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Abstract. The class of k-star caterpillar convex bipartite graphs generalizes the class of convex bipartite
graphs. For a bipartite graph with partitions X and Y , we associate a k-star caterpillar on X such that
for each vertex in Y , its neighborhood induces a tree. The k-star caterpillar on X is imaginary and if
the imaginary structure is a path (0-star caterpillar), then it is the class of convex bipartite graphs. The
minimum Steiner tree problem (STREE) is defined as follows: given a connected graph G = (V,E) and
a subset of vertices R ⊆ V (G), the objective is to find a minimum cardinality set S ⊆ V (G) such that
the set R ∪ S induces a connected subgraph. STREE is known to be NP-complete on general graphs as
well as for special graph classes such as chordal graphs, bipartite graphs, and chordal bipartite graphs.
The complexity of STREE in convex bipartite graphs, which is a popular subclass of chordal bipartite
graphs, is open. In this paper, we introduce k-star caterpillar convex bipartite graphs, and show that
STREE is NP-complete for 1-star caterpillar convex bipartite graphs and polynomial-time solvable for
0-star caterpillar convex bipartite graphs (also known as convex bipartite graphs). In [1], it is shown
that STREE in chordal bipartite graphs is NP-complete. A close look at the reduction instances reveal
that the instances are 3-star caterpillar convex bipartite graphs, and in this paper, we strengthen the
result of [1].
keywords: k-star caterpillar convex bipartite graphs, Steiner tree, chordal bipartite graphs, convex
bipartite graphs.

1 Introduction

Many classical subset problems such as vertex cover, independent set and dominating set, have attracted
the researchers in the field of theory and computing, examining the following aspects: (i) to know whether
the problem is polynomial-time solvable or NP-complete on general graphs (ii) the status of the problem
in well-known special graph classes such as chordal graphs, and bipartite graphs (iii) if NP-complete on
general graphs, then investigate the instances generated out of the polynomial-time reduction in an attempt
to identify easy vs hard instances. (iv) if NP-complete on general graphs, investigate the problem from a
parameterized complexity perspective with a suitable parameter of interest.
The minimum Steiner tree problem (STREE) [2] is a classical subset problem. Given an unweighted connected
graph G and R ⊆ V (G), the problem asks for a minimum cardinality set S ⊂ V (G) such that the set R ∪ S
induces a connected subgraph. Subsequently using traversals algorithm such as breadth first search or depth
first search, one can obtain a tree on R∪S, such a tree is known as the Steiner tree for the terminal set R. The
sets R and S are known as the terminal set and the Steiner set, respectively, in the literature. Interestingly,
STREE has applications in road construction [3], communication networks [4], computer networks and many
more [5]. Two of the special cases of STREE are (i) |R| = 2; in this case, solving STREE is equivalent to
solving the shortest path problem between the vertices in R (ii) |R| = |V (G)|; solving this is equivalent to
solving the minimum spanning tree problem assuming all edge weights are one.
On the complexity front, STREE is NP-complete on general, and bipartite graphs as there is a polynomial-
time reduction from the Exact-3-Cover problem [4]. Further, it is NP-complete on bipartite graphs [6], split
graphs [7], and chordal bipartite graphs [1]. For a computational problem known to be NP-complete on a
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graph class, the two possible directions for further research are: (i) study the complexity of the problem in
some well-known subclasses of the graph class (ii) a closer look at the reduction to understand easy vs hard
instances. As part of this paper, we shall take the first direction and investigate the complexity of STREE in
a subclass of chordal bipartite graphs. The two well-known subclasses of chordal bipartite graphs are convex
bipartite graphs [8], and bipartite distance hereditary graphs [9]. A bipartite graph G with bipartition (X,Y )
is convex, if X can be arranged on a line such that for every y in Y , its neighborhood consists of consecutive
vertices of X. Interestingly, STREE is polynomial-time solvable in bipartite distance hereditary graphs [9],
however, to the best of our knowledge, the complexity of STREE in convex bipartite graphs is open. In this
paper, we answer this question and present a polynomial-time algorithm.
There is another motivation to this paper. Tree convex bipartite graphs generalize convex bipartite graphs
by associating a tree, instead of a path, with one set of the vertices, such that for every vertex in another
set, the neighborhood of this vertex induces a subtree. Note that the associated tree or path is imaginary.
In this paper, we consider the associated tree to be a special tree, namely k-star caterpillar. We observe
that 0-star caterpillar convex bipartite graphs are the well-known convex bipartite graphs, and hence k-star
caterpillar convex bipartite graphs generalize the class of convex bipartite graphs. We show that STREE is
polynomial-time solvable in 0-star caterpillar convex bipartite graphs and NP-complete for 1-star caterpillar
convex bipartite graphs. Thus we obtain a P vs NPC dichotomy for STREE in k-star caterpillar convex
bipartite graphs.
There is yet another motivation to this paper. In [1], it is shown that STREE in chordal bipartite graphs is
NP-complete. We observe that the reduction instances are 3-star caterpillar convex bipartite graphs, and
hence STREE is NP-complete for 3-star caterpillar convex bipartite graphs. It is natural to look at a subclass
of 3-star caterpillar convex bipartite graphs where STREE is polynomial-time solvable, and if possible,
strengthen the polynomial-time reduction so that we obtain a boundary between P vs NPC instances of
STREE in k-star caterpillar convex bipartite graphs. In this paper, we strengthen the result of [1] and show
that STREE is NP-complete for 1-star caterpillar convex bipartite graphs.
Since STREE is a well-studied problem, we shall highlight some of the important results. On the polynomial
time front, STREE is polynomial-time solvable in interval graphs [7, 10], cographs [11] and K1,4-free split
graphs [12]. From the parameterized perspective, STREE is fixed-parameter tractable, if the parameter
is |R| [13] and W [2]-hard, if the parameter is |S| [14]. The study of STREE is useful in determining the
complexity of related problems such as connected domination and maximum leaf spanning tree, as observed
in [7, 10,12]
Our Results: We show that STREE in 1-star caterpillar convex bipartite graphs is NP-complete by presenting
a deterministic polynomial-time reduction from the vertex cover problem. On 0-star caterpillar convex bipartite
graphs, we show that STREE is in class P. To present polynomial-time result on 0-star caterpillar convex
bipartite graphs (also known as convex bipartite graphs), the input instances of convex bipartite graphs
are partitioned into five sets based on the terminal set; R = X, R ⊂ X, R = Y , R ⊂ Y , and R ∩X 6= ∅
and R ∩ Y 6= ∅. For the first three cases, we present greedy algorithms, and a dynamic programming based
solution for the other two cases.

2 Graph Preliminaries

All graphs considered here are simple, undirected, connected, unweighted graphs. We follow the definitions
and notation from [15,16]. For a graph G, let V (G) denote the vertex set and E(G) denote the edge set. The
edge set E(G) = {{u, v} | u is adjacent to v in G }. The open neighborhood of a vertex v in G is denoted as
NG(v) = {u | {u, v} ∈ E(G)} and we denote the closed neighborhood of a vertex v in G as NG[v] = NG(v)∪{v}.
The degree of a vertex v in G is dG(v) = |NG(v)|. We denote by δ(G) = min{dG(v) | v ∈ V (G)}. A vertex
v is said to be pendant, if dG(v) = 1. For V ′ ⊆ V (G), the graph induced on V ′ is represented as G[V ′].
A bipartite graph is chordal bipartite, if every cycle of length strictly greater than four has a chord. A
bipartite graph G(X,Y ) partitioned into X and Y is a convex bipartite graph, if there is an ordering of
X = (x1, . . . , xm) such that for all y ∈ Y , NG(y) is consecutive with respect to the ordering of X, and G
is said to have convexity with respect to X. For X = (x1, . . . , xm), when we say xi ≺ xj , we mean that xi
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appears before xj in the ordering. Similarly, one can define convexity with respect to Y . Convex bipartite
graphs can also be interpreted as follows: there exists an imaginary path on X and for each y ∈ Y , NG(y)
is an interval (subpath in the imaginary path) in X. For every vertex y ∈ Y , l(y) is the least vertex of X
adjacent to y and r(y) is the greatest vertex of X adjacent to y. We define T (xi) and a vertex w(xi) ∈ N(xi)
as follows: for i ≥ 1, T (xi) = {y | y ∈ N(xi), and r(y) is the maximum}, and w(xi) is an arbitrary vertex
of T (xi). A k-star caterpillar, k ≥ 1, is a tree T where V (T ) = {x1, . . . , xp} ∪ {xi1, . . . , xik}, 1 ≤ i ≤ p and
E(T ) = {{xj , xj+1} | 1 ≤ j ≤ p − 1} ∪ {{xj , xjl} | 1 ≤ j ≤ p, 1 ≤ l ≤ k}. A 0-star caterpillar is a tree T
where V (T ) = {x1, . . . , xp} and E(T ) = {{xj , xj+1} | 1 ≤ j ≤ p − 1}. Equivalently, 0-star caterpillar is a
path on p vertices.

