
Algorithms for Maximum Internal Spanning Tree Problem for
Some Graph Classes *

Gopika Sharma †1, Arti Pandey‡1, and Michael C. Wigal §2

1Department of Mathematics, Indian Institute of Technology Ropar, Punjab, India.
2School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA.

Abstract

For a given graph G, a maximum internal spanning tree of G is a spanning tree of G with maxi-
mum number of internal vertices. The MAXIMUM INTERNAL SPANNING TREE (MIST) problem is
to find a maximum internal spanning tree of the given graph. The MIST problem is a generalization
of the Hamiltonian path problem. Since the Hamiltonian path problem is NP-hard, even for bipartite
and chordal graphs, two important subclasses of graphs, the MIST problem also remains NP-hard
for these graph classes. In this paper, we propose linear-time algorithms to compute a maximum
internal spanning tree of cographs, block graphs, cactus graphs, chain graphs and bipartite permu-
tation graphs. The optimal path cover problem, which asks to find a path cover of the given graph
with maximum number of edges, is also a well studied problem. In this paper, we also study the
relationship between the number of internal vertices in maximum internal spanning tree and number
of edges in optimal path cover for the special graph classes mentioned above.

1 Introduction

The Maximum Internal Spanning Tree (MIST) problem is a degree based spanning tree optimization
problem, in which we ask to find a spanning tree of a given graph such that the number of vertices of
degree at least two is maximized. The MIST problem is motivated by telecommunication network design
[22]. We also believe that MIST problem has its own theoretical importance as it is a generalization of the
Hamiltonian path problem, a known NP-complete problem [5]. The Hamiltonian path problem remains
NP-complete for chordal graphs and chordal bipartite graphs [10, 18]. Hence, we also do not expect
polynomial time algorithms for the MIST problem in chordal graphs and chordal bipartite graphs.

The dual problem to MIST, the MINIMUM LEAVES SPANNING TREE (MLST) problem asks to
find a spanning tree with minimum number of leaves for a given graph. The MLST problem cannot
be approximated within any constant factor unless P=NP [17]. Unlike MLST, several constant factor
approximation algorithms have been proposed for the MIST problem in literature. In 2003, Prieto et al.
[20] gave a 2-approximation algorithm for the MIST problem whose running time was later improved by
Salamon et al. in 2008 [23]. Salamon also gave approximation algorithms for claw-free and cubic graphs

*The third author is supported by an NSF Graduate Research Fellowship under Grant No. DGE-1650044.
†2017maz0007@iitrpr.ac.in
‡arti@iitrpr.ac.in
§wigal@gatech.edu

1

ar
X

iv
:2

11
2.

02
24

8v
2

 [
cs

.D
S]

 2
3

D
ec

 2
02

1

with approximation factors 3
2 and 6

5 respectively [23]. In 2009, Salamon [21] gave a 7
4 -approximation

algorithm for graphs with no pendant vertices and later, in 2015, Knauer et al. [9] showed that a simplified
and faster version of Salamon’s algorithm yields a 5

3 -approximation algorithm even on general graphs.
In 2014, Li et al. proposed a 3

2 -approximation algorithm using a different approach for general undirected
graphs and improved this ratio to 4

3 for graphs without leaves [14]. Li et al. gave a 3
2 -approximation

algorithm for general graphs using depth-5 local search [13]. In 2018, Chen et al. presented a 17
13 -

approximation algorithm which is the best approximation factor till now [2]. Several FPT-algorithms
have also been designed for the MIST problem where the considered parameter is the solution size
[20, 13, 3, 4, 1, 12].

For finding efficient algorithms for the MIST problem, it is often useful to reduce the MIST problem
to the path cover problem. A path cover P of a graph is a spanning subgraph such that every component
of P is a path. A path cover with maximum number of edges is called an optimal path cover of G. If P ∗

denotes an optimal path cover of a graph, then number of edges in P ∗ is denoted by |E(P ∗)|. In 2018,
Li et al. proposed a polynomial time algorithm for the MIST problem in interval graphs [15]. They also
proved that number of internal vertices in any MIST of any graph G is at most |E(P ∗)| − 1, where P ∗

is an optimal path cover of G. We will observe that number of internal vertices in any MIST of a chain
graph is either |E(P ∗)| − 1 or |E(P ∗)| − 2 and is |E(P ∗)| − 1 for cographs. For bipartite permutation,
block and cactus graphs, we prove that there is no constant k such that |E(P ∗)| − k is the lower bound
on the number of internal vertices in any MIST of such graphs. We also propose linear-time algorithms
for the MIST problem in bipartite permutation graphs, block graphs, cactus graphs and cographs. A
hierarchy relationship between these classes of graphs is shown in Fig. 1.

The structure of the paper is as follows. In Section 2, we give some basic definitions and notations
used in the paper. In Section 3, we discuss MIST problem for block graphs and cactus graphs and provide
linear-time algorithms for both these graph classes. In Section 4, we prove that MIST of cographs can be
computed in linear-time by providing an algorithm. In Section 5, we present a linear-time algorithm to
find a MIST of an arbitrary bipartite permutation graph. In Section 6, we prove a bound for chain graphs
regarding number of internal vertices in its MIST. Finally, Section 7 concludes the paper.

Convex Bipartite (?)

Bipartite Permutation (P)

Bipartite (NPC)
Chordal (NPC)

Chordal Bipartite (NPC)

Chain (P)

Cograph (P) Block (P)

Cactus (P)

Proper Interval (P)

General Graphs (NPC)

Figure 1: Hierarchy relationship between some classes of graphs

2 Preliminaries

LetG = (V,E) be a graph. In this paper, we only consider simple, undirected and connected graphs.
For a vertex u ∈ G, dG(u) denotes the degree of u in G and NG(u) denotes the neighborhood of u in
G. When there is no ambiguity regarding the graph G, we simply use d(u) and N(u), to represent the
degree of u and neighborhood of u, respectively. A vertex u in V is called pendant if d(u) = 1. The
set of pendant vertices in G is denoted by p(G). The vertex adjacent to a pendant vertex u is called the

2

support vertex of u, and is denoted by S(u). A vertex u ∈ V (G) is called internal, if u is not pendant,
that is, d(u) ≥ 2. Let I(G) denotes the set of internal vertices in G, and i(G) = |I(G)|. For a setA ⊆ V
and a spanning tree T of G, we define iT (A) = |I(T) ∩A|.

For vertices x and y, we denote an edge between x and y by xy. For a subset S of V (G), G − S
denotes the subgraph of G obtained after removing vertices of S and edges incident on these vertices
from G. If S = {v}, then we simply write G − v for G − S. A vertex v of a graph G is called a cut
vertex if G− v is disconnected.

Throughout this paper, n denotes the number of vertices and m denotes the number of edges in G.
A graph G is said to be bipartite if V can be partitioned into two disjoint sets X and Y such that every
edge of G joins a vertex in X to a vertex in Y . Such a partition (X,Y) of V is called a bipartition. A
bipartite graph with bipartition (X,Y) of V is denoted by G = (X,Y,E). For a set S ⊆ V , an induced
subgraph is the graph whose vertex set is S and edge set consists of all the edges in E that have both the
endpoints in S, and is denoted by G[S]. If G[C], C ⊆ V , is a complete subgraph of G, then C is called
a clique of G.

A subgraph of G is called a spanning subgraph if it contains all the vertices of G. A path cover P of
a graph is a spanning subgraph such that every component of P is a path. A path cover is an optimal path
cover if it has the maximum number of edges. A spanning subgraph of G which is also a tree is called a
spanning tree of G. A spanning tree is called a maximum internal spanning tree(MIST) if it contains the
maximum number of internal vertices among all the spanning trees of G. For a graph G, the number of
internal vertices in any MIST of G is denoted by Opt(G).

