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Abstract

We consider a number of parallel-machine scheduling problems in which jobs have
variable processing times. The actual processing time of each job is described by an
arbitrary positive function of the position it holds on a machine. However, the function
itself may additionally depend on the job or a machine this job was assigned to. Our
aim is to find a schedule that minimizes the objectives of maximum completion time
or the total completion time. We present a full set of polynomial solutions for the cases
of jobs with no precedence constraints. We also show that the case of single-chained
jobs may be not easier in general, but some polynomial results can be obtained, too.

Keywords Parallel-machine scheduling - Variable processing times -
Position-dependent processing times - Makespan - Total completion time -
Polynomial algorithms

1 Introduction

In many real-world scheduling problems one cannot assume that job processing times
are fixed. Wright (1936) noticed that the time required to perform an aircraft produc-
tion task decreases in conjunction with the worker’s experience. Today, it is widely
observed that the processing time of a job may vary in reaction to different environ-
mental factors, such as the amounts of resources available, the starting time of the job,
or the set of jobs performed earlier. In the latter case, it is often assumed that the actual
processing time of a job depends either on its position in a schedule, or on the sum
of basic processing times of jobs that have been already executed. If all the jobs are
assumed to be identical, both these approaches are, in some sense, exchangeable. In
this paper, the actual processing time of a job is described by a positive function of at
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most three arguments: the index of the job, the machine to which the job is assigned,
and the position it holds on this machine. We also assume that the jobs are either inde-
pendent, or they need to be processed in a given order, i.e. the precedence constraints
take form of a single chain.

Recently, one can observe a growing number of papers related to scheduling prob-
lems with the learning effect, where the processing time of a job decreases as the set
of already executed jobs grows (see, e.g., Wang et al. 2020). A dual group of problems
with the aging effect is also widely considered in literature (see, e.g., Luetal. 2018; Liu
etal. 2018). Having this in mind, we analyze a number of general scheduling problems
where job processing times may, but do not have to give in to such a monotonic impact.
In particular, we show polynomial algorithms for scheduling problems in which job
processing times are described by any arbitrary positive and discrete function. The
analyzed problems vary in: the set of factors that impact actual processing times of
jobs (position, position and machine, position and job, or all the factors together), the
precedence constraints among jobs (independent or chained jobs), and the objective
function (maximum completion time or the total completion time).

In practice, it is often assumed that job processing times vary among jobs. As the
machines may have different capabilities, the processing time may also depend on
the machine chosen (scheduling on unrelated machines). However, the assumption
that the actual processing time of a job freely depends on the position it holds on a
machine, may seem artificial and impractical. As indicated above and further discussed
in Sect. 2, position-dependent models are usually monotonic with respect to the job
position. By assuming that job processing time may freely depend on its position,
we obtain general results that can be successfully applied both for learning and aging
models.

The contribution of the paper is two-fold. First, we analyze various parallel-machine
scheduling problems where the actual processing times of independent jobs may freely
depend on the three factors: machine, job, and its position on a machine. We present
the full classification of computational complexity for these problems and their sub-
problems. It can be shown that most of such problems can be solved in polynomial
time. Second, we show that although the case of single-chained jobs is not easier
in general, some of the corresponding problems in this group can also be solved in
polynomial time.

This paper is organized as follows. In Sect. 2, we briefly review main position-
dependent learning and aging models. We also present main results in the area of
job- and machine-dependent processing times. In Sect. 3, we formalize the problem
considered in this paper. In Sect. 4, we present the full classification of the complexity
of problems with independent jobs. Then, in Sect. 5, we show how the assumption
that the jobs are chained influences the analyzed problems. We complete the paper by
Sect. 6 which includes conclusions and remarks on future research.