3 A Polynomial-time Algorithm for STREE in Convex Bipartite graphs

We shall present our results by considering possible values for the terminal set; towards this, we partition the
inputs into five sets. Throughout this paper, we assume convexity on X. We shall next present the solution
to STREE when R = X.

3.1 STREE with R = X

We present a greedy algorithm (Algorithm 1) to solve this case. Note that if |X| = 1, then the Steiner set is
empty. For |X| ≥ 2, using convexity on X, we identify the vertex y adjacent to x1 such that r(y) is maximum
and we continue from r(y). Interestingly, this greedy approach is indeed optimum, which we establish in this
section through a classical cut-and-paste argument [17]. Let z1 = x1, zi+1 = r(w(zi)), i ≥ 1.

Algorithm 1 STREE with R = X

1: Input: A connected convex bipartite graph G with R = X.
2: Initialize i = 1, z1 = x1, z = r(w(z1))
3: Initialize Steiner set S = {w(z1)}
4: while z 6= xm do
5: Update zi+1 = r(w(zi)), and S = S ∪ {w(zi+1)}
6: z = r(w(zi+1)), and i = i + 1
7: end while

x4 y4

x3=r(w(z1)) y3

x2 y2=w(z1)

x1=z1 y1

Fig. 1: An illustration for the case R = X

An illustration for R = X is given in Figure 1 and its trace for Algorithm 1 is given below.
Note R = {x1, x2, x3, x4}. As part of the initialization, we set i = 1, z1 = x1, z = r(w(z1)) = x3, S = {y2}.
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During the first iteration, we see that z = x3 6= x4 is true. Thus, z2 = x3 and S = {y2} ∪ {y4}. Also,
z = x4, i = 3. Hence the solution output by our algorithm is, S = {y2, y4}. Note that {y1, y3} is also an
optimal solution.

Observation 1 For Algorithm 1, there exists k such that r(w(zk)) = xm, and the Steiner set is S =
{w(z1), . . . , w(zk)}. Thus, Algorithm 1 terminates.

Theorem 2. Let G be a convex bipartite graph. The set S of Steiner vertices of G obtained from Algorithm
1 is a minimum Steiner set.

Proof. Without loss of generality, we shall arrange the vertices in Y = (y1, . . . , yn) such that S = (y1, . . . , yk),
are the vertices chosen by the Algorithm 1 in order. We use a binary vector A = (a1, . . . , an) to represent the
output of our algorithm such that ai = 1, if yi ∈ S, and ai = 0, otherwise. It follows that ai = 1, 1 ≤ i ≤ k,
aj = 0, k + 1 ≤ j ≤ n. Let S′ denote an optimal Steiner set of G. We use a binary vector B = (b1, . . . , bn) to
represent S′ where bi = 1, if yi ∈ S′, and bi = 0, otherwise.

Since S′ is optimal, |S′| ≤ |S|. Further, |B| =
n∑

i=1

bi ≤
n∑

i=1

ai = |A|. To show that |S| = |S′|, we need to prove

that |S| ≤ |S′|, that is |A| ≤ |B|, we need to prove
n∑

i=1

ai ≤
n∑

i=1

bi. We prove by mathematical induction on

the number of indices d where A and B differ.
Base case: when d = 0, |A| = |B|. Thus, |A| ≤ |B|.
Induction Hypothesis: Assume that for d ≥ 1, if A and B differ in fewer than d positions, then |A| ≤ |B|.
Induction Step: Let the binary vectors A, B differ by d ≥ 1 positions. Let j be the least index such that aj 6= bj .
Since S′ is an optimal solution, it cannot be the case that aj = 0 and bj = 1. Therefore, aj = 1 and bj = 0.
Further, j ≤ k. This implies that bi = 1 for 1 ≤ i < j, and bj = 0. Recall that zj = r(w(zj−1)), 2 ≤ j ≤ m
and yj = w(zj). Observe that N(yj−1) ∩ N(yj) 6= ∅ and N(yj+1) ∩ N(yj) 6= ∅ as G is connected, and by
our choice of yj , for each 1 ≤ i ≤ j − 2, j + 2 ≤ i ≤ k, N(yj) ∩N(yi) = ∅. Since S′ is an optimal solution,
there exists bl = 1 with l > k such that {zj , yl} ∈ E(G). If {zj , yl} /∈ E(G), then feasibility of the solution
(connectedness) is lost. That is, the graph induced on S′ ∪ X has vertices zj , zj+1 in different connected
components. This contradicts the fact that S′ is an optimal Steiner set. Therefore, {zj , yl} ∈ E(G).
Since our algorithm has chosen yj over yl, it follows that r(yl) ≤ r(yj), and N({y1, . . . , yj−1, yl}) ⊆
N({y1, . . . , yj−1, yj}). As part of our cut-and-paste argument, we modify the vector B to obtain a vec-
tor C = (c1, . . . , cn) as follows: ci = bi, 1 ≤ i ≤ n, i /∈ {j, l}, cj = 1, cl = 0. It follows that the binary vectors
C (modified B) and A differ in fewer than d positions and by the induction hypothesis, |A| ≤ |C|. Note that
|C| = |B|. Thus, |A| ≤ |B|. We continue this argument, if there is still a mismatch between A and C, and
stop this cut-and-paste argument, when d = 0. Thus, |A| = |B|, and A is also an optimal solution. This
completes the proof of the theorem. ut

Remarks: The proof is constructive in nature, and given an optimal solution, we can obtain another optimal
solution by the constructive argument mentioned in the proof.

3.2 STREE with R ⊂ X

We shall now present a greedy algorithm (Algorithm 2) for finding the Steiner tree in a convex bipartite graph
with R ⊂ X. When |X| ≤ 2, the Steiner set is empty. As part of Algorithm 2, we shall consider |X| ≥ 3.
Consider R = {z1, . . . , zk}, recall that zi appears before zi+1 in the ordering of X. We start from z1 and
check whether the exploration can continue from r(w(z1)) or zj , where zj is the greatest indexed vertex in R
adjacent to w(z1). Let S1 be the set of vertices chosen by algorithm for obtaining path from p = r(w(z)) until
zj+1, and S2 be the set of vertices chosen by algorithm for obtaining path from w(q) until zj+1, where q = zj .
We choose the minimum out of these two subsolutions at each iteration. This greedy strategy is optimal
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which we establish in this section.

Algorithm 2 STREE with R ⊂ X
1: Input: A connected convex bipartite graph G with R ⊂ X.
2: Prune the vertices in X less than z = z1
3: Initialize Steiner set S = {w(z)}, and let zj be the greatest indexed

vertex in R adjacent to w(z)
4: while j < k do
5: Initialize p = r(w(z)), q = zj
6: if p 6= q then
7: Initialize S1 = {p}, S2 = ∅
8: else
9: Initialize S1 = ∅, S2 = ∅

10: end if
11: while {zj+1, w(p)} /∈ E(G) do
12: S1 = S1 ∪ {w(p), r(w(p))}
13: p = r(w(p))
14: end while
15: while {zj+1, w(q)} /∈ E(G) do
16: S2 = S2 ∪ {w(q), r(w(q))}
17: q = r(w(q))
18: end while
19: if |S1| < |S2| then
20: S = S ∪ S1 ∪ {w(p)}; z = p
21: Update zj to be the greatest indexed vertex in R adjacent

to w(p)
22: else
23: S = S ∪ S2 ∪ {w(q)}; z = q
24: Update zj to be the greatest indexed vertex in R adjacent

to w(q)
25: end if
26: end while

Case 1: when p = q

z1

p = q = z2

z3

|S1| = |S2|

Case 2: when p 6= q

z1

z2

p = xi

w(z1)

w(xi)

