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Abstract
Network interdiction problems by upgading critical edges/nodes have important appli-
cations to reduce the infectivity of the COVID-19. A network of confirmed cases can
be described as a rooted tree that has a weight of infectious intensity for each edge.
Upgrading edges (nodes) can reduce the infectious intensity with contacts by taking
prevention measures such as disinfection (treating the confirmed cases, isolating their
close contacts or vaccinating the uninfected people). We take the sum of root-leaf
distance on a rooted tree as the whole infectious intensity of the tree. Hence, we con-
sider the sum of root-leaf distance interdiction problem by upgrading edges/nodes on
trees (SDIPT-UE/N). The problem (SDIPT-UE) aims to minimize the sum of root-leaf
distance by reducing the weights of some critical edges such that the upgrade cost
under some measurement is upper-bounded by a given value. Different from the prob-
lem (SDIPT-UE), the problem (SDIPT-UN) aims to upgrade a set of critical nodes
to reduce the weights of the edges adjacent to the nodes. The relevant minimum cost
problem (MCSDIPT-UE/N) aims to minimize the upgrade cost on the premise that
the sum of root-leaf distance is upper-bounded by a given value. We develop dif-
ferent norms to measure the upgrade cost. Under weighted Hamming distance, we
show the problems (SDIPT-UE/N) and (MCSDIPT-UE/N) are NP-hard by showing
the equivalence of the two problems and the 0–1 knapsack problem. Under weighted
l1 norm, we solve the problems (SDIPT-UE) and (MCSDIPT-UE) in O(n) time by
transforimg them into continuous knapsack problems. We propose two linear time
greedy algorithms to solve the problem (SDIPT-UE) under unit Hamming distance
and the problem (SDIPT-UN) with unit cost, respectively. Furthermore, for the the
minimum cost problem (MCSDIPT-UE) under unit Hamming distance and the prob-
lem (MCSDIPT-UN) with unit cost, we provide two O(n log n) time algorithms by the
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binary search methods. Finally, we perform some numerical experiments to compare
the results obtained by these algorithms.

Keywords Network interdiction problem · Upgrading critical edges · Upgrading
critical nodes · Tree · Knapsack problem · Greedy algorithm

1 Introduction

The coronavirus disease-2019 (COVID-19) has been a global pandemic with nearly
230 million confirmed cases and more than 4.6 million deaths since December 2019
(COVID-19 Global Outbreak Live 2021). The pressing task is to control and isolate
the sources of infection and treat the infected cases so as to reduce their infectivity.
In response to the need of treating a huge number of cases with limited medical and
epidemic prevention materials, we propose the infectious intensity interdiction prob-
lem by upgrading critical edges/nodes on a transmission network of confirmed cases.
Such a network can be regarded as a rooted tree assumed that the confirmed cases will
not be infected again (Will COVID-19 2020), just as the transmission tree infected
by the “super 31” in South Korea in February 2020 shown in Fig. 1 (Italy, Iran in
the Middle East 2020). We study on determining which critical edges/nodes to be
upgraded so as to make the infectious intensity of the transmission tree as small as
possible. Upgrading critical edges means taking preventionmeasures such as disinfec-
tion while upgrading critical nodes means treating the confirmed cases, isolating their
close contacts or vaccinating the uninfected people. In a word, upgrading edges/nodes
can reduce the infectious intensity with contacts although it can not completely stop
the transmission of viruses. The upgrade cost for upgrading critical edges/nodes may
be overall different. However, the cost may be the same in some special cases where
we aim to determine the number of upgraded edges /treated nodes in the above prob-
lems. The infectious intensity of an infectious disease is related to the type, quantity
and virulence of viruses and immune status of susceptible people (Infectious Diseases
2021). We describe the infectious intensity of an edge as a weight w(e).

More generally, networks with one-direction link can be described as tree networks.
For example, in the transmission network of confirmed cases, the epidemic can only
spread from the confirmed cases to susceptible population. The relevant problems can
be described as follows.

Let T = (V , E, w) be an edge-weighed tree rooted at s, where V =
{s, v1, v2, . . . , vn} and E = {e1, e2, . . . , en} are the sets of nodes and edges, respec-
tively. Let Y = {t1, t2, . . . , tr } be the set of leaves. Let w(e) and l(e) be the original
weight and the lower bound of the upgrade weight of the edge e ∈ E , respectively,
wherew(e) ≥ l(e). LetΔw(e) = w(e)−l(e). Let c(e) be the cost to upgrade the edge
e. Denoted by Ps,tk the unique root-leaf path from s to tk on T . Denote the length of
path Ps,tk under the weight w by dw(s, tk) = ∑

e∈Ps,tk
w(e). Define “the sum of root-

leaf distance” under the weight w as dw(T ) = ∑
t∈Y dw(s, t). The sum of root-leaf

distance interdiction problem by upgrading edges on trees, denoted by (SDIPT-UE),
aims to find an upgrade scheme w̄ to minimize the distance dw̄(T ) under w̄ on the
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Fig. 1 The transmission tree infected by the “super 31” in South Korea in February 2020 (Italy, Iran in the
Middle East 2020)

premise that the total upgrade cost under some norm is upper bounded by a given
value K . Its mathematical model can be stated as follows.

minw̄

∑

t∈Y
dw̄(s, t)

(SDIPT-UE) s.t . ‖w̄ − w‖ ≤ K ,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

The relevant minimum cost problem (SDIPT-UE), denoted by (MCSDIPT-UE),
aims to find an upgrade scheme w̄ to minimize the total upgrade cost such that the
distance dw̄(T ) under w̄ is upper bounded by a given value D. Its mathematical model
can be stated as follows.

minw̄ ‖w̄ − w‖
(MCSDIPT-UE) s.t .

