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Abstract. We devise an algorithm for maintaining the visibility polygon of any query point in a
dynamic polygonal domain, i.e., as the polygonal domain is modified with vertex insertions and
deletions to its obstacles, we update the data structures that store the visibility polygon of the
query point. After preprocessing the initial input polygonal domain to build a few data structures,
our algorithm takes O(k(lg |V PP′(q)|)+(lgn′)2 +h) (resp. O(k(lgn′)2 +(lg |V PP′(q)|)+h)) worst-
case time to update data structures that store visibility polygon V PP′(q) of a query point q when
any vertex v is inserted to (resp. deleted from) any obstacle of the current polygonal domain P ′.
Here, n′ is the number of vertices in P ′, h is the number of obstacles in P ′, V PP′(q) is the visi-
bility polygon of q in P ′ (|V PP′(q)| is the number of vertices of V PP′(q)), and k is the number of
combinatorial changes in V PP′(q) due to the insertion (resp. deletion) of v.

As an application of the above algorithm, we also devise an algorithm for maintaining the visibility
graph of a dynamic polygonal domain, i.e., as the polygonal domain is modified with vertex inser-
tions and deletions to its obstacles, we update data structures that store the visibility graph of the
polygonal domain. After preprocessing the initial input polygonal domain, our dynamic algorithm
takes O(k(lgn′)2 +h) (resp. O(k(lgn′)2 +h)) worst-case time to update data structures that store
the visibility graph when any vertex v is inserted to (resp. deleted from) any obstacle of the current
polygonal domain P ′. Here, n′ is the number of vertices in P ′, h is the number of obstacles in P ′,
and k is the number of combinatorial changes in the visibility graph of P ′ due to the insertion
(resp. deletion) of v.

1 Introduction

The polygonal domain comprises a set of pairwise-disjoint simple polygons (obstacles) in the
plane. We assume the obstacles in the polygonal domain are placed in a large bounding box.
For any polygonal domain P, the free space F(P) is the closure of bounding box without the
union of the interior of all the obstacles in P. Any two points p, q ∈ F(P) are visible to each
other if the open line segment joining p and q lies entirely in F(P). A vertex v of the polygonal
domain is said to be a visible vertex to a point q whenever v is visible to q. For a point q ∈ F(P),
the visibility polygon of q, denoted by V PP(q), is the maximal set S of points in F(P), such
that each point in S is visible to q. (When P is clear from the context, the visibility polygon
of q is denoted by V P (q).) The visibility polygon query problem seeks to preprocess the given
polygonal domain P so that to efficiently compute V PP(q) for any query point q located in
F(P). Computing visibility polygons is a fundamental problem in computational geometry, and
it is studied extensively. The (vertex-vertex) visibility graph of a polygonal domain P, denoted
by V GP , is the undirected graph with its vertex set comprising all the vertices of P. The edge
set of V GP comprises of every line segement with its endpoints v′, v′′ being the vertices of P
such that v′ and v′′ are visible to each other among the obstacles of P ′. The visibility graphs
have many applications, ex., in computing geodesic shortest paths, minimum link paths, and
in computing the weak visibility polygons. In the following, we denote the number of vertices
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of the simple polygon or the polygonal domain by n, the number of obstacles in the polygonal
domain by h, and the set comprising the edges of the visibility graph by E.

The problem of computing the visibility polygon of a point in a simple polygon was first
attempted by Davis and Benedikt in [15], and they presented an O(n2) time algorithm. Later,
both ElGindy and Avis [16], and Lee [32], presented O(n) time algorithms for the same problem.
Joe and Simpson [26] corrected a flaw in [16, 32], and devised an O(n) time algorithm that
correctly handles winding in the simple polygon. For a simple polygon with holes, both Suri
and O’ Rourke [40], and Asano [4] presented O(n lg n) time algorithms, and Heffernan and
Mitchell [21] gave a O(n + h lg h) time algorithm. The visibility polygon computation among
convex sets was considered by Ghosh in [17].

For both the simple polygon as well as the polygonal domain, the previous works considered
the visibility polygon query problem. Bose et al. [7] gave an algorithm to preprocess the given
simple polygon in O(n3 lg n) time, build data structures of size O(n3), and answer any visibility
polygon query in O(lg n + |V P (q)|) time. Later, Aronov et al. [3] devised an algorithm for
the same problem with preprocessing time O(n2 lg n), space O(n2), and query time O(lg2 n +
|V P (q)|). Zarei and Ghodsi [42] presented an algorithm that preprocesses the given polygonal
domain in O(n3 lg n) time to build data structures of size O(n3), and answers each visibility
polygon query in O((1+h′) lg n+ |V P (q)|) time, where h′ = min(h, |V P (q)|). The algorithm by
Inkulu and Kapoor [23] preprocesses the input polygonal domain in O(n2 lg n) time, builds data
structures of size O(n2), and answers visibility polygon query in O(min(h, |V P (q)|)(lg n)2 +h+
|V P (q)|) time. This paper also presented another algorithm with preprocessing time O(T +
|V G| + n lg n), space O(min(|V G|, hn) + n), and query time O(|V P (q)| lg n + h). Here, |V G|
denotes the number of edges in the visibility graph, and T is the time to triangulate the free space
of the given polygonal domain. Baygi and Ghodsi [6] constructed a data structure of size O(n2)
in O(n2 lg n) time, and their algorithm answers any visibility polygon query in O(|V P (q)|+lg n)
time. Lu et al. [33] presented an algorithm to compute a data structure of size O(n2) in O(n2 lg n)
time, which helps in answering any visibility polygon query in O(|V P (q)|+ (lg n)2 + h lg(n/h))
time. Chen and Wang [12] gave an algorithm that preprocesses the polygonal domain in O(n+
h2 lg h) time to construct data structures of size O(n + h2), so that to answer any visibility
polygon query in O(|V P (q)| lg n) time. Pocchiola and Vegter [37] considered the query version
of visibility polygon computation in the polygonal domain comprising convex obstacles. Their
algorithm computes the visibility polygon of any query point in O(|V P (q)| lg n) time after
preprocessing the convex polygonal domain in O(n lg n) time and building data structures of
size O(n).

To compute the visibility graph of a simple polygon, Lee [31] and Sharir and Schorr [39]
gave algorithms that take O(n2 lg n) time. For this problem, algorithms given by Asano et al. [4]
and Welzl [41] take O(n2) worst-case time, which are worst-case optimal since the number of
edges |E| in the visibility graph is Θ(n2) in the worst-case. For triangulated simple polygons,
Hershberger [22] gave anO(n+|E|) time algorithm. Since any simple polygon can be triangulated
in linear time due to an algorithm by Chazelle [8], the algorithm in [22] essentially takes O(n+
|E|) time, which is optimal for this problem.

There are a number of algorithms to compute the visibility graph of a polygonal domain
efficiently. Overmars and Welzl [36] gave an output-sensitive algorithm that takes O(|E| lg n)
time and O(n+ |E|) space. Ghosh and Mount [19] presented an algorithm with O(n lg n+ |E|)
worst-case time with O(|E| + n) space. Keeping the same time complexity as the algorithm
in [19], Pocchiola and Vegter [37] improved the space complexity to O(n). Kapoor and Ma-
heshwari [28, 29] proposed an algorithm with time complexity O(T + |E| + h lg n) and O(|E|)
space. Here, T is the time for triangulating the free space of the polygonal domain, which is
O(n + h(lg h)1+δ) due to Bar-Yehuda and Chazelle [5] for a small positive constant δ. Later,
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closely following [19], Chen and Wang [11] devised an algorithm with the same time complexity
as the algorithm in [28, 29]. The texts by Ghosh [18] and O’ Rourke [34] detail a number of
algorithms for computing visibility polygons and visibility graphs in the plane.

In the context of visibility polygons (resp. visibility graphs), having algorithms to main-
tain the visibility polygon (resp. visibility graph) among dynamic polygonal obstacles helps
in updating the visibility polygon (resp. visibility graph) efficiently (that is, with respect to
updation time) as compared to computing the entire visibility polygon (resp. visibility graph)
from scratch using traditional algorithms. In doing this, the algorithm specifically exploits the
recent changes that occurred to the polygonal domain; based on these changes, the update is
performed. Both Inkulu and Nitish [24] and Inkulu et al. [25] devised algorithms for maintaining
the visibility polygon of a query point in a dynamic simple polygon. After preprocessing the
initial simple polygon with n vertices in O(n) time, the algorithm given in [25] updates data
structures that store the visibility polygon of a query point in O((k + 1)(lg n′)2) time when
any vertex v is inserted to (resp. deleted from) the simple polygon. Here, k is the number of
combinatorial changes in the visibility polygon of q due to the insertion (resp. deletion) of v
and n′ is the number of vertices in the current simple polygon. An algorithm for maintaining
the weak visibility polygon in a dynamic simple polygon is given in [25]. Choudhury and Inkulu
[13] devised an algorithm for maintaining the visibility graph of a dynamic simple polygon. The
algorithm in [13] preprocesses the initial simple polygon in O(n+ |E| lg |E|) time to build data
structures of size O(n + |E|), and updates the visibility graph of the current simple polygon
P ′ in O((k + 1)(lg n′)2) time when a vertex v is inserted to (resp. deleted from) P ′. Here, k is
the number of combinational changes in the visibility graph of P ′ due to the insertion (resp.
deletion) of v to P ′. The visibility in the context of a moving observer was studied in [9, 2].

