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Abstract
Many real-world optimization problems involve two different subsets of variables:
decision variables, and those variables which are not present in the cost function
but constrain the solutions, and thus, must be considered during optimization. Thus,
dependencies between and within both subsets of variables must be considered. In
this paper, an estimation of distribution algorithm (EDA) is implemented to solve this
type of complex optimization problems. AGaussian Bayesian network is used to build
an abstraction model of the search space in each iteration to identify patterns among
the variables. As the algorithm is initialized from data, we introduce a new hyper-
parameter to control the influence of the initial data in the decisions made during the
EDA execution. The results show that our algorithm improves the cost function more
than the expert knowledge does.

Keywords Estimation of distribution algorithms · Gaussian Bayesian network ·
Evolutionary algorithms · Optimization · Industry · Environment variables

1 Introduction

Optimizing a cost function consists of finding the set of variables that results in the
minimum output from the function. When only a few variables are involved in the
problem, off-the-shelf solvers, such as Gurobi (Gurobi Optimization, LLC 2021) or
CPlex (Bliek1ú et al. 2014) can be applied. However, there are factors that increase the
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complexity of the optimization tasks, and hence, the complexity of the approaches that
handle the problem (Chong and Zak 2004). Some factors are the drastic increase of the
number of variables involved in the optimization problem (large scale optimization)
such as in portfolio optimization problems (Markowitz 1952), the imposition of several
constraints in the problem (constrained optimization) such as in the n-queens problem
(Rivin et al. 1994), the optimization of more than one objective for the same problem
(multi-objective optimization) such as the multi-objective knapsack problem (Bazgan
et al. 2009), the setting of evidences in the model so that the cost function depends on
some fixed values for some of the variables (evidence optimization) which is common
in the industrial areas such as textile optimization depending on characteristics of the
textile (Sahani and Linden 2002), or the optimization of a cost function which varies
along runtime (dynamic optimization) such as feature subset selection in data streams
(Huang et al. 2015), among others.

Another factor that increases the complexity of the optimization problem is the type
of variables (continuous, discrete) the problem deals with: continuous optimization
or discrete optimization. Usually, solving a discrete optimization problem implies a
higher complexity approach due to the combinatorial explosion that occurs in all but
the smallest problems. Some approaches imply transforming the discrete variables
into continuous ones to avoid this combinatorial step. Continuous optimization tends
to be easier to solve as the smoothness of the objective and the constraint functions at
a specific solution can provide information about the neighborhood of that solution.
Continuous optimization approaches often assume an underlying probability distribu-
tion in the involved variables to treat themmore efficiently and reduce the complexity.
Dealing with discrete and continuous variables in the same problem presents an issue
when treating the data in a multivariate way. Therefore, usually on these occasions
the discrete variables are transformed to continuous, or vice versa, although there are
approaches involving both types of variables.

In such cases, other approaches such as heuristics (Talbi 2009) should be considered
to solve the problem. Heuristic approaches can be executed quickly and offer a feasible
and good solution for the optimization problem.

When optimizing a cost function, different solutions with similar costs can be pro-
vided by the algorithm. Thus, a non-deterministic algorithm must be implemented to
analyse the different ways of reaching an optimal combination. The need for stochas-
ticity can be met by population-based metaheuristics, such as swarm intelligence
(Chakraborty and Kar 2017) and evolutionary algorithms (EAs). EAs are increasingly
demanded for solving optimization problems as they can achieve very good results
across a wide range of problem domains (Dasgupta andMichalewicz 2014). There are
many open research lines regarding EAs: genetic algorithms (GAs) (Holland 1975),
evolutionary strategies (Rechenberg 1973), evolutionary programming (Fogel et al.
1966) or genetic programming (Cramer 1985).

All research lines regarding EAs follow similar steps adopted from natural evolu-
tion: iteratively, the algorithm evaluates the quality of solutions given a cost function,
and reproduces new solutions based on the best ones identified. New solutions are
reproduced following different techniques, which differentiate each of the approaches.
The main disadvantage found in traditional EAs is that they have a bad behaviour
when some characteristics are present in the problem: they do not explicitly consider
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dependencies among the variables involved, and hence, solutions reproduced by the
algorithm are not able to exploit the information found in the data. This limitation
is overcome by using a probabilistic graphical model (PGM) (Koller and Friedman
2009) to reproduce new solutions. This type of EAs are the estimation of distribution
algorithms (EDAs) (Mühlenbein and Paass 1996).

The typical optimization problems that are usually referenced in the literature
involve optimizing a cost function with a specific number of variables that are intro-
duced to the algorithm in order to find the best solution. However, there are many
real-world optimization problems, in which, variables that are not present in the cost
function, influence the behaviour of the algorithm during the optimization process.
Therefore, the total set of variables (X) is decomposed into two subsets: those that
are present in the cost function and can change their value during the optimization
process (Y = {y1, . . . , yp}) which will be henceforth called as decision variables, and
others, which are the inputs of the algorithm, and remain constant during the process
(Z = {z1, . . . , zc}).

X = {Y , Z} = {y1, . . . , yp, z1, . . . , zc}

The relations within and between both subsets of variables must be considered in order
to find coherent solutions to the problem.

In this paper, we aim to solve one of these problems. Themotivation for the problem
comes from a real situation in an industry: a chemical process is carried out for the
dissolution of a solid substance. Depending on the properties of the substance, the
solvents to be used may change. Moreover, the final product after dissolving is stored
in a tank and must comply with some further restrictions. Thus, the combination of
solvents depends not only on the substance properties, but also on the final product
restrictions. The industry aims to optimize the process and relies on a system to
decide which is the optimum combination of solvents (Y ) for the specific environment
variables (Z): some substance properties and final product restrictions. In this problem,
optimization is evaluated from an economic point of view: each solvent is associated
with a price, and it is desired to minimize their total costs. The optimization process
uses the historic records of the laboratory technicians that dissolved the substance so
far. Figure 1 shows a sketch of the process.

