Systems Analyst Marmara University | Information Technology Dept. | 2012-2014

Scientific research

Adak, Z., Arıoğlu Akan, M.Ö. & Bulkan, S. Multiprocessor open shop problem: literature

review and future directions. Journal of Combinatorial Optimization, 40, 547–569, 2020.

Adak, Z. & Demiriz, A. Hybridization of population-based ant colony optimization via data

mining. Intelligent Data Analysis, 24(2), 291-307, 2020.

Borekci, O.S. & Adak, Z. Yakın kıyı dalga hesaplamaları için ağsız sayısal modelleme. 7.

Kıyı Mühendisliği Sempozyumu, November, 2011, Trabzon.