2 Literature review

To the best of our knowledge, the first position-dependent model, where the actual
job processing time depends on the number of jobs executed earlier, was proposed
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by Gawiejnowicz (1996). In this model, the actual processing time of the i-th job
scheduled on the r-th position, p; ,, depends on its basic processing time, p;, and the
value of v(r) € [0, 1]. In particular, Gawiejnowicz focused on makespan minimization
on a single machine within the general p; , = p;/v(r) model. Similar results—
limited to the learning effect—were presented by Biskup (1999), who introduced
the p; , = pir® model, where a < 0 is a constant learning index. He considered
single-machine scheduling problems to minimize the total flow time and the maximum
deviation from the common due date. A few years later, Mosheiov and Sidney (2003)
analyzed a more general case where the learning indices are job-dependent, that is
pir = pir“. All these results constituted a base for rich research in the area of
position-dependent scheduling.

Another popular approach to position-dependent scheduling is based on the paper by
Delong (1957). Okotowski and Gawiejnowicz (2010) considered a group of parallel-
machine scheduling problems within the model of generalized DeJong’s learning
effect. In this model, it is assumed that p; , = p;[M + (1 — M)r¢], where 0 < M < 1
is called the incompressibility factor. The same model was analyzed later by Ji et al.
(2015).

The list of models, where job processing time depends on the number of jobs
executed earlier, is still expanding. There are a few models that take into account that
job processing times may be affected simultaneously by factors of different kind. For
example, a number of models in which time-dependent job deterioration and DeJong’s
learning effect are mixed were analyzed by Zhang et al. (2018) and Sun et al. (2020).
We refer the reader to Agnetis et al. (2014), Strusevich and Rustogi (2017), Azzouz
etal. (2017), and Gawiejnowicz (2020) for more details on different scheduling models
of the kind discussed in this section.

There are two main limitations of the models of scheduling with variable job pro-
cessing times, especially those that are position-dependent. First, the majority of results
are related to single-machine scheduling (see, e.g., Wang 2010; Wang and Wang 2013;
Debczynski and Gawiejnowicz 2013 or Huang and Wang 2014). At the same time, one
can find only limited number of polynomial results on parallel-machine scheduling
of position-dependent jobs (see, e.g., Mosheiov and Sidney 2003; Mosheiov 2008 or
Przybylski 2017). Second, most papers related to position-dependent scheduling focus
on particular learning or aging models. In fact, there are only individual results inde-
pendent of the form of the function describing the actual processing time of a job (e.g.
Mosheiov 2008). Inspired by the latter paper, we assume that the actual processing
time of a job may freely depend on the position it holds on a machine. In particular, we
do not make any assumption on the form of such a relation, including its monotonic-
ity. This way, our results can be successfully applied to almost all position-dependent
models discussed in literature.

For many practical applications it is also justified to assume that the actual process-
ing time of a job freely depends on a machine it is assigned to. The general problems
of scheduling fixed-time jobs on unrelated machines to minimize the makespan or the
total weighted completion time are known to be A/P-Hard. For this reason, approx-
imation algorithms are proposed (see, e.g., Lenstra et al. 1990; Schulz and Skutella
2002 or Bansal et al. 2019). On the other hand, Bruno et al. (1974) showed that there
exists a polynomial algorithm for the case of total completion time as the objective.
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Having this in mind, we also assume that the actual processing time of a job may
depend on a machine it is being assigned to. In the next section, we present the formal
definition of this dependency.

3 Problem formulation

In this section, we formulate the set of parallel-machine scheduling problems with
job-, machine-, and position-dependent processing times which are going to be dis-
cussed henceforth. Let us be given m parallel machines, Pi, P>, ..., Py, and n
non-preemptable jobs, Ji, ..., J,. The processing time of job J; assigned to a given
machine P; is described by the (p : N; — Q function. The value of the function
freely depends on the position r the job holds on the j-th machine. In other words,
the processing time of the i-th job holding the r-th position on the j-th machine is
equal to p; j, = <pi] (r). If the values of the functions are job-independent, they will
be denoted by ¢/, and then it holds that p; , = ¢/ (r) for each job J;. Similarly, if the
values of the functions are machine-independent, they will be denoted by ¢;, and then
it holds that p; , = ¢; (r) for each feasible i. If the values of the functions are job- and
machine-independent, they will be denoted by ¢, and then it holds that p, = ¢(r).
The jobs may be either independent (i.e. with no precedence constraints), or chained.
Our aim is to find an optimal schedule in the sense of at least one of the following
objective functions: maximum completion time or total completion time. Using the
traditional three-field notation (see Gawiejnowicz 2020 for a concise description), we
can denote these problems by Pm|p; ; , = goij (") Crmax, Pm|p; j, = (pi] 1Y Ci,
Pm|chain, p; ; , = <pl.] (r)|Cmax, and Pm|chain, p; j , = (pij 1Y Ci.