1.1 Our results

In this paper, two algorithms are proposed. After preprocessing to build a few data structures,
the first algorithm updates data structures that store the visibility polygon of any query point
q, and the second algorithm updates the data structures that store the visibility graph of the
current polygonal domain, both among a set of dynamic polygonal obstacles. These algorithms
update relevant data structures whenever any vertex is inserted to any of the obstacles in the
current polygonal domain or whenever any vertex is deleted from any of the obstacles.

– Let V PP ′(q) be the visibility polygon of a query point q located in the free space of the
current polygonal domain P ′. Also, let n′ be the number of vertices of P ′. When any ver-
tex v is inserted to (resp. deleted from) any of the obstacles of P ′, our algorithm takes
O(k(lg |V PP ′(q)|)+(lg n′)2 +h) (resp. O(k(lg n′)2 +(lg |V PP ′(q)|)+h)) time to update data
structures that store V PP ′(q). Here, k is the number of combinatorial changes in V PP ′(q)
due to the insertion (resp. deletion) of v. (The combinatorial changes to V PP ′(q) include
vertices inserted, vertices deleted, edges inserted, and edges deleted from V PP ′(q).) Given
any query point q located in the free space of the current polygonal domain P ′, our output-
sensitive visibility polygon query algorithm computes V PP ′(q) in O(|V PP ′(q)|(lg n′)2 + h)
time. The data structures constructed as part of answering the visibility polygon query al-
gorithm facilitate efficient updations as the polygonal domain changes. We preprocess the
initial input polygonal domain P in O(n(lg n)2 +h(lg h)1+ε) time, and construct data struc-
tures of size O(n). Here, n is the number of vertices of P, h is the number of polygonal
obstacles in P, and ε > 0 is a small positive constant (resulting from triangulating the free
space of P using the algorithm in [5]).
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– Let V GP ′ be the visibility graph of the current polygonal domain P ′. Also, let n′ be the
number of vertices in P ′. When any vertex v is inserted to (resp. deleted from) any of
the obstacles of P ′, our algorithm takes O(k(lg n′)2 + h) (resp. O(k((lg n′)2 + h))) time to
update the visibility graph of P ′. Here, k is the number of combinatorial changes in V GP ′

due to the insertion of v. (The combinatorial changes in V GP ′ include vertices inserted,
vertices deleted, edges inserted, and edges deleted from V GP ′ .) We preprocess the initial
input polygonal domain P in O(n(lg n)2 + h(lg h)1+ε + |E| lg |E|) time, and construct data
structures of size O(n + |E|). Here, n is the number of vertices of P, h is the number of
polygonal obstacles in P, E is the set of edges in the visibility graph of P, and ε > 0 is a
small positive constant (resulting from triangulating the free space of P using the algorithm
in [5]).

For convenience, we assume all through the algorithm, the number of polygonal obstacles
does not change, and the obstacles are pairwise disjoint. To our knowledge, these are the first
algorithms for maintaining the visibility polygon of any given point and the visibility graph
of the polygonal domain among the dynamic polygonal obstacles. These algorithms obviate
computing the visibility polygon of a given point or the visibility graph from scratch whenever
the polygonal domain is modified with a vertex insertion or vertex deletion.

Next, we give an overview of our approach. For any given query point q, we compute two
binary trees (called visibility trees) to store the visibility polygon of q. These visibility tree
data structures in our algorithm are a modification to visibility trees defined in [29]. From
these trees, we compute the visibility polygon V PP ′(q) of q in the current polygonal domain P ′.
Whenever a new vertex v is inserted to an obstacle of the current polygonal domain P ′, first, we
perform a ray-shooting query to determine whether v is visible to q. If it is not visible, then our
algorithm does nothing further. Otherwise, we traverse the visibility trees in depth-first order
to determine all the vertices that are not visible to q due to the insertion of v. We update the
V PP ′(q) by removing these vertices from V PP ′(q). As part of this, we also update both the
visibility trees. Similarly, in the case of deletion of a vertex v, by performing a ray-shooting
query, it is determined whether deleted vertex v is visible to q. If the deleted vertex v was
visible to query point q, then the deletion of v may cause the addition of some new vertices to
V PP ′(q). These new vertices are determined using our output-sensitive visibility polygon query
algorithm with q as the query point. Updating V PP ′(q) involves merging a set of polygons due
to these vertices into data structures that store V PP ′(q). Our visibility polygon query algorithm
enhances data structures designed in [23], so that they work efficiently among dynamic polygonal
obstacles. As in [23], our visibility polygon query algorithm computes visibility trees of a query
point q by determining sequences’ of traingles bounding rays of visibility cones initiated at q
intersect. When any ray in a visibility cone is found to strike a point on the boundary of any
obstacle O, we compute tangents from q to O. To compute these tangents and, in turn, for
updating visibility cones, our algorithm dynamically maintains hull trees of obstacle boundaries
using the algorithm by Overmars and van Leeuwen [38]. In updating the visibility graph, we use
an important characterization to determine edges of the visibility graph V GP ′ of the polygonal
domain P ′ that need to be deleted from (resp. included into) V GP ′ due to the insertion (resp.
deletion) of a vertex from P ′.

1.2 Terminology

We denote the initial input polygonal domain by P, the number of vertices of P by n, and the
number of polygonal obstacles in P by h. We use P ′ to denote a polygonal domain just before
inserting (resp. deleting) a vertex, and P ′′ to denote a polygonal domain just after inserting
(resp. deleting) a vertex. We call P ′ as the current polygonal domain, and we call P ′′ as the
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updated polygonal domain. The number of vertices of P ′ is denoted by n′. The number of pairwise
disjoint polygonal obstacles in any polygonal domain is denoted by h. Recall the definitions of
free space of a polygonal domain, visibility polygon of a point in a polygonal domain, and the
visibility graph of a polygonal domain from Section 1. It is assumed that every new vertex
is added between two successive vertices of an obstacle. Whenever a new vertex v is inserted
between two adjacent vertices vi and vi+1 in polygonal domain P ′, it is assumed that two new
edges are added to P ′: one between vertices v and vi, and the other between vertices v and vi+1.
Similarly, in the case of deletion of a vertex v, it is assumed that after deleting v from P ′ which
is adjacent to vertices vi and vi+1 in P ′, a new edge is inserted between vertices vi and vi+1.
After adding (resp. deleting) any vertex to (resp. from) any obstacle O in the current polygonal
domain, our algorithm assumes O continues to be a simple polygon. Further, the newly inserted
vertex in P ′′ is assumed to be contained in the bounding box containing the obstacles of P. The
visibility polygon of q in any polygonal domain Q is denoted by V PQ(q). The visibility graph in
any polygonal domain Q is denoted by V GQ. For any simple polygon P , the boundary of P is
denoted by bd(P ). Unless specified otherwise, the boundary of any simple polygon is assumed
to be traversed in counter-clockwise order. It is assumed that all the angles are measured in the
counter-clockwise direction from the positive horizontal axis (x-axis). A constructed edge [18] is
an edge uiui+1 on the boundary of V PP ′(q) such that either (i) no point of uiui+1, except the
points ui and ui+1, belongs to the boundary of P ′, and at least one of ui, ui+1 is a vertex of P ′,
or (ii) every point on the edge uiui+1 is lying on the boundary of P ′, and neither ui and ui+1

is a vertex of P ′. For every constructed edge uiui+1, among ui and ui+1, the farthest one from
q is termed a constructed vertex of V P (q).

Fig. 1. Illustrating a triangulation of the free space among two obstacles and the corridors (indicated by red solid
curves). There are two junction triangles marked by a large dot inside each of them, connected by three solid
(red) curves. Removing the two junction triangles results in three corridors. (This illustration is from [10].)