Depending on the properties of the substance and the restrictions imposed on the
final tank, the solvent combinations vary, since the dependencies between the variables
are different. If the dependencies between and within both subsets of variables are not
considered, only the p variables involved in the cost function will be observed during
the optimization process. Thus, the cheapest combination of solvents found by the
algorithm will be to use 100% of the cheapest solvent and not using the others, as
they would increase the cost. Optimizing only the solvent variables could be solved
using a simpler optimizer, such as a gradient descent. The aim of this paper is to find
the cheapest solvent combination, but keeping the patterns identified in the initial data
between and within both subsets of variables. These patterns constrain the cost, and,
for this reason, the implemented algorithmmust identify the patterns in the initial data,
and generate valid solutions according to them.
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Fig. 1 Sketchof the chemical process to optimize.The combinationof solvents is influencedby the substance
properties and the quality that the final product must attain (Color figure online)

The cost function is then given by,

C(Y) =
p∑

i=1

yi ci (1)

where yi and ci are the percentage of each solvent in the mixture (
∑p

i=1 yi = 1)
and its cost, respectively, and p is the total number of solvents. The optimizer should
search for the optimum values of yi such that the dependencies with the environment
variables hold.

The problem consists of p + c continuous variables: p solvents which each one
specifies the percentage of the total mix of solvents, and c substance properties and
restrictions. The substance properties specifically describe the substance, such as ther-
modynamic properties or chemical elements presence in the substance, and some final
product restrictions are for example the density, volatility or viscosity of the final liquid
or a quality index calculated by the industry. Thus, the algorithm receives as input a
total of c constant values b1, . . . , bc, and must output the optimum combination of the
p solvents. In this particular problem, the available historic records of how laboratory
technicians have combined the solvents has a total of 1056 instances.

The application ofmost population-based algorithms and conventional solvers does
not consider explicitly the relationship between the variables or does not allow the
existence of a subset of constant inputs. In this paper, a novel technique of EDAs
is prepared to overcome this limitation of traditional population-based algorithms.
It includes a PGM to identify conditional independence relationships between and
within both Y and Z subsets of variables. The PGM allows to set a subset of constant
variables as observed evidence of the model and then sample from the rest of the
variables. Moreover, a new hyper-parameter is added to the implementation to control
the influence of the initial data in the algorithm’s decision making.

A PGM specifies the factorization of the joint distribution over a set of variables.
In this paper, a PGM learnt in each generation of the algorithm builds an abstract
representation of the relationships among the variables (solvents percentages, sub-
stance properties, and restrictions) of the promising solutions. In this representation,
the patterns among variables can be identified in order to find better solutions. The use
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Fig. 2 General flowchart of estimation of distribution algorithms (Color figure online)

of PGMs provides the algorithm with the ability to deal with problems that involve
variables with strong dependencies among them.

So far, EDAshave beenwidely used to solve different optimization problems such as
route planning for vehicles (Pérez-Rodríguez and Hernández-Aguirre 2019), harvest-
ing agricultural fields (Utamima et al. 2019), energy-efficient robots manufacturing
(Sun et al. 2020), permutation-based combinatorial problems (Irurozki et al. 2018),
and public transport driver scheduling (Shen et al. 2017). EDAs are also used coupled
with reinforcement learning (RL) approaches as they demand a large amount of data,
and EDAS can satisfy this needness by working as a generative model of valid data
(Li et al. 2014).

The main scheme of EDAs is shown in Fig. 2. The algorithm, in each iteration,
selects the best individuals from the previous generation, or in the case of the first
iteration, from the initialization. This selection is made according to the cost function
that is to be optimized in the optimization problem.From this ranking, some individuals
are selected, and reproduction is performed. For the reproduction step, a probabilistic
model is built from thepromising individuals selected, andnew individuals are sampled
from it, to form the next generation. The algorithm can be initialized randomly or with
a subset of some initial solutions, allowing for different stopping criteria, and can
return not only the best individual found, but also, a set of optimum solutions.
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Depending on the type of variables that the optimization problem deals with, a
discrete or a continuous EDA is used. When dealing with continuous variables, it is
common to assume an underlying probability distribution. The usual choice is a Gaus-
sian distribution. As discrete EDAs were studied before continuous EDAs, most of the
first continuous EDAswere adaptations of discrete EDAs to continuous environments.

Another categorization can be done analysing the dependencies among the
variables. If no dependencies among variables are considered, then variables are inde-
pendent, and a univariate EDA is used. Some examples of univariate EDAs are the
univariate marginal distribution algorithm (UMDA) (Mühlenbein and Paass 1996),
which in each iteration of the algorithm learns the parameters of the marginal distribu-
tions of the variables; and the population-based incremental learning (PBIL) (Sebag
and Ducoulombier 1998), which updates the existing model using the statistics learnt
from the new selection of the actual generation. An approximation of both UMDA
and PBIL algorithms to the continuous domain is discussed in Larrañaga and Lozano
2001. This type of EDAs cannot be used in complex optimization problems which
involve considering dependencies among variables, as are univariate algorithms.

If variables are dependent by pairs, such as in a tree or a chain structure, then a
bivariate EDA is used. An example is mutual information maximizing input clustering
for continuous domains (MIMICG

c ) (Larrañaga et al. 2000). The algorithm uses a
probabilisticmodel with chain structures. It uses the entropy between pairs of variables
to build the model structure of each iteration of the algorithm.