Throughout the paper we will assume that the set of (pl.j functions is a part of

the problem description, not the input, and that the values of such (pi] functions are
precomputed and thus obtainable in constant time. This assumption helps us focus on
the essence of the presented results. However, if the values of the gol./ functions were
computed on the fly and could be obtained in polynomial time, then all the polynomial
algorithms presented henceforth would remain polynomial.

4 Independent jobs

In this section, we consider problems in which position-dependent actual processing
times are additionally job-dependent, machine-dependent, or mixed job- and machine-
dependent, i.e. p; , = ;i (), pjr = @/ (r), or Dijr = goij (r), respectively. However,
we assume that there are no precedence constraints among jobs.

Let us start this section by observing that the Pm|p, = ¢(r)|Cpax and Pm|p, =
@(r)| > C; problems can be easily solved by assigning at most [r/m] jobs to each of
the machines in such a way that the numbers of jobs executed on any pair of machines
do not differ by more than one. As it will be shown, in case of machine-dependent
processing times, some of the problems can still be solved in polynomial time even if
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chain precedence constraints are defined. However, if the actual processing times are
job-dependent, then they might be—as a special case—constant. As, for m = 2, this
leads to the P2||Cpax problem, the following proposition holds.

Proposition 1 The P2|p; , = ¢;(r)|Cmax problem is NP-Hard.

Itis worth noticing that although the P2| p; , = ¢; (r)|Cpax problem is A/P-Hard, the
1| pi.r = ¢i (r)|Cmax problem can be rewritten as the following balanced ASSIGNMENT
problem.

min ZZ(pi(r) “Xi oy (1)

i=1r=1

n
st Y xiy=1forr=12,...n )
i=1

n
Y oxip=1 fori=12....n
r=1
xiy €10, 1). 3)

Here, x; , is an indicator variable that is equal to 1 if and only if job J; holds the r-th
position in a schedule. Condition (2) guarantees that only one job will be assigned to
each of the positions, from 1 to n. Similarly, condition (3) ensures us that each job
will be assigned to exactly one position. Finally, (1) represents the value of the Cpax
objective function for a given job-to-position assignment. As shown by Fredman and
Tarjan (1987), a balanced ASSIGNMENT problem can be solved in O (n?). We refer
the reader to a book by Burkard et al. (2012) for a wide review on the ASSIGNMENT
problem.

The 1|p; » = ¢i(r)| >_ C; problem can also be rewritten as a variant of the ASSIGN-
MENT problem. Assume that  jobs are executed on a single machine, one after another,
with their processing times equal to p1, pa, ..., pn, respectively. Then,

Y Ci=pi+pr+p)++Prtpto o+
=n-pr+m—1-pr+-+2 pa_1+ pn
For this reason, the objective takes form of
n n
min Y > —r+1)- @) xi, (4)
i=1r=1

As n is a constant, one can introduce a new function, ¢; (r) = (n —r + 1) - ¢; (r), and
rewrite the objective as

n n
min Y gi(r) - xi.

i=1r=1
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which is equivalent to (1). Thus, the 1|p; , = ¢;(r)| Y_ C; problem can be solved in
polynomial time, too. What is more interesting, the latter result can be generalized to
a case of parallel machines, mixed position-, job- and machine-dependent processing
times, and ) C; objective function as follows.