∑

t∈Y
dw̄(s, t) ≤ D,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

Note that the edge e j = (vi , v j ) is labelled by the subscript of the endpoint v j

which is further to the root s than vi . Let A(vi ) = {e j = (vi , v j )|e j ∈ E} be the set of
edges adjacent to vi . Let β1(e j ) and β0(e j ) be the weight when the node vi is upgraded
or not, respectively. Let c(vi ) be the upgrade cost of the node vi . The sum of root-leaf
distance interdiction problem by upgrading nodes on trees, denoted by (SDIPT-UN),
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aims to upgrade a subset S ⊆ V of nodes to minimize the sum of root-leaf distance
such that the total upgrade cost under some norm is upper bounded by a given value
K . Its mathematical model can be stated as follows.

minS⊆V
∑

t∈Y
dw̄(s, t)

(SDIPT-UN) s.t .
∑

v∈S
c(v) ≤ K ,

w̄(e) =
{

β1(e), v ∈ S, e ∈ A(v),

β0(e), otherwise.

(1.1)

The relevant minimum cost problem (SDIPT-UN), denoted by (MCSDIPT-UN),
aims to upgrade a subset S ⊆ V of nodes to minimize the total upgrade cost such that
the sum of root-leaf distance is upper bounded by a given value D. Its mathematical
model can be stated as follows.

minS⊆V
∑

v∈S
c(v)

(MCSDIPT-UN) s.t .
∑

t∈Y
dw̄(s, t) ≤ D.

w̄(e) =
{

β1(e), v ∈ S, e ∈ A(v),

β0(e), otherwise.

(1.2)

Notice that the upgrade cost for upgrading critical edges/nodes are different in
general. However, the cost may be the same in some special cases where we con-
sider the number of the upgrade edges/nodes instead of the upgrade cost in the cost
constraint/objective of the above problems.

Most network interdiction problems aim to delete some critical edges/nodes tomake
some network performance worse. They have wide applications in drug trafficking
network (Albert et al. 2000), terrorist network (Ayyldz et al. 2019) and network war
(Albert et al. 2000; Khachiyan et al. 2008). Magnouche and Martin (2020) from
Huawei Technologies in France studied how to delete the least number of critical nodes
so that the length of s–t path in the remained graph was at least d. They analyzed the
NP-hardeness of the problem, presented an integer linear programming model with
multiple exponential constraints and designed a branch-and-bound algorithm to solve
it.

The network interdiction problems by deleting critical edges was first applied to
shortest path problem by Corley and Sha (1982), where K edges were deleted to
maximize the length of the shortest path of the network. Ball et al. (1989) showed that
the problem is NP-hard. Khachiyan et al. (2008) showed that it has no approximation
algorithm with ratio 2. Bazgan et al. (2015) provided an O(mn) algorithm for the
shortest path interdiction problem when the increment b = 1 of the length of the path
and they Bazgan et al. (2019) showed that the problem is NP-hard with b ≥ 2.

In some practical applications, it is extremely difficult to delete edges/nodes in a
network and we can only modify the weights of some edges since there are always
some emergency or alternative schemes available. Zhang et al. (2021a, b) proposed the
maximum shortest path interdiction problem by upgrading edges on trees (MSPIT)
and its relevant minimum cost problem (MCSPIT), respectively. Under weighted
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l1 norm, they provided two O(n2) time primal dual algorithms, respectively. Under
unit l1 norm, they designed two linear time algorithms, respectively. Under weighted
Hammingdistance theyZhang et al. (2021b) showed the problem (MSPIT) isNP-hard.
Under unit Hamming distance, they proposed an O(n(log n+K 3)) time algorithm by
dynamic programming for the problem (MSPIT) and an O(n4 log n) time algorithm
by binary search for the problem (MCSPIT).

In this paper, we also consider the problems (SDIPT-UE/N) and (MCSDIPT-
UE/N) using different norms to measure the upgrade cost. We list our research results
in Table 1 compared with results in the previous research, where subscripts 1, H ,
uH and u denote the weighted l1 norm, the weighted Hamming distance, the unit
Hamming distance and the unit node cost, respectively.

The paper is organized as follows. In Sect. 2, we proved the problems (SDIPT-UE)
and (MCSDIPT-UE) under weighted Hamming distance are NP-hard. In Sects. 3 and
4, we proposed two algorithms in O(n) and O(n log n) time for the problem (SDIPT-
UE) and (MCSDIPT-UE) under unit Hamming distance , respectively. In Sect. 5, we
showed the problems (SDIPT-UE) and (MCSDIPT-UE) under l1 norm are equivalent
to the continuous knapsack problems, and hence they can be solved in O(n) time. In
Sect. 6,weproved the equivalenceof the problems (SDIPT-UN), (MCSDIPT-UN) and
the 0–1 knapsack problems. In Sects. 7 and 8, we developed two algorithms with time
complexities O(n) and O(n log n) for the problems (SDIPT-UN) and (MCSDIPT-
UN) with unit node cost, respectively. In Sect. 9, computational experiments were
given to show the effectiveness of all these polynomial time algorithms. In Sect. 10,
we drew a conclusion and put forward our future research.

2 The NP-hardness of the problems (SDIPT-UE) and (MCSDIPT-UE)
under weighted Hamming distance

The weighted Hamming distance is defiend as

‖w̄ − w‖H =
∑

e∈E
c(e)H

(
w̄(e), w(e)

)
, (2.1)

H
(
w̄(e), w(e)

) =
{
0, if w̄(e) = w(e),
1, if w̄(e) �= w(e).

(2.2)

The problems (SDIPT-UE) and (MCSDIPT-UE) under weighted Hamming distance,
denoted by (SDIPT-UEH ) and (MCSDIPT-UEH ), can be formulated as the following
models (2.3) and (2.4), respectively.

minw̄

∑

t∈Y
dw̄(s, t)

(SDIPT-UEH ) s.t .
∑

e∈E
c(e)H

(
w̄(e), w(e)

) ≤ K ,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

(2.3)
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minw̄

∑

e∈E
c(e)H

(
w̄(e), w(e)

)

(MCSDIPT-UEH ) s.t .
∑

t∈Y
dw̄(s, t) ≤ D,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

(2.4)

In this section, we first prove a property of the optimal solution of the problems
(SDIPT-UEH ) and (MCSDIPT-UEH ). Then show their NP-hardness.