Path choosen by S1

z3

z1

q = z2

w(z1)

Path choosen by S2

z3

xj

w(xj)

w(z2)

xk

xl w(xk)

w(xl)

S1 = {xi, w(xi), xj , w(xj)} S2 = {w(z2), xk, w(xk), xl, w(xl)}

Fig.A: An illustration for Algorithm 2

y10

y9

y8

y7

x13

x12

x11

x10

x9

x8

x7

y6x6

y5x5

y4

x4 y3

x3 y2

x2 y1

x1

Fig. 2: An illustration for R ⊂ X, R = {x1, x3, x4, x6, x8, x11, x12, x13}
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An illustration for R ⊂ X is given in Figure 2 and its trace for Algorithm 2 is given below. The terminal
vertices are R = {z1 = x1, z2 = x3, z3 = x4, z4 = x6, z5 = x8, z6 = x11, z7 = x12, z8 = x13}. Initially,
z = z1 = x1, S = {y1}, k = 8. In Iteration 1; we see that 2 < 8, p = r(w(z1)) = x3, q = z2 = x3, p = q.
Hence S1 = ∅, S2 = ∅. At Step 23, S is updated to S = {y1, y4}, z = x3, zj = x4. In Iteration 2; 3 ≤ 8,
p = r(w(z3)) = x5, q = x4, p 6= q. By Step 7, we get S1 = {x5}, S2 = ∅. As per the first while loop;
{x6, y5} ∈ E(G), therefore the condition is false. In the second loop, {x6, y4} /∈ E(G), S2 is updated as
S2 = {y4, x5}, q = x5. Further in the next iteration {x6, y5} ∈ E(G), therefore the condition is false and
the while loop terminates. We see that Step 19 is true, S is updated to S = {y1, y4} ∪ {x5} ∪ {y5}. Further,
z = x5, zj = z4 = x6. In Iteration 3; 4 ≤ 8, p = x6, q = x6, p = q. Hence by Step 9, S1 = ∅, S2 = ∅.
Further in both while loops {x8, y7} ∈ E(G), therefore conditions are false. At Step 23, S is updated to
S = {y1, y4, x5, y5} ∪ {y7}, z = x6, zj = z5 = x8. In Iteration 4; 5 ≤ 8, p = x10, q = x8, p 6= q and S1 = {x10},
S2 = ∅. Since {x11, y9} ∈ E(G), the while loop condition fails at Step 11 and for the other while loop
{x11, y7} /∈ E(G) is true, at Step 15. Inside the while loop S2 is updated as S2 = {y7, x10}, q = x10. At
Step 23, S is updated to S = {y1, y4, x5, y5, y7, x10, y9}, zj = z7 = x12, z = x10. In Iteration 5; 7 ≤ 8,
p = x12, q = x12. We see that p = q, hence S1 = ∅, S2 = ∅. In while loops, since {x13, y10} ∈ E(G), therefore
conditions are false. At Step 23, S is updated to S = {y1, y4, x5, y5, y7, x10, y9, y10}, z = x12, zj = z8 = x12.
In the next iteration, 8 < 8 is not true. Thus, Algorithm 2 outputs S = {y1, y4, x5, y5, y7, x10, y9, y10}.

Observation 3 Let S be any optimal Steiner set. For each Steiner vertex y ∈ Y , there exists at most two
Steiner vertices adjacent to y in S.

Lemma 1. In Algorithm 2, for each iteration, the difference between |S1| and |S2| is at most one.

Proof. Let z be the vertex under consideration in R and zj is the greatest indexed vertex in R adjacent to
w(z). p = r(w(z)), q = zj .
Case 1: p = q. Steps 11-18 of Algorithm 2 computes S1 and S2. Since p = q, it implies that |S1| = |S2|.
Case 2: p 6= q. Let the path starting from p to zj+1 be P1 and, the path starting from q to zj+1 be P2. Let
P1 = (u1 = p = r(w(z)), w(u1), u2 = r(w(u1)), w(u2), . . . , us, w(us), zj+1), and

P2 = (v1 = q = zj , w(v1), v2 = r(w(v1)), w(v2), . . . , vt, w(vt), vt+1 = zj+1). Observe that Steps 11-14 of
Algorithm 2 constructs P1 and updates S1; S1 = V (P1) \ {w(us), zj+1}. Similarly, Steps 15-18 of Algorithm 2
constructs P2 and updates S2; S2 = V (P2)\{zj , w(vt), vt+1}. Since G is convex on X, for 1 ≤ k ≤ s, 1 ≤ l ≤ t,
uk ≥ vl and {vl+1, w(uk)} ∈ E(G).
Case: For some i ≥ 2, ui = vi. In this case, we observe that s = t. Further, |S1| = 2s − 1, |S2| = 2t − 2.
Therefore, |S1| − |S2| = 1.
Case: For all i ≥ 2, ui > vi. We observe that s = t− 1. Therefore, |S2| − |S1| = 1.
By the definition of p and q, the case ui < vi cannot happen. From above two cases we see that |S1| and |S2|
can differ by at most one. ut

Theorem 4. Let G be a convex bipartite graph. The set S of Steiner vertices of G obtained from Algorithm
2 is a minimum Steiner set.

Proof. Without loss of generality, we shall order the vertices in G as σ = [v1, . . . , vt], t = |V (G)| in a way
that S = (v1, . . . , vl) are the vertices chosen by Algorithm 2 in order. Note that the ordering σ is with respect
to the ordering of vertices chosen by the algorithm and not in accordance with the convex ordering of X. We
use a binary vector A = (a1, . . . , at) to represent the output of our algorithm such that ai = 1, if vi ∈ S, and
ai = 0, otherwise. It follows that ai = 1, 1 ≤ i ≤ l, aj = 0, l+ 1 ≤ j ≤ t. Let S′ denote an optimal Steiner set
of G. We use a binary vector B = (b1, . . . , bt) to represent S′ where bi = 1, if vi ∈ S′, and bi = 0, otherwise.