Let us start with a two-machine case in which p; ; , = <pl.] (r). Consider an instance
of the ASSIGNMENT problem, denoted by I.. In this instance, we are given n jobs
which should be assigned to both a position and a machine. However, we assume a
priori that exactly ¢ jobs will be assigned to the first machine. This means that the
remaining n — c jobs will be assigned to the second machine. Given an instance /.
and any corresponding feasible schedule 7, with no idle times between jobs, we have

DG =D P @+ YD ein@)
r=1¢g=1 r=1¢g=1

=Y c—r+ D g +Y n—c—r+ D gl ) O
r=1 r=1

where (p[jr] is a function associated with the job holding the r-th position on the j-th
machine. Figure 1 shows an example of a corresponding bipartite graph for n = 5
and ¢ = 2. The weights of the edges correspond to the impact of a job-to-machine-to-
position assignment on the final value of the Y C; objective function, based on (5).
With the reasoning similar to the one presented for (4), instance /. can be formulated
as the following ILP program for the ASSIGNMENT problem.

min Z[Z(c—r+1)-<o}(r)-x,-,1,r+Z(n—c—r+1)~w,-2<r>-x,-,z,r]

i=1 =r=1 r=1
(6)
n
st Y xig,=1 forr=12..c 7
i=1
n
in,2,r=1 forr=1,2,....,.n—c¢ (8)
i=1
c n—c
D oxins+ Y xigr=1  fori=12....n )
r=1 r=1
Xi,j,r € {O, 1}. (10)

Here, conditions (7-8) guarantee that exactly one job will be assigned to each of
the ¢ positions on the first machine, and each of the n — ¢ positions on the second
machine. Similarly, condition (9) ensures us that each job will be assigned to exactly
one spot.
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(J1) i=10

(J2) i=20 Oji=1Lr=2 ()

(J5) 1=30 @i=2r=1 (P)

(J5) i=50

Fig.1 The I, instance with 5 jobs

As we can now solve the case with fixed number of jobs assigned to the first machine,
we may construct an enumerating algorithm for the general problem, presented as
Algorithm 1.

Algorithm 1

Input: The set ofgaij(r) values fori, r € {1,2,...,n}and j € {1, 2}

Output: An optimal schedule for the P2|p; ; , = (pij (r)]>_ C; problem
1: T < An empty schedule

2: C < o0

3:forc < 0,1,...,ndo

4:  CREATE the /. instance of the ASSIGNMENT problem.

5:  FIND an optimal schedule 7, for /. based on the (6—10) program.
6: if Y C;(T;) < C then

7: T <« T

8: C < Y Ci(Te)

9: return T

Theorem 1 Algorithm I solves the P2|p; j , = gol.j ("1 Y. C; problem in 0(n4) time.

Proof In order to find an optimal schedule for the P2|p; ; , = (pi] (r)] >_ C; problem,
we consider all the possible numbers of jobs ¢ assigned to the first machine. Then,
we select the ¢’ value that guarantees the lowest value of the objective function. Thus,
the algorithm must lead to an optimal schedule. Notice that the optimal ¢ may be
any value between 0 to n, as the actual processing times of jobs are also machine-
dependent. For example, if (pil (r) < % and (pi2 (r) > 1 foreachi and r, then ¢’ = n
(in the optimal schedule all n jobs are assigned to the first machine). Similarly, if
(pl.l (r) > 1and goiz r) < % for each i and r, then ¢’ = 0 (in the optimal schedule all
n jobs are assigned to the second machine). Notice that if the processing times were
machine-independent, then it would be enough to consider only the cases in which
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0 < ¢ < |n/2]. Indeed, given the optimal schedule 7. inside the for loop (line 3),
one could immediately obtain the optimal schedule 7,_. with the same value of the
objective function, simply by swapping the machines.

As the for loop (line 3) is executed n+-1 times, and each time an optimal assignment
for 1, is found in O (n3), the total required number of operations is o). m|

Now, let us consider the general Pm|p; ; , = (pi] (r)| Y_ C; problem. One can notice
that the same approach can be applied here. Indeed, let AP (m, n) be a number of
ASSIGNMENT problems that need to be solved in order to find an optimal solution for
m machines and # jobs. It holds that

1 fi =1
AP(m,n) ={ orm

5 _ m—1
1+ Y20 APGm — 1,0 —¢), form > 1} =06,

This means that the Pm|p; ; , = (pij (r)| >_ C; problem can be solved in the time of
O (m"~1.n?) = O(m"*?). The same asymptotic result can be justified by the following
reasoning. Given a fixed sequence of non-negative numbers of jobs (ny, na, ..., n;)
that have to be assigned to each of the machines, one can find an optimal solution by
solving the ASSIGNMENT problem. The number of (n1, nz, ..., n,) sequences such
that Y7, nj = n is defined by (”J”:*l) = O0m"'/(m — 1)), for a fixed m. Thus,
the Pm|p; j, = (pij (r)| Y_ C; problem can be solved in O (n"*2).