If no restrictions are stipulated on the dependencies between the variables, then
a multivariate EDA is used. An example of these algorithms is the estimation of
Gaussian networks algorithm (EGNA) (Larrañaga and Lozano 2001), which adapts
the discrete EDA estimation of Bayesian network algorithm (EBNA), to continuous
environments using GBNs (see Sect. 2). One of the difficulties with this type of EDAs
is the structure learning in each iteration. EGNA proposes two approaches: start from
a complete directed acyclic graph (DAG) and deciding which edges can be modified
or deleted, or perform a greedy search to choose the ideal DAG. Another multivariate
continuous EDA which uses GBNs is real-coded Bayesian optimization algorithm
(rBOA) (Ahn et al. 2004). The iterated density estimation evolutionary algorithm
(IDEA) (Bosman and Thierens 2000) and estimation of multivariate normal algorithm
(EMNA) (Larrañaga and Lozano 2001) learn a multivariate Gaussian density from
which new individuals are sampled. In our optimization problem, dependencies must
be considered as a multivariate model and variables involved are continuous and
fit a Gaussian distribution, therefore, a multivariate continuous EDA using GBN is
implemented. The EDA implemented in this paper shares characteristics with the
EGNA approach.

The paper is organized as follows. In Sect. 2, a brief background about concepts
used in the implementation of the algorithm is presented. Section 3 explains the imple-
mentation of the algorithm. Section 4 presents some results of the evolution of the
optimization process and the behaviour of the algorithm for different problem instances
and different parameter tuning. Section 5 rounds the paper off with the conclusions.
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2 Background

2.1 Bayesian networks

A Bayesian network (BN) (Koller and Friedman 2009) is a representation of a mul-
tivariate probability distribution, by means of a DAG, whose nodes are the random
variables of the domain and the arcs among themrepresent the probabilistic influenceof
some nodes on others. Each arc represents a conditional probability distribution (CPD)
between two variables. Each variable has a local probability distribution P(Xi ), and
the CPDs are the probabilities of one given their parents in the graph P(Xi |Pa(Xi )).

The joint probability of a multivariate model would be,

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi |Pa(Xi )), (2)

where n is the total number of variables, and Pa(Xi ) are the parent nodes of variable
Xi . Note that, X1, X2, . . . , Xn is the set of variables involved in the BN.

For sets X, Y and Z of variables in a distribution P , X is independent of Y given
Z if for all values of X, Y and Z, P satisfies (X ⊥⊥ Y|Z). In a BN, a variable is
independent of all other variables U given its Markov blanket (MB), which includes
its parents, its children and the parents of its children. Thus, X ⊥⊥ U|MB(X).

There are several algorithms for learning a structure from data. Three approaches
can be considered: (i) constraint-based algorithms (Verma and Pearl 1990) which
recover probabilistic relations with conditional independence tests; (ii) score-based
algorithms (Madigan et al. 1995) which perform a heuristic search in the space of
graph structures to maximize the score function that measures how well the structures
fits the data; and (iii) hybrid algorithms which are a mixture of both constraint-based
and score-based algorithms.

When learning a BN it is possible to set mandatory arcs in the structure, although
the learning algorithm may not find these arcs. The list of arcs that must be included
in the DAG is the whitelist. In the same way, a list of forbidden arcs can be specified:
the blacklist.

2.2 Gaussian Bayesian Networks

A Gaussian Bayesian network (GBN) is a BN in which all of the variables are con-
tinuous and all the conditional probability distributions are linear Gaussian. The joint
probability of all variables is a multivariate Gaussian distribution. In using a GBN,
it is assumed that all distributions (marginal, joint, and conditional) fit a Gaussian. If
this assumption is not satisfied, models based on the GBN will provide non-reliable
solutions.

To perform an inference from a BN, a probability distribution of interest is calcu-
lated. In the case of a GBN, inferences are performed by determining the Gaussian
probability distribution of a set of variables. To infer a conditional probability, the
probability distribution of a set of variables (X1) is calculated given a fixed value
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of one or more variables (X2). This is P(X1|X2). To work with Gaussian probability
distributions, some formulas are needed (Murphy 2012). The conditional probabilities
are calculated as follows: if X = (X1,X2) is jointly Gaussian with parameters

μ =
(

μ1
μ2

)
,� =

(
�11 �12
�21 �22

)
,� = �−1 =

(
�11 �12
�21 �22

)

then marginal probabilities are given by,

P (x1) = N (x1|μ1,�11)

P (x2) = N (x2|μ2,�22)

and the posterior conditional is given by,

P (x1|x2) = N (
x1|μ1|2,�1|2

)

μ1|2 = μ1 + �12�
−1
22 (x2 − μ2)

= μ1 − �−1
11 �12 (x2 − μ2)

= �1|2 (�11μ1 − �12 (x2 − μ2))

�1|2 = �11 − �12�
−1
22 �21 = �−1

11

3 Proposed solution

As mentioned above, an EDA using a GBN is used to solve the optimization problem.
The pseudocode in Algorithm 1 shows how the proposed EDA is implemented.