Definition 1 Define L(e) = {tk |e ∈ Ps,tk , k = 1, 2, · · · , r} as the set of leaves tk to
which Ps,tk passes through e. If tk ∈ L(e), then tk is controlled by the edge e.

Theorem 2 If w̄ is an optimal solution of the problem (MCSDIPT-UEH ) or (SDIPT-
UEH ), so is w∗ defined below.

w∗(e) =
{

w(e), if w̄(e) = w(e),
l(e), if w̄(e) �= w(e).

(2.5)

Proof (1) We first show that Theorem 2 holds for the problem (SDIPT-UEH ).
Obviously, w∗ is a feasible solution of the problem (SDIPT-UEH ), since l(e) ≤
w∗(e) ≤ w(e) and

∑
e∈E c(e)H

(
w∗(e), w(e)

) = ∑
e∈E c(e)H

(
w̄(e), w(e)

) ≤
K .
Now we show that w∗ is an optimal solution of the problem (SDIPT-UEH ).
Notice that l(e) ≤ w∗(e) ≤ w̄(e) ≤ w(e) for all edges e ∈ E . Suppose
there exists an edge ei ∈ E satisfying w∗(ei ) = l(ei ) < w̄(ei ) < w(ei ).
Then

∑
t∈Y\L(ei ) dw∗(s, t) ≤ ∑

t∈Y\L(ei ) dw̄(s, t) and
∑

t∈L(ei ) dw∗(s, t) <∑
t∈L(ei ) dw̄(s, t) follows. Hence,

∑

t∈Y
dw∗(s, t) =

∑

t∈Y\L(ei )

dw∗(s, t) +
∑

t∈L(ei )

dw∗(s, t)

<
∑

t∈Y\L(ei )

dw̄(s, t) +
∑

t∈L(ei )

dw̄(s, t) =
∑

t∈Y
dw̄(s, t), (2.6)

which contracts that w̄ is an optimal solution.
(2) We then show that Theorem 2 holds for the problem (MCSDIPT-UEH ). The

formula (2.6) also holds for the problem (MCSDIPT-UEH ) and thus we have∑
t∈Y dw∗(s, t) <

∑
t∈Y dw̄(s, t) ≤ D with l(e) ≤ w∗(e) ≤ w(e). Hence, w∗ is

a feasible solution of the problem (MCSDIPT-UEH ). Furthermore, it is obvious
that

∑
e∈E c(e)H

(
w∗(e), w(e)

) = ∑
e∈E c(e)H

(
w̄(e), w(e)

)
and thus w∗ is also

an optimal solution of the problem (MCSDIPT-UEH ). 	

Based on Theorem 2, we pursue an optimal solution w∗ defined as in (2.5). If

an edge e is upgraded, then the length of each path Ps,tk (tk ∈ L(e)) will decrease
by Δw(e). Next we define the total reduction amount of an edge e to describe the
decreasing amount of the sum of root-leaf distance as the weight reduction of the edge
e.
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Definition 3 For any e ∈ E, let Q(e) = |L(e)| · Δw(e) be the total reduction amount
of the edge e, which is the product of the upgrade amount of the edge e and the number
of leaf nodes controlled by the edge e.

Next, we prove NP-hardness of the problems (SDIPT-UEH ) and (MCSDIPT-
UEH ) by showing the equivalence of the problems and the 0–1 knapsack problem.
For convenience, we substitute H

(
w̄(e), w(e)

)
by x(e), where

x(e) =
{
0, if w̄(e) = w(e),
1, if w̄(e) �= w(e).

(2.7)

Theorem 4 The problem (SDIPT-UEH ) is NP-hard.

Proof The objective function can be calculated as follows.

min
w̄

∑

t∈Y
dw̄(s, t) = min

w̄

∑

t∈Y

∑

e∈Ps,t

w̄(e)

= min
x

∑

t∈Y

∑

e∈Ps,t

(
w(e) − x(e) · Δw(e)

)

= min
x

⎧
⎨

⎩

∑

t∈Y

∑

e∈Ps,t

w(e) −
∑

t∈Y

∑

e∈Ps,t

Δw(e) · x(e)
⎫
⎬

⎭

=
∑

t∈Y

∑

e∈Ps,t

w(e) − max
x

∑

t∈Y

∑

e∈Ps,t

Δw(e) · x(e)

=
∑

t∈Y
dw(s, t) − max

x

∑

e∈E

∑

e∈Ps,t
t∈Y

Δw(e) · x(e)

= dw(T ) − max
x

∑

e∈E
|L(e)|Δw(e) · x(e)

= dw(T ) − max
x

∑

e∈E
Q(e) · x(e). (2.8)

Hence, the problem (2.3) is equivalent to the following 0–1 knapsack problem.

maxx
∑

e∈E
Q(e)x(e)

s.t .
∑

e∈E
c(e)x(e) ≤ K ,

x(e) =
{
0, if w̄(e) = w(e),
1, if w̄(e) �= w(e).

(2.9)

The problem (SDIPT-UEH ) is NP-hard by showing the equivalence of the problem
and the 0–1 knapsack problem which is NP-hard (Martello and Toth 1990). 	


For the 0–1 knapsack problem, there is a pseudo-polynomial time algorithm
with time complexity O(nK ) (Martello and Toth 1990) and several approximation
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algorithms. In 1975, Ibarra and Kim (1975) proposed a fully polynomial-time approx-
imation scheme (FPTAS) with approximation factor 1 + ε in O(n3(1 + 1/ε)) time.
Very recently in 2019, Jin (2019) provided an improved FPTAS with approximation
factor 1 + ε in Õ(n + (1/ε)9/4) time, where Õ hides polylogarithmic factors.