We will finish this section by considering the P2|p;, = @/ (r)|Cmax and the
P2|p;, = ¢/ (r)|)_ C; problems. Let us observe that for any schedule T the val-
ues of Cmax(T) and )" C;(T) depend on the number of jobs executed on each of the
machines only. For example, if in the 7, schedule there are ¢ jobs assigned to machine
P and n — c jobs assigned to machine P,, then

Crnax(T¢) = max {Z 0 (.Y <p2<r>}
r=I1 r=1
and
D CGT)=) c—r+1D) @' )+ Y (n—c—r+1) ¢*1).

r=1 r=1

For this reason, the optimal schedule can be obtained enumeratively by finding, in
O (n) time, the values of

¢/ = arg min max {thl(i’), Z(PQ(”)}

O=c=n r=1 r=1
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and

¢’ = arg min Z(c—r—i—l)~(p1(r)+2(n—c—r+1)-¢2(r) ,

O=c=n |, r=1
respectively, and then assigning any ¢’ jobs to machine Py and the remaining n — ¢’
jobs to machine P in the case of the Cpax Objective function, and any ¢” jobs to
machine P; and the remaining n — ¢” jobs to machine P, in the case of the ) _ C;
objective function.

In general, the Pm|p; , = @/ (r)|Cinax and Pm|p;, = ol (r)] > C; problems can
be solved by greedily assigning each of n jobs to a machine that guarantees the lowest
Cmax at the moment of assignment, as shown in Algorithm 2.

Algorithm 2

Input: The set of(pj(r) values for r € {1, 2, ...,n}‘andj ef{l,2,..., m} )
Output: An optimal schedule for the Pm|p; , = ¢/ (r)|Cmax and Pm|p; , = ¢/ ()] > C; problems

1: T < An empty schedule for m identical parallel machines
2: C < 10,0,...,0] > A 1 x m vector (number of jobs executed on each machine)
3: P« [(p1 1), goz(l), Lo o™(D)] > Potential Cipax values for each of the machines

4: fori < 1,2,..., n do

5: FIND any index p € {1,2, ..., n} such that P[p] = min(P).

6:  Inschedule T', ASSIGN job J; to machine P, so it is executed as soon as possible.

7. > The job is executed in the [P[p] — P (Clpl+ 1), P[p]) interval.
8: Clpl < Clp]l+1

9:  Plpl < Plpl+¢P(Clpl+ 1)

10: return 7

Theorem 2 Algorithm 2 solves the Pm|p;, = <pj (")|Cmax and Pml|p;, =

@’ ()| Y. C; problems in O(m + nlogm) time.

Proof One can notice that for a single job it is optimal to select a machine that guaran-
tees the lowest completion time of this job. Assume that n > 1 is the lowest number
of jobs for which Algorithm 2 leads to a suboptimal schedule.

Let T, be a schedule generated by Algorithm 2 for n jobs and let 7, be an optimal
schedule for the same instance. It must hold that Ciax(7,) < Cmax(Ty), because T,
is suboptimal. Let us remove from schedule 7}, any job for which the completion time
is equal to Cpax (7},). Call the resulting schedule 7;,_.