Algorithm 1 EDA
1: G0 ← N individuals from the historic records
2: Gaux ← Select similar situation individuals from the historic records
3: for l = 1, 2, . . . until stopping criterion is met do
4: Gl−1 ← Select E individuals from Gl−1
5: Gl−1 ← Append Gaux to Gl−1
6: GBNl ← Learn GBN from Gl−1
7: Pe(x) ← Compute the joint density function from GBNl
8: Gl ← Sample N individuals from Pe(x)
9: end for

In the pseudocode, the main functions of the algorithm are shown. Initially,G0 is an
input to the code. Then, in each iteration, the algorithm selects the top individuals of the
generation considering the cost function. The algorithm learns a GBN, a multivariate
Gaussian distribution is then derived from the GBN, and new individuals are sampled
from joint distribution of it. Each set of new individuals constitutes a generation that is
the input for the next iteration of the algorithm. The stopping criteria may be based on
a maximum number of iterations, a state in which no better solutions are found by the
algorithm, or a state in which the algorithm is not able to generate valid individuals.
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In this implementation the stopping criterion is a number of iterations after which
the algorithm cannot improve the best global cost. The main functions used in the
algorithm are described below.

The GBN learnt in each generation is an abstract representation of the region of
the search space explored, which guides the algorithm to promising areas. The indi-
viduals sampled from the GBN keep the patterns identified in the data used to learn
the multivariate model. The use of GBNs allows generating solutions that were not
contemplated in the learning of the GBN.

The use of some algorithms is restricted to the amount of data availability. For
example, using neural networks demands a large amount of data to be trained.However,
building a BN does not require such a large amount of data. The EDA can be run
correctly with the 1056 instances we dispose of for the initialization step. Another
advantage of the use of GBNs is that the DAG can be visualized in each generation in
order to show patterns in data, or to easily analyse the algorithm behaviour.

3.1 Initialization

The initialization of the algorithm has a large influence on how the algorithm moves
through the search space during execution. The aim of this paper is to implement
an algorithm which finds the optimum solution of the problem keeping the patterns
identified in the data. A random initialization would generate some random patterns
that would be kept through iterations and this is not desired. This could be addressed
implementing a whitelist in the GBN in order to fix the arcs that are desired in the
generated samples, but this would over-bias the algorithm, as exploration would be
limited.

In our approach, the initialization is based on the historic records of how technicians
of the laboratory have been manipulating the solvents. In the chemical laboratory,
different sensors record values of the variables used in the problem. First, some sensors
measure the substance to be dissolved providing the properties variables. Second, the
tank where the final product is to be stored has some further restrictions that must be
accomplished, and are also sensorized. Also, the amount of each solvent introduced in
the solvent mixture is recorded. These values are the historic records. We assume that
the staff has been manipulating the solvents to obtain the best results, considering the
restrictions and the final cost. As these historic records are considered nearly optimum,
the algorithm is expected to converge soon.

3.2 Truncation

When a generation is obtained in each iteration, the individuals whose values in the
subset Y of variables minimizes the cost function, are interesting and must therefore
be selected. Once they are selected, all the individuals chosen have the same relevance
regardless of the cost of the individual. Moreover, those selected individuals may have
a very low probability of occurrence in the historic records. This can lead the algorithm
to learn confusing patterns, and future generations will be sampled incorrectly. For
this reason, two modifications are made in the baseline of the algorithm.
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First, the cost is added as a new node of the GBN. By adding this new variable,
a certain coherence is ensured among all the samplings. If the cost is considered
as a new variable, the majority of the individuals in a generation will be sampled
around the mean cost according to the shape of the normal distributions, and thus,
anomalous individuals are less likely to be obtained when sampling. This does not
avoid anomalous individuals to be sampled, because a small part of the samples
will be in the tails of the normal distributions, but maximum dispersion among indi-
viduals is reduced. This new variable is calculated with the cost function given in
Eq. (1). In this way, the GBNs learnt in each iteration are more coherent. Other multi-
objective EDAs has also added the cost as nodes of the BN, such as Karshenas et al.
2014.

Second, the likelihoodof each individual in the historic records is considered. If only
the individuals that minimize the cost function were selected, it would be possible that
very anomalous individuals would be selected, as individuals from different promising
spaces, even located at the tails of the distribution, may be found. To avoid this, both,
the cost of the individual and the likelihood of the individual in the historic records
must be considered in the truncation ranking. An individual that costs very cheap is
very attractive, but if its likelihood is low in the historic records, it might not be worth
choosing. Therefore, those individuals whose cost is not as cheap as the so attractive
ones of the generation, but their likelihood is higher, are preferable. For this reason,
the likelihood in the historic records must be considered.

The ideal is to find a balance between the likelihood in the historic and the ran-
domness of the samples of the individuals in the multivariate model. Consequently,
a new hyper-parameter α is added to the implementation, which controls the influ-
ence of the likelihood in minimizing the cost function. We define the parameter as
a value in the range [0, 1]. If the likelihood is not taken into account (α = 0), the
solutions can be dispersed, and different executions of the EDA can provide very
diverse solutions that may be very cheap. However, if the likelihood is totally con-
sidered (α = 1), the optimizer can nearly not optimize the solutions in the historic
records, as the EDA will try to find a similar solution to those that can be found in
the historic records, and not a solution based on the patterns found in the data. An
analysis of this parameter is provided below. Thus, the function used in the truncation
is,

Cα(x) =
∑p

i=1 yi ci∑p
i=1 ci

− αL(x|M), (3)

where L(x|M) is the likelihood of an individual x in the Gaussian multivariate model
M estimated from the initial generation (the historic records), and yi and ci are the
solvent amounts percentages and costs, respectively. The first term of the equation has
been normalized so that a comparison with the second term is possible, as likelihood is
represented as a probability. For α → 1 the historic relevance tends to have the same
relevance as the cost of the individual. For α = 1 the cost and the historic influence
have the same relevance in Eq. (3).

It is expected that the likelihood of the individuals of each generation will increase.
Because of this, Eq. (3) is not the cost function that should be minimized. It is only a
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function used to evaluate the individuals in the truncation step, and establish a ranking,
to guide the selection of the top individuals.