In a similar way, the problem (MCSDIPT-UEH ) is also equivalent to a 0–1 mini-
mization knapsack problem.

Theorem 5 The problem (MCSDIPT-UEH ) is NP-hard.

Proof As shown in the derivation process (2.8), the constraint condition

∑

t∈Y
dw̄(s, t) = dw(T ) −

∑

e∈E
Q(e) · x(e) ≤ D, (2.10)

is equivalent to

∑

e∈E
Q(e) · x(e) ≥ D′, D′ = dw(T ) − D. (2.11)

Then the problem (MCSDIPT-UEH ) is equivalent to the following problem.

minx
∑

e∈E
c(e)x(e)

s.t .
∑

e∈E
Q(e) · x(e) ≥ D′,

x(e) =
{
0, if w̄(e) = w(e),
1, if w̄(e) �= w(e).

(2.12)

The problem (2.12) is just a 0–1 minimization knapsack problem which is also
NP-hard (Martello and Toth 1990). 	


3 A linear time algorithm to solve the problem (SDIPT-UEH) under
unit Hamming distance

The (SDIPT-UEH ) problem under unit Hamming distance, denoted by (SDIPT-
UEuH ), can be formulated from the models (2.9) and (2.3) as the following form.

maxw̄

∑

e∈E
Q(e)H

(
w̄(e), w(e)

)

(SDIPT-UEuH ) s.t .
∑

e∈E
H

(
w̄(e), w(e)

) ≤ K ,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

(3.1)

We can conclude from the model (3.1) that the problem (SDIPT-UEuH ) aims to
upgrade K edges to be upgraded so that the sum of the total reduction amount is
maximized. Thus we can sort the edges by the values of Q(e) in non-increasing order
and upgrade the first K largest Q(e)-value edges.
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Sort the edges by the values of Q(e) in non-increasing order as follows.

Q(ei1) ≥ Q(ei2) ≥ · · · ≥ Q(eiK ) ≥ · · · ≥ Q(ein ).

Theorem 6 Let ĒK = {eiτ |τ = 1, 2, . . . , K } be the set of the first K largest Q(e)-

value edges in E. Then w̄(e) =
{
l(e), e ∈ ĒK

w(e), e /∈ ĒK
is an optimal solution of the problem

(SDIPT-UEuH ).

Proof Suppose w̄ is not an optimal solution of the problem (SDIPT-UEuH ), but

ŵ(e) =
{
l(e), e ∈ ÊK ,

w(e), e /∈ ÊK .
is, where ÊK = {e jτ |τ = 1, 2, . . . , K } is the set of K

edges different from Ē . Then,
∑

e∈Ê Q(e) ≥ ∑
e∈Ē Q(e) and |ÊK | = |ĒK | = K . If

∑
e∈ÊK

Q(e) = ∑
e∈ĒK

Q(e), then ÊK is also the first K largest Q(e)-value edges

and the theorem holds. If
∑

e∈ÊK
Q(e) >

∑
e∈ĒK

Q(e), then it contradicts that ĒK

is the first K largest Q(e)-value edges and w̄ is an optimal solution of the problem
(SDIPT-UEuH ). 	


Next we present a linear time Algorithm 1 to search for the first K largest values
in an array with duplicate elements. We first find the K -th largest element q of an
array Q by the selection algorithm q := Selection(Q, K ) in Thoms et al. (2009, pp
220–222). Different from the partition algorithm in Thoms et al. (2009, pp 170–173),
we may have elements with equal values in the array Q. To ensure we find the exact
K elements, we determine the sets E1 and E2 of edges whose value is larger than and
equal to q, respectively. Finally, ĒK := E1 ∪ E2(1 : K −|E1|) is the set of the first K
largest Q(e)-value edges in the array Q. The above two steps can both be completed
in O(n) time.

Algorithm 1 A greedy algorithm to solve the problem (SDIPT-UEuH ).
Require: A tree T (V , E) rooted at s, the number n of edges, the set Y of leaf nodes, two edge weight

vectors w and l and the number K of upgrade edges.
Ensure: The set ĒK of upgrade edges, the optimal solution w̄ and the relevant value dw̄(T ).
1: if K > n then
2: return “The problem has no feasible solution!”
3: end if
4: For any e ∈ E , calculate the set L(e) of leaf nodes controlled by the edge e, compute Δw(e) :=

w(e) − l(e) and Q(e) := |L(e)| · Δw(e).
5: Call q := Selection(Q, K ).
6: Let E1 := {ei |Q(ei ) > q}, and E2 =: {ei |Q(ei ) = q} Then ĒK := E1 ∪ E2(1 : K − |E1|).
7: The optimal solution is w̄(e) :=

{
l(e), e ∈ ĒK ,

w(e), e /∈ ĒK .
and the objective value is

dw̄(T ) := dw(T ) − ∑
e∈ĒK

Q(e).

Theorem 7 Algorithm 1 can solve the problem (SDIPT-UEuH ) in O(n) time.
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4 AnO(n logn) time algorithm to solve the problem (MCSDIPT-UEH)
under unit Hamming distance

We consider the problem (MCSDIPT-UEuH ) under unit Hamming distance, which
can be formulated from the models (2.12) and (2.4) as follows.

minw̄

∑

e∈E
H

(
w̄(e), w(e)

)

(MCSDIPT-UEuH ) s.t .
∑

e∈E
Q(e)H

(
w̄(e), w(e)

) ≥ D′,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

(4.1)

The problem (MCSDIPT-UEuH ) aims to upgrade the least number of edges such
that the sumof the total reduction amount is no less than D′. Obviously,we can first sort
the edges by the Q(e)-values in non-increasing order and find the minimum number
of edges to be upgraded by a binary search such that the sum of the total reduction
amount achieves the lower bound D′.