Now we state a useful theorem which gives an upper bound on the number of internal vertices in a
MIST with respect to the graph’s optimal path cover.

Theorem 2.1. [15] For a graph G, the number of internal vertices in a maximum internal spanning tree
of G is less than the number of edges in an optimal path cover of G, that is, Opt(G) ≤ |E(P ∗)| − 1,
where P ∗ denotes an optimal path cover of G. Moreover, this bound is tight.

Note that the vertices which are pendant in G itself, will be pendant in any MIST of G. Hence, we
have the following observation.

Observation 2.1. For a graph G, if v is a pendant vertex and u is the support vertex of v in G, then v
remains a pendant vertex and u remains adjacent support vertex of v in any MIST of G.

Suppose G is not a tree and u ∈ V (G) is adjacent to k pendant vertices, say a1, . . . , ak. Let G′ =
G−{a2, . . . , ak}. Then based on above observation, the number of internal vertices in a MIST ofG will
be same as the number of internal vertices in any MIST of G′. It is also easy to obtain a MIST of G from
any MIST of G′. Hence, throughout this work, we assume that every vertex has at most one pendant
vertex adjacent with it.

Below, we give another result regarding the number of pendant vertices in a spanning tree of a
bipartite graph. Note that, if we have α number of internal vertices in a spanning tree of G from one
partite set, then at least α+1 vertices must be present in the neighborhood of these α vertices, which lie
in the other partite set of the bipartite graph G.

Observation 2.2. Let G = (X,Y,E) be a bipartite graph with A ⊆ X and B ⊆ Y . If N(A) = B, then
there are at least max{0, |A| − |B|+ 1} pendant vertices from A in any spanning tree of G. Similarly,
if N(B) = A, then there are at least max{0, |B| − |A| + 1} pendant vertices from B in any spanning
tree of G.

3

3 Block and Cactus Graphs

In this section, we discuss the MIST problem for block graphs and cactus graphs. We will show
that the MIST problem can be solved in linear-time for both classes of graphs. Block and cactus graphs
will also provide our first family of examples in which Opt(G) cannot be lower bounded in terms of
|E(P ∗)| − k where P ∗ is an optimal path cover of G and k is some constant.

A block of a graphG is a maximal connected subgraph with no cut vertices. Note that a block ofG is
either an edge or a 2-connected subgraph. The set of blocks of a graph is called the block decomposition
of G and is denoted by B(G). Let B0 ∈ B(G) and u, v be two vertices belonging to B0, then a path
between u and v, which contains all the vertices of the block B0, is called a spanning path between u
and v in B0. We say a block B is good if there exists distinct u, v ∈ V (B) such that both u and v are
cut vertices of G and B has a spanning path between u and v. A block is said to be bad otherwise. Let
Bad(G) denote the set of bad blocks of G.

A block graph is a graph in which every block is a clique. If a block graph G contains only one
block then G is a complete graph. A block graph is said to be nontrivial if it contains at least two blocks.
Note that a trivial block has a Hamiltonian path. Thus for the remainder of the section we only consider
nontrivial block graphs.

Let G be a nontrivial block graph. Bad blocks of G have another characterization which we state as
the Observation 3.1.

Observation 3.1. A block B of a block graph G is bad if and only if it contains exactly one cut vertex of
G.

A graph G is a cactus graph if every block of G is either a cycle or an edge. If a cactus graph G
contains only one block thenG is either a cycle or an edge and in that case finding a MIST ofG is trivial.
Again, a cactus graph is said to be nontrivial if it contains at least two blocks and now we only consider
nontrivial cactus graphs.

Let G be a nontrivial cactus graph. A block of G is called an end block of G if it contains exactly
one cut vertex of G. Note that an end block of a cactus graph G is also a bad block of G. Bad blocks of
a cactus graph G have another characterization which we state in the following observation.

Observation 3.2. A block B of a cactus graph G is bad if and only if B does not contain two adjacent
cut vertices of G.

If Bi and Bj are two blocks of a block/cactus graph G and V (Bi) ∩ V (Bj) 6= ∅, then V (Bi) ∩
V (Bj) = 1 and the vertex x ∈ V (Bi) ∩ V (Bj) is a cut vertex of G. Let T be a MIST of a nontrivial
block/cactus graph G. Below, we state two observations which hold true for both block and cactus
graphs.

Observation 3.3. T must have at least one leaf in every bad block of G.

Observation 3.4. Opt(G) ≤ n − |Bad(G)|, where Opt(G) denotes the number of internal vertices in
T .

Recall that block decomposition of a graph G is the set of blocks of G. It can be computed in O(n)
time using the following approach. Let b be a cut vertex of a block/cactus graph G and G1, G2, . . . , Gt

be the connected components of the graph G− b. Let Hi denotes the subgraph G[V (Gi)∪{b}], for each
1 ≤ i ≤ t. We call H1, H2, . . . ,Ht the b-components of G. The block decomposition of a block/cactus
graph can be found by recursively choosing a cut vertex b and computing the b-components.

4

3.1 Algorithm for Block and Cactus Graphs

In this subsection, we first prove a theorem which relates the number of internal vertices in a MIST of
a block/cactus graph G to the number of bad components of G. Then, we outline a linear-time algorithm
to compute a MIST of G.

Theorem 3.1. Let G be a graph with a nontrivial block decomposition such that each block has a
spanning path with a cut vertex as an endpoint. Then G has a spanning tree T in which number of
internal vertices is n− |Bad(G)|.

Proof. Let l be the number of blocks in G andBi ∈ B(G) be an arbitrary block of G. IfBi is good, then
let Pi be a spanning path between two cut vertices of Bi. If Bi is bad, we let Pi be a spanning path with
a single cut vertex as an endpoint. Let T =

⋃l
i=1 Pi. Note that T is a spanning tree of G. Furthermore,

as any cut vertex of G cannot be a leaf of T , we have i(T) = n− |Bad(G)|.

The proof of Theorem 3.1 gives a simple algorithm for a block or cactus graph. First find a block
decomposition, this takes O(n) time. Then for each block B, determine if B is bad or not and find the
corresponding path. This takes O(|B|) time. In total we have a linear-time algorithm. As both block
and cactus graphs satisfy the hypothesis of Theorem 3.1, combining with Obervation 3.4 we have the
following,

Corollary 3.1. If G is a block or cactus graph, then Opt(G) = n− |Bad(G)|.

3.2 Relationship between Opt(G) and |E(P ∗)|
We now show for a block or cactus graph G there does not exist a constant k such that Opt(G) ≥

|E(P ∗)| − k where P ∗ is an optimal path cover of G. Recall Corollary 3.1 states that Opt(G) =
n − |Bad(G)| and Theorem 2.1 states Opt(G) ≤ |E(P ∗)| − 1. Note that the number of edges in the
optimal path cover P ∗ and the number of components in P ∗ adds up to n. So, we see that n−|Bad(G)| =
|E(P ∗)|−(|Bad(G)|−|P ∗|). Thus, Opt(G) = |E(P ∗)|−(|Bad(G)|−|P ∗|) for both block and cactus
graphs.