With these two modifications it may happen that some very cheap individuals are
rejected from a generation due to their anomalous costs in comparison with those of
the rest of the population. In this case, these rejected individuals will appear in future
generations, where their likelihoods and costs are more consistent with those of the
other individuals in the population. This favours the building of coherent GBNs in
each iteration, as more coherence among individuals is obtained.

3.3 Problem formulation

Themathematical formulation of the problem is presented in this section. The problem
involves p + c variables, X = {Y , Z} = {y1, . . . , yp, z1, . . . , zc}, where Y are the
decision variables and Z are the environment variables fixed as constant.

The optimization problem is,

minimize min
x

(∑p
i=1 yi ci∑p
i=1 ci

− αL(x|M)

)

subject to fi (x) = bi , for i = 1, . . . , c,

where ci ∈ R
+ are constant terms pre-defined in the problem by C = {c1, . . . , cp},

the parameter α ∈ [0, 1], and ∑p
i=1 yi = 1.

Here, the vector x = (y1, . . . , yp, z1, . . . , zc) is the optimization variable of the
problem, the function Cα(x) : R p+c → R is the objective function defined in Eq. 3,
the functions fi : Rc → R, i = 1, . . . , c are the constraint functions and the constants
b1, . . . , bc are the constraint values that the constraint functions should meet. A vector
x∗ is optimal if it has the lowest objective value among all vectors that satisfy the
constraints. Thus, for any x with f1(x) = b1, . . . , fc(x) = bc we have Cα(x) ≥
Cα(x∗).

Despite the fact that the cost function is defined in Eq. (1) in terms of the decision
variables yi , the environment variables Z in the problem statement must be considered
using Eq. (3) during the optimization process. However, as this approach has an indus-
trial perspective, the results shown in Sect. 4 represent the economic cost calculated
with Eq. (1) for each solution x provided by the algorithm.

3.4 Estimation of the density function

When the top individuals are selected using Eq. (3), the structure of the GBN can be
learnt. As the only variables that the EDA can optimize are the subset Y of variables,
the environment variables are inputs of the problem and hence, evidences of the mul-
tivariate Gaussian distribution. Thus, in each generation the subset of environment
variables will assign to each individual the same value. When the learning algorithm
tries to find dependencies among variables, all the fixed environment variables are
found to be independent, and if some dependence is found it would be spurious. This
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Fig. 3 DAG learnt in an EDA executionwhere the input variables are fixed as evidence of the GBN.Only the
yi variables (red nodes) are connected in the DAG, and the rest are independent. The blue nodes represent
the environment variables and the green node is the cost (Color figure online)

means that the variables included in the subset Y of variables would only influence
and be influenced by each other, without considering the subset Z of variables. This
would be a situation in which the algorithm finds the optimum combination of solvent
amounts, without considering the rest of the variables: Y ⊥⊥ Z. Figure 3 shows this
type of situation where the red nodes represent the subset Y of variables, the green
node represents the cost function, and the blue nodes are the environment variables Z.

The patterns identified in the historic records must be translated to the GBN learnt
from the top individuals of each generation. Therefore, some individuals from the
historic records are added to the selectionmade in the truncation phase of the algorithm.
These added individuals Gaux (see Algorithm 1) are selected from the historic records
in such a way that individuals similar to the problem situation are selected, that is,
similar environment variables. If a random set of individuals is added from the historic
records, a lot of dispersion may be introduced, or solutions from different zones of
the search space may be selected, and hence, confusing patterns could be learnt by the
algorithm.For this reason, clustering is implemented in the historic records considering
the subset of environment variables. In this way,Gaux is incorporated into the selection
of the E (see Algorithm 1) individuals made in the truncation.Gaux will provide to the
E selection of individuals, the patterns of the search space explored by the algorithm
in order to identify the dependencies among the variables.

Once Gaux is added to the selection made in the truncation phase, the GBN can
be learnt. The score-based hill climbing algorithm is used. The subset of environment
variables are the inputs of the problem, and thus, evidences of the GBN. If z are the
input values that the subset Z of variables take, the multivariate Gaussian distribution
built is P(Y |Z = z) with the evidences as fixed values in the multivariate Gaussian
distribution. It is possible to add expert knowledge to the GBN. Forbidden relations
among variables can be specified in a black list in order to not consider them, and
mandatory relations among variables can be specified in a white list.
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When the optimal combination of yi is found, an optimal structure of the GBN
is learnt for specific substance properties and further restrictions. Thus, this GBN
can be used to perform inferences and analyse different combinations of yi . The
structure can be also used by experts to infer patterns among variables of the system.
By introducing the cost as a node of the GBN, it can be used by the experts to calculate
some posterior probabilities of the cost C given some variables values x1, . . . , xt , for
example, P(C |x1, . . . , xt ) for classification tasks.

3.5 Sampling

Once the GBN is built, the next generation can be sampled. It is expected that the
dispersion among the individuals in the initial iterations is higher than in later iterations.
The behaviour of the algorithm is designed to make the space search move towards the
optimal space and to reduce the dispersion. The more iterations of the algorithm, the
lower dispersion between individuals, until convergence of the algorithm is reached
and the dispersion among individuals is minimum. Thus, the individuals in the last
iterations should be similar and centred in the optimal solution found.

Despite the fact that the multivariate Gaussian distribution is estimated from real
data, it is possible that non-real data are sampled. These samplings must be discarded.
Otherwise, the algorithm will tend towards a minus infinite cost.

Depending on the input values the number of samplings removed may be different.
In some situations, the optimizer may find solutions in which some of the yi variables
are reduced to nearly zero, so due to the Gaussian distribution, some of the samplings
will lead to solutions with values less than zero. However, other input variables will
make the optimizer stabilize the amounts at a realistic percentage, and the number
of removed samplings will be smaller. The frequency of appearance of these invalid
individuals is small, so it does not imply a significant computational cost.