Theorem 8 Let Ēk = {eiτ |τ = 1, . . . , k} be the set with minimum number of edges

satisfying
∑k

τ=1 Q(eiτ ) ≥ D′. Then w̃(e) =
{
l(e), e ∈ Ẽk,

w(e), e /∈ Ẽk .
is an optimal solution

of (MCSDIPT-UEuH ) for any Ẽk = {eατ |τ = 1, . . . , k} with ∑k
τ=1 Q(eατ ) ≥ D′.

Proof Suppose w̃ is not an optimal solution of the problem (MCSDIPT-UEuH ), but

ŵ(e) =
{
l(e), e ∈ Êk′ ,
w(e), e /∈ Êk′ .

is, where Êk′ = {e jτ |τ = 1, 2, . . . , k′} with ∑k′
τ=1 Q(e jτ )

≥ D′. Then we have k′ < k, which contradicts that Ēk is the set with minimum
number of edges satisfying

∑k
τ=1 Q(eiτ ) ≥ D′. Hence, w̃ is an optimal solution. 	


To find the set Ēk = {eiτ |τ = 1, 2, . . . , k} with the minimum number of edges
satisfying

∑k
τ=1 Q(eiτ ) ≥ D′, we perform a method in two steps. In the first step, we

sort the edges ei1 , . . . , ein by the values of Q(e) non-increasingly. In the second step,
we run a binary search algorithm to determine the minimum number k∗ satisfying
∑k∗

τ=1 Q(eiτ ) ≥ D′ and
∑k∗−1

τ=1 Q(eiτ ) < D′. Finally, we upgrade the first k∗ largest
Q(e)-value edges, which is just the set Ēk∗ .

Theorem 9 The problem (MCSDIPT-UEuH ) can be solved in O(n log n) time by
Algorithm 2.

Proof The calculation process in Line 1 can be completed in O(n) time. Sorting
edges by the values of Q(e) spends O(n log n) time in Line 2. It takes O(log n)

iterations to determine k∗ by the binary search in Line 4–13 and in each iteration the
time complexity is O(n). Hence the problem (MCSDIPT-UEuH ) can be solved in
O(n log n) time by Algorithm 2. 	
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Algorithm 2 A greedy algorithm to solve the problem (MCSDIPT-UEuH ).
Require: A tree T (V , E) rooted at s, two edge weight vectors w and l and the value D.
Ensure: The set Ēk∗ of upgrade edges, the optimal solution w̄ and the objective value k∗.
1: Calculate the set L(e) of leaf nodes controlled by the edge e ∈ E . Calculate Δw(e) := w(e) − l(e) and

Q(e) := |L(e)| · Δw(e) for any e ∈ E . Calculate D′ := dw(T ) − D.
2: if D′ >

∑
e∈E Q(e) then

3: return “The problem has no feasible solution!”
4: end if
5: Sort and relabel the edges in non-increasing order by their values of Q(e) as follows.

Q(ei1 ) ≥ Q(ei2 ) ≥ · · · ≥ Q(ein ).

6: Initialization: a := 1, b := n, k := 
 a+b
2 �, OPT=‘NO’.

7: while OPT=‘NO’ do

8: if
k∑

j=1
Q(ei j ) < D′ then

9: update a := k.

10: else if
k−1∑

j=1
Q(ei j ) < D′ then

11: OPT=‘YES’.
12: return k∗ := k.
13: else
14: update b := k.
15: end if
16: update k := 
 a+b

2 �.
17: end while

18: The optimal solution is w̄(e) :=
{
l(e), e ∈ Ēk∗ ,

w(e), e /∈ Ēk∗ .
where Ēk∗ := {eiτ |τ = 1, 2, . . . , k∗}.

5 Solve the problems (SDIPT-UE) and (MCSDIPT-UE) under weighted
l1 norm

When the weighted l1 norm is applied to the upgrade cost, the problems (SDIPT-
UE) and (MCSDIPT-UE) under weighted l1 norm, denoted by (SDIPT-UE1) and
(MCSDIPT-UE1), can be formulated as the following models (5.1) and (5.2), respec-
tively.

minw̄

∑

t∈Y
dw̄(s, t)

(SDIPT-UE1) s.t .
∑

e∈E
c(e)|w̄(e) − w(e)| ≤ K ,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

(5.1)

minw̄

∑

e∈E
c(e)|w̄(e) − w(e)|

(MCSDIPT-UE1) s.t .
∑

t∈Y
dw̄(s, t) ≤ D,

l(e) ≤ w̄(e) ≤ w(e), e ∈ E .

(5.2)

Next we will transform the models (5.1) and (5.2) into the continuous knapsack
problem, respectively, so that the problems (SDIPT-UE1) and (MCSDIPT-UE1) can
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be solved in O(n) time (Martello and Toth 1990). For convenience, let |w̄(e)−w(e)| =
w(e) − w̄(e) = Δw(e)x(e), 0 ≤ x(e) ≤ 1.

Theorem 10 The problem (SDIPT-UE1) can be transformed into a continuous knap-
sack problem.

Proof Similar to the derivation process in (2.8), the objective function of the problem
(SDIPT-UE1) can be transformed into

min
w̄

∑

t∈Y
dw̄(s, t) = dw(T ) − max

x

∑

e∈E
Q(e)x(e).

Then the model (5.1) is equivalent to the following problem,

maxx
∑

e∈E
Q(e) · x(e)

s.t .
∑

e∈E
c(e)Δw(e) · x(e) ≤ K ,

0 ≤ x(e) ≤ 1.

which is just a continuous knapsack problem. 	

Similarly, the problem (MCSDIPT-UE1) can also be transformed into a continuous

knapsack problem.

Theorem 11 The problem (MCSDIPT-UE1) can be transformed into a continuous
knapsack problem.