Next we describe a few structures from [27, 28, 30] which result from decomposing the free
space F(P) of a polygonal domain P. Consider a triangulation TP of F(P). Let Gd be the dual
graph of TP . First, we prune Gd by iteratively removing all the vertices of degree one. Let G′

d

be the pruned dual graph of TP . For every node belonging to G′
d, its degree is either two or

three. Every triangle in TP that corresponds to a vertex of degree three in G′
d is known as a

junction. Removing the junctions leads to connected simple polygonal regions in P. Every such
region is known as a corridor. (Refer to Fig. 1.) Any corridor C has at most two poly-lines, each
is known as a corridor side, and two edges, each is known as a (corridor) bounding edge of C.
For any corridor C, and for any bounding edge v′v′′ of C, if the angle made by ray qv′ is less
than or equal to (resp. greater than) the angle made by ray qv′′ at q, then the corridor side of
C that has v′ is known as the left side (resp. right side) of C (with respect to q).
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Let r′ and r′′ be two rays with origin at p. Let uv1 and uv2 be the unit vectors along the
rays r′ and r′′, respectively. A cone Cp(r

′, r′′) is the set of points defined by rays r′ and r′′ such
that a point p′ ∈ Cp(r′, r′′) if and only if p′ can be expressed as a convex combination of the
vectors uv1 and uv2 with positive coefficients. When the rays are evident from the context, we
denote the cone with Cp. A cone Cp is called a visibility cone whenever Cp contains at least
one point in F(P) that is visible to p. For any cone Cp(ri, rj), among rays ri and rj , the ray
that makes lesser angle with the positive x-axis at p is the left ray of Cp and the other ray is
the right ray of Cp. For any cone, throughout the paper, we assume the counter-clockwise angle
between the left ray of Cp and the right ray of Cp is less than π. Any edge in the visibility graph
of the polygonal domain is called a visible edge. We use vertex to denote any endpoint of any
edge of the polygonal domain, and we use node to denote any tree node in data structures that
we construct.

The preprocessing algorithm and the data structures for maintaining the visibility polygon
are detailed in Section 2. Section 3 details the algorithms to maintain the visibility polygon of
any query point whenever the current polygonal domain is modified with a vertex insertion or
with a vertex deletions. The output-sensitive visibility polygon query algorithm of any given
query point is given in Section 4. Section 5 details both the preprocessing algorithm and the
algorithms for maintaining the visibility graph. Conclusions are in Section 6.

2 Preprocessing algorithm and data structures

We first preprocess the input polygonal domain P. Using the algorithms in [27, 28, 30], we
partition the free space F(P) of P into O(h) corridors and junctions. To efficiently compute
tangents to dynamic sides of corridors, for each side S of every corridor, we construct a hull
tree corresponding to S with the algorithm in [35, 38]. For locating any vertex that is inserted
to (resp. deleted from) any obstacle, and for locating query points, we compute a point location
data structure for the corridor structure with the algorithm in [20].

As in the algorithm in [23], for every corridor C, we construct a set PC of simple polygons
corresponding to corridor C. (Refer to Fig. 2.) One of the simple polygons in PC , denoted
with P4(C), is the corridor C itself. This polygon helps in determining vertices of C that are
visible to q when q is located in C. If q is not located in C, the other three simple polygons
in PC , denoted by P1(S1), P2(S1), P3(S2), each corresponding to a side of C, together help
in determining vertices of C that are visible to q. In specific, two of these simple polygons
P1(S1), P2(S1) correspond to one side S1 of C, and P3(S2) correspond to the other side S2 of
C. For more details, refer to [23].

Whenever an obstacle in the polygonal domain gets modified with a vertex v insertion or
deletion, a side of the corridor on which v resides is updated. Whenever a side S of any corridor C
changes, we make the changes to P4(C) as well as to the simple polygons in PC that correspond
to side S. In the query phase, using the algorithm in [25], we compute visible vertices and
constructed vertices (refer to [18]) in these dynamic simple polygons. As part of preprocessing
required for the algorithm in [25], for every corridor C, each of the four simple polygons in PC
are further processed in linear time to construct data structures as required by the algorithm
in [25]. Analogous to set PC of simple polygons for P, our algorithm maintains corresponding
set P ′

C (resp. P ′′
C) of simple polygons for the current polygonal domain P ′ (resp. the updated

polygonal domain P ′′).

Lemma 1. Given a polygonal domain P defined with h obstacles and n vertices, our preprocess-
ing algorithm computes data structures of size O(n) in O(n(lg n)2 + h(lg h)1+ε) time. Here, ε is
a small positive constant resulting from the triangulation of free space F(P) using the algorithm
in [5].
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P2(S1)

S2

S1

P1(S1)

S2

S1

(a) Simple Polygon P1(S1)

(b) Simple Polygon P2(S1)

S2

S1

P3(S2)

S2

S1

(c) Simple Polygon P3(S2)

(d) Simple Polygon P4(C)

P4(C)

Fig. 2. Illustrating four simple polygons in PC corresponding to a corridor C. (This illustration is from [23].)

Proof: Triangulating P using the algorithm in [5] and computing corridors using the algorithms
in [27, 28, 30] takes O(n+h(lg h)1+ε) time. Construction of point location data structure requires
O(n) time with the algorithm in [20]. Using the algorithm in [38], constructing hull trees for all
the corridor sides together takes O(n(lg n)2) time. Computing the set PC of polygons [23] for
every corridor C, while considering all the corridors together takes O(n) time. And, preprocess-
ing all such simple polygons corresponding to all the corridors for constructing data structures
required for the algorithm in [25] takes O(n) time. The data structures for hull trees and point
location data structures are of size O(n). All the simple polygons constructed for all the corri-
dors together take O(n) space. ut

The query algorithm to construct visibility tree data structures TV ISBP ′(q) and TV ISUP ′(q)
for the input query point q among the polygonal obstacles of P ′ is described in Section 4. The
visibility polygon of q is determined from the information stored at the nodes of these trees, and
our dynamic algorithms update visibility trees as and when the current polygonal domain is
modified with vertex insertions and vertex deletions. Our algorithms for updating the visibility
polygon of a point q ∈ F(P ′) are provided with the visibility trees TV ISBP ′(q) and TV ISUP ′(q).

The visibility trees were first defined in [29]. We modify visibility tree structures from [29]
so that they are helpful in our context. Here we describe the structures from [29] together with
our modifications. For every corridor C that has at least one point on the boundary of C that
is visible to q, there exists at least one node in these trees that corresponds to C. Any node t in
either of these trees corresponds to a corridor Ct. With t, we store a pointer to Ct, a visibility
cone vct (with its apex at q), and two red-black balanced binary search trees (refer [14]), denoted
by RBT tL, RBT

t
R. Refer to Fig. 3. The RBT tL (resp. RBT tR) at node t stores every (constructed)

vertex v′ of V PP ′(q) that belongs to the left (resp. right) side of corridor C whenever v′ lies in
vct. With each point p in both of these RBTs, we store the angle ray qp makes at q. If a point
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p is stored in TV ISBP ′(q) (resp. TV ISUP ′(q)) then the line segment qp is guaranteed to intersect
B (resp. U). For any point p located on the boundary of an obstacle, and for p visible to q,
the sequence of corridors intersected by the line segment qp is said to be the corridor sequence
of qp. We note that for any two points p′, p′′ in a corridor C, with both p′ and p′′ visible to q,
the corridor sequence of qp′ is not necessarily same as the corridor sequence of qp′′. Hence, in
any visibility tree of q, there could be more than one node that corresponds to any corridor.
However, any (constructed) vertex of V PP ′(q) (or, any vertex of P ′) appears at most once in
any of the RBTs stored at the nodes of these visibility trees. For any two nodes t′, t′′ of any
visibility tree, for any point p′ stored in either RBT t

′
L or RBT t

′
R , and for any point p′′ stored in

either RBT t
′′
L or RBT t

′′
R , the corridor sequence of qp′ is not equal to the corridor sequence of

qp′′.

For every corridor C ′, the list of visibility cones that intersect C ′ are stored in a red-black
tree, named V CC′ . In specific, the visibility cones in V CC′ are stored in sorted order with respect
to angle left bounding ray of each cone in V CC′ makes at q. In addition, with each visibility
cone vc in V CC′ , we store the pointer to a node in a visibility tree that saved a visible point
belonging to bd(C ′) ∩ vc. (Refer to Fig. 3.) If no such visible point exists, then the pointer to a
node in the visibility tree that represents the corridor nearest to p along qp, where p ∈ C ′∩vc, is
stored with vc. Whenever a vertex v is inserted (resp. deleted) to (resp. from) C ′, by searching
in V CC′ , we determine the visibility cone in which we need to update the visibility polygon of
q.

qC1

C2

C3

C5

C6

vc1 vc2

vc

(C1, vc)

(C3, vc1) (C5, vc2)

(C6, vc1) (C6, vc2)

(a) Visibility tree

RBT t1L RBT t1R

RBT t2L RBT t2R RBT t3L RBT t3R

RBT t4L RBT t4R RBT t5L RBT t5R

t1

t2 t3

t4 t5

(vc, t1) (vc, t1) (vc1, t2) (vc2, t3) (vc1, t4)

(vc2, t5)(b)V CC1
(c)V CC2

(d)V CC3
(e)V CC4

(f)V CC5

t′1 t′2 t′3 t′4 t′5

t′6

SCt1t2 = SCt1t3 = {(C2, t
′
2)} SCt2t4 = SCt3t4 = {φ}

Fig. 3. Illustrating visibility tree (right top), V CCl (right middle) and SCtitj (right bottom) data structures
corresponding to a set of corridors (left).