Since S′ is optimal, |S′| ≤ |S|. Further, |B| =
t∑

i=1

bi ≤
t∑

i=1

ai = |A|. To show that |S′| = |S|, we need to show

that |S| ≤ |S′|, that is |A| ≤ |B|. To show that |A| ≤ |B|, we need to prove
t∑

i=1

ai ≤
t∑

i=1

bi. We prove by

strong mathematical induction on the number of indices d where A and B differ.
Base case: when d = 0, |A| = |B|. Thus, |A| ≤ |B|.
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Induction Hypothesis: Assume that for d ≥ 1, if A and B differ in less than d positions, then |A| ≤ |B|.
Induction Step: Let the binary vectors A, B differ by d ≥ 1 positions. Let j be the least index such that
aj 6= bj . Note that j ≤ l, otherwise S′ is not optimal. This implies that bi = 1, 1 ≤ i < j, and bj = 0. We
consider the following cases to complete our proof.
Case 1: vj−1 ∈ X. Since S′ is an optimal solution, there exists bk = 1, k > l such that {vj−1, vk} ∈ E(G).
Note that vj ∈ Y and vj = w(vj−1). Similar to the proof of the previous theorem, we modify B to obtain
a vector C as follows; C = (c1, . . . , ct), ci = bi, 1 ≤ i ≤ t, i /∈ {j, k}, cj = 1, ck = 0. Note that |C| = |B|.
It follows that the binary vectors C and A differ in less than d positions and by the induction hypothesis,
|A| ≤ |C|.
Case 2: vj−1 ∈ Y . We have the following subcases.
Case 2.1: N(vj−1) ∩ R = ∅. Observe that there exists bk = 1, k > l such that {vj−1, xk} ∈ E(G). Note
that vj = r(vj−1). In this case, an optimal solution with the corresponding vector C is obtained from B by
changing the values of bj , bk as bj = 1, bk = 0. It follows that the binary vectors C,A differ in less than d
positions and by the induction hypothesis, |A| ≤ |C|. Note that |C| = |B|. Thus, |A| ≤ |B|.
Case 2.2: N(vj−1)∩R 6= ∅. Let zk be the greatest indexed vertex in N(vj−1)∩R. If N(zk)∩N(zk+1) 6= ∅, then
note that vj ∈ Y . Observe that there exists br = 1, r > l such that {zk, vr} ∈ E(G). Note that vj = w(zk). In
this case, an optimal solution with the corresponding vector C is obtained from B by changing the values
of bj , br as bj = 1, br = 0. Note that |C| = |B|. It follows that the binary vectors C,A differ in less than d
positions and by the induction hypothesis, |A| ≤ |C|. Thus, |A| ≤ |B|.
If N(zk) ∩N(zk+1) = ∅. Note that vj ∈ X or vj ∈ Y . Let vr, r ≤ l be the least vertex in S adjacent to zk+1.
Note that Steps 11-18 of Algorithm 2 construct two paths P1 and P2, and choose the minimum out of these
two paths. Let P1 = (vj = r(vj−1), w(vj), . . . , vr, zk+1), and P2 = (zk, vj = w(zk), . . . , vr, zk+1).
If vj ∈ Y , then algorithm chooses P2 as P2 is shortest. In this case, the number of vertices included in S2 by
P2 is r − j + 1 and all these vertices appear after vj−1 with respect to σ. Let Q be the vertices chosen by the
optimal algorithm to connect zk and zk+1. Since P2 is the shortest path and Q is part of optimal solution,
cardinality of Q is r − j + 1. We now bring our cut-and-paste argument and update S′ as S′ = (S′ \Q) ∪ S2.
Similarly, if vj ∈ X, then the algorithm chooses P1 as P1 is the shortest between P1 and P2. In this case the
number of vertices included in S1 by P1 is r− j + 1. Let Q be the vertices chosen by the optimal algorithm to
connect zk and zk+1. Since P1 is the shortest path and Q is part of the optimal solution, the cardinality of Q
is r − j + 1. We now bring our cut-and-paste argument and update S′ as S′ = (S′ \Q) ∪ S1. Let C (modified
B) be the corresponding binary vector of S′. Note that |C| = |B|. Thus, the binary vectors C,A differ in less
than d positions andx by the induction hypothesis, |A| ≤ |C|. This completes the case analysis. We conclude
|A| = |B| and A is also an optimal solution. This completes the proof of Theorem 4. ut

3.3 STREE when R = Y

We shall present a greedy algorithm (Algorithm 3) to output a minimum Steiner tree when R = Y . Note
that if |Y | = 1, then the Steiner set is empty. Therefore we work with |Y | ≥ 2. By definition, for each
yi ∈ Y , N(yi) = {xp, xp+1, . . . , xq} is an interval. Further, l(yi) = xp and r(yi) = xq. For all yi ∈ Y , let
[li, ri] represent the interval such that li = p and ri = q. We arrange the vertices of Y as (y1, y2, . . . , yn) such
that for all i, j, 1 ≤ i < j ≤ n, ri ≤ rj . We use yi to represent the vertex yi ∈ Y as well as the interval
corresponding to yi.

7



Algorithm 3 STREE when R = Y

1: Input: A connected convex bipartite graph G with R = Y .
2: All intervals are unmarked initially, let |Y | = n, Steiner set S = {}
3: for i = 1, i ≤ n, i = i + 1 do
4: if yi is unmarked then
5: S = S ∪ {ri}
6: Mark all intervals yj such that ri ∈ N(yj)
7: else
8: if ri = xm then
9: Continue

10: else
11: if there exists a marked yj such that ri+1 ∈ N(yj) then
12: Continue
13: else
14: S = S ∪ {ri}
15: Mark all intervals yj such that ri ∈ N(yj)
16: end if
17: end if
18: end if
19: end for

X Y
x1

x2

x3

x4

x5

x6

x7

y1

y2

y3

y4

x1 x2 x3 x4 x5 x6 x7
y1

y2

y3

y4

y5
y5

x8

x8

Corresponding Interval representation

Fig. 3: An illustration for R = Y

Iteration number
Condition checking and marking
status

Update on S Update on marking

All y ∈ Y vertices are unmarked
initially, i = 1, S = {}

1 1 ≤ 5, y1 is unmarked S = S ∪ {x2} Mark y1, y2
2 2 ≤ 5, y2 is marked ri = x4 6= x8, @yj such that {x6, yj} ∈ E(G), S = S ∪ {x4} Mark y3, y4
3 3 ≤ 5, y3 is marked ri = x6 6= x8, ∃y4 such that {y4, x7} ∈ E(G) -

4 4 ≤ 5, y4 is marked ri = x7 6= x8, @yj such that {x8, yj} ∈ E(G), S = S ∪ {x7} Mark y5
5 5 ≤ 5, y5 is marked ri = x8 = x8 -

6 6 ≤ 5 - Thus, S = {x2, x4, x7}
Table 1: Trace of Algorithm 3
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An illustration and its interval representation is given in Figure 3, and its trace of Algorithm 3 is given in
Table 1. Let Z = {z1, z2, . . . , zp} ⊆ X be the vertices selected by our algorithm and Z ′ = {z′1, z′2, . . . , z′q} ⊆ X
be the vertices selected by any optimum algorithm. Note that z1 ≤ z2 ≤ . . . ≤ zp. Further we arrange Z ′ such

that z′1 ≤ z′2 ≤ . . . ≤ z′q. For the set {z1, z2, . . . , zi}, N({z1, z2, . . . , zi}) =
i⋃

j=1

N(zj).

Theorem 5. For all indices i ≤ q, the following statements are true:
1. z′i ≤ zi
2. N({z1, z2, . . . , zi}) ⊇ N({z′1, z

′

2, . . . , z
′

i})

Proof. By mathematical induction on i.
Base Case:
Since z′1 ≤ z′j , j > 1, we have {y1, z′1} ∈ E(G). Since our algorithm has chosen z1, {y1, z1} ∈ E(G). Therefore,
z′1 ≤ z1. The ordering of Y and the convexity of X imply that N(z1) ⊇ N(z′1).
Induction Hypothesis:
Assume for i ≥ 2, z′i−1 ≤ zi−1 and N({z1, z2, . . . , zi−1}) ⊇ N({z′1, z

′

2, . . . , z
′

i−1}) are true.
Induction Step:
We have to prove that when i ≥ 2, z′i ≤ zi and N({z1, z2, . . . , zi}) ⊇ N({z′1, z

′

2, . . . , z
′

i}).
By the induction hypothesis, we know that up to i−1, z′i−1 ≤ zi−1 andN({z1, z2, . . . , zi−1}) ⊇ N({z′1, z

′

2, . . . , z
′

i−1}).
By Steps 5 and 14 of Algorithm 3, it is clear that our algorithm always includes zi = r(y) of an interval y,
hence z′i ≤ zi.
Assume on the contrary, N({z1, z2, . . . , zi}) + N({z′1, z

′

2, . . . , z
′

i}). Then, there exists an interval y such that
y ∈ N(z′i) and y /∈ N(zi). It is clear that r(y) ≺ zi (Recall that r(y) appears before zi in the ordering). Since
for each interval w our algorithm includes some x ∈ N(w) in the solution, it must be the case that y ∈ N(zj)
for some j, 1 ≤ j ≤ i− 1 (as illustrated in Figure 4). This implies that y ∈ N({z1, z2, . . . , zi−1}), which is a
contradiction.

y

z
′
i−1 zi−1 z

′
i zi

Fig. 4: Interval representation of G

Therefore, N({z1, z2, . . . , zi}) ⊇ N({z′1, z
′

2, . . . , z
′

i}). Hence the proof. ut

Theorem 6. For all k ≤ p, the graph induced on N [{z1, z2, . . . , zk}] is connected.