Proof Let y(e) = 1 − x(e) and then x(e) = 1 − y(e), 0 ≤ y(e) ≤ 1 . Hence, the
objective function

min
w̄

∑

e∈E
c(e)|w̄(e) − w(e)| = min

x

∑

e∈E
c(e)Δw(e)x(e)

= min
y

∑

e∈E
c(e)Δw(e)

(
1 − y(e)

)

= min
y

{
∑

e∈E
c(e)Δw(e) −

∑

e∈E
c(e)Δw(e)y(e)

}

=
∑

e∈E
c(e)Δw(e) − max

y

∑

e∈E
c(e)Δw(e)y(e).

Moreover, similar to the formulas (2.10)–(2.11), the constraint in model (5.2) can
be transformed into

∑
e∈E Q(e)x(e) ≥ dw(T ) − D. By substituting x(e) = 1− y(e)

into the constraint, we have

∑

e∈E
Q(e)x(e) =

∑

e∈E
Q(e)

(
1 − y(e)

)
=

∑

e∈E
Q(e) −

∑

e∈E
Q(e)y(e) ≥ dw(T ) − D,
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which is equivalent to

∑

e∈E
Q(e)y(e) ≤ D′′, D′′ =

∑

e∈E
Q(e) − dw(T ) + D.

Thus, the model (5.2) is equivalent to the following problem.

maxy
∑

e∈E
c(e)Δw(e)y(e)

s.t .
∑

e∈E
Q(e)y(e) ≤ D′′,

0 ≤ y(e) ≤ 1.

(5.3)

The problem (5.3) is also a continuous knapsack problem. 	

Corollary 12 The problems (SDIPT-UE1) and (MCSDIPT-UE1) can both be solved
in O(n) time.

6 The NP-hardness of the problems (SDIPT-UN) and (MCSDIPT-UN)

In this section, we prove that the problem (SDIPT-UN) is NP-hard by transforming it
into a 0–1 knapsack problem, so is the problem (MCSDIPT-UN).

If a node v is upgraded, then the lengths of the paths Ps,tk (tk ∈ L(e), e ∈ A(v))

decrease by Δw(e) = β0(e) − β1(e). For convenience, relevant to Definition 3, we
introduce the following definition of the total reduction amount of a node v, which
describes the decreasing amount of the sum of root-leaf distance as the node v is
upgraded.

Definition 13 For any v ∈ V , let B(v) = ∑
e∈A(v) Q(e) be the total reduction amount

of the node v, which is the sum of the total reduction amount of the edges adjacent to
the node v.

Theorem 14 The problem (SDIPT-UN) is NP-hard.

Proof Let S be the set of upgraded nodes and define z(v) =
{
1, if v ∈ S,

0, if v /∈ S.
and then

the objective function can be calculated as follows.

min
S⊆V

∑

t∈Y
dw̄(s, t) = min

S⊆V

∑

t∈Y

∑

e∈Ps,t

w̄(e)

= min
S⊆V

∑

t∈Y

⎛

⎝
∑

v∈S∩Ps,t

∑

e∈A(v)∩Ps,t

β1(e) +
∑

v∈Ps,t\S

∑

e∈A(v)∩Ps,t

β0(e)

⎞

⎠

= min
z

∑

t∈Y

∑

v∈Ps,t

∑

e∈A(v)∩Ps,t

(

z(v)β1(e) +
(
1 − z(v)

)
β0(e)

)
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= min
z

∑

t∈Y

∑

v∈Ps,t

∑

e∈A(v)∩Ps,t

(

β0(e) − z(v)
(
β0(e) − β1(e)

))

=
∑

t∈Y

∑

v∈Ps,t

∑

e∈A(v)∩Ps,t

β0(e) − max
z

∑

t∈Y

∑

v∈Ps,t

∑

e∈A(v)∩Ps,t

z(v)Δw(e)

=
∑

t∈Y
dβ0(s, t) − max

z

∑

v∈V

∑

e∈A(v)

∑

e∈Ps,t
t∈Y

Δw(e)z(v)

= dβ0(T ) − max
z

∑

v∈V

∑

e∈A(v)

|L(e)|Δw(e) · z(v)

= dβ0(T ) − max
z

∑

v∈V

∑

e∈A(v)

Q(e)z(v)

= dβ0(T ) − max
z

∑

v∈V
B(v)z(v) (6.1)

Hence, the problem (1.1) is equivalent to the following problem.

maxz
∑

v∈V
B(v)z(v)

s.t .
∑

v∈V
c(v)z(v) ≤ K ,

z(v) =
{
1, if v is upgraded,
0, if v is not upgraded.

(6.2)

The problem (6.2) is just a 0–1 knapsack problem which is NP-hard (Martello and
Toth 1990). 	


In a similar way, the problem (MCSDIPT-UN) can also be proved to be equivalent
to a 0–1 minimization knapsack problem.

Theorem 15 The problem (MCSDIPT-UN) is NP-hard.

Proof Similar to the derivation process in the formula (6.1), the constraint in model
(1.2) can be similarly transformed into dβ0(T ) − ∑

v∈V B(v)z(v) ≤ D and then we
have

∑
v∈V B(v)z(v) ≥ D0, where D0 = dβ0(T ) − D.

Hence, the problem (1.2) is equivalent to the following problem.

minz
∑

v∈V
c(v)z(v)

s.t .
∑

v∈V
B(v)z(v) ≥ D0,

z(v) =
{
1, if v is upgraded,
0, if v is not upgraded.

(6.3)

The problem (6.3) is a 0–1minimization knapsack problemwhich isNP-hard (Martello
and Toth 1990). 	
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7 AnO(n) time algorithm to solve problem (SDIPT-UN) with unit cost

The problem (SDIPT-UN) with unit cost, denoted by (SDIPT-UNu), can be formu-
lated from (6.2) as the following form.

maxz
∑

v∈V
B(v)z(v)

(SDIPT-UNu) s.t .
∑

v∈V
z(v) ≤ K ,

z(v) =
{
1, if v is upgraded,
0, if v is not upgraded.