Let t′ be any node in either of the visibility trees of q. And, let t′′ be any child of t′. Also,
let C ′, C ′′ be the corridors associated to t′, t′′ respectively. We note that it is not necessary
for corridors C ′ and C ′′ to be adjacent in the corridor subdivision of F(P ′). If C ′ and C ′′ are
not adjacent, then there exists a unique sequence of corridors between C ′ and C ′′, and this
sequence of corridors is stored in a list SCt′t′′ . The list SCt′t′′ is associated with the edge t′t′′

of the visibility tree. (Refer to Fig. 3.) Note that if C ′ and C ′′ are adjacent in the corridor
subdivision of F(P ′), then the list SCtt′ would be empty. With every corridor C ∈ SCt′t′′ , we
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store a pointer to the node in the visibility tree that corresponding to visibility cone vct
′
. In

addition, the pointer stored with vct
′

in V CC points to node t′.

3 Maintaining the visibility polygon of any query point

Let P ′ be the polygonal domain just before inserting (resp. deleting) v to (resp. from) the
boundary of an obstacle. Also, let vi and vi+1 be the vertices between which v is located. We
assume the triangle vvivi+1 is located in one corridor. In this section, we devise algorithms for
updating the data structures that save the visibility polygon of any given query point when
P ′ is modified with a vertex insertion or a vertex deletion. Mainly, we update the satellite
data associated with visibility trees TV ISUP ′(q) and TV ISBP ′(q). We first describe parts of the
algorithm that are common to both the insertion and deletion algorithms. If v is inserted to
an obstacle of P ′, then we insert v at its corresponding position into at most three simple
polygons in PC ; note that one simple polygon in PC correspond to the side of C to which v
is incident. If v is deleted from an obstacle in P ′, then for every simple polygon P ∈ PC , we
delete v from P if v ∈ P . Then, for each simple polygon in PC that got modified, we update
the preprocessed data structures needed for determining visibility in dynamic simple polygons
[25]. Using the algorithm in [20] for ray-shooting in dynamic simple polygons, we determine
whether v is visible to q among obstacles in P ′. This is accomplished using simple polygons in
PC : if q ∈ C, the ray-shooting query with ray qv is performed in P4(C); otherwise, if v belongs
to a side S1 (resp. S2) of a corridor C ′(6= C), we query with ray qv in each simple polygon in
PC′ that corresponds to side S1 (resp. S2). From the correctness of characterizations in [23],
it is immediate that we correctly determine whether v is visible to q. If v is found to be not
visible to q, then V PP ′(q) does not change. In this case, we only update the preprocessed data
structures for hull trees of sides of corridor C, as well as the data structures for dynamic point
location. We note that all the updations of preprocessed data structures can be accomplished
in O((lg n)2) time.

Consider the case when v is visible to q. In this case, the insertion of v (resp. deletion of v)
may cause the deletion of (resp. insertion of) some vertices from (resp. to) the current visibility
polygon V PP ′(q). For every two vertices v′, v′′ ∈ {v, vi, vi+1}, we determine the (smaller) angle
between rays qv′ and qv′′. Among these three possible cones, we find the cone vcm with the
maximum cone angle. The visible vertices belonging to vcm are the potential candidates to be
deleted (resp. inserted) from (resp. to) V PP ′(q) in the insertion (resp. deletion) algorithm. Let
BCq be the lower bounding edge of corridor Cq containing q. Without loss of generality, suppose
vcm intersects BCq . Noting that v ∈ C, by searching in V CC , we determine the visibility cone vc
in which qv lies. We let t′ be the node saved with vc in V CC , and let C ′ be the corridor referred
by t′. In the following subsections, we describe the specific details of insertion and deletion
algorithms.

3.1 Insertion of a vertex

If corridor C ′ is same as corridor C (to remind, v is in corridor C), then v is inserted to RBT t
′
L

(resp. RBT t
′
R ) of node t′ if v is located on the left (resp. right) side of C ′. In the other sub-case,

C ′ is not the same as C. This indicates there is no node present in TV ISBP ′(q) that corresponds
to C and vc, i.e., before the insertion of v, there was no point of bd(C) ∩ vc is visible to q. Let
t′l, t

′
r be the left and right children of t′ respectively. A new node t′′ is inserted as a left (resp.

right) child of t′, if v is located on the left (resp. right) side of C, and the parent of t′l (resp.
t′r) is changed to t′′. The visibility cone vc′ associated with t′′ is same as the visibility cone vc
associated with node t′. Without loss of generality, suppose t′′ is inserted as the left child of t′.
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Let C ′′ be the corridor associated to node t′l. The sequence of corridors SCt′t′l associated to edge
t′t′l is splitted into two sequences: the corridor sequence between C ′ to C along visibility cone
vc is associated to edge t′t′′, and the corridor sequence between C and C ′′ along the visibility
cone vc is saved with edge t′′t′l. In addition, for each corridor C ′′′ in SCt′′t′l , the pointer stored
with visibility cone vc in V CC′′′ is modified so that it points to node t′′.

q

vi
vi+1

v
C

Fig. 4. Illustrating the case in
which the rays bounding vcm are
qvi and qvi+1.

q

vi

vi+1

v

C

Fig. 5. Illustrating the case in
which rays qvi+1 and qv bound
vcm.

Suppose the rays bounding vcm are qvi and qvi+1. (Refer to Fig. 4.) Then, every vertex
of V PP ′(q) continues to be visible to q. Hence, there is no vertex to be deleted from V PP ′(q).
However, since v is visible to q, we need to insert v into a RBT of TV ISBP ′(q). When v is located
on the left (resp. right) side of C, if C ′ is same as C, then v is inserted to RBT t

′
L (resp. RBT t

′
R );

otherwise, if C ′ is not same as C, then vertex v is inserted to RBT t
′′
L (resp. RBT t

′′
R ).

Observation 1 Let P ′ be the current polygonal domain. Let V PP ′(q) be the visibility polygon
of a point q ∈ P ′. Whenever a new vertex v is inserted to an obstacle of P ′, the set of vertices of
V PP ′(q) that get hidden due to the insertion of v are contiguous along the boundary of V PP ′(q).
In specific, vertices stored in any red-black tree of any visibility tree hidden due to the insertion
of v are contiguous at the leaves.

Proof: Let S = {v1, v2, . . . , vj} be the ordered set of vertices stored at a leaf of a red-black tree
in TV ISBP ′(q) (resp. TV ISUP ′(q)). The observation is immediate as the vertices in S that fall in
vcm is a subsequence of S. ut

Suppose the rays bounding vcm are qvi+1 and qv. (Refer to Fig. 5.) In this case, due to the
insertion of v, some vertices of V PP ′(q) may become not visible to q. To determine these vertices,
we do the depth-first traversal of TV ISBP ′(q), starting from t′ if C ′ is same as C; otherwise, we do
the depth-first traversal of TV ISBP ′(q), starting from node t′′. Let α1 and α2 be the angles made
by rays qvi+1 and qv, respectively at q. Also, let α1 < α2. For every red-black tree T at every
node t encountered in this traversal, we search in T to find the contiguous list of vertices such
that each vertex in that list lies in the cone vcm. By Observation 1, all the vertices belonging
to this list are the ones that needed to be removed from T . Hence, we remove each vertex v′ in
this list from T , as v′ is no more visible to q. Let Ct be the corridor referred by node t. During
traversal, if visibility cone vct associated with node t is found to be lying completely inside vcm,
we delete the node corresponding to visibility cone vct in V CCt .

The handling of the last case in which the vcm is bounded by rays qvi and qv is analogous
to the case in which vcm is bounded by rays qvi+1 and qv.
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Lemma 2. Let P ′′ be the polygonal domain resultant from inserting a vertex v to an obstacle
of a polygonal domain P ′. Also, let V PP ′′(q) be the visibility polygon of q among obstacles in
P ′′ determined by the algorithm. Then, any point p ∈ V PP ′′(q) if and only if p is visible to q
among obstacles in P ′′.

Proof: Let a vertex v be inserted on a side of corridor C ∈ P ′. If v is visible to q, we search
in V CC to find the visibility cone vc in which v is lying. A new node is inserted in the current
visibility tree of q only if there is no node in that visibility tree that corresponds to corridor C
and visibility cone vc. This ensures that inside a visibility cone, whenever a corridor has at least
one visible point on its side, there exists a node corresponding to it in one of the visibility trees.
The red-black trees stored at any node of visibility trees that corresponds to C and vc stores all
the vertices in P ′ and the constructed vertices that belong to C ∩ vc. Among the vertices stored
in these red-black trees, vertices that are residing inside the cone vcm become not visible to q
after the insertion of v. After inserting v into the current visibility tree, we traverse the updated
visibility tree and determine these vertices. At every red-black tree T encountered during the
traversal, we search for the contiguous section of vertices (Observation 1) residing in vcm and
remove it from the current visibility polygon. It ensures that any vertex belonging to V PP ′(q) is
removed from the current visibility tree only if it has become invisible due to the insertion of v. ut

Lemma 3. Whenever a vertex v is inserted to P ′, our algorithm updates the current visibility
polygon V PP ′(q) of q in O(k(lg |V PP ′(q)|) + (lg n′)2 + h) time. Here, k is the number of com-
binatorial changes in V PP ′(q) due to the insertion of v, n′ is the number of vertices of P ′, and
h is the number of obstacles in P ′.