For every integer n = 5k (k ≥ 1), we construct a connected graph Gn with n vertices and
Opt(Gn) = |E(P ∗)|−O(n). The graphGn is both a block graph and a cactus graph as every block ofGn

is either an edge or a clique on three vertices. The vertex set ofGn is V (Gn) = V1∪V2∪ . . .∪Vk, where
Vi = {xi1, xi2, . . . , xi5} for each i ∈ {1, 2, . . . , k}. The edge set is E(Gn) = E1 ∪ E2 ∪ . . . ∪ Ek ∪ E′,
where Ei = {xi1xi2, xi2xi3, xi3xi1, xi3xi4, xi4xi5, xi5xi3} for each i and E′ contains the edges of the form
xi3x

i+1
3 for 1 ≤ i ≤ (k − 1). Note |E(Gn)| = 7k − 1. We obtain an optimal path cover P ∗ for

Gn having 4k edges and k components [19]. The number of bad blocks in Gn is 2k. Using Theo-
rem 3.1, we obtain a MIST T of Gn with n − |Bad(G)| = 5k − 2k = 3k internal vertices. Thus,
Opt(Gn) = 3k = 4k − k = 4k − n

5 = |E(P ∗)| −O(n). Fig. 2 provides an illustration for G20.
Here, we see that |Bad(Gn)| − |P ∗| = 2k− k = k which implies that for arbitrary n = 5k, we have

Opt(Gn) = |E(P ∗)| − k. So, block and cactus graphs do not have lower bound for Opt(G) of the form
|E(P ∗)| − c for some fixed natural number c, independent of n.

4 Cographs

In this section, we discuss the MIST problem for cographs. The complement-reducible graphs or
cographs have been discovered independently by several authors since the 1970s [24, 8]. In the literature,

5

b

b

b

b

b

x1
1

x1
2

x1
4

x1
5

x1
3

b

b

b

b

b

x2
1

x2
2

x2
4

x2
5

x2
3

b

b

b

b

b

x3
1

x3
2

x3
4

x3
5

x3
3

b

b

b

b

b

x4
1

x4
2

x4
4

x4
5

x4
3

b

b

b

b

b

x1
1

x1
2

x1
4

x1
5

x1
3

b

b

b

b

b

x2
1

x2
2

x2
4

x2
5

x2
3

b

b

b

b

b

x3
1

x3
2

x3
4

x3
5

x3
3

b

b

b

b

b

x4
1

x4
2

x4
4

x4
5

x4
3

b

b

b

b

b

x1
1

x1
2

x1
4

x1
5

x1
3

b

b

b

b

b

x2
1

x2
2

x2
4

x2
5

x2
3

b

b

b

b

b

x3
1

x3
2

x3
4

x3
5

x3
3

b

b

b

b

b

x4
1

x4
2

x4
4

x4
5

x4
3

G20 P ∗ T

Figure 2: Graph G20, its optimal path cover P ∗ and its MIST T

the cographs are also known as P4-free graphs,D∗-graphs, Hereditary Dacey graphs and 2-parity graphs.
The class of cographs is defined recursively as follows:

• A single-vertex graph is a cograph;

• If G is a cograph, then its complement G is also a cograph;

• If G and H are cographs, then their disjoint union is also a cograph.

Cographs admit a rooted tree representation. This tree is called cotree of a cograph G, denoted T (G).
The cotree of a cograph rooted at a node r possesses the following properties.

1. Every internal vertex except r has at least two children. Furthermore, r has exactly one child if
and only if the underlying cograph G is disconnected.

2. The internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes) in such a way that the root is
always a 1-node, and 1-nodes and 0-nodes alternate along every path in T (G) starting at the root.

3. The leaves of T (G) are precisely the vertices of G, such that vertices x and y are adjacent in G if,
and only if, the lowest common ancestor of x and y in T (G) is a 1-node.

Fig. 3 illustrates a cograph G along with its cotree T (G).
According to [16], the cotree of any cograph G can be preprocessed such that it is a binary tree. So,

we may assume that T (G) is a binary tree rooted at a vertex r. The set of leaves of the left subtree of
T (G) is denoted by L(rleft) and the set of leaves of the right subtree of T (G) is denoted by L(rright).

Note that every leaf of T (G) represents a vertex of the graph G. If we consider one vertex from
L(rleft) and one vertex from L(rright) then their least common ancestor is the root node. As the root
node is always a 1-node, we have the following observation.

Observation 4.1. For any x ∈ L(rleft), y ∈ L(rright), we have xy ∈ E(G).

Recall that a path cover P of a graph G is a spanning subgraph such that every component of P is a
path. A path cover is an optimal path cover if it has the maximum number of edges. [16] gave a linear-
time algorithm to compute an optimal path cover of a cographG. The optimal path cover P ∗ constructed
in [16] is one of the following type:

6

b

b

b

b

b
b

b b

b

bb

b

ba

c

b

d

e

f

g

a

c

b

d

e

f g

1

11

00

r

G T (G)

b

0

Figure 3: Illustrating a cograph and its cotree

• The path cover P ∗ contains a single path component which is a Hamiltonian path of G.

• The path cover P ∗ contains at least two path components. In this case, there exists exactly one
path p in P ∗ which contains vertices from both the sets L(rleft) and L(rright) and all other paths
in P ∗ contain vertices from L(rright) only. Fig. 4 illustrates this case.

b b b b b b bb

b bb

bbb b bb

L(rleft)

L(rright)
p1 p2 p3 pk

Figure 4: Optimal path cover of G contains more than 1 path components

Algorithm 1 uses the optimal path cover constructed from [16] to compute a MIST of a cograph G.

Algorithm 1 Algorithm for finding a MIST of a cograph G
Input: A cograph G and a cotree T (G) of G Output: A Maximum Internal Spanning Tree T of G1 Let
P ∗ = {P1, P2, . . . , Pk} be the optimal path cover of G computed by the algorithm in [16];

2 V (T) = V (G) and E(T) = E(P ∗);
3 if k = 1 then
4 return T ;

5 else
/* P1 is the path which contains vertices from both the sets L(rleft) and L(rright) and all other paths
in P ∗ contain vertices from L(rright) only */

6 Let u ∈ (V (P1) ∩ L(rleft));
7 Let vi be an end vertex of the path Pi, for 2 ≤ i ≤ k;
8 E(T) = E(T) ∪ {uv2, uv3, . . . , uvk};
9 return T .

Note that by Theorem 2.1 we have Opt(G) ≤ |E(P ∗)| − 1 for an optimal path cover P ∗. Below,
we give a theorem which implies that Algorithm 1 also outputs a spanning tree which attains this upper
bound.

7

Theorem 4.1. Algorithm 1 outputs a spanning tree T of a cograph G such that, i(T) = |E(P ∗)| − 1,
where P ∗ is an optimal path cover of G. Hence, Opt(G) = |E(P ∗)| − 1.

Proof. Let P ∗ = {P1, P2, . . . , Pk} be the optimal path cover computed in step 1 of Algorithm 1. If
|P ∗| = 1, then G has a Hamiltonian path and Algorithm 1 returns a Hamiltonian path. Now, suppose
|P ∗| > 1, then the path P1 contains vertices from both sets L(rleft) and L(rright) and Pi ∩L(rleft) = ∅
for all i ≥ 2. Now, let u ∈ V (P1) ∩ L(rleft) such that u is not an end vertex of P1.

For each path in Pi ∈ P ∗ \ {P1}, consider a pendent vertex vi of the path. By Observation 4.1, vi
and u are adjacent. Let T =

⋃k
i=1 Pi ∪ {viu : 2 ≤ i ≤ k}. These new edges connect one internal vertex

with a pendant vertex of path of P ∗. This is illustrated by the dash edges in Fig. 4. Note then the number
of internal vertices of T is |E(P ∗)| − 1, hence i(T) = Opt(G) = |E(P ∗)| − 1 by Theorem 2.1.

Note that step 1 of Algorithm 1 can be performed in linear-time [16]. Furthermore, note that the
construction of T in Theorem 4.1 is also linear-time. Therefore Algorithm 1 outputs a MIST of G in
linear-time.