(7.1)

It is shown in model (7.1) that the problem (SDIPT-UNu) aims to upgrade K nodes
tomaximize their relevant sum of B(v)-value. Thuswe can sort the nodes by the values
of B(v) in non-increasing order and upgrade the first K largest B(v)-value nodes.

Sort the nodes by the values of B(v) in non-increasing order as follows.

B(vi1) ≥ B(vi2) ≥ · · · ≥ B(viK ) ≥ · · · ≥ B(vin+1).

Theorem 16 Let V̄K = {viτ |τ = 1, 2, . . . , K } be the set of the first K largest B(v)-

value nodes in V .Then w̄(e) =
{

β1(e), e ∈ A(v), v ∈ V̄K ,

β0(e), otherwise.
is an optimal solution of

the problem (SDIPT-UNu).

Proof Suppose w̄ is not an optimal solution of the problem (SDIPT-UNu), but ŵ(e) ={
β1(e), e ∈ A(v), v ∈ V̂K ,

β0(e), otherwise.
is, where V̂K = {v jτ |τ = 1, 2, . . . , K } is the set of K

nodes different from V̄K . Then we have
∑

v∈V̂K
B(v) ≥ ∑

v∈V̄K
B(v) and |V̂K | =

|V̄K | = K . If
∑

v∈V̂K
B(v) = ∑

v∈V̄K
B(v), then V̂ is also the set of the first K largest

B(v)-value nodes and the theorem holds. If
∑

v∈V̂K
B(v) >

∑
v∈V̄K

B(v), then it

contradicts that V̄K is the first K largest B(v)-value nodes. Hence, w̄ is an optimal
solution of the problem (SDIPT-UNu). 	


We can solve the problem (SDIPT-UNu) similar to the problem (SDIPT-UEuH ).
We first find the K -th largest element q of an array B by the selection algorithm
(Thoms et al. 2009, pp 220–222) and then determine the sets V1 and V2 of nodes
whose value is larger than and equal to q, respectively. Finally, we can obtain the set
SK := V1 ∪ V2(1 : K − |V1|) of the first K largest B(v)-value edges in the array B.
The above steps can both be completed in O(n) time.

Theorem 17 Algorithm 3 can solve the problem (SDIPT-UNu) in O(n) time.
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Algorithm 3 A greedy algorithm to solve the problem (SDIPT-UNu).
Require: A tree T (V , E) rooted at s, the number n of edges, the set Y of leaf nodes, two edge weight

vectors β0, β1 and the number K of upgrade nodes.
Ensure: The set SK of upgrade nodes, an optimal solution w̄ and the relevant value dw̄(T ).
1: if K > n + 1 then
2: return “The problem has no feasible solution!”
3: end if
4: Calculate the set L(e) of leaf nodes controlled by the edge e ∈ E and the set A(v) of adjacent edges

of the node v ∈ V . Calculate Δw(e) := β0(e) − β1(e) and Q(e) := |L(e)| · Δw(e) for any e ∈ E .
Calculate B(v) := ∑

e∈A(v) Q(e) for each node v ∈ V .
5: Call q := Selection(B, K ).
6: Let V1 := {vi |B(vi ) > q}, and V2 := {vi |B(vi ) = q}. Then SK := V1 ∪ V2(1 : K − |V1|).
7: The optimal solution is w̄(e) :=

{
β1(e), e ∈ A(v), v ∈ SK ,

β0(e), otherwise.
and the relevant value is

dw̄(T ) := dβ0 (T ) − ∑
v∈S B(v).

8 AnO(n logn) time algorithm to solve the problem (MCSDIPT-UN)
with unit cost

The problem (MCSDIPT-UN) with unit cost, denoted by (MCSDIPT-UNu), can be
formulated from (6.3) as follows.

minz
∑

v∈V
z(v)

(MCSDIPT-UNu) s.t .
∑

v∈V
B(v)z(v) ≥ D0,

z(v) =
{
1, if v is upgraded,
0, if v is not upgraded.

(8.1)

where D0 = dβ0(T ) − D.
As shown in model (8.1), the problem (MCSDIPT-UNu) aims to upgrade the least

number of nodes such that the sum of the total reduction amount is no less than D0.
Obviously, we can first sort the nodes by the values of B(v) non-increasingly and find
the minimum number of nodes to be upgraded by a binary search such that the sum
of the total reduction amount satisfies the constraint.

Theorem 18 Let V̄k = {viτ |τ = 1, . . . , k} be the set with minimum number of
nodes satisfying

∑k
τ=1 B(viτ ) ≥ D0. Then for any Ṽk = {vατ |τ = 1, . . . , k} with

∑k
τ=1 B(vατ ) ≥ D0, w̃(e) =

{
β1(e), e ∈ A(v), v ∈ Ṽk,
β0(e), otherwise.

is an optimal solution of

(MCSDIPT-UNu).

Proof Suppose w̃ is not an optimal solution of the problem (MCSDIPT-UNu), but

ŵ(e) =
{

β1(e), e ∈ A(v), v ∈ V̂k′ ,
β0(e), otherwise.

is, where V̂k′ = {v jτ |τ = 1, 2, . . . , k′} with

∑k′
τ=1 B(v jτ ) ≥ D0. Thenwe have k′ < k, it contracts that V̄k is the set withminimum

number of nodes satisfying
∑k

τ=1 B(viτ ) ≥ D0. Hence, w̃ is an optimal solution of
the problem (MCSDIPT-UNu). 	
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We can perform a greedy algorithm similar to Algorithm 2 to solve the problem
(MCSDIPT-UNu). Similar to Theorem 9, we can conclude that

Algorithm 4 A greedy algorithm to solve the problem (MCSDIPT-UNu).
Require: A tree T (V , E) rooted at s, the set Y of leaf nodes, two edge weight vectors β0 and β1 and the

number K of upgrade nodes.
Ensure: The set Sk∗ of upgrade nodes, the optimal solution w̄ and the relevant value k∗.
1: Calculate the set L(e) of leaf nodes controlled by the edge e ∈ E and the set A(v) of adjacent edges

of the node v ∈ V . Calculate Δw(e) := β0(e) − β1(e) and Q(e) := |L(e)| · Δw(e) for any e ∈ E .
Calculate B(v) := ∑

e∈A(v) Q(e), v ∈ V . Calculate D0 = dβ0 (T ) − D.