By the construction of Algorithm 2, 7,,_; is an optimal schedule of n — 1 jobs. For
that reason it must hold that Cmax (T,—1) < Cmax(7})) < Cmax(T},). At the same time,
there exists at least one machine P; such that the number of jobs assigned to it in
the T,,—; schedule is lower than in the 7, schedule. After assigning a new job to that
machine we obtain a new schedule, S,. Again, by the construction of the algorithm,
it must hold that Cpax (7)) < Cmax(Sy). Consequently, Cpax(T,) < Chpax(Sp) <
Cmax(T;)) < Cmax(T,,) which is a contradiction. A similar reasoning can be provided
for the ) C; objective function.
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Table 1 Complexity of considered problems with independent jobs

Proc. times |, Cmax Y Ci

No. of m. — 1 2 m 1 2 m

pr=o(r) O(n) O(n) On) O(n) O(n) O(n)

pjr =9 ) 0(n) O(n) O(m + nlogm) 0(n) O(n) O(m + nlogm)
piy =i (r) om3) NPH  NPH om3) ot on"t2)
pijr=¢l () 0¥ NPH  NPH omn®  omh on"+2)

Before the for loop (line 4), one needs to perform O (m) operations. In the for loop,
the number of operations is bounded by O (nm). However, if one implements P as
a priority queue using a strict Fibonacci heap (Brodal et al. 2012), this result can be
improved. Building a heap P at the beginning would still require O (m) operations, but
finding min(P) could be done in O (1) time, and increasing a key in the P heap would
require O (logm) time. For that reason the number of operations required by the for
loop (line 4) can be reduced to O (n logm), and thus the total number of operations is
O(m + nlogm). O

We present a summary of the results discussed up to this moment in Table 1. The
results proved in this section are printed in bold. Other results in the table follow either
from their generalizations (if they are polynomial) or from their special cases (in case
of A’P-Hardness).

5 Chained jobs

In the previous section, we analyzed the Pm|p; ;, = gol.j (r)|Cmax and Pm|p; j , =

(pl.j ()| > C; problems of scheduling jobs with no precedence constraints. Now, we
will assume that the jobs need to be executed in a given order, i.e. that they are chained.

It might be observed that when one schedules jobs with fixed processing times, the
problems in which jobs are single-chained are usually easier than the ones with inde-
pendent jobs. For example, the P||Cax problem is N’P-Hard, while the P|chain|Cpax
problem can be solved in linear time. It is also true for more general R||Cpax and
R|chain|Cpax problems.

However, it seems that the case of chained jobs is generally harder than the case
of independent jobs when it comes to mixed job-, machine- and position-dependent
processing times. Despite this, in this section we will present polynomial algorithms
for the Pm|chain, p;,, = ¢/ (r)|Cmax and Pm|chain, p; , = ¢/ (r)| }_ C; problems.
We will analyze these problems one after another.

Let us begin with the P2|chain, p;, = <p~/ (7)|Cmax problem. Assume that we
are given n chained jobs, i.e. J1 — Jo —,--- — J,. One can observe that in any
optimal schedule related to the P2|chain, p; , = @’ (r)|Cmax problem jobs must be
executed one after another, without unnecessary idleness. That means that the value
of the Cax objective function is basically the sum of the actual processing times of
all jobs. Moreover, the objective value does not depend on the exact job-to-machine
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assignment, but rather on the number of jobs assigned to the first (and consequently,
to the second) machine. If one assigns c¢ jobs to the first machine, then the sum of
their actual processing times is equal to Y «_, @'(r). As there are n jobs in total,
the remaining n — ¢ jobs must be assigned to the second machine, with sum of their
actual processing times equalto ) _| @2 (r). This means that for any schedule 7, with
exactly c jobs assigned to the first machine and with no idle times between consecutive
jobs, we have

Coax(To) = Y _ 0" (1) + D 9.
r=1

r=1

These considerations lead us to the linear algorithm for the P2|chain, p;, =
@’ (r)|Cmax problem, presented as Algorithm 3.

Algorithm 3

Input: The set of (pj(r) values forr € {1,2,...,n}and j € {1,2}
Output: An optimal schedule for the P2|chain, p; , = @/ (r)|Cmax problem

Step 1. Find
c n—c
¢/ = argmin Z o'+ Z (pz(r)} ,
¢ r=1 r=1

where 0 < ¢ < n.
Step 2. Assign ¢’ jobs to the first machine and the remaining n — ¢’ jobs to the second machine.