5 Bipartite Permutation Graphs

In this section, we discuss the MIST problem for bipartite permutation graphs. A graph G = (V,E)
with V = {v1, v2, . . . , vn} is said to be a permutation graph if there is a permutation σ over {1, 2, . . . , n}
such that vivj ∈ E if and only if (i − j)(σ(i) − σ(j)) < 0. Intuitively, each vertex v in a permutation
graph corresponds to a line segment lv joining two points on two parallel lines L1 and L2, which is
called a line representation. Then, two vertices v and u are adjacent if and only if the corresponding line
segments lv and lu are crossing. Vertex indices give the ordering of the points on L1, and the permutation
of the indices gives the ordering of the points on L2. When a permutation graph is bipartite, it is said to
be a bipartite permutation graph.

A strong ordering (<X , <Y) of a bipartite graph G = (X,Y,E) consists of an ordering <X of X
and an ordering <Y of Y , such that for all edges ab, a′b′ with a, a′ ∈ X and b, b′ ∈ Y : if a <X a′

and b′ <Y b, then ab′ and a′b are edges in G. An ordering <X of X has the adjacency property if,
for every vertex in Y , its neighbors in X are consecutive in <X . The ordering <X has the enclosure
property if, for every pair of vertices y, y′ of Y with N(y) ⊆ N(y′), the vertices of N(y′) \N(y) appear
consecutively in <X . These properties are useful for characterizing bipartite permutation graphs.

[7] proved that a bipartite graph is a bipartite permutation graph if and only if it admits a strong
ordering. Furthermore if we assume that the graph is connected, then we can say more.

Lemma 5.1. [7] Let (<X , <Y) be a strong ordering of a connected bipartite permutation graph G =
(X,Y,E). Then both <X and <Y have the adjacency property and the enclosure property.

Throughout this section, G = (X,Y,E) denotes a connected bipartite permutation graph. A strong
ordering of a bipartite permutation graph can be computed in linear-time [25]. Let (<X , <Y) be a strong
ordering of G, where <X= (x1, x2, . . . , xn1) and <Y = (y1, y2, . . . , yn2). We write strong ordering of
vertices of G as (<X , <Y) = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2). For u, v ∈ V (G), we write u <X v if
u, v ∈ X and u appears before v in the strong ordering; we define u <Y v in a similar manner. We write
xi < xj (or, yi < yj) when i < j. For vertices u, v of G, u ≤ v denotes either u <X v, u <Y v, or
u = v holds.

Since each vertex of G satisfies the adjacency property, the neighborhood of any vertex consists of
consecutive vertices in the strong ordering. We define the first neighbor of a vertex as the vertex with

8

minimum index in its neighborhood and the last neighbor of a vertex as the vertex with maximum index
in its neighborhood. We notate the first and last neighbors of a vertex u as f(u) and l(u) respectively.
Combining the above statements for a bipartite permutation graph G with its strong ordering (<X , <Y),
G has the following properties [11]:

1. For any vertex of G, its neighborhood consists of consecutive vertices in <X or <Y .

2. For any pair of vertices u, v from X or Y , if u < v then f(u) ≤ f(v) and l(u) ≤ l(v).

Now, we define some terminology which we require for the remainder of this section. A vertex
xi ∈ X, (1 ≤ i ≤ n1) with l(xi) = yj is of type 1 if j ≥ i. A vertex yi ∈ Y, (1 ≤ i ≤ n2) with
l(yi) = xj is of type 1 if j ≥ i + 1. Similarly, a vertex xi ∈ X, (1 ≤ i ≤ n1) with l(xi) = yj is of
type 2 if j ≥ i + 1 and a vertex yi ∈ Y, (1 ≤ i ≤ n2) with l(yi) = xj is of type 2 if j ≥ i. Note that
a type 2 vertex x ∈ X is also a type 1 vertex but the converse may not be true. Furthermore, a type 1
vertex y ∈ Y is also a type 2 vertex. Characterizing the vertices in this way is an important distinction
for our algorithm. We now prove two important lemmas which will be used to prove the correctness of
Algorithm 2.

Lemma 5.2. Let X ′ = {x1, x2, . . . , xk, xk+1} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore,
suppose each vertex of X ′ and Y ′ is of type 1 except xk+1, l(xk+1) = yk and N(X ′) = Y ′. Then there
exists a MIST T of G, in which x1 are xk+1 are pendant. Moreover; if X \ X ′ 6= ∅, then the support
vertex of xk+1 is of degree at least 3 in T .

Proof. We first show xiyi, yixi+1 ∈ E(G) for all 1 ≤ i ≤ k. Suppose there exists 1 ≤ i ≤ k such
that xiyi 6∈ E(G). Let l(xi) = yj and l(yi) = xl. As both xi and yi are type 1, we have yj ≥ yi and
xl > xi. As (<X , <Y) is a strong ordering, we have xiyi ∈ E(G), a contradiction. Thus we may assume
xiyi ∈ E(G). Furthermore as yi is type 1, we have xiyi, yixi+1 ∈ E(G) for all 1 ≤ i ≤ k.

Suppose X = X ′. Note that as (<X , <Y) is a strong ordering of G, we have for all x ∈ X ,
l(x) ≤ l(xk+1) = yk. As we assumed G is connected, we have that Y = Y ′ as well. Note that this
implies that G has the Hamiltonian path x1y1x2 . . . xkykxk+1 which is a MIST. So, we may assume that
X \X ′ 6= ∅.

Now, let T ∗ be a MIST of G. If x1 and xk+1 are pendant in T ∗ and degree of S(xk+1) is at least 3 in
T ∗, then we are done. Suppose otherwise, and we modify T ∗ in the following way. We first remove all
edges of T ∗ incident with the vertices of X ′ and then add edges x1y1, y1x2, x2y2, . . . , xkyk and ykxk+1

to obtain a new graph T . Note that as N(X ′) = Y ′, T is connected.
First suppose T contains no cycle. Note that T is a spanning tree of G. If dT (yk) = 2, then as

N(X ′) = Y ′ we can choose an edge vyi(i < k) in T such that v ∈ X \X ′. Since the strong ordering
(<X , <Y) of the vertices of G satisfies property 2, we have vyk ∈ E(G). So we can further modify T
by removing the edge vyi and replacing with the edge vyk. We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \X ′) + k + iT ∗(Y \ Y ′) = i(T).

So, we have i(T ∗) ≤ i(T). Since T is a spanning tree and T ∗ is a MIST of G, we have that T is also
a MIST. Thus, we obtain our desired MIST in which x1 are xk+1 are pendant and the support vertex of
xk+1 is of degree at least 3.

Now, suppose T contains a cycle C. This implies that there exists v ∈ X \X ′ such that vyi, vyj ∈
E(C) with i < j ≤ k. Now, we modify T by removing the edge vyi. This step reduces degree of v by

9

1 while leaving the graph T connected. We repeat this modification until T has no more cycles, thus T
will be a spanning tree of G. Let us assume that there are α such vertices which became pendant in this
process of updating T . LetA ⊆ X\X ′ be the set of α vertices. Note these α vertices were internal in T ∗.
Suppose iT ∗(X ′) > k−(α+1). AsN(X ′) = Y ′, then the subforest of T ∗ induced by the setX ′∪Y ′∪A
would have at least 2(k−α) + (1+α) + 2α = 2k+1+α edges. As 2k+1+α > |X ′ ∪ Y ′ ∪A| − 1,
this contradicts the fact that T ∗ was a tree. Thus we have iT ∗(X ′) ≤ k − (α+ 1). It follows,

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − (α+ 1)) + iT ∗(X \X ′) + k + iT ∗(Y \ Y ′)
= (k − 1) + (iT ∗(X \X ′)− α) + k + iT ∗(Y \ Y ′) = i(T).