Proof: Locating the corridor C in which v is inserted takes O((lg n′)2) time. Determining
whether v is visible to q with a ray-shooting query in each of the simple polygons in PC takes
O((lg n)2) time. By searching in V CC , we determine the visibility cone in which v is lying. Every
node in V CC points to a node in either TV ISBP ′(q) or TV ISUP ′(q). Since the total number of
nodes in either of these trees is O(h), searching V CC takes O(lg h) time. Updating pointers
when a new node is inserted into a visibility tree of q takes O(h) time. Traversing red-black
trees at the nodes of visibility trees and removing the vertices not visible to q takes overall
O(k lg |V P ′(q)|) time. Updating data structures constructed in the preprocessing phase takes
O((lg n′)2) time. ut

3.2 Deletion of a vertex

Suppose the rays bounding vcm are qvi and qvi+1. (Refer to Fig. 6.) The deletion of v does
not change the visibility of any vertex belonging to P ′. Hence, there is no vertex needs to be
included in V PP ′(q). However, since v is not going to be visible to q, we need to delete v from
node t′ of TV ISBP ′(q). The vertex v will be deleted from RBT t

′
L (resp. RBT t

′
R ) if it is located

on the left (resp. right) side of C. We determine whether vertices vi and vi+1 are visible to q.
If any of them is not visible to q, then using the algorithm in [25] for dynamic simple polygons
and with cone vcm as input, we determine the endpoints of constructed edges (refer to [18])
residing in vcm which are incident to edge vivi+1. In addition, we insert these endpoints into
RBT t

′
L (resp. RBT t

′
R ) if they are located on the left (resp. right) side of C.

Suppose the rays bounding vcm are qvi+1 and qv. (Refer to Fig. 7). In this case, due to the
deletion of v, some new vertices of P ′ may become visible to q. As in the above case, v is deleted
from RBT t

′
L (resp. RBT t

′
R ) if it is located on the left (resp. right) side of C. Now, to determine
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vi
vi+1

v

Fig. 6. Illustrating the case in
which the rays bounding vcm are
qvi and qvi+1.

q

C

vi

vi+1

v

Fig. 7. Illustrating the case in
which rays qvi+1 and qv bound
vcm.

vertices that become visible due to the deletion of v, we invoke the query algorithm described in
Section 4 with vcm ∩ vc as the visibility cone and q as the query point. Let vc′ be the visibility
cone vcm ∩ vc. Let vc′l (resp. vc′r) be the left (resp. right) bounding ray of vc′. Also, let C be the
set comprising of corridors such that the path in Gd from a node of Gd that corresponds to R
to the node of Gd that corresponds to Cq. Given C and vc′, our query algorithm determines all
the visible vertices on the sides of each corridor in C to q. (Refer to Subsection 4.1.)

Let T ′ be the tree returned by the query algorithm, and Tt′ be the subtree rooted at t′ in
TV ISBP ′(q). (Note that t′ is the node from which v is deleted.) For any corridor Ci, let V CCi

(resp. V C ′
Ci

) be the red-black tree storing the pointers to the nodes belonging to Tt′ (resp. T ′).
Without loss of generality, suppose vertex v is deleted from the left side of the corridor C. Let
rrvc be the right bounding ray of visibility cone vc. For every node t′′ in T ′, if the right bounding
ray of its visibility cone is vc′r, we replace it with the ray rrvc. We also make similar changes in
V C ′

C′′ corresponding to the corridor C ′′ referred by t′′.
Further, every vertex belonging to T ′ is added to TV ISBP ′(q). To accomplish this, we traverse

the trees T ′ and Tt′ in the breadth-first order. For every node t′′ that we encounter in the
breadth-first traversal of T ′, we search in V CCt′′ to find a visibility cone which is lying entirely

inside the visibility cone vct
′′
. If such a cone exists, it indicates that node t′′ is present in Tt′ . In

this case, by traversing Tt′ in breadth-first order, we locate t′′ in Tt′ . Significantly, for every t′′,
breadth-first traversal of Tt′ starts from the node where the traversal in that tree was stopped
in the previous search. The red-black trees stored at the node t′′ in T ′ are merged with the
red-black trees stored at the node found by the breadth-first traversal in Tt′ .

In the other sub-case, if node t′′ is not present in Tt′ , it indicates that before deletion, the
corridor represented by this node had no visible vertex on either of its sides in visibility cone
vc. Due to the deletion of v, some portion of bd(Ct′′) became visible. Hence, t′′ is inserted in Tt′

such that the parent of t′′ in Tt′ is same as the parent of t′′ in T ′. At the end, for every corridor
Ci, we merge V C ′

Ci
with V CCi .

The handling of the last case in which the vcm is bounded by rays qvi and qv is analogous
to the case in which vcm is bounded by qvi+1 and qv.

Lemma 4. Let P ′′ be the polygonal domain resultant from deleting a vertex v from a polygonal
domain P ′. Also, let V PP ′′(q) be the visibility polygon of q among obstacles in P ′′ determined
by the algorithm. Then, any point p ∈ V PP ′′(q) if and only if p is visible to q in P ′′.

Proof: Let a vertex v be deleted from a side of corridor C ∈ P ′. If v is visible to q, we search in
V CC to find the visibility cone vc in which v is lying. If the rays bounding vcm are qvi and qvi+1,
we delete v from a visibility tree and, using the algorithm in [25] for dynamic simple polygons,
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with cone vcm, we determine the endpoints of constructed edges (if any) that incident to edge
vivi+1. These endpoints are inserted into a visibility tree. In the other cases, after deleting the
vertex v from a visibility tree, the vertices which have become visible due to the deletion of v are
the ones that are lying in the visibility cone vc ∩ vcm. Invoking the query algorithm described
in Section 4 with cone vc∩ vcm ensures that a new vertex is added to the current visibility tree
only if it became visible after deleting v. By the correctness of query algorithm (Lemma 7), it
is guaranteed that every vertex of P ′ or any point on an edge of P ′, which is visible to q and
lying in the cone vc ∩ vcm, is determined by the query algorithm correctly. While merging the
new visibility tree T ′ with the current visibility tree Tt′ , any node belonging to T ′ is inserted
to Tt′ only if it is not present in Tt′ . The insertion guarantees that there are no duplicate nodes
present in the updated visibility trees. ut

Lemma 5. Whenever a vertex v is deleted from P ′, our algorithm updates the current visibility
polygon V PP ′(q) of q in O(k(lg n′)2 + (lg |V PP ′(q)|) + h) time. Here, k is the number of com-
binatorial changes in V PP ′(q) due to the deletion of v, n′ is the number of vertices of P ′, and
h is the number of obstacles in P ′.

Proof: Locating the corridor C in which v is inserted takes O((lg n′)2) time. Determining
whether v is visible to q with a ray-shooting query in simple polygons in PC takes O((lg n′)2)
time. By searching in V CC , we determine the visibility cone in which v is lying. Every node in
V CC points to a node in either TV ISBP ′(q) or TV ISUP ′(q). Since the total number of nodes in
either of these trees is O(h), searching V CC takes O(lg h) time. Determining vertices visible due
to the deletion of v using the query algorithm of Section 4 takes O(k(lg n′)2+h). A breadth-first
traversal of the tree returned by the query algorithm, as well as the breadth-first traversal of a
visibility tree together, takes O(h+k) time. In addition, the red-black trees stored at the nodes
of these trees can be updated in O(k lg |V PP ′(q)|) time. Searching in V C data structures and
updating the visibility cone at the nodes in T ′ takes O(k lg h) time. Updating data structures
constructed in the preprocessing phase takes O((lg n′)2) time. ut

4 Determining the visibility polygon of a query point

In this section, we describe an output-sensitive algorithm to determine the visibility polygon of
a query point in a dynamic polygonal domain. We modify the algorithm for answering visibility
polygon queries in [23], so that the algorithm accommodates dynamic polygonal obstacles.