Algorithm 3 is based on the observation, that there are only n 4+ 1 ways to write
down a positive integer n as a sum of two non-negative integers. In general, for m
machines, there are O (n™~'/(m — 1)!) ways to assign n identical jobs to m machines
(see the discussion on the Pm|p; ; , = (pl.j ()| Y C; problem). So, the om" 1 /(m—
1)!) algorithm, presented as Algorithm 4, can be applied for the Pm|chain, p; , =
@/ (r)|Cinax problem.

Algorithm 4

Input: The set of(pj(r) values forr € {1,2,...,n}and j € {1,2,..., m}
Output: An optimal schedule for the Pm|chain, p; . = ¢/ (r)|Cmax problem

Step 1. Find
n ) m
(..o = argmin 1Y @)+ Y @O+ + Y ")
(ny,ny,..., nm) r=1 =1 =1

where n; > 0 and ZT:I nj=n.
Step 2. Assign any n’j jobs to machine Pj, for 1 < j < m.
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Fig.2 Notation for a set of Jiig—>Jig—>Jig— - > Jin,

chains
Jog— Joo— Jog— Jog— - = Jo
Jm,l - Jm,2 > > Jman'rn

Is is worth noticing, based on the results by Przybylski (2017), that if the ¢ function
is non-increasing, then the Pm|chains, p, = ¢(r)|Cpax problem with more than one
chain of jobs to be scheduled can be solved in O (n).

In case of the P2|chain, p;, = gpj (r)|Cmax problem, one can find an optimal
schedule by answering a simple question of how many jobs should be assigned to
each of two machines? Given an optimal number ¢’ of jobs that should be assigned to
machine Pp, one of ( f,) optimal schedules can be obtained by choosing any ¢’ jobs from
the original chain of n jobs. However, in case of the ) C; objective function, there
are two questions to be answered. First, how many jobs should be assigned to each
of two machines, and second, which jobs should it be. Thus, the P2|chain, p; ; , =

(pl.j ()| Y C; problem cannot be reformulated as the ASSIGNMENT problem, even if we
assume that the number of jobs executed on each of the machines is constant. This is
so, because jobs need to be executed in a given order. As a consequence, the actual
processing time of a job J; in any feasible schedule directly depends on how many
jobs from the {J1, Jo, ..., Ji—_1} set were assigned to each of the machines.

It turns out that the Pm|chain, p; , = ol ()] > C; problem can still be solved
by a polynomial algorithm that uses, as a subroutine, a known algorithm for the
l|chains| > C; problem. For the latter case, assume that we are given a set of m
chains of jobs, containing n1, ny, ..., n, jobs, respectively, where 27:1 nj = n.
Denote those jobs as presented in Fig. 2. Without loss of generality, we may assume
that if n; = O for some j, then the chain is empty and the index j is omitted.

Given such a set of chains, one can find a single-machine schedule that is optimal
in the sense of the Y C; objective function, based on Algorithm 5 by Conway et al.
(1967). This algorithm requires O (n?) time and is presented in its original form, i.e.
as the list of steps.

Algorithm 5

Input: The setof chains of jobs, as described in Fig. 2, with the processing time of each job J; ¢ equalto p; ¢
Output: An optimal schedule for the 1|chains| Y C; problem

Step 1. For each job J; ; compute
i1 hj
. .
Step 2. Foreachchain j = 1,...,m compute y; = ming x; x and & ; = arg mingx; x.
Step 3. Choose j’ such that y =Y for all possible values of j and place the first ' jobs from chain j’
in the schedule.

Step 4. Neglecting all scheduled jobs, reindex the remaining jobs and recompute y ! and h i
Step 5. Repeat Steps 3 and 4 until all the jobs are scheduled.

Xjk=
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Algorithm 5 can be adapted to the Pm/|chain, p; , = ol ()] > C; problem in the
following way. Given an instance of the latter problem, with a chain of length n, we
imagine any feasible schedule. In such a schedule n; jobs are executed on machine
P;, with their actual processing times equal to ¢/ (1), ¢/ (2), ..., ¢/ (n), respectively.
Thisissoforeach 1 < j < m. Asno two jobs are executed at the same time, this can be
viewed as a single-machine scheduling problem, in which we schedule m independent
chains of jobs with fixed processing times to minimize the value of ) C;.