Again, we have i(T ∗) ≤ i(T) which implies that T is also a MIST. If dT (yk) = 2, then we can
choose an edge vyi(i < k) in T , such that v ∈ X \ X ′. Since the strong ordering (<X , <Y) satisfies
property 2, we have vyk ∈ E(G). So we update the tree T by removing the edge vyi and adding the
edge vyk. Thus, we obtain a MIST T in which x1 are xk+1 are pendant and support vertex of xk+1 is of
degree at least 3.

Lemma 5.3. Let X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore, suppose
each vertex of X ′ and Y ′ is of type 1 except yk, l(yk) = xk and N(Y ′) = X ′.

(a) If xiyi+1 ∈ E(G) for all 1 ≤ i ≤ (k−1), then there exists a MIST T of G, in which y1 is pendant.

(b) If there exists 1 ≤ t ≤ (k−1) such that xtyt+1 /∈ E(G), then there exists a MIST T ofG, in which
x1 and yk are pendant. Moreover; if Y \ Y ′ 6= ∅, then support vertex of yk is of degree at least 3
in T .

Proof. We first argue that xiyi, yixi+1 ∈ E(G) for 1 ≤ i ≤ k−1. First assume for some i, xiyi 6∈ E(G).
As both xi and yi are type 1, we have xi < l(yi) and yi < l(xi). As (<X , <Y) is a strong ordering,
we have xiyi ∈ E(G), a contradiction. Furthermore, as yi is type 1, we have yixi+1 ∈ E(G) for all
1 ≤ i ≤ k − 1.

Suppose Y ′ = Y . As N(Y ′) = X ′, and G is connected we have that X = X ′ as well. Note then
if xiyi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1), then y1x1 . . . xk−1ykxk is a Hamiltonian path. Otherwise, if
there exists 1 ≤ t ≤ (k − 1) such that xtyt+1 /∈ E(G), then the path x1y1, y1x2, x2y3, . . . , yk−1xk and
xkyk gives the desired Hamiltonian path.

So, we may assume that Y \ Y ′ 6= ∅ and we will first prove part (a). Let T ∗ be a MIST of G and
suppose y1 is not pendant in T ∗. Let T be the graph obtained from T ∗ where we remove all edges incident
to the vertices of Y ′ and add edges y1x1, x1y2, y2x2, . . . , xk−1yk and ykxk. Note as N(Y ′) = X ′, y1 is
pendant in T .

First, suppose T contains no cycles. Note then that T is a spanning tree of G. We argue that we may
assume dT (xk) ≥ 2. Suppose otherwise, that is, dT (xk) = 1. Let v ∈ Y \ Y ′ such that vxi(i < k). As
the strong ordering of the vertices of G satisfies property 2, we have vxk ∈ E(G) as well. So we further
modify T by removing the edge vxi and adding the edge vxk. We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ k + iT ∗(X \X ′) + (k − 1) + iT ∗(Y \ Y ′) = i(T).

So, we have that i(T ∗) ≤ i(T). Since T is a spanning tree and T ∗ is a MIST of G, T is also a MIST
of G.

10

Next, suppose T is not a tree. We now modify T to remove the cycles. Let C be a cycle of T . Note
then there is a vertex v ∈ Y \ Y ′ such that vxi, vxj ∈ E(C) with i < j ≤ k. We then modify T by
removing the edge vxi. Note that the degree of v decreases by 1. We repeat this process until no cycles
remain in T . Assume that α cycles were removed during this process and thus at most α pendant vertices
were created in this process. As N(Y ′) = X ′ and T ∗ is a tree, we have iT ∗(Y ′) ≤ k − α − 1. We see
that,

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ k + iT ∗(X \X ′) + (k − α− 1) + iT ∗(Y \ Y ′)
≤ k + iT ∗(X \X ′) + (k − 1) + (iT ∗(Y \ Y ′)− α) = i(T)

Again, we have that i(T ∗) ≤ i(T) which implies that T is also a MIST. Hence, part (a) holds.
Next, we prove part (b). Let T ∗ be a MIST of G. If x1 and yk are pendant in T ∗ and degree of S(yk)

is at least 3 in T ∗, then we are done, so assume otherwise. Let T be the graph obtained from modifying
T ∗ where we remove all edges incident on the vertices of Y ′ and add edges x1y1, y1x2, x2y2, . . . , yk−1xk
and xkyk.

First suppose T contains no cycle, then T is a spanning tree of G. If dT (xk) ≥ 3, then we are
done modifying, so suppose dT (xk) = 2. As Y \ Y ′ 6= ∅ and N(Y ′) = X ′, there exists an edge
vxi(i < k) in T . Since the strong ordering of the vertices ofG satisfies property 2, we have vxk ∈ E(G).
Thus we further modify T where we remove vxi and add the edge vxk. As we assumed there exists a
1 ≤ t ≤ (k − 1) such that xtyt+1 6∈ E(G), we have N({x1, x2, ..., xt}) = {y1, y2, ..., yt}. Let
X ′′ = {x1, x2, . . . , xt} and note N(X ′′) = Y ′′ = {y1, y2, ..., yt}. By Observation 2.2, we see that for
any spanning tree of G, X ′′ contains at least one pendant vertex. So, iT ∗(X ′) ≤ (k − 1).We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \X ′) + (k − 1) + iT ∗(Y \ Y ′) = i(T).

Again, we have i(T ∗) ≤ i(T) which implies that T is a MIST. Thus, we obtained a MIST T in which
x1 and yk are pendant and support vertex of yk is of degree at least 3.

Now, suppose T contains a cycle. We now modify T to be a spanning tree. LetC be a cycle contained
in T . This implies that there is a vertex v ∈ Y \ Y ′ such that vxi, vxj ∈ E(C) with i < j ≤ k. We
remove the edge vxi from T . This decreases the degree of v by 1. We repeat this process until no cycles
remain in T . Let A ⊆ Y \ Y ′ with |A| = α be the set of the vertices made pendant in this process.
Suppose iT ∗(Y ′) ≥ (k − α). As N(Y ′) = X ′, the subgraph of T ∗ induced by X ′ ∪ Y ′ ∪ A has at least
(2k − α) + k + 2α = 2k + α edges. As |X ′ ∪ Y ′ ∪ A| = 2k + α, this contradicts the fact that T ∗ is a
tree. Thus we may assume iT ∗(Y ′) ≤ k − α− 1. As before, we may assume dT (xk) ≥ 3. It follows,

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \X ′) + (k − α− 1) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \X ′) + (k − 1) + (iT ∗(Y \ Y ′)− α) = i(T)

This implies that T is also a MIST. Thus, we obtained a MIST T in which x1 and yk are pendant and
support vertex of yk is of degree at least 3.

We state similar results when the vertices are of type 2. By symmetry, the proofs of Lemmas 5.4 and
5.5 follow from Lemmas 5.2 and 5.3.

11

Lemma 5.4. Let X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk, yk+1} ⊆ Y . Furthermore,
suppose each vertex of X ′ and Y ′ is of type 2 except yk+1, l(yk+1) = xk and N(Y ′) = X ′. Then there
exists a MIST T of G, in which y1 are yk+1 are pendant. Moreover; if Y \ Y ′ 6= ∅, then support vertex
of yk+1 is of degree at least 3 in T .

Lemma 5.5. Let X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore, suppose
each vertex of X ′ and Y ′ is of type 2 except xk, l(xk) = yk and N(X ′) = Y ′.

(a) If yixi+1 ∈ E(G) ∀ 1 ≤ i ≤ (k − 1), then there exists a MIST T of G, in which x1 is pendant.

(b) If ∃ 1 ≤ t ≤ (k − 1) such that ytxt+1 /∈ E(G), then there exists a MIST T of G, in which y1 and
xk are pendant. Moreover; if X \X ′ 6= ∅, then support vertex of xk is of degree at least 3 in T .