4 Results

As the system was implemented to optimize a process in an industry, the model was
run considering expert knowledge. The optimizer results were validated with expert
technicians of the chemical laboratory.

In the problem we aim to solve in this paper, the substance properties and the final
liquid restrictions in the tank are given as inputs (environment variables), and the
optimal combination of the six solvent amounts are returned as output. In this section,
some real problem results are provided. To validate the optimizer, real historic records
situations have been selected. The values of the subset of environment variables are
selected and the process and final results of the optimizer are analyzed by expert
knowledge in the field. Expert knowledge is of great importance in this validation
process as it must corroborate that the existing relationships that are identified between
the data are correct.

Figure 4 shows the best cost evolution with an increasing number of iterations.
In each iteration, note that the algorithm tries to converge towards a better solution
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Fig. 4 Best cost (Eq. (1)) found in each iteration of an EDA execution for a specific substance with
restrictions (Color figure online)

Fig. 5 Mean cost (Eq. (1)) and dispersion among individuals in each generation for a specific substance
with restrictions (Color figure online)

than it has so far. When the algorithm cannot improve the best solution found after
an specific number of iterations, the algorithm converges and returns the best solution
found.When the curve flattens, the EDAhas found the optimal area of the initial search
space (iteration 60). One of the advantages of this algorithm is that not only a single
solution can be returned. The algorithm can return a set of solutions with similar costs,
in order to select one preferable by laboratory technicians.

The expected behaviour of the algorithm evolution is that the dispersion among
individuals is reduced as the number of iterations increases. Figure 5 shows the evolu-
tion of the mean cost and the dispersion among individuals along an EDA execution.
The dispersion does not have to decrease in a linear way, but a decreasing trend is
appreciated in its evolution. The way to measure this dispersion is the distance from
the mean cost of the generation.
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Fig. 6 DAG of the GBN resulting from an EDA execution. The optimal GBN is obtained for specific
substance properties and restrictions. No nodes are independent. The blue nodes represent the substance
properties and restrictions, the green node is the cost, and the red nodes are the solvent amounts (Color
figure online)

The ability to return a set of optimal solutions to the problem is not the only notable
advantage of this algorithm. Another one is that once the algorithm finds the optimal
area of the search space, it is possible to save the GBN of this area as the optimal
structure for the concrete problem. This GBN can be used with different purposes.
The GBN found for an EDA execution is shown in Fig. 6, which is a representation of
the optimal space that the EDA found in the initial search space. Note the difference
between both learned structures in Figs. 3 and 6. Figure 3 shows a situation in which
environment variables (Z) are independent nodes and only the solvent variables (Y ) are
influenced by each other as they are continuously being optimized during the process:
Y ⊥⊥ Z. However, this is solved by adding Gaux in each generation of the algorithm
(see Algorithm 1). This way, we ensure that dependencies between both Y and Z
subsets of variables are considered and the algorithm reaches a realistic situation as
shown in Fig. 6, where environment variables influence the decisions in the solvent
variables.

Notions of expert knowledge in the field will not be explained, but different aspects
of the DAG shown in Fig. 6 must be analyzed. In a BN a variable depends on those
in its MB. All yi variables are dependent on each other. This relation is obvious as
are percentages of a total amount of solvent mix. If some of the solvents amount
are reduced, others must compensate this reduction (

∑p
i=1 yi = 1). Thus, all the

solvents are dependent on each other. The cost node depends on all the solvents,
and other environment variables. The modification of some of the solvent amount
is directly related to the cost variation. Other relations can be appreciated, such as
some environment variables which are directly related to the cost variable. This GBN
can be used to perform different inferences, to try different combinations of solvents
amounts, and infer the most probable solvent combination always keeping in mind
that the GBN represents an optimal area in the initial search space.

123



1092 Journal of Combinatorial Optimization (2022) 44:1077–1098

Fig. 7 Mean cost as a function
of the α parameter (Eq. (3)). For
each value of α, 20 simulations
were run. The dashed line
corresponds to the cost of
solvents traditionally used in the
laboratory processes for this
specific substance and set of
restrictions (Color figure online)

Figure 7 shows the value of the cost function C as a function of the α parameter
(Eq. (3)). For the same problem (same inputs), the EDA was run 20 times for each
value of α.Cα (Eq. (3)) was used to perform the truncation, and find the minimum cost
function (Eq. (1)). Note that the mean C value increases with α while its dispersion
among different solutions decreases. As α → 1, C tends toward the value determined
by expert knowledge (C ≈ 58.5). However, although the dispersion increases for
α = 0, for all the simulations the optimal costs found is below that determined by
theoretical expertise. The figure also shows that the cost converges to a constant value
(dashed line) for α > 0.5, which represents the cost based on expert knowledge.

For α > 0.5, the optimizer obtained similar costs and small dispersion among solu-
tions. In Eq. (3) the cost of the solvent combination tends to have the same relevance
as the likelihood in the historic records. Thus, the algorithm will not provide solutions
that do not fit well with the historic records. The solution provided by the algorithm
will be the same or nearly the same as that of the historic records, as the laboratory
records are assumed to be nearly optimum. For highest values of α the optimizer per-
forms as a predictive model, as the solutions provided are the ones that can be found
in the historic records.