In the query phase, for any query point q ∈ F(P ′), we compute V PP ′(q). First, we determine
all the sides of corridors, each of which has at least one point visible to q. Recall the visibility
tree data structure from Section 2. We store the vertices of the visibility polygon in two visibility
trees, denoted by TV ISBP ′(q) and TV ISUP ′(q). For convenience, in the query algorithm, at every
node in both of these visibility trees, we save an additional cone, named auxiliary visibility
cone. The auxiliary visibility cone vctaux defined at a node t indicates that there is an obstacle
O ∈ P ′ such that (i) p ∈ bd(O) ∩ vctaux, and (ii) p is visible to q. (The specific use of auxiliary
visibility cones is described in the subsections below.) As in [23], for each such side S, the query
algorithm computes all the vertices of S visible to q. To construct these trees, we use a stack.
This stack contains objects which are yet to be processed by the algorithm. Each object obj in
stack is represented by a tuple [lrvc, rrvc, ptrl, ptrr, ptrt]. Here, lrvc (resp. rrvc) is the left (resp.
right) bounding ray of the visibility cone vc; ptrl (resp. ptrr) is a pointer to the first unexplored
corridor in the corridor sequence of line segment qp′ (resp. qp′′), where p′ (resp. p′′) is the point
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at which lrvc (resp. rrvc) strikes an obstacle O ∈ P ′ or the bounding box; and, ptrt is a pointer
to the node in a visibility tree that was created at the time of initialization of obj.

First, using the point location data structure, we determine the corridor Cq containing q.
Let BCq (resp. UCq) be the lower (resp. upper) bounding edge of Cq. Using hull trees, we find the
points of tangency on both sides of Cq. Note that there can be at most two points of tangency
on each side. For any point of tangency p that is lying on the left side (resp. right side) of Cq,
if the ray qp intersects BCq then point p is known as pBl (resp. pBr ), and if the ray qp intersects
UCq then point p is known as pUl (resp. pUr ). (Refer to Fig. 8.)

q

Sl

Sr

U
B

pBl
pBr

pUl

pUr

Fig. 8. Illustrating the initial visibility cones.

For the current polygonal domain P ′, if the vis-
ibility cone (pBl , p

B
r ) (resp. (pUl , p

U
r )) exists, then we

create a node tB (resp. tU ) as root node of TV ISBP ′(q)
(resp. TV ISUP ′(q)). The node tB (resp. tU ) refers to
corridor Cq, and the visibility cone (pBl , p

B
r ) (resp.

(pUl , p
U
r )) is associated with tB. Also we initialize objB

(resp. objU ) that corresponds to tB (resp. tU ). And,
objU , followed by objB, are pushed onto the stack.

4.1 Constructing TV ISB
P′(q) and TV ISU

P′(q)

The visible vertices in corridors other than corridor
Cq are determined by processing objects in the stack.
Let obj = [lrvc, rrvc, ptrl, ptrr, ptrt] be the object popped from the stack. Let CSl and CSr be
the corridor sequences of line segments lrvc and lrvc respectively. When both ptrl and ptrr refer
to the same corridor C ′, starting from C ′ in CSl and CSr, we find the last common corridor
C ′′ that occurs in both CSl and CSr. For every corridor Ci between C ′ and C ′′ in CSl (or,
CSr), a node t′ associated with ptrt and vc is inserted to V CCi , and Ci saves a pointer to t′.
(This denotes the visibility of corridor Ci is hindered by the corridor corresponding to the node
pointed by ptrt.) Let Cl (resp. Cr) be the corridor after C ′′ in CSl (resp. CSr).

When the corridor Cl referred by ptrl is different from the corridor Cr referred by ptrr, it is
immediate that there is an obstacle O that separates Cl from Cr. We find a tangent qpr to the
right side of Cl from q and a tangent qpl to left side of Cr from q. We insert one node tl as the
left child of t which refers to Cl, and another node tr as the right child of t which refers to Cr.
For every corridor C ′′′ in the sequence of corridors from C ′ to C ′′, C ′′′ together with a pointer
to V CC′′′ is associated to both the edges ttl and ttr. We also associate visibility cone (lrvc, qpr)
(resp. (qpl, rrvc)) with tl (resp. tr). A node t′ (resp. t′′) with ptrtl (resp. ptrtr) and the visibility
cone (lrvc, qpr) (resp. (qpl, rrvc)) is inserted to V CCl

(resp. V CCr). In addition, an auxiliary
visibility cone (qpr, qpl) is stored at node t. We initialize objl (resp. objr) that corresponds to tl
(resp. tr). And, objr is pushed onto the stack, followed by objl. (Refer to Fig. 9.)

If no corridor exists after C ′′ in CSl, then we determine the point p at which ray lrvc strikes
an obstacle. Let Cp be the corridor in which p is located. We find the point of tangency pl from
q to the left side of Cp, using the hull tree corresponding to that side. (Refer to Fig. 10.) One
new node is inserted as left child tl of t that correspond to Cp and vc. A node t′ with ptrtl and
vc is inserted to V CCp . We initialize an object obj that corresponds to tl and push that object
onto the stack. For every corridor C ′′′ in the sequence of corridors from C ′ to C ′′, C ′′′ together
with a pointer to V CC′′′ is associated to edge ttl. When tangent to the left side of Cp does not
exist, no object is pushed onto the stack. (Refer to Fig. 11.) The algorithm for handling when
there is no corridor after C ′′ in CSr is analogous.
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Fig. 9. Illustrating the case of
Cl being not equal to Cr.

q
Cq

C2

Cp
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Fig. 10. Illustrating the ray
lrvc striking corridor Cp, and
qpl being a tangent to left side
of Cp.

q
Cp

Fig. 11. Illustrating the ray
lrvc striking corridor Cp, and
tangent to left side of Cp does
not exist.

4.2 Computing visible vertices at the nodes of TV ISB
P′(q) and TV ISU

P′(q)

As in [23], we traverse each of the visibility trees in depth-first order. At every node t, for each
side S of Ct, we determine vertices of V PP ′(q) that belong to S∩vct, by applying the algorithm
in [25] to each simple polygon in PCt that corresponds to S, with q and vct as the additional
two parameters. In addition, we store visible vertices on the left side (resp. right side) of Ct
in RBT tL (resp. RBT tR). After recursively traversing both the left and right subtrees of t, we
determine all the vertices that are visible in vctaux. Let tl and tr be the left child and right
child of t, respectively. Let Ct be the corridor referred by node t. Let O be the obstacle that
lies in vctaux. Also, let Cl and Cr respectively be the corridors corresponding to tl and tr. In
other words, bd(O) is the union of right side Sr of Cl and the left side Sl of Cr. We determine
all the vertices of Sr (resp. Sl) that are visible to q and located in cone vctaux, by applying the
algorithm in [25] to each simple polygon in PCl

that corresponds to Sr (resp. Sl), with q and
vctaux as the additional two parameters. In addition, we store these visible vertices in RBT tlR
(resp. RBT trL ).

4.3 Constructing V PP′(q) using TV ISB
P′(q) and TV ISU

P′(q)

To construct V PP ′(q), we traverse both the visibility trees in depth-first order. First we traverse
TV ISBP ′(q) followed by TV ISUP ′(q). At every node t encountered during the traversal, we traverse
the leaf nodes of RBT tL in left to right order and output the respective points stored at them.
Then, we recursively traverse the left subtree of t, followed by the right subtree of t. After that,
we traverse the leaf nodes of RBT tR in the right to left order and output the respective points
stored at them. Let Sdft be the ordered set of points obtained from the depth-first traversal
of TV ISBP ′(q) followed by TV ISUP ′(q) as described above. The sequence of edges obtained by
joining the consecutive points in the ordered set Sdft, followed by the edge joining the first and
last point in Sdft is the boundary of visibility polygon of query point q.

Lemma 6. Let P ′ be a polygonal domain. Also, let V PP ′(q) be the visibility polygon of q among
obstacles in P ′ determined by the algorithm. Then, any point p ∈ V PP ′(q) if and only if p is
visible to q in P ′.

Proof: Consider a point p that is visible to q. The point p may be a vertex of P ′, or it may
be a visible point on an edge of P ′ that will appear as an endpoint of a constructed edge of
V PP ′(q). As the algorithm starts, we determine the corridor Cq containing q. Let BCq (resp.
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UCq) be the lower (resp. upper) bounding edge of Cq. To determine the initial visibility cone,
we find tangents to both the sides of Cq from q. Any point which is lying outside the visibility
cones defined using these tangents is guaranteed to be not visible to q. After this, we create the
root node of TV ISBP ′(q) (resp. TV ISUP ′(q)) if there exist a visibility cone that intersects BCq

(resp. UCq). This root node refers to the corridor Cq. It ensures that any point that is lying on
either of the sides of Cq and visible to q is determined by the algorithm.

Consider the other case when p lies in a corridor C ′ other than Cq. Every such corridor C ′

is determined by processing the objects popped from the stack. Let vc be the visibility cone in
the current object popped from the stack. Whenever there is an obstacle bd(O) that lies in vc,
the tangents found on the boundaries of bd(O) ensure part of that scene that is not visible due
to bd(O) is not considered further. The auxiliary cone helps in computing the points on bd(O)
that are visible to q. In the other case, when one of the bounding rays r of vc strike the side S
of a corridor Cp, we find the tangent from q on the side S. Using this, we determine a section
of bd(O) such that no point on that section is visible to q.