Proof. By mathematical induction on k,
Base Case: For i = 1, by definition G[N [z1]] is connected.
Induction Hypothesis: Assume that for i ≥ 1, G[N [{z1, z2, . . . , zi}]] is connected.
Induction Step: We have to prove that when i ≥ 1, G[N [{z1, z2, . . . , zi+1}]] is connected. By our induction
hypothesis, we know that G[N [{z1, z2, . . . , zi}]] is connected. A vertex zi+1 can be added to S for two reasons:
Case 1: There exists y such that r(y) = zi+1 and y is unmarked. As per Step 6 of our algorithm,
zi+1 is included in the solution and y is labelled as marked. Since G is connected, there exists a marked
interval w ∈ Y adjacent to zi+1 such that zi+1 = r(w) or zi+1 ≺ r(w). Therefore, graph induced on
N [{z1, z2, . . . , zi}] ∪ {zi+1, w, y} is connected. (Inclusion of zi+1 as per the illustration in Figure 5)
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zi−1 zi zi+1

y

w

Fig. 5: Interval representation of G

Case 2: There exists y such that r(y) = zi+1 and y is marked. It must be the case that there exists
an unmarked w ∈ Y which is adjacent to zi+1 and not adjacent to zi. To ensure connectedness between
G[N [{z1, z2, . . . , zi}]] and w, our algorithm chooses zi+1. Since y is ending at zi+1, then y is adjacent to one
of z1, z2, . . . , zi. Therefore, graph induced on N [{z1, z2, . . . , zi}] ∪ {zi+1, w, y} is connected.(Inclusion of zi+1

as per the illustration in Figure 6)

zi zi+1 zi+2

y

w

Fig. 6: Interval representation of G

Therefore, by both Case 1 and Case 2, G[N [{z1, z2, . . . , zi+1}]] is connected. ut

Theorem 7. Algorithm 3 outputs a minimum Steiner set, that is p = q.

Proof. By Theorem 5, we know that if i = q, then N({z1, z2, . . . , zq}) ⊇ N({z′1, z
′

2, . . . , z
′

q}). By Theorem 6,
N [{z1, z2, . . . , zq}] is connected. Hence p = q. ut

Time complexity analysis: For vertices in Y , we can maintain an additional data structure so that for
each y ∈ Y , l(y) and r(y) can be computed in linear time. Further, using this data structure and adjacency
list of the underlying graph Algorithms 1,2, and 3 can be implemented in O(m+ n), linear in the input size.

3.4 STREE when R ⊂ Y

We shall present a dynamic programming based solution for the case R ⊂ Y . Let σ = (y1, y2, . . . , yn) be the
ordering of vertices in Y satisfying the following conditions; for all i, j, 1 ≤ i ≤ j ≤ n, yi appears before yj in
σ, if
(i) li < lj , or
(ii) li = lj and ri ≥ rj .
We denote by σ(yi) < σ(yj), if yi appears before yj in σ. Similar to Section 3.3, in this section we work with the
underlying interval representation of G. Recall that for yi ∈ Y , N(yi) = {xp, xp+1, . . . , xq}, li = p and ri = q.
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For z ∈ Y , N(z) = {xp, xp+1, . . . , xq} such that l(z) = xp and r(z) = xq, we denote by lz = p and rz = q.
Let R = {z1, z2, . . . , zk} ⊂ Y such that σ(z1) < σ(z2) < . . . < σ(zk). For zk ∈ R, xu = l(zk) and u = lk, and
similarly xv = r(zk) and v = rk. Let xr = l(z1), and W = {w1, w2, . . . , wt} = {xr, . . . , xm}, t = m− r + 1.
Note that x1, . . . , xr−1 is not considered for our discussion, since no z ∈ R is adjacent to x1, . . . , xr−1.
Therefore, we work with W and Y . Further, for y ∈ Y , we remove the edges {y, xi} ∈ E(G), 1 ≤ i ≤ r − 1.
Let S be the set of Steiner vertices required to connect R in G.
We classify I = [G,R = {z1, z2, . . . , zk}] into four equivalence classes which are defined as follows;
E1 = {I | ∃yc such that yc ∈ N(wu−1) and rc ≥ rk, and @yd such that yc 6= yd, yd ∈ N(wu−1) and lk ≤
rd < rk}.
E2 = {I | ∃yd such that yd ∈ N(wu−1) and lk ≤ rd < rk, and @yc such that yc 6= yd, yc ∈ N(wu−1) and rc ≥
rk}.
E3 = {I | ∃yc such that yc ∈ N(wu−1) and rc ≥ rk, and ∃yd such that yd 6= yc, yd ∈ N(wu−1) and lk ≤
rd < rk}
E4 = {I | lk = 1}
Informally, E1 considers all those inputs such that in the underlying interval representation there exists an
interval yc which overlaps with zk, adjacent to lk − 1 and it ends on or after rk, further, there does not exist
an interval yd which overlaps with zk, adjacent to lk − 1 and it ends before rk.
Similarly, E2 considers all those inputs such that in the underlying interval representation there exists an
interval yd which overlaps with zk, adjacent to lk − 1 and it ends before rk, further, there does not exist an
interval yc which overlaps with zk, adjacent to lk − 1 and it ends on or after rk.
Likewise, E3 considers all those inputs such that in the underlying interval representation there exists an
interval yd which overlaps with zk and it ends before rk, and there exists an interval yc which overlaps with
zk and it ends on or after rk.
In E4, we consider all intervals such that lk = 1. This means each zi ∈ R is adjacent to x1.
Note that, E1, E2, E3, and E4 clearly partitions the set of all inputs.
We define an indicator function b(y) for each y ∈ Y such that:

b(y) =

{
1 if y ∈ Y \R
0 if y ∈ R

Note that b(z1) = b(z2) = . . . = b(zk) = 0.

Optimal Substructure Property: We now show that an optimal solution to the Steiner tree problem for
the case R ⊂ Y lies within its optimal solutions to subproblems. Let T be an optimal Steiner tree containing
R. Clearly, each z ∈ R appears as a leaf in T . Let w be a parent of zk. If we root the tree at w, then both left
and right subtrees of w must be optimal. Note that the optimal right subtree contains each zi, 1 ≤ i ≤ k − 1
as a leaf. Further, w is in X and w is adjacent to zk and y ∈ Y . Note that y is zi, 1 ≤ i ≤ k− 1 or y ∈ Y \R.
Moreover, there are many candidates for y whose corresponding intervals overlap with zk. Clearly, if all
choices of y are considered, then we are sure of obtaining an optimal y using which zk is connected with the
rest of vertices in R.
Using our optimal substructure, we define a function F which computes the minimum number of Steiner
vertices required to connect zk with the rest of R. If zk overlaps with some zi, 1 ≤ i ≤ k − 1, then to obtain
an optimal solution to the problem we include the appropriate x ∈ NG(zk)∩NG(zi) and the optimal solutions
obtained from the subproblems. If zk has no overlap with any zi, 1 ≤ i ≤ k − 1, then zk overlaps with
y ∈ Y \ R and there may be many such y. To obtain an optimal solution to the problem we include the
appropriate y and x ∈ NG(zk) ∩NG(y) and the optimal solutions obtained from the subproblems. We now
present our recursive solution to compute F .

We define a function F [u, v] which denotes the number of Steiner vertices required in G to connect zk ∈ R
with zi ∈ R, 1 ≤ i ≤ k − 1.
The function F [u, v] for I in E1 or E2 or E3 or E4 is defined as follows: F [u, v] = min

z
f [u, v], for each z ∈ Y

such that u = lz and v = rz, where f [u, v] is defined as follows:
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Case 1: I ∈ E1. Then, ∃yc such that yc ∈ N(wu−1) and rc ≥ rk, and @yd such that yc 6= yd, yd ∈ N(wu−1) and lk ≤
rd < rk.

f [u, v]= 1 + min
yc

F [p, q], 1 ≤ p ≤ u− 1, v ≤ q ≤ t

Case 2: I ∈ E2. Then, ∃yd such that yd ∈ N(wu−1) and lk ≤ rd < rk, and @yc such that yc 6= yd, yc ∈
N(wu−1) and rc ≥ rk.

f [u, v]= 1 + b(zk) + min
yd

F [p, s], 1 ≤ p ≤ u− 1, u ≤ s ≤ v − 1

Case 3: I ∈ E3. Then, ∃yc such that yc ∈ N(wu−1) and rc ≥ rk, and ∃yd such that yd 6= yc, yd ∈ N(wu−1) and lk ≤
rd < rk.

f [u, v]= min{1 + min
yc

F [p, q], 1 + b(zk) + min
yd

F [p, s]}, 1 ≤ p ≤ u− 1, v ≤ q ≤ t, u ≤ s ≤ v − 1

Case 4: I ∈ E4

F [u, v]=1, since lk = 1, for each zi ∈ R, li = 1.

Note that, when the input comes from equivalence class Ei, there may be many identical intervals of
type z such that lz = u and rz = v. Further, we compute f [u, v] for each interval z, and F [u, v] is precisely
the minimum among f [u, v].
We observe that F [u, v] depends on F [p, q] or F [p, s]. The above definition has overlapping subproblems
which we shall exploit and present a solution using dynamic programming paradigm. Towards this end we
now define a recursive solution using which we populate the dynamic programming table in a bottom-up.