For low values of the α parameter, the solutions provided have a larger dispersion.
The algorithm is therefore more stochastic than it is for high values of the α parameter.
For each iteration, only the cost of the solvent combination is considered, and thus,
the individuals that have a lower density in the historic Gaussian multivariate data will
not be removed and can lead to new solutions not contemplated. As the likelihood is
nearly not considered, the solutions provided by the algorithm aremore stochastic, and
thus, in different executions, different GBNs can be learnt. This explains the dispersion
among the different executions shown in Fig. 7 for low values of α.

Facing an industrial application, it must be considered the α hyper-parameter tun-
ning. Despite the fact that the theoretical basis on which the implementation of the
algorithm is based is correct, using those solutions found by the algorithm for α close
to zero may carry a risk; the algorithm may have learnt wrong patterns during runtime
so not reliable solutions may have been found, or more constraints should be added
to translate the savoir-faire of the technicians.

Thus, it is necessary to find a balance between the stochasticity of the algorithm and
the solutions already found in the historic records. This balance must be found using
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Fig. 8 Mean cost and standard deviation of EDA with a Gaussian Bayesian network, and the EMNA and
PSO algorithms as a function of the α parameter (Eq. (3)) for the different experiments. For each value of
α, 20 simulations were run. The dashed line corresponds to the cost of solvents traditionally used in the
laboratory processes for this specific substance and set of restrictions (Color figure online)

expert knowledge, or even carrying out virtual simulations of the chemical process to
properly tune this novel hyper-parameter. The new hyper-parameter can be discussed
from the exploitation-exploration point of view. For high values of the parameter, the
exploration of the search is minimum while the exploitation of the already existent
solutions in the historic data is maximum. Though, low values of the parameter leads
to explore the search space.

In order to perform a deeper analysis, the proposed approach has been executed for
different instances of the problem. We have designed four experiments in which the
substance to be dissolved is the same, but different environment variables are present.

– Experiment 1. The viscosity index of the dissolution result has a value of 10%
below the mean found in the historical data.

– Experiment 2. The viscosity index of the dissolution result has a value of 10%
above the mean found in the historical data.

– Experiment 3. The volatility index of the dissolution result and the quality index
defined by the industry are decreased a 10% below the mean found in the historical
data.

– Experiment 4. The volatility index of the dissolution result and the quality index
defined by the industry are increased a 10% above the mean found in the historical
data.

The experiments have been executed for the Estimation of Multivariate Normal
Algorithm (EMNA) (Larrañaga and Lozano 2001), the Particle Swarm Optimization
(PSO) (Kennedy and Eberhart 1995) and our approach. The EMNA approach has a
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Table 1 Mean and standard deviation for each of the four designed experiments and different values of α

executed by our approach (Fig. 8)

α Experiment 1 Experiment 2 Experiment 3 Experiment 4

0.0 36.22 ± 5.66 34.27 ± 5.76 36.67 ± 5.55 37.46 ± 3.99

0.1 45.17 ± 1.77 46.52 ± 3.45 42.55 ± 6.50 48.03 ± 1.23

0.2 55.54 ± 2.01 48.55 ± 3.72 48.84 ± 1.46 52.26 ± 4.26

0.3 59.40 ± 2.70 47.29 ± 3.68 51.29 ± 1.57 50.33 ± 3.22

0.4 63.14 ± 0.85 49.97 ± 4.42 51.61 ± 1.41 56.40 ± 1.95

0.5 64.05 ± 1.24 49.84 ± 3.26 50.95 ± 2.50 59.49 ± 1.58

0.6 63.87 ± 1.71 52.47 ± 0.77 50.20 ± 3.54 63.50 ± 0.71

0.8 63.45 ± 2.97 53.30 ± 1.34 52.20 ± 2.12 67.50 ± 2.12

1.0 64.40 ± 0.88 53.84 ± 0.91 51.18 ± 2.12 68.00 ± 1.41

Table 2 Mean and standard deviation for each of the four designed experiments and different values of α

executed by the EMNA approach (Fig. 8)

α Experiment 1 Experiment 2 Experiment 3 Experiment 4

0.0 55.35 ± 5.590 42.22 ± 4.360 43.68 ± 8.727 53.15 ± 5.432

0.1 52.25 ± 11.46 41.86 ± 7.251 39.61 ± 11.08 56.74 ± 10.74

0.2 52.41 ± 10.25 43.23 ± 10.24 32.52 ± 8.702 53.26 ± 7.166

0.3 51.48 ± 7.700 49.01 ± 8.911 42.24 ± 11.57 55.03 ± 12.01

0.4 48.58 ± 7.990 46.48 ± 7.833 38.46 ± 6.135 53.04 ± 12.53

0.5 40.37 ± 4.380 42.13 ± 7.845 39.56 ± 7.312 60.90 ± 8.631

0.6 45.43 ± 8.640 53.03 ± 5.448 34.84 ± 7.151 51.26 ± 15.58

0.8 51.33 ± 10.69 46.53 ± 4.821 38.17 ± 6.170 46.87 ± 10.06

1.0 47.64 ± 11.07 49.80 ± 10.22 36.18 ± 8.651 47.64 ± 11.62

similar pseudo-code as our approach but instead of learning a Gaussian Bayesian net-
work in each iteration of the evolutionary algorithm, it learns a multivariate Gaussian
distribution fromwhere it is sampled (lines 6-7 ofAlg 1). PSO in each iteration updates
its parameters in order to minimize the cost function but not considering dependen-
cies among variables. This way, we compare the difference between using Gaussian
Bayesian networks and not using them during the optimization process.