Further, in every visibility cone for every corridor that is having at least one visible point on
either of its sides, we insert a node corresponding to it in a visibility tree. Hence, by traversing
both the visibility trees, it is ensured that every vertex of P ′ or any point on an edge of P ′

that is visible to q, is guaranteed to be determined. Whenever we pop an object from the stack
while going through the corridor sequences of the bounding rays of the current visibility cone,
for every corridor C in the corridor sequence, we update V CC data structure. This helps in
correctly maintaining the visible cones that intersect C in sorted order of their intersection with
C. ut

Lemma 7. Let P ′ be the current polygonal domain. Given any query point q in F(P ′), the
visibility polygon of q among obstacles in P ′ is computed in O(|V PP ′(q)|(lg n′)2 + h) time.

Proof: Using the point location query algorithm from [20], locating the corridor Cq in which q
is located takes O((lg n′)2) time. A new object is pushed onto the stack whenever an obstacle is
encountered or one of the rays of visibility cone strikes the boundary of some corridor. Since the
total number of obstacles as well as corridors is O(h), the overall time to push and pop objects
in the stack is O(h). A node corresponding to a corridor is inserted to either of the visibility
trees only if it has at least one point visible to q. Hence, the total number of nodes in TV ISBP ′(q)
and TV ISUP ′(q) is O(min(h, |V PP ′(q)|)). Therefore, the depth-first traversal of these trees takes
O(min(h, |V PP ′(q)|)) time. Every stack element popped from stack leads to insertion of at most
two nodes into either TV ISBP ′(q) or TV ISUP ′(q), and finding tangents corresponding to corridors
at these nodes using hull trees takes O((lg n′)2) time. Hence, total time taken to process all the
stack objects is O(min(h, |V PP ′(q)|)(lg n′)2 + h). To compute the visibility polygon, algorithm
from [25] is invoked at every node of TV ISBP ′(q) as well as TV ISUP ′(q). Hence, this step takes
O(|V PP ′(q)|(lg n′)2) time. ut

Theorem 1. Given a polygonal domain P defined with h obstacles and n vertices, we preprocess
P in O(n(lg n)2 +h(lg h)1+ε) time to construct data structures of size O(n) so that (i) whenever
a vertex v is inserted to the current polygonal domain P ′, the algorithm updates data structures
that store visibility polygon V PP ′(q) of a query point q in O(k(lg |V PP ′(q)|) + (lg n′)2 + h)
time, (ii) whenever a vertex v is deleted from the current polygonal domain P ′, the algorithm
updates data structures that store visibility polygon V PP ′(q) of a query point q in O(k(lg n′)2 +
(lg |V PP ′(q)|) + h) time, and (iii) whenever a query point q is given, the algorithm outputs
the visibility polygon in the current polygonal domain in O(|V PP ′(q)|(lg n′)2 + h) time. Here,
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ε is a small positive constant resulting from the triangulation of the free space F(P) using the
algorithm in [5], k is the number of combinatorial changes in V PP ′(q) due to the insertion or
deletion of v, and n′ is the number of vertices of P ′.

5 Maintaining the visibility graph

In this section, we describe an algorithm to maintain the visibility graph among dynamic polyg-
onal obstacles in the plane. We first detail the preprocessing algorithm with the input polygonal
domain P with n vertices and h polygonal obstacles. Our algorithm relies on the algorithm for
maintaining the visibility polygon among dynamic polygonal obstacles in Section 2. Hence, we
compute all the data structures as required in Lemma 1. In addition, we need the following data
structures. Using [29], we construct the visibility graph of P in O(|E|+h lg n+h(lg h)1+ε) time.
Here, E is the number of edges in the visibility graph of P. For every vertex v ∈ P, we construct
a red-black tree (detailed in [14]), denoted by RBTv, that contains all the visible edges that
are incident to v. Every leaf of RBTv represents a unique visible edge that is incident to v.
For every visible edge that is determined to be incident to v, we insert it to RBTv in O(lg |E|)
time. With every visible edge, RBTv stores the angle it makes with the positive x-axis. The left
to right order of visible edges stored at the leaves of RBTv is the sorted order of visible edges
incident to v with respect to angle each makes with the positive x-axis. Whenever a vertex is
inserted to or deleted from any of the obstacles of the current polygonal domain P ′, as part
of updating the visibility graph of P ′, we update these red-black tree data structures as well
as the data structures for visibility polygon maintenance (refer to Theorem 1) and return the
updated visibility graph.

Lemma 8. Given a polygonal domain P defined with h holes and n vertices, as part of prepro-
cessing P, in O(n(lg n)2 +h(lg h)1+ε+ |E| lg |E|) time, our algorithm constructs data structures
of size O(n+ |E|). Here, |E| is the number of edges in the visibility graph of P.

Let P ′ be the polygonal domain before inserting v to (resp. deleting v from) the boundary
of an obstacle. Also, let vi and vi+1 be the vertices between which v is located. We first describe
parts that are common to both the insertion and deletion algorithms. Using point location data
structure, we determine the corridor C in which v is located. If v is inserted to an obstacle of
P ′, then we insert v at its corresponding position into at most three simple polygons in P ′

C

wherein each of these simple polygons has both vi and vi+1. If v is deleted from an obstacle of
P ′, then for every simple polygon P ∈ P ′

C , we delete v from P if v ∈ P . In addition, for each
simple polygon in P ′

C that got modified, we update the preprocessed data structures needed to
determine the visibility in dynamic simple polygons using the algorithm in [25].

Let v′ be any vertex distinct from v, vi, and vi+1. Using the algorithm in [20] for ray-shooting
in dynamic simple polygons, we determine whether v is visible to v′ among obstacles in P ′. This
is accomplished using simple polygons in P ′

C : if v′ ∈ C, the ray-shooting query with ray v′v is
performed in P ′

4(C); otherwise, if v belongs to a side S1 (resp. S2) of a corridor C ′( 6= C), we
query with ray v′v in each simple polygon in P ′

C′ that corresponds to side S1 (resp. S2). From
the correctness of characterizations in [23], it is immediate that we correctly determine whether
v is visible to v′. If v is found to be not visible to v′, then V PP ′(v′) does not change. In this case,
we only update the preprocessed data structures for hull trees of sides of corridor C and the
data structures for dynamic point location. We note that all the updations of the preprocessed
data structures can be accomplished in O((lg n)2) worst-case time. Consider the case when v
is visible to v′. In this case, the insertion of v (resp. deletion of v) may cause the deletion of
(resp. insertion of) edges from (resp. to) V GP ′ that are incident to v′ and intersect the triangle
vvivi+1. In addition, in the case of insertion of v, we introduce edge v′v into V GP ′ .
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R

Fig. 12. Illustrating the notation in Lemma 9 statement.
The path R is shown in blue color. The dotted line be-
tween v and v′ illustrates an endpoint v′ of R is visible
to v. (This illustration is from [13])

The following lemma statement is sim-
plified from the one in Choudhury and
Inkulu [13], and for completeness and to show
the proof extends to polygonal domains, we
include a proof. This lemma helps in effi-
ciently determining the set of edges that in-
tersect the triangle vivvi+1.

Lemma 9. Let vi, v, and vi+1 be consecutive
vertices along an obstacle of P ′′. For every
visible edge tu of V GP ′ that intersects the tri-
angle vvivi+1, either (a) at least one of t or u
is visible to v, or (b) there exists a path R in
V GP ′ from a vertex v′ to t (resp. u) such that
each edge in R intersects the triangle vivvi+1

and v′ is visible to v.

Proof: If either t or u is visible to v, there is nothing to prove. Otherwise, among all the edges
of V GP ′ that intersect both the triangles vvivi+1 and tuv, let t′u′ be a visible edge in P ′ that
makes the least angle with the line segment tu at either t′ = t or u′ = u. Without loss of
generality, we suppose u′ = u. (Refer to Fig. 12.) Note that both t and u are reachable from t′

in V GP ′ . Besides, both the edges t′u and ut intersect the triangle vvivi+1. Further, t′ is closer
to v as compared to t, with respect to Euclidean distance. Inductively, t′ is reachable from v
in V GP ′ as described in the lemma statement. Since there are finite vertices, there exists some
edge t′′u′′ such that t′′u′′ intersects vvivi+1 and either t′′ or u′′ is visible to v. ut

In the following subsections, we describe more details of insertion and deletion algorithms.