Next, we propose an algorithm to find a MIST ofG based on the Lemmas 5.2, 5.3, 5.4 and 5.5. In our
algorithm, we first find a vertex u such that it is a pendant vertex in some MIST T of G and the degree of
support vertex of u in T is at least 3. Now, if we remove u from G and call the remaining graph G′, then
we see that the number of internal vertices in a MIST of G is same as the number of internal vertices in
a MIST of G′. Note that we can easily construct a MIST of G from a MIST of G′ by adding the pendant
vertex u to the corresponding support vertex. So, after finding the vertex u, the problem is reduced to
finding MIST of G \ {u}, say G′. We continue doing the same until no such vertex u exists and then the
resultant graph has a Hamiltonian path.

In our algorithm, we visit the vertices alternatively from the partitions X and Y . We consider two
special orderings (x1, y1, x2, y2, ...) and (y1, x1, y2, x2, ...) of V (G) which we call α and β, respectively.
Below, we describe the method to find a vertex u which is pendant in some MIST T of G and dT (S(u))
is at least 3.

We first visit the vertices of G in the ordering α and search for the first vertex, which is not of type
1. Let u be such a vertex. If u ∈ X or u ∈ Y and the conditions of part (b) of Lemma 5.3 are satisfied,
then there exists a MIST T of G in which u is a pendant vertex and the degree of support vertex of u in
T is at least 3. So, we remove u from G and find a MIST T ′ of G \ {u}. Later, we obtain a MIST of G
by adding u to T ′. But, if u ∈ Y , say u = yk and conditions of part (a) of Lemma 5.3 are satisfied, then
there exists a MIST T of G in which y1 is a pendant vertex. In this case, we start visiting the vertices of
G in the ordering β, starting from y1. At this step, we do not maintain any information from α search.

Now, let u be the first vertex not of type 2 in the ordering β. If u ∈ Y or u ∈ X and the conditions
of part (b) of Lemma 5.5 are satisfied, then there exists a MIST T of G in which u is a pendant vertex
and the degree of support vertex of u in T is at least 3. So, we remove u from G and find a MIST T ′

of G \ {u}. Later, we obtain a MIST of G by adding u to T ′. Here, if u ∈ X and conditions of part
(a) of Lemma 5.5 are satisfied, then there exists a MIST T of G in which x1 is a pendant vertex. But,
we have already explored this possibility while visiting the vertices of G in the ordering α. So, we do
not get such a vertex u. To see this, suppose that we get such a vertex u. Then, u = xt for some t,
where t > k. Now, part (a) of Lemma 5.5 tells that yixi+1 ∈ E(G) for all 1 ≤ i ≤ (t − 1) implying
that ykxk+1 ∈ E(G). But, while visiting the vertices in the ordering α, we got a vertex yk satisfying
l(yk) = xk, so ykxk+1 /∈ E(G), a contradiction.

The detailed procedure for computing a MIST of a bipartite permutation graph is presented in Al-
gorithm 2. Algorithm 2 either finds a vertex which is not of type 1 or a vertex which is not of type 2.
When such a vertex u is found, we call u as an encountered vertex. All the encountered vertices are
found while executing the steps written in lines 4, 11, 17, 22, 31 or 39 of Algorithm 2. We see that the
algorithm returns a spanning tree T of G. Before proving the correctness of the Algorithm 2, we state a
necessary lemma.

12

Algorithm 2 Algorithm for finding a MIST of a bipartite permutation graph G
Input: A bipartite permutation graph G and a strong ordering (<X , <Y) = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of
V (G). Output: A MIST T of G.

1 V (T) = X ∪ Y,E(T) = ∅, t = 0; flag = 1;
2 α = (x1, y1, x2, y2, ...) and β = (y1, x1, y2, x2, ...);
3 Visit the vertices of V (G) in the ordering α;
4 Let u be the first vertex with minimum index in the ordering α which is not of type 1;
5 while flag == 1 do
6 if u ∈ X then
7 Let u = xk+1 for some k;
8 if k + 1 6= n1 then
9 t = t+ 1; rename xk+1 as at; E(T) = E(T) ∪ {ykat};

10 Rename xi as xi−1 for every k + 2 ≤ i ≤ n1; n1 = n1 − 1;
11 Continue looking for a next vertex which is not of type 1 in the ordering α, call it u;

12 else
13 E(T) = E(T) ∪ {x1y1, y1x2, x2y2, . . . , xkyk, ykxk+1}; return T ;

14 else
15 Let u = yk for some k;
16 if xiyi+1 ∈ E(G) ∀ 1 ≤ i ≤ (k − 1) then
17 Find a vertex which is not of type 2 in the ordering β starting from y1, call it u; flag = 2;

18 else
19 if k 6= n2 then
20 t = t+ 1; rename yk as at; E(T) = E(T) ∪ {xkat};
21 Rename yi as yi−1 for every k + 1 ≤ i ≤ n2; n2 = n2 − 1;
22 Continue looking for a next vertex which is not of type 1 in the ordering α, call it u;

23 else
24 E(T) = E(T) ∪ {x1y1, y1x2, x2y2, . . . , yk−1xk, xkyk}; return T ;

25 while flag == 2 do
26 if u ∈ Y then
27 Let u = yk+1 for some k;
28 if k + 1 6= n2 then
29 t = t+ 1; rename yk+1 as at; E(T) = E(T) ∪ {xkat};
30 Rename yi as yi−1 for every k + 2 ≤ i ≤ n2; n2 = n2 − 1;
31 Continue looking for a next vertex which is not of type 2 in the ordering β, call it u;

32 else
33 E(T) = E(T) ∪ {y1x1, x1y2, y2x2, . . . , ykxk, xkyk+1}; return T ;

34 else
35 Let u = xk for some k;
36 if k 6= n1 then
37 t = t+ 1; rename xk as at; E(T) = E(T) ∪ {ykat};
38 Rename xi as xi−1 for every k + 1 ≤ i ≤ n1; n1 = n1 − 1;
39 Continue looking for a next vertex which is not of type 2 in the ordering β, call it u;

40 else
41 E(T) = E(T) ∪ {y1x1, x1y2, y2x2, . . . , xk−1yk, ykxk}; return T ;

13

Lemma 5.6. Let G be the input bipartite permutation graph for the Algorithm 2 and a1 denotes the first
encountered vertex in either the α or β search. Suppose that T is the spanning tree of G returned by
Algorithm 2. Let X1 ⊆ X be the set of vertices which are visited from X side till a1 and Y1 ⊆ Y be
the set of vertices which are visited from Y side till a1. Then there exists a MIST T ∗ of G such that
E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]).

Proof. We have four cases to consider.
Case 1: a1 ∈ X and it is not of type 1. Then the vertex a1 was found when flag = 1 in Algo-
rithm 2, that is, when searching for the first vertex not of type 1. Let a1 = xk+1 for some k. Then
the sets X ′ = {x1, x2, . . . , xk, xk+1} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y satisfy the hypothesis
of Lemma 5.2. Thus by Lemma 5.2, there exists a MIST T ∗ of G such that E(T ∗[X1 ∪ Y1]) =
{x1y1, y1x2, x2y2, . . . , xkyk, ykxk+1}. In particular, E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]).
Case 2: a1 ∈ Y and it is not of type 1. Then the vertex a1 was also found when flag = 1 in the algorithm.
Let a1 = yk for some k. Then the sets X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y satisfy
the hypothesis of part (b) of Lemma 5.3. Thus by Lemma 5.3, there exists a MIST T ∗ of G such that
E(T ′[X1 ∪ Y1]) = {x1y1, y1x2, x2y2, . . . , xkyk} = E(T [X1 ∪ Y1]).