Let us be given an instance of the Pm|chain, p;, = @l ()] > C; prob-
lem. Also, let (n1,na,...,n,;) be a sequence of non-negative integers such that
Z’}’: (nj = n. For such a sequence, we generate an instance of the 1|chains| ) C;
problem, in which we have at most m chains of jobs. The j-th chain consists
of nj jobs, Jj1—Jjo2—...—>Jjn;, with their fixed processing times equal to
@/ (1), 9/ (2), ..., ¢' (n}),respectively. Given a single-machine schedule that provides
the lowest value of Y C; within all the (n1, ny, ..., n,) sequences, a corresponding
m-machine optimal schedule with the same value of ) _ C; can be generated, as shown
in Algorithm 6.

Algorithm 6

Input: The set of(pj(r) values forr € {1, 2, ...,n} andj‘e {1,2,...,m}
Output: An optimal schedule for the Pm|chain, p; , = ¢/ (r)| }_ C; problem
1: Ty < An empty single-machine schedule

2 Js < {}

3: Cy < o0

4: for each sequence (n1, ny, ..., ny) such that Z’;’zl nj =ndo

5 T <« {}

6 for j < 1,2,...mdo .

7. CREATE a chain of jobs Jj | — Jj2 — -+ — Jj,nj such that p; . = o’ (k).
8 ADD the J; | —>Jj’2—>---—>1j’n/. chain to J

9:  FIND an optimal single-machine schedule T for 7, based on Alg. 5.
10:  if Y C;(T) < Cs then

11: Tg < T
12: N
13: Csy < Y Ci(T)

14: T < An empty schedule for m identical parallel machines

15: fori < 1,2,...,ndo
16: Jjk < The i-th job in the 7 schedule, as represented in the Js set

17: > The processing time of job J; x is equal to @’ (k).
18:  ASSIGN the i-th job from the original chain of jobs to machine P;.

19: > The processing time of this job will be equal to ol (k).
20: return T

Notice that inside of Algorithm 6, we perform Algorithm 5 O(n™~'/(m — 1)!)
times. As the latter algorithm needs O (n?) operations, the first for loop (line 4) requires
o (n"t! /(m — 1)!) operations in total. The second for loop (line 15) can be performed
in O (n) time. So, Algorithm 6 requires a total running time of o (n"th.

@ Springer



220 Journal of Combinatorial Optimization (2022) 44:207-222

6 Conclusions

We considered a set of parallel-machine scheduling problems with jobs that are
position-dependent. However, the actual processing time of a job might also freely
depend on the job itself and a machine it had been assigned to. We analyzed the cases
of independent and chained jobs, with maximum completion time and total completion
time as the objective functions.

As the Pm|p; j, = (p,.j ()| Cmax problem is A/P-Hard in general, we proposed a
number of polynomial algorithms that solve some of its special cases. Those special
cases have been obtained by reducing the number of different ¢ functions. In case of the
Pmlp; jr = (pij (r)| >_ C; problem, we presented a full set of polynomial algorithms
for it an its subproblems. Then, for the case of chained jobs, we presented a series of
polynomial algorithms for the Pm/|chain, p;, = @/ (r)|Cinax and Pm|chain, p i =
@’ (r)| 3. C; problems.

Although the presented results are theoretical, they can be used in real life. As
the analyzed model is very general, it covers various job-, machine-, and position-
dependent models—including the ones that might have not been discussed yet. For
example, the presented results are true for classic learning and aging models (e.g.
pi.r = pi - %, where a; < 0 or a; > 0, respectively). They also remain valid when
DeJong’s learning effect is considered. Our results can be a base for further research
on parallel-machine scheduling of variable-time jobs for which no assumptions on the
model of positional-dependency are made.

There are still some open questions related to the problems discussed in this paper.
Namely, we now focus on answering the questions of whether the Pm |chain, p; ; , =
(pij (r)|Cmax and Pm|chain, p; ; , = (pij ()| Y_ C; problems are polynomially-solvable.
It is known that the answer is positive for job processing times that are only job- and
machine-dependent. However, for position-dependent jobs, the answer requires some
further analysis.
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