The results are shown in Fig. 8 and in Tables 1, 2 and 3. If we analyze each of
the experiments individually, it can be seen that the behavior of our approach is as
expected. For low values of α it finds very cheap solutions, and the cost increases
with α, until the cost settles to the value determined by expert knowledge for α → 1,
shaping a curve with a logarithmic profile. However, the behaviour of the EMNA and
PSO is not as predictable as our approach for different values of α. For α → 0 our
approach seems to find better solutions than EMNA. However, for α → 1, EMNA
and PSO find better solutions than our approach, but always very far from the costs
provided by the experts and with high values of standard deviation. EMNA and PSO
are not learning the patterns found in data and thus, they are converging to solutions
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Table 3 Mean and standard deviation for each of the four designed experiments and different values of α

executed by the PSO approach (Fig. 8)

α Experiment 1 Experiment 2 Experiment 3 Experiment 4

0.0 36.22 ± 5.66 34.27 ± 5.76 36.67 ± 5.55 35.89 ± 3.99

0.1 45.17 ± 1.77 46.52 ± 3.45 42.55 ± 6.50 47.98 ± 1.23

0.2 55.54 ± 2.01 48.55 ± 3.72 48.84 ± 1.46 54.47 ± 4.26

0.3 59.40 ± 2.70 47.29 ± 3.68 51.29 ± 1.57 49.00 ± 3.22

0.4 63.14 ± 0.85 49.97 ± 4.42 51.61 ± 1.41 57.03 ± 1.95

0.5 64.05 ± 1.24 49.84 ± 3.26 50.95 ± 2.50 59.12 ± 1.58

0.6 63.87 ± 1.71 52.47 ± 0.77 50.18 ± 3.54 63.52 ± 0.71

0.8 63.45 ± 2.97 53.31 ± 1.34 52.24 ± 2.11 67.45 ± 2.15

1.0 64.40 ± 0.88 53.84 ± 0.91 51.98 ± 2.08 68.02 ± 1.41

Table 4 Mean and standard
deviation of the number of
iterations and runtime until
convergence for our approach,
EMNA and PSO after 20
simulations

Algorithm # iterations CPU time

EDA with GBN 1 ± 1 1 ± 1

EMNA 1.12 ± 4.90 0.33 ± 2.98

PSO 1.43 ± 0.37 0.39 ± 0.20

This experiment has been carried out with population size N = 100
and α = 0.6.The number of fitness evaluations would be NQ, where
Q is the number of iterations until convergence. All the results have
been normalized taking as reference the results of our approach. The
experiment was conducted on a Windows 10 machine with an Intel
i7-5820K processor and 16 Gb of RAM

that are cheaper but are not of interest for the company when fully considering the
likelihood of solutions in the historical data (Eq. (3)). Facing an industrial solution,
when our approach considers the likelihood completely, the laboratory technicians
will obtain solutions which they are accustomed to, and as α is decreased, solutions
that are somewhat more risky and therefore cheaper will be obtained, but they still take
into account the patterns found in the data. It is interesting how the results obtained by
the PSO approach when the likelihood is not considered (α = 0) outperforms the ones
obtained by EMNA and by our approach, and the small standard deviations observed
in Table 3 for α > 0. From this, we conjecture that PSO is falling in local optima
solutions which seems to have been avoided by EMNA and our approach.

The set of experiments shows how in general experiments 2 and 3 are cheaper than
the others, which makes sense because in both experiments we lead to solutions in
which the final product is closer to a solid than to a liquid, and therefore it is not
necessary to dissolve the substance as much as in experiments 1 and 4.

Table 4 shows a quantitative comparison of the EMNA, PSO and our approach
analyzing the number of fitness evaluations and computation time until convergence.
All the approaches have been evaluated under the same conditions. We can observe
how our approach takes the larger runtime compared to the two other algorithms. This
is due to the GBN learning in each iteration, which is a characteristic that makes our
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algorithm to take more than double of the runtime. Our approach seems to need a
smaller number of fitness evaluations until convergence compared to its competitors.
However, the main advantage of our approach is that we are able to obtain solutions
that can approximate those given by experts, parameterized by α, while EMNA and
PSO are not able.

Our approach seems to be a good option in those industrial situations where it is
crucial to provide similar solutions to the ones offered by the experts (α → 1) but
also when cheaper solutions are sought (α → 0) under relaxed computation time
requisites.

5 Conclusions

In summary, the aim of this paper was to propose a solution for those optimization
problems in which there exist two types of subsets of variables: a subset of variables
that define the cost function and can be optimized, and a subset of fixed variables that
are the input of the problem. The dependencies between and within both subsets must
be considered in order to keep the patterns observed in data. To solve this, an EDA is
used which incorporates a GBN that is rebuilt in each iteration to find the optimum
model for the optimum area of the search space.

As the algorithm is initialized based on the historic records, a novel hyper-parameter
α was introduced to control the influence of the historic conditions on the individuals
that constitute each generation.Our results show that cheaper solutions can be obtained
when the algorithm is not constrained by the historic conditions (α = 0). In this case,
the dispersion of the solutions among different EDA executions is higher, but the
worst solution for α = 0 is cheaper than the solutions in which historic records are
considered (α > 0). This way, this hyper-parameter must be tuned. Our approach is
compared with the EMNA and PSO algorithms in which no GBNs are used to identify
the relationships among variables in each iteration. The results show that our approach
can approximate the solution given by experts when α → 1 unlike EMNA or PSO.

Future work should consider using kernel estimation rather than Gaussian distri-
butions, as a higher precision can be obtained, as in Wang and Li 2018. In this paper,
the hyper-parameter tunes the influence of the historic in the decisions made during
runtime by comparing the individuals likelihood in the historic records. A different
heuristic could be applied, such as comparing the individuals likelihood in the previous
generation, in such a way that, the decisions made during runtime would be influenced
by the previous generation, and not by the initial data. Future work also includes adapt-
ing this approach to dynamic environments in which environment variables or the cost
function vary during runtime.
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