By symmetry, the other two cases (a1 ∈ X and it is not of type 2; a1 ∈ Y and it is not of type
2) follow from Lemmas 5.4 and 5.5. Thus there exists a MIST T ∗ of G such that E(T ∗[X1 ∪ Y1]) =
E(T [X1 ∪ Y1]) in all cases.

Now, we prove the correctness of Algorithm 2.

Theorem 5.1. Algorithm 2 returns a maximum internal spanning tree of G.

Proof. Let T ∗ be a MIST of G and T be the spanning tree of G returned by Algorithm 2. Recall in the
execution of Algorithm 2, we either search for a vertex not of type 1 with the ordering α or we search for
a vertex not of type 2 with the ordering β. This is ensured since either we never arrive at line 17 or we
arrive at it once and after that flag remains 2 throughout the algorithm. Let a1, a2, . . . , ap be the sequence
of vertices encountered in the execution of Algorithm 2. Let X1 and Y1 denote the set of vertices visited
till a1 from X and Y side respectively. For 1 < i < p, let Xi denotes the set of vertices visited from X
side after ai−1 and upto ai. Similarly, let Yi denotes the set of vertices visited from Y side after ai−1 and
upto ai. Let Xp and Yp denote the set of all vertices visited after ap−1 from X and Y side respectively.

First suppose Algorithm 2 is searching for a vertex not of type 1 with the ordering α and it never
arrives at line 17. This means that flag is 1 throughout the algorithm. To prove that T is a MIST of G,
we will prove that T ∗ can be modified so that it remains a MIST of G and E(T ∗) is same as E(T), that
is,

E(T ∗[

p⋃
j=1

Xj ∪
p⋃

j=1

Yj]) = E(T [

p⋃
j=1

Xj ∪
p⋃

j=1

Yj]). (1)

We prove (1) using induction on p. If p = 1, we have E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]) due to Lemma
5.6. Hence, (1) is true for p = 1. Assume that (1) is true for p = i.

We now show that (1) is true for p = i + 1. So, consider vertex ai+1 for i ≥ 2. Two possible cases
arise.

Case 1: ai+1 ∈ X .

First suppose aj ∈ X for every 1 ≤ j ≤ i. Then for X∗ =
i+1⋃
j=1

Xj and Y ∗ =
i+1⋃
j=1

Yj , we have

|X∗| = ∑i+1
j=1 |Xj | and |Y ∗| = ∑i+1

j=1 |Yj | =
∑i+1

j=1(|Xj | − 1) = |X∗| − (i + 1). As N(X∗) = Y ∗,

14

by Observation 2.2 we have that the number of pendant vertices from X∗ in any spanning tree of G is at
least |X∗| − |Y ∗|+ 1 = i+ 2. Therefore iT ∗(X∗) ≤ |X∗| − (i+ 2).

If E(T ∗[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) 6= E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]), we remove all edges of T ∗ who have one end

in
i⋃

j=1
(Xj ∪ Yj) and the other in (Xi+1 ∪ Yi+1) and all edges incident with the vertices of Xi+1 within

T ∗. We then add all edges from E(T [Xi+1 ∪ Yi+1]) and the edge of T which connects
i⋃

j=1
(Xj ∪ Yj) to

(Xi+1 ∪ Yi+1) in T ∗. If cycles were created in this process, then we can remove those cycles without
introducing more pendant vertices using the method discussed in Lemmas 5.2 and 5.3. Let T ∗new denote
this updated tree. We have,

i(T ∗) = iT ∗(X∗) + iT ∗(X \X∗) + iT ∗(Y ∗) + iT ∗(Y \ Y ∗)
≤ |X∗| − (i+ 2) + iT ∗(X \X∗) + |Y ∗|+ iT ∗(Y \ Y ∗) = i(T ∗new)

Thus T ∗new is also a MIST of G such that

E(T ∗new[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) = E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]).

Now, suppose aj ∈ Y for some 1 ≤ j ≤ i. We choose the largest j ∈ {1, 2, . . . , i} such that aj ∈ Y .

Then for X∗ =
i+1⋃

t=j+1
Xt and Y ∗ =

i+1⋃
t=j+1

Yt, we have |X∗| = ∑i+1
t=j+1 |Xt| and |Y ∗| = ∑i+1

t=j+1 |Yt| =

|Xj+1| +
∑i+1

t=j+2(|Xt| − 1) = |X∗| − (i − j). As N(X∗) = Y ∗, by Observation 2.2 we have that the
number of pendant vertices from X∗ in any spanning tree of G is at least |X∗| − |Y ∗|+ 1 = i− j + 1.
Therefore, iT ∗(X∗) ≤ |X∗| − (i− j + 1).

If E(T ∗[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) 6= E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]), we remove all edges of T ∗ whose one end

belongs to
i⋃

j=1
(Xj ∪ Yj) and another end to (Xi+1 ∪ Yi+1), all edges incident on the vertices of Xi+1

from T ∗ and add all edges from E(T [Xi+1 ∪ Yi+1]) and the edge of T which connects
i⋃

j=1
(Xj ∪ Yj) to

(Xi+1 ∪ Yi+1) in T ∗. If cycles were created in this process, then we can remove those cycles without
introducing more pendant vertices using the method discussed in Lemmas 5.2 and 5.3. So, we may
assume these modifications of T ∗ do not create any cycles. Let T ∗new denotes the updated tree. We have,

i(T ∗) = iT ∗(

j⋃
t=1

Xt) + iT ∗(X∗) + iT ∗(

p⋃
t=i+2

Xt) + iT ∗(

j⋃
t=1

Yt) + iT ∗(Y ∗) + iT ∗(

p⋃
t=i+2

Yt)

≤ iT ∗(

j⋃
t=1

Xt) + |X∗| − (i− j + 1) + iT ∗(

p⋃
t=i+2

Xt) + iT ∗(

j⋃
t=1

Yt) + |Y ∗|+ iT ∗(

p⋃
t=i+2

Yt)

15

= i(T ∗new).
Thus, T ∗new is also a MIST of G such that

E(T ∗new[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) = E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]).

Case 2: ai+1 ∈ Y .

First suppose aj ∈ Y for every 1 ≤ j ≤ i. Then for X∗ =
i+1⋃
j=1

Xj and Y ∗ =
i+1⋃
j=1

Yj , we have

|Y ∗| = ∑i+1
j=1 |Yj | and |X∗| = ∑i+1

j=1 |Xj | = |Y1| +
∑i+1

j=2(|Yj | − 1) = |Y ∗| − i. As N(Y ∗) = X∗,
by Observation 2.2 we have that the number of pendant vertices from Y ∗ in any spanning tree of G is at
least |Y ∗| − |X∗|+ 1 = i+ 1. Therefore iT ∗(Y ∗) ≤ |Y ∗| − (i+ 1). Here, a1 ∈ Y , so, let a1 = yk for
some k. As we have assumed that flag is 1, this implies that there exists an index t, 1 ≤ t ≤ k − 1 such
that xtyt+1 /∈ E(G). So, for X ′ = {x1, x2, . . . , xt} and Y ′ = {y1, y2, . . . , yt}, we have N(X ′) = Y ′.
Now, by Observation 2.2, we know that the number of pendant vertices within X ′ in any spanning tree
of G is at least |X ′| − |Y ′|+ 1 = 1. So, iT ∗(X ′) ≤ |X ′| − 1, implying that iT ∗(X∗) ≤ |X∗| − 1.