2: if D0 >
∑

v∈V B(v) then
3: return “The problem has no feasible solution!”
4: end if
5: Sort and relabel nodes in non-increasing order by their values of B(v) as follows.

B(vi1 ) ≥ B(vi2 ) ≥ · · · ≥ B(vin+1 ).

6: Initialization: a := 1, b := m, k := 
 a+b
2 �, OPT=‘NO’.

7: while OPT=‘NO’ do

8: if
k∑

j=1
B(vi j ) < D0 then

9: update a := k.

10: else if
k−1∑

j=1
B(vi j ) < D0 then

11: OPT=‘YES’.
12: return k∗ := k.
13: else
14: update b := k.
15: end if
16: update k := 
 a+b

2 �.
17: end while

18: The optimal solution is w̄(e) :=
{

β1(e), e ∈ A(v), v ∈ Sk∗ ,

β0(e), otherwise.
where Sk∗ := {viτ |τ = 1, . . . , k∗}.

Corollary 19 The problem (MCSDIPT-UNu) can be solved in O(n log n) time by
Algorithm 4.

9 Computational experiments

Nowwe present computational experiments of Algorithms 1, 2, 3 and 4 in Table 2. The
programs were coded in Matlab 7.0 and run on a PC Intel(R), Core(TM)i7-10750H
CPU @ 2.60 GHz 2.59 GHz under Windows 10. We have tested the algorithms on 6
classes of random trees with the number n of vertices varying from 1000 to 100,000.
For each class, we randomly generated 500 instances on randomly generated trees.
We randomly generated two vectors w, l satisfying l < w in Algorithms 1, 2 and two
vectors β0, β1 satisfying β1 < β0 in Algorithms 3, 4, respectively. For each randomly
generated tree, we solved the four problems (SPIT-UEuH ),(MCSPIT-UEuH ),(SPIT-
UNu) and (MCSPIT-UNu) for comparison, respectively. Let T1, T2, T3, T4 be the
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Table 2 Performances of Algorithms 1, 2, 3 and 4

Complexity n 1000 5000 10,000 30,000 50,000 100,000

O(n) T1 0.0017 0.0088 0.0173 0.0508 0.0925 0.1771

Tmax
1 0.0470 0.0240 0.0320 0.0700 0.1160 0.2360

Tmin
1 0 0 0.0020 0.0360 0.0780 0.1540

O(n log n) T2 0.0002 0.0012 0.0018 0.0067 0.0116 0.0234

Tmax
2 0.0150 0.0160 0.0160 0.0230 0.0270 0.0380

Tmin
2 0 0 0 0 0 0.0100

O(n) T3 0.0011 0.0079 0.0165 0.0523 0.0915 0.1845

Tmax
3 0.0170 0.0230 0.0320 0.0690 0.1100 0.2240

Tmin
3 0 0 0 0.0380 0.0620 0.1250

O(n log n) T4 0.0002 0.0013 0.0028 0.0115 0.0205 0.0435

Tmax
4 0.0160 0.0160 0.0160 0.0250 0.0350 0.0560

Tmin
4 0 0 0 0 0.0100 0.0280

average CPU time of Algorithms 1, 2, 3 and 4, respectively. The relevant maximum
and minimum running time, denoted by Tmax

i , Tmin
i (i = 1, 2, 3, 4), respectively, are

recorded as well.
As shown in Table 2, the four algorithms are all very efficient and they follow their

own time complexities very well. Notice that T3, T4 are relatively slower than T1, T2
as the calculation of B(v) in Algorithm 3, 4 is a bit more complicated than that of
Q(e) in Algorithm 1, 2.

Furthermore,we can take the ratios between T3 and T4 into consideration. InTable 2,
we can calculate the ratios T3

T4
= {5.5, 6.0, 5.8, 4.5, 4.4, 4.2} for the 6 classes of

random trees. Notice the ratios are in a decreasing trend, which is consistent with their
time complexities O(n) and O(n log n). It can be predicted that the ratio between T3
and T4 may be smaller as n becomes larger, and finally, T3 will be faster than T4.
Similarly, T1 will also be faster than T2 when n is large enough.

10 Conclusion and further research

We considered a class of the sum of root-leaf distance interdiction problems by
upgrading edges/nodes on trees including (SDIPT-UE/N) and their minimum cost
problem (MCSDIPT-UE/N). We considered total 10 problems by using different
norms to measure the upgrade cost and listed the research results in Table 1 for
the sake of convenience in comparing the results. We proved the problems (SDIPT-
UEH ) and (MCSDIPT-UEH ) under weighted Hamming distance, and the problems
(SDIPT-UN), (MCSDIPT-UN) with general node cost are NP-hard by showing their
equivalence to 0–1 knapsack problems. However, under unit Hamming distance or
with unit node cost, the problems (SDIPT-UEuH ) and (SDIPT-UNu) can be solved
in linear time based on the selection algorithm, while the minimum cost problems
(MCSDIPT-UEuH ) and (MCSDIPT-UNu) can be solved in O(n log n) time by a
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binary search method. Additionally, the problems (SDIPT-UE1) and (MCSDIPT-
UE1) under weighted l1 norm were transformed into continuous knapsack problems
which render two O(n) time algorithms. The efficiency of the four polynomial time
algorithms were tested by some numerical experiments.

For further research, we can consider the sum of root-leaf distance interdiction
problem on a series-parallel graph or even on a general graph. Moreover,the interdic-
tion problems under other network performance can be studied, such as the shortest
path interdiction problem on a general graph or minimum spanning tree interdiction
problems by upgrading edges/nodes.
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