Recursive solution:

Base case:
For z ∈ Y , lz = 1, j = rz, we define F [1, j] = min

z
f [1, j], 1 ≤ j ≤ t, the value of f [1, j] is

f [1, j] = 1, if z ∈ Y \R.
f [1, j] = 0, if z ∈ R.
f [1, j] =∞, if no such z exists.

For 2 ≤ i ≤ j ≤ t, for each z ∈ Y , i = lz and j = rz, F [i, j] = min
z
f [i, j], where f [i, j] is

Case 1: ∃yc such that yc ∈ N(wi−1) and rc ≥ j, and @yd such that yd 6= yc, yd ∈ N(wi−1) and i ≤ rd < j

f [i, j] = 1 + min
yc

F [p, q], 1 ≤ p ≤ i− 1, j ≤ q ≤ t

Case 2: ∃yd such that yd ∈ N(wi−1) and i ≤ rd < j, and @yc such that yc 6= yd, yc ∈ N(wi−1) and
rc ≥ j − 1

f [i, j] = 1 + b(zk) + min
yd

F [p, s], 1 ≤ p ≤ i− 1, i ≤ s ≤ j − 1

Case 3: ∃yc such that yc ∈ N(wi−1) and rc ≥ j, and ∃yd such that yd 6= yc, yd ∈ N(wi−1) and i ≤ rd < j

f [i, j] = min{1 + min
yc

F [p, q], 1 + b(zk) + min
yd

F [p, s]}, 1 ≤ p ≤ i− 1, j ≤ q ≤ t, i ≤ s ≤ j − 1
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The function F [i, j] =∞, if no such z exist.

Computation of F [i, j]: We know that for each interval z ∈ Y , the corresponding function f [i, j] is computed.
We compute f [i, j] as per the ordering σ. That is, for two intervals ya and yb such that σ(ya) < σ(yb), then
F [la, ra] is computed first followed by F [lb, rb]. We compute F [i, j] for each interval ya ∈ Y such that i = la
and j = ra. The value of F depends on the case (the above three cases) in which ya falls in. Thus, we consider
the following three cases and describe how F is computed in each of them.

Case 1: Note that in this case, we consider all interval y ∈ Y such that y overlaps with ya, and ly < la
and ry ≥ ra. As per σ, for each y, we compute f [ly, ry]. Since G is connected, ya is connected with some
y. We examine each y and choose y for which f [ly, ry] is minimum. Let ymin = y ∈ Y is such that f [ly, ry]
is minimum. Clearly, some x ∈ N(ya) ∩N(ymin) is in the solution to connect ya and ymin. As part of our
approach, we include xla ∈ N(ya) ∩N(ymin) in our solution. Thus, we obtain f [la, ra] = 1 + min

y
F [ly, ry].

The ′1′ in the expression indicates the inclusion of xla in the solution, further, it is connected with a y
vertex as indicated by the recursive solution F [ly, ry] in the expression. In this case, we do not include ya in
the solution. Finally, we consider all ya and for each we compute f [la, ra], the minimum over all f [la, ra] is
precisely F [la, ra]. An illustration is given in Figure 7.

ya

y

y

xp

(a)

xq

ya

y′

y′

xp xs

(b)

ya

y′

y

y′ y

(c)

xp xs xq

Fig. 7: (a) An instance of G for Case 1, (b) An instance of G for Case 2, (c) An instance of G for Case 3

Case 2: Note that in this case, we consider all interval y′ ∈ Y such that y′ overlaps with ya, and ly < la and
ry < ra. The description for computation of f [la, ra] is same as Case 1 and the only change is that f [la, ra]
includes xla and ya in the solution. Thus, we obtain f [la, ra] = 1 + b(ya) + min

y
F [ly, ry]. The value of b(ya) is

’0’, if ya ∈ R, and ’1’, otherwise. An illustration is given in Figure 7.
Case 3: This case is a blend of Case 1 and 2. With ya being the reference interval, we find two intervals y and
y′ in Y such that y satisfies Case 1 and y′ satisfies Case 2. Accordingly, we compute F for y and y′ and take
the minimum of the two. An illustration is given in Figure 7.
Case 4: Since ∀z ∈ R, l(z) = 1, including w1 will connect all the vertices in R. Hence F [i, j] = 1.

Overlapping subproblems in F :
Consider the subproblems F [p, q], F [a, b], F [c, d] such that p < a, p < c and q ≥ a, q ≥ c. Since we compute
F [i, j] in bottom-up and p < a, p < c, F [p, q] is computed before F [a, b] and F [c, d]. We observe that F [p, q]
is a subproblem in F [a, b] and F [c, d]. We compute F [p, q] once and reuse the solution when it is referred
again. Therefore each subproblem is computed exactly once.
Computing the optimal Steiner set using F :
Using F [u, v], we construct the solution set S in a bottom up starting from minimum f [u, v]. If suppose, f [u, v]
is updated due to f [p, q] of F [p, q], then include the vertex wu, wp in S, and also include the corresponding
y vertex in S. We continue this process until we reach either some f [1, j], 1 ≤ j ≤ n or f [p, q] such that
p = lz1 . If there exist zi such that N(zi) ∩ S = ∅ and there does not exist zj such that σ(zi) < σ(zj),
N(zi)∩N(zj) 6= ∅, then include l(zi) ∈ R (An illustration for inclusion of zi in S is in Figure 8). The vertices
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S \R are the desired Steiner vertices of G for the terminal set R.
An illustration for inclusion of zi in S, for z3, z4, z5 we include l(z4), l(z5) in S.

z1

z6z5z4
z3

z2

y

Fig. 8: An illustration for inclusion of zi in S.

Pseudo code to compute F :

Algorithm 4 Computing F

1: Input: A connected convex bipartite graph G with R ⊂ Y .
2: oldFvalue =∞ , newFvalue =∞
3: for each z ∈ Y such that lz = 1 and rz = j do
4: if z ∈ Y \R then
5: end if
6: F [1, j] = 1
7: if z ∈ R then
8: F [1, j] = 0
9: end if

10: end for
11: for j = 1, j ≤ m, j = j + 1 do
12: if there does not exists a vertex such that lz = 1 and rz = j then
13: F [1, j] =∞
14: end if
15: end for
16: for i = 2, i ≤ t, i = i + 1 do
17: for each z ∈ Y such that l(z) = xi do
18: let j = r(y)
19: if ∃yc such that yc ∈ N(wi−1) and rc ≥ j, and ∃yd such that yd 6= yc, yd ∈ N(wi−1) and i ≤ rd < j then
20: f [i, j] = min{1 + min

yc
F [p, q], 1 + b(zk) + min

yd
F [p, s]}, 1 ≤ p ≤ i− 1, j ≤ q ≤ t, i ≤ s ≤ j − 1

21: else if ∃yd such that yd ∈ N(wi−1) and i ≤ rd < j then
22: f [i, j] = 1 + b(zk) + min

yd
F [p, s], 1 ≤ p ≤ i− 1, i ≤ s ≤ j − 1

23: else
24: f [i, j] = 1 + min

yc
F [p, q], 1 ≤ p ≤ i− 1, j ≤ q ≤ t

25: end if
26: newFvalue = min{f [i, j], oldFvalue}
27: oldFvalue = newFvalue
28: end for
29: F [i, j] = newFvalue
30: end for

Time complexity of the function F :
As the range of i (j) is 1 to m and for each z ∈ Y , we compute the function F , the number of subproblems F
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created by our dynamic programming is at most O(m2). Further, the number of updates on F is O(m2n).
Thus, Steiner tree when R ⊂ Y runs in O(m2n), polynomial in the input size.

Theorem 8. For a convex bipartite graph G and a terminal set R ⊂ V (G), the Steiner set output by our
algorithm is an optimal Steiner set.