5.1 Insertion of a vertex

Let vi and vi+1 be the vertices between which the vertex v is inserted. Also, let S be the set
of visible edges that intersect the triangle vvivi+1. We observe that any visible edge e ∈ V GP ′

appears in the updated visibility graph V GP ′′ if and only if e does not belong to set S. First,
we determine vertices that are visible to v. To accomplish this, we invoke the visibility polygon
query algorithm among dynamic obstacles detailed in Section 3, with v as the query point. A
new red-black tree, denoted by RBTv is initiated and, for every vertex v′ ∈ P ′ determined by the
visibility query algorithm, we insert the visibility edge vv′ into RBTv as well into RBTv′ . This
completes the insertion of new visible edges to the visibility graph V GP ′ . Next, we determine
the set S of visible edges of V GP ′ whose endpoints have become not visible to each other after
the insertion of v. To efficiently determine edges in S, we use Lemma 9 in iteratively finding
all the vertices to which visible edges to be removed from V GP ′ are incident. Let S1 be the
set comprising of all the vertices of P ′ visible to v. The points in S1 are determined from the
visibility polygon of v. For each vertex v′ ∈ S1, we determine all the vertices v′′ such that v′v′′ is
a visible edge in V GP ′ and it intersects the triangle vvivi+1. Without loss of generality, suppose
the ray v′vi makes larger angle with v′v as compared to v′vi+1. Let vcm be the cone with rays
v′v and v′vi bounding it. The visible edges lying in cone vcm are the potential candidates to be
deleted from V GP ′ . We search in RBTv′ to find every vertex v′′ such that the edge v′v′′ belongs
to cone vcm, and delete the edge v′v′′ from both RBTv′ and RBTv′′ . In specific, for every j ≥ 1,
let Sj+1 be equal to

⋃
v′∈Sj

Sv′ . Following the same procedure, for every j > 1, for every vertex

v′ ∈ Sj and v′ /∈ Sj′ with j′ < j, we find the set Sj+1 comprising of all the visible edges in P ′
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that are incident to v′ and intersect triangle vvivi+1. If at any point, Sj ⊆ Sj′ for some j′ < j,
we terminate the algorithm. (Refer to Fig. 13.)

vi

vi+1

v4

v1

v2

v3

v

v1vi+1

v1v3

v1v2 v1vi+1

v1v4 v1viv1v2 v1v3

v1v4 v1vi v1v

v1v3

v1v2 v1v

v1v4 v1viv1v2 v1v3

v1v4 v1vi

Fig. 13. Illustrating the insertion of vertex v (left), the data structure RBTv1 before insertion of v (middle), and
the data structure RBTv1 after inserting v (right).

Lemma 10. In the updated polygonal domain P ′′, any edge pq ∈ V GP ′′ if and only if p and q
are mutually visible among obstacles in P ′′.

Proof: All the visible edges incident to v are computed correctly using the algorithm from [29].
For every vertex v′ that is an endpoint of a visible edge incident to v, we do binary search
in RBTv′ to prune visible edges incident to v′ that intersect with triangle vvivi+1 using the
cone vcm. Following Lemma 9, these edges are computed iteratively. It ensures that an edge
is removed from V GP ′ only if it intersects the triangle vvivi+1. Further, by the correctness of
Lemma 9, it is guaranteed that every visible edge that is intersecting the triangle vvivi+1 is
removed from V GP ′ . ut

Lemma 11. Whenever a vertex v is inserted to P ′, our algorithm updates the visibility graph
V GP ′ in O(k(lg n′)2 +h) time. Here, k is the number of combinatorial changes in V GP ′ due to
the insertion of v, n′ is the number of vertices of P ′, and h is the number of obstacles in P ′.

Proof: From Theorem 1, finding all the vertices of P ′ that are visible to v takes O(k1(lg n
′)2+h)

time. Here, k1 is the number of vertices in P ′ that are visible to v. Inserting visible edges cor-
responding to these vertices in V GP ′ takes O(k1(lg n

′)) time. To recursively determining edges
in S, search in red-black trees stored at the endpoints of edges in S, and to delete edges in S
together takes O(k2(lg n

′)) time, where k2 = k − k1. ut

5.2 Deletion of a vertex

Let v be a vertex in P ′. Also, let vi and vi+1 be the vertices adjacent to v along the boundary
of an obstacle in P ′. Further, let V GP ′ be the visibility graph of P ′. Suppose the vertex v is
deleted. Then, the deletion algorithm updates V GP ′ . For line segment joining any two vertices
v′, v′′ in P ′′, if v′v′′ intersects the triangle vvivi+1, edge v′v′′ needs to be introduced into V GP ′ .
In this algorithm, like in the insertion algorithm, we use Lemma 9 to efficiently determine the
visible edges in V GP ′′ that does not belong to V GP ′ .
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Let S1 be the set of vertices of P ′ visible to v. For each vertex v′ ∈ S1, we determine all the
vertices v′′ such that edge v′v′′ intersects triangle vvivi+1. Without loss of generality, suppose
ray v′vi makes a larger angle with ray v′v as compared to ray v′vi+1. Let vcm be the cone with
rays v′v and v′vi bounding it. The visible edges lying in cone vcm are the potential candidates
to be inserted to V GP ′ . We invoke the query algorithm in Section 3 with query point v′ and the
visibility cone vcm. As a result, our algorithm finds every vertex v′′ ∈ P ′′ that is visible to v′

such that the edge v′v′′ resides in cone vcm. The edge v′v′′ is inserted as a new visible edge into
both RBTv′ and RBTv′′ . In specific, for every j ≥ 1, let Sj+1 be equal to

⋃
v′∈Sj

Sv′ . Following

the same procedure, for every j > 1, for every vertex v′ ∈ Sj and v′ /∈ Sj′ with j′ < j, we find
the set Sj+1 comprising of all the visible edges in P ′′ that are incident to v′ and intersect the
triangle vvivi+1. If at any point, Sj ⊆ Sj′ for some j′ < j, we terminate the algorithm. In the
end, we delete RBTv as part of removing all the visible edges of V GP ′ that are incident to v.
(Refer to Fig. 14.)
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v1

v2

v3
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v2

v3
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v1v

v1v3

v1v2 v1v

v1v4 v1viv1v2 v1v3

v1v4 v1vi v1vi+1

v1v3

v1v2 v1vi+1

v1v4 v1viv1v2 v1v3

v1v4 v1vi

Fig. 14. Illustrating the vertex v to be deleted (left), the data structure RBTv1 before deleting v (middle), and
the data structure RBTv1 after deleting v (right).

Lemma 12. In any updated polygonal domain P ′′, any edge pq ∈ V GP ′′ if and only if p and q
are mutually visible among obstacles in P ′′.

Proof: Let a vertex v is deleted from the boundary of an obstacle in P ′. For every vertex v′ ∈ P ′

that is visible to v, the edge vv′ is deleted from V GP ′ . No other edge needs to be deleted from
the current visibility graph. For any two vertices v′v′′, if the edge intersect the triangle vvivi+1,
it should be added as a visible edge in V GP ′ . Following Lemma 9, these edges are computed
iteratively. In each iteration, for every vertex v′, we invoke the query algorithm from Section 4
with v′ as the query point and vcm as the visibility cone. By the correctness of Lemma 9 and
Lemma 7, it is guaranteed that every visible edge that is intersecting the triangle vvivi+1 is
determined correctly and added to V GP ′ . ut

Lemma 13. Whenever a vertex v is deleted from P ′, our algorithm updates the visibility graph
V GP ′ in O(k((lg n′)2 + h)) time. Here, k is the number of combinatorial changes in V GP ′ due
to the deletion of v, n′ is the number of vertices of P ′, and h is the number of obstacles in P ′.

Proof: All the visible edges in V GP ′ that are incident to v are deleted in O(k1 lg n′) time. Here,
k1 is the number of visible edges incident to v. From Theorem 1, all the invocations of the
visibility polygon query algorithm together takes O(k2((lg n

′)2 + h)) time, where k2 = k − k1
is the number of visible edges in V GP ′′ that are determined with this algorithm. Inserting the
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newly found visible edges into corresponding red-black trees takes O(k2 lg n′) time. ut

Theorem 2. Given a polygonal domain P defined with h obstacles and n vertices, we preprocess
P in O(n(lg n)2 +h(lg h)1+ε + |E| lg |E|) time to construct data structures of size O(n+ |E|) so
that whenever a vertex v is inserted to (resp. deleted from) the current polygonal domain P ′, the
algorithm updates the data structures that save visibility graph of P ′ in O(k(lg n′)2 + h) (resp.
O(k((lg n′)2 + h))) time. Here, ε is a small positive constant resulting from the triangulation of
the free space F(P) using the algorithm in [5], |E| is the number of edges present in the visibility
graph of P, k is the number of combinatorial changes in updating the visibility graph of P ′ due
to the insertion (resp. deletion) of v, and n′ is the number of vertices of P ′.

6 Conclusions

We proposed algorithms for the following problems among dynamic polygonal obstacles in the
plane: (i) dynamically updating the visibility polygon of any given query point, (ii) answering
visibility polygon queries, and (iii) dynamically maintaining the visibility graph of the polygonal
domain. An immediate extension of this algorithm would handle new obstacles being introduced
into the polygonal domain as well as allowing the newly inserted vertex to be in a corridor
different from the corridor in which its neighbors reside. Further, it would be interesting to
devise efficient dynamic algorithms for these problems so that the update time complexities
mainly depend on the number the combinatorial changes to update the visibility polygon. In
specific, as other parameters are under logarithm, this involves removing the dependency on
the number of obstacles in the polygonal domain from the update time complexities.
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