Proof. Let R = {z1, . . . , zk}. With zk as the reference interval, we first identify the equivalent class in which
G falls into. Further, we compute F [i, j] in a specific order so that solutions to subsubproblems are made
available to the subproblems and further to the actual problem. Thus, the optimal solution to F [u, v] is
obtained by considering all optimal subproblems. Therefore, the set output by our algorithm is an optimal
Steiner set. ut

y1

y2

y3

y4

y5

y6

x1 x2 x3 x4 x5 x6 x7
z1

z2

z3 = zk

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

x5

x6

x7

Fig. 9: An illustration for R ⊂ Y

We now trace our algorithm for the example given in Figure 9.
Base case: F [1, 2] = 0.
At i = 2, there exist two intervals y2, y6 which starts at x2. The F values computed are:
for y2, F [2, 3] = 1 + b(z) + min (F [1, 2], F [1, 3]) = 1 + 1 + 0 = 2
for y6, F [2, 7] = 1 + b(z) + min (F [1, 2], F [1, 3], F [1, 4], F [1, 5], F [1, 6], F [1, 7]) = 1 + 1 + 0 = 2.
At i = 3, there exists an interval y3 which starts at x3. The function F is computed for
y3 is F [3, 4] = 1+min (F [1, 3], F [1, 4], F [1, 5], F [1, 6], F [1, 7], F [2, 3], F [2, 4], F [2, 5], F [2, 6], F [2, 7]) = 1+2 = 3.
At i = 4, there exists an interval y4 which starts at x4. The function F computed for
y4 is F [4, 5] = 1+min (F [1, 4], F [1, 5], F [1, 6], F [1, 7], F [2, 4], F [2, 5], F [2, 6], F [2, 7], F [3, 4], F [3, 5], F [3, 6], F [3, 7]) =
1 + 2 = 3.
At i = 5, there exists an interval y5 which starts at x5. The function F computed for
y5 is F [5, 6] = 1 + min (F [2, 5], F [2, 6], F [2, 7], F [3, 5], F [3, 6], F [3, 7], F [4, 5], F [4, 6], F [4, 7]) = 1 + 2 = 3.
Constructing an optimal solution: For this input instance F [u, v] is F [5, 6]. The ′1′ in the expression
F [5, 6] indicates the inclusion of x5 in S, S = x5. Since the value of F [5, 6] is updated due to F [2, 7], we
next consider F [2, 7]. Now in the expression F [2, 7], ′1′ indicates the inclusion of x2 in S, and b(z) = 1,
which refers to the inclusion of y6 in S, S = {x5, x2, y6}. On the similar line F [2, 7] is updated due to F [1, 2].
Thus include x2 in S. Finally, there exists an interval z2 such that N(z2) ∩ S = ∅, hence include x3 in S,
S = {x5, x2, y6, x3}. Therefore, the Steiner vertices of G is {x2, x3, y6, x5}.

3.5 STREE when R ∩X 6= ∅ and R ∩ Y 6= ∅

Let R = {z1, . . . , zl} such that R ∩X = {z1, . . . , zk}, 1 ≤ k < l, and R ∩ Y = {zk+1, . . . , zl}. To describe
the solution for this case, we transform the graph G(X,Y ) to G∗(X∗, Y ∗) such that X∗ = X,Y ∗ = Y ∪W ,
W = {wi | zi ∈ R∩X, 1 ≤ i ≤ k} and E(G∗) = E(G)∪{{wi, zi}| wi ∈ Y ∗, zi ∈ R∩X, 1 ≤ i ≤ k}. Note that
each wi is a pendant vertex in G∗. Observe that the convex ordering of X∗ is same as X, and for each y ∈ Y ∗,
NG∗(y) is consecutive with respect to the ordering of X∗. Therefore, G∗ is a convex bipartite graph. Moreover,
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this transformation is a solution preserving transformation. That is, using the transformed graph G∗, we
obtain a solution to STREE in G. In particular (G,R) is mapped to (G∗, R∗) such that R∗ = (R ∩ Y ) ∪W .
Clearly, R∗ ⊂ Y ∗. Using the dynamic programming presented in Section 3.4, we solve (G∗, R∗), and let S∗

be the solution to G∗. Note that since each wi is pendant and wi ∈ R∗. Hence no wi is in S∗. Therefore S∗ is
also a solution in G.

Remarks: To solve STREE in convex bipartite graphs, it is enough to consider the case STREE when R ⊂ Y ,
and all other cases can be transformed to an instance of R ⊂ Y using the construction given in Section 3.5. It
is important to highlight that R ⊂ Y algorithm runs in time O(m2n), whereas all other greedy algorithms
run in linear time.

4 Hardness Result: STREE in 1-star caterpillar convex bipartite graphs

In this section, we show that the STREE is NP-complete for 1-star caterpillar convex bipartite graphs by
giving a polynomial-time reduction from the vertex cover problem on general graphs. A 1-star caterpillar is a
tree T = (V,E) where V (T ) = {v1, . . . , vn, z1, z2, . . . , zn} and E(T ) = {{vi, zi} | 1 ≤ i ≤ n}∪{{vi, vi+1} | 1 ≤
i ≤ n−1}. Note that (v1v2 . . . vn) is the path of the caterpillar (also known as the backbone of the caterpillar),
and {z1, z2, . . . , zn} are pendants of the caterpillar. The decision versions of STREE and the vertex cover
problem are defined below:
The Steiner tree problem (STREE)
Instance: A graph G, a terminal set R ⊆ V (G), a non-negative integer k.
Question: Does there exist a Steiner set S ⊆ V (G) such that G[R ∪ S] is connected and |S| ≤ k?
The Vertex Cover problem (VC)
Instance: A graph G, a non-negative integer k.
Question: Does there exist a vertex cover S ⊆ V (G) such that for each edge e = {u, v} ∈ E(G), u ∈ S or
v ∈ S and |S| ≤ k?

Theorem 9. STREE is NP-complete on 1-star caterpillar convex bipartite graphs.

Proof. STREE is in NP: Given an input instance (G,R, k) of STREE and a certificate set S ⊆ V (G),
whether S is a Steiner set of cardinality at most k can be verified in polynomial time as the connectedness of
G[R ∪ S] can be verified in polynomial time by using standard graph traversal algorithms [17].
STREE is NP-hard: It is known from [17] that VC on general graphs is NP-complete and this can be
reduced in polynomial time to STREE in 1-star caterpillar convex bipartite graphs using the following
reduction algorithm. We map an instance (G, k) of VC on general graphs to the corresponding instance
(G∗, R, k′ = k) of STREE as follows: V (G∗) = V1 ∪ V2 ∪ V3,
V1 = {xi | vi ∈ V (G)},
V2 = {yi1, yi2 | ei ∈ E(G)},
V3 = {zi1, zi2 | ei ∈ E(G)}.
We shall now describe the edges of G∗,
E(G∗) = E1 ∪ E2,
E1 = {{yi1, xk}, {yi1, xl}, {yi2, xk}, {yi2, xl}, | ei = {vk, vl} ∈ E(G), xk, xl ∈ V1, yi1, yi2 ∈ V2, 1 ≤ i ≤
m, 1 ≤ k ≤ n, 1 ≤ l ≤ n}
E2 = {{x, zi1}, {x, zi2} | x ∈ V1, zi1, zi2 ∈ V2, 1 ≤ i ≤ m}.
We define X∗ = V2∪V3, Y ∗ = V1, and imaginary 1-star caterpillar T on X∗ is defined with V3 as the backbone
and V2 as the pendant vertex set. That is, V (T ) = X∗ and E(T ) = {{y11, y12}, {y12, y21}, {y21, y22}, . . . , {ym1, ym2}}∪
{{yi1, zi1}, {yi2, zi2} | 1 ≤ i ≤ m}.
An example is illustrated in Figure 10, the vertex cover instance G(V,E) with k = 2 is mapped to STREE
instance of 1-star caterpillar convex bipartite graph G∗(V ∗, E∗) with R = {y11, y12, y21, y22, y31, y32, z11},
k′ = 2.
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Fig. 10: An example: VC reduces to STREE.

Claim. G∗ is a 1-star caterpillar convex bipartite graph.

Proof. By construction, T is a 1-star caterpillar on X∗. Each xi ∈ V1 (or xi ∈ Y ∗ ) is adjacent to all vertices
in V3 and also to each element in some subset Y ′ ⊆ V2. Therefore, for each xi, N(xi) is a subtree in T . Hence
G∗ is a 1-star caterpillar convex bipartite graph.

Claim. (G, k) has a vertex cover with at most k vertices if and only if (G∗, R = {yi1, yi2 | 1 ≤ i ≤
m} ∪ {z11}, k′ = k) has a Steiner tree of size at most k′ = k Steiner vertices.

Proof. (Only if) Let V ′ = {vi | 1 ≤ i ≤ k} is a vertex cover of size k in G. Then we construct the Steiner set
S of G∗ for R = {yi1, yi2 | 1 ≤ i ≤ m} ∪ {z11} as follows S = {xi | 1 ≤ i ≤ k, vi ∈ V ′, xi ∈ V (G∗)}. Indeed,
for any edge ei = {vk, vl} ∈ E(G), vk or vl in V ′. Then by our construction, we know that yi1 and yi2 are
adjacent to xk and xl, and xk or xl is in S. So each vertex in {yi1, yi2 | 1 ≤ i ≤ m} is adjacent to at least one
vertex in S. Further, by our construction, each vertex in V1 is adjacent to each vertex in V3. Hence S ∪R
induces a connected subgraph in G∗.
(If) For R in G∗, let S = {xi | 1 ≤ i ≤ k′} is a Steiner set of G∗ of size k′. Then, we construct the vertex
cover V ′ of size k in G as follows; V ′ = {vi | xi ∈ S, vi ∈ V (G), 1 ≤ i ≤ k′}. We now claim that V ′ is a
vertex cover in G. Suppose that there is an edge ei = {vk, vl} ∈ E(G) for which neither vk nor vl is in V ′.
This implies that neither xk nor xl is in S. Since R contains yi1, yi2, it follows that N(yi1) ∩ S = ∅ and
N(yi2) ∩ S = ∅. Further, S is not a Steiner set. A contradiction. Thus V ′ is a vertex cover of size k in G. ut

Therfore, we conclude STREE on 1-star caterpillar convex bipartite graphs is NP-complete. ut

Corollary 1. STREE is NP-complete on k-star caterpillar convex bipartite graphs, k ≥ 1. Further, STREE
is NP-complete on tree convex bipartite graphs.

Proof. Since the class of 1-star caterpillar convex bipartite graphs is a special case of k-star caterpillar convex
bipartite graphs, k ≥ 1, and the fact k-star caterpillar convex bipartite graphs are a subclass of tree convex
bipartite graphs, this result follows from Theorem 9.

Remark: In [1], it is shown that STREE in chordal bipartite graphs is NP-complete, and it is important
to highlight that it is a 3-star caterpillar convex bipartite graph. Hence STREE is NP-complete for 3-star
caterpillar convex bipartite graph.
In Theorem 9, we strengthen the result of [1] by establishing the NP-complete result for 1-star caterpillar
convex bipartite graphs.
We shall next present two applications of our result. We use STREE in convex bipartite graphs as a framework
and solve (a) STREE in intervals graphs, and (b) Domination in convex bipartite graphs. To the best of
our knowledge STREE in interval graphs is open, and the study of domination in convex bipartite graphs is
already reported in [8].
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5 An Application: STREE in Interval graphs

It is known from [7] that STREE on chordal graphs is NP-complete. The class of interval graphs is a popular
subclass of chordal graphs on which STREE is open. In this paper, we present a polynomial-time algorithm
for STREE in interval graphs using STREE in convex bipartite graphs as a black box. In particular, we
invoke STREE in convex bipartite graphs with R = Y algorithm to solve STREE in interval graphs. It is
important to highlight that the interval representation used in Section ?? for R = Y is on the integer line.
A graph G is an interval graph if there exists a 1-1 correspondence between its vertices and a set of intervals
on the real line such that two vertices are adjacent if and only if the corresponding intervals have a nonempty
intersection [18]. For an interval graph G with V (G) = {v1, v2, . . . , vn} and E(G) = {e1, . . . , em}, we associate
an interval Ii for each vi ∈ V (G). In this paper, we consider interval graphs such that in the underlying
interval representation I, for each interval Ii, its left endpoint li and right endpoint ri are integers. Note that
such an interval representation always exists for any interval graph.
Given an interval graph G with the interval representation I, our reduction algorithm constructs the
corresponding convex bipartite graphG∗(X∗, Y ∗) as follows: V (G∗) = V1∪V2, V1 = {yi | Ii is an interval in I},
V2 = {xi | li for some Ii} ∪ {xj | rj for some Ij}. In G∗, there is a vertex yi for each interval Ii and there is
a x vertex corresponding to li and there is a x vertex corresponding to ri. E(G∗) = {{yi, xj} | yi ∈ V1, xj ∈
V2, xj is in the interval Ii}. That is, yi is adjacent to all x vertices that lie in the interval corresponding to yi.
Let X∗ = V2 and Y ∗ = V1. Clearly, G∗ is a convex bipartite graph with convexity on X∗. To solve STREE in
interval graphs for the instance (G,R), we solve STREE in convex bipartite graphs for the corresponding
instance (G∗, R∗). In particular, we map (G,R = {z1, . . . , zk}) to (G∗, R∗ = {y1, . . . , yk}) such that yi ∈ Y ∗.
Clearly, R∗ ⊆ Y ∗. Using the dynamic programming presented in Section 3.4, we solve (G∗, R∗), and let S∗ be
the solution to G∗. Let S = {vi | yi ∈ S∗ ∩ Y ∗, vi ∈ V (G)}. We now claim that S is a Steiner set in G for R.
Suppose not, then there exist vi, vj ∈ R such that there is no path between vi and vj in the graph induced on
R ∪ S. This implies that there is no path between yi and yj in the graph induced on R∗ ∪ S∗, contradicting
the fact that S∗ is a Steiner set. Thus S is a Steiner set in G. Further, S is a minimum Steiner set in G.

6 Another Application: Domination in convex bipartite graphs

It is known from [8] that the minimum domination set problem in convex bipartite graphs is polynomial-time
solvable. In this section, we propose an approach which uses STREE in convex bipartite graphs as a black box,
and this approach is different from the one reported in [8]. Further, we obtain a solution to the domination in
convex bipartite graphs in O(nm) time. Our reduction algorithm takes an instance of domination problem in
convex bipartite graphs and maps to the corresponding instance of STREE in convex bipartite graphs. For
G(X,Y ) of domination problem, we invoke (i) STREE on G with R = X, and (ii) STREE on G with R = Y .
Let D1 and D2 be the minimum set of Steiner vertices output by the algorithm when invoked on (G,R = X),
and (G,R = Y ), respectively.

Theorem 10. D = D1 ∪D2 is a minimum dominating set.

Proof. Suppose that D is not a minimum dominating set, then there exists a minimum dominating set D′

such that |D′| < |D|. This implies that |D′ ∩ Y | < |D1| or |D′ ∩X| < |D2|. Further, D′ ∩ Y is a Steiner set
for the case R = X and D′ ∩X is a Steiner set for the case R = Y . It contradicts the fact that D1 and D2

are minimum Steiner sets. Therefore, D is a minimum dominating set.

Remark: It is shown in [19] that the dominating set problem on comb-convex bipartite graphs is NP-complete.
Since comb-convex bipartite graphs are precisely 1-star caterpillar convex bipartite graphs, the dominating
set problem on 1-star caterpillar convex bipartite graphs is NP-complete. Thus we obtain a dichotomy for the
domination in k-star caterpillar convex bipartite graphs similar to STREE.
It is important to highlight that Domination on chordal bipartite graphs is NP-complete [1]. A micro-level
analysis of the reduction instances shows that the instances are a variant of 3-star caterpillar convex bipartite
graph: exactly one of the 3-stars is such that one branch is P1 (path of length one) and the other two branches
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are P2 (path of length two). In this paper, we strengthen the result of [1] and show that on 1-star caterpillar
convex graphs, the Domination is NP-complete.

Conclusions and Directions for Further Research: In this paper, we present an interesting dichotomy:
we show that STREE on 0-star caterpillar convex bipartite graphs (convex bipartite graphs) are polynomial-
time solvable, whereas STREE on 1-star caterpillar convex bipartite graphs is NP-complete. Further we show
that STREE in interval graphs and Domination in convex bipartite graphs are polynomial-time solvable by
using the STREE algorithm for convex bipartite graphs. Our greedy strategies and dynamic programming
based solution exploits the structure of convex bipartite graphs which can be used in the study of other
combinatorial problems such as Steiner path, variants of dominating set, variants of Hamiltonicity. Also, P vs
NPC boundary investigation for other combinatorial problems in generalization of convex bipartite graphs
would be an interesting direction to explore with.

References
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