If E(T ∗[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) 6= E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]), we remove all edges of T ∗ who have one end

in
i⋃

j=1
(Xj ∪ Yj) and the other in (Xi+1 ∪ Yi+1) and all edges incident with the vertices of Yi+1 within

T ∗. We then add all edges from E(T [Xi+1 ∪ Yi+1]) and the edge of T which connects
i⋃

j=1
(Xj ∪ Yj) to

(Xi+1 ∪ Yi+1) in T ∗. As before, if cycles are present, we may further modify T ∗ to remove these cycles
without introducing more pendant vertices. Let T ∗new denote this updated tree. We have,

i(T ∗) = iT ∗(X∗) + iT ∗(X \X∗) + iT ∗(Y ∗) + iT ∗(Y \ Y ∗)
≤ |X∗| − 1 + iT ∗(X \X∗) + |Y ∗| − (i+ 1) + iT ∗(Y \ Y ∗) = i(T ∗new)

Thus T ∗new is also a MIST of G such that

E(T ∗new[

i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) = E(T [

i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]).

Now, suppose there is some vertex of X side among the vertices aj for 1 ≤ j ≤ i. We choose the

largest j ∈ {1, 2, . . . , i} such that aj ∈ X . Then for X∗ =
i+1⋃

t=j+1
Xt and Y ∗ =

i+1⋃
t=j+1

Yt, we have

|Y ∗| = ∑i+1
t=j+1 |Yt| and |X∗| = ∑i+1

t=j+1 |Xt| = |Yj+1| +
∑i+1

t=j+2(|Yt| − 1) = |Y ∗| − (i − j). As
N(Y ∗) = X∗, by Observation 2.2 we have that the number of pendant vertices from Y ∗ in any spanning
tree of G is at least |Y ∗| − |X∗|+ 1 = i− j + 1. Therefore, iT ∗(Y ∗) ≤ |Y ∗| − (i− j + 1).

If E(T ∗[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) 6= E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]), we remove all edges of T ∗ who have one end

in
i⋃

j=1
(Xj ∪ Yj) and the other in (Xi+1 ∪ Yi+1) and all edges incident with the vertices of Yi+1 within

T ∗. We then add all edges from E(T [Xi+1 ∪ Yi+1]) and the edge of T which connects
i⋃

j=1
(Xj ∪ Yj) to

16

(Xi+1 ∪ Yi+1) in T ∗. As before, if we created cycles with this modification, we remove them with the
same method used in Lemmas 5.2 and 5.3. Let T ∗new denote this updated tree. We have,

i(T ∗) = iT ∗(

j⋃
t=1

Xt) + iT ∗(X∗) + iT ∗(

p⋃
t=i+2

Xt) + iT ∗(

j⋃
t=1

Yt) + iT ∗(Y ∗) + iT ∗(

p⋃
t=i+2

Yt)

≤ iT ∗(

j⋃
t=1

Xt) + |X∗|+ iT ∗(

p⋃
t=i+2

Xt) + iT ∗(

j⋃
t=1

Yt) + |Y ∗| − (i− j + 1) + iT ∗(

p⋃
t=i+2

Yt)

= i(T ∗new).
Thus T ∗new is also a MIST of G such that

E(T ∗new[

i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) = E(T [

i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]).

Hence, (1) is true for p = i+ 1, that is,

E(T ∗[
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]) = E(T [
i+1⋃
j=1

Xj ∪
i+1⋃
j=1

Yj]).

Thus, we get that E(T ∗[X ∪ Y] = E(T [X ∪ Y]) in all cases, when flag is 1.
If algorithm arrives at line 17, then flag changes to 2 and it remains 2 throughout the algorithm. So,

it searches vertex not of type 2 in the ordering β starting from y1. There will be analogous arguments
for this case also, using Lemmas 5.4 and 5.5 instead. For a quick justification why, with the assumption
flag = 1, the above analysis fails if we encounter a vertex, say u1 = yj , such that u1 is not type 1 and
xiyi+1 ∈ E(G) for all 1 ≤ i ≤ (j−1). The analogous failure case for the flag = 2 is, when we encounter
a vertex u2 = xk that is not of type 2 and yixi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1). Note that these cases
cannot simultaneously occur. Otherwise the analysis is symmetric. Consequently, Algorithm 2 returns a
maximum internal spanning tree of G.

Now, we discuss the running time of Algorithm 2. Suppose Algorithm 2 returns a MIST T . Recall
that we visit the vertices in one of the orders α = (x1, y1, x2, y2, . . .), or β = (y1, x1, y2, x2, . . .).
Furthermore, any vertex encountered during the execution of the algorithm must be pendant in T . As we
never visit the same vertex twice, these pendant vertices are found in linear-time. The remaining graph
must have a Hamiltonian path, and finding the Hamiltonian path is also linear-time in our algorithm. So,
all the steps of Algorithm 2 can be executed in O(n+m) time. Hence we have the following corollary.

Corollary 5.1. A maximum internal spanning tree of a bipartite permutation graph can be computed in
linear-time.

6 Bounds for Chain Graphs

A bipartite graph G = (X,Y,E) is a chain graph if the neighborhoods of the vertices of X form
a chain, that is, the vertices of X can be linearly ordered, say {x1, x2, . . . , xn1} such that N(x1) ⊆

17

N(x2) ⊆ . . . ⊆ N(xn1) and n1 = |X|. If G = (X,Y,E) is a chain graph, then the neighborhoods of
the vertices of Y also form a chain. If n2 = |Y |, an ordering α = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) is
called a chain ordering if N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(yn2). If a
vertex xi appears before xj in chain ordering, we write xi < xj . Given a chain graphG, a chain ordering
of G can be computed in linear-time [6]. Note that a chain ordering is also a strong ordering. So, every
chain graph is also bipartite permutation graph.

In this section, we will prove the following lower bound for number of internal vertices in a MIST of
a chain graph G.

Theorem 6.1. For a chain graphG, let P ∗ be an optimal path cover ofG. ThenOpt(G) ≥ |E(P ∗)|−2.

In order to prove Theorem 6.1, we look at optimal path covers of bipartite permutation graphs. [26]
gave an algorithm to find an optimal path cover of a bipartite permutation graph. Note that this algorithm
applies to chain graphs as well. We will recall the algorithm given in [26], but first we cover some
notations used in the algorithm. A path cover P ∗ = {P1, P2, . . . , Pk} is contiguous if it satisfies the
following two conditions:

1. If x ∈ X is the only vertex in Pi and if x′ < x < x′′, then x′ and x′′ belong to different paths.

2. If xy is an edge in Pi and x′y′ is an edge in Pj , where i 6= j and x < x′, then y < y′.

A pathP is contiguous if it is one of the following forms: xiyjxi+1yj+1 . . . yt−1xr, xiyjxi+1yj+1 . . . yt−1xryt,
yjxiyj+1xi+1 . . . xr−1ytxr, or yjxiyj+1xi+1 . . . xr−1yt such that r ≥ i and t ≥ j. Note that every path
in a contiguous path cover is contiguous. Let P be a contiguous path which ends with some edge, say
xpyq. If yqxp+1 /∈ E(G), then we say that the path P is not extendable on the right. A contiguous
path is said to be a maximal contiguous path if it is not extendable on the right. An optimal path cover
P ∗ = {P1, . . . , Pk} is a maximum optimal path cover if each Pi covers the maximum number of vertices
in V (G) \ {P1 ∪ P2 ∪ . . . Pi−1}. According to [26], there exists an optimal path cover which is a maxi-
mum optimal path cover for any bipartite permutation graph G such that every path in the path cover is
a maximal contiguous path.

As a chain graph is an instance of a bipartite permutation graph, we recall the algorithm from [26]
which finds this desired maximum optimal path cover for a chain graph (Algorithm 3). From this point,
we will refer such a path cover as an optimal path cover only.

Algorithm 3 Algorithm for finding an optimal path cover of G
Input: A chain graph G = (X,Y,E) with the ordering of its vertices
Output: An optimal path cover P of G

1 Mark all vertices in X and Y as not visited; let P = ∅.
2 while all vertices of G are not visited do
3 Let x and y be the first vertices in X and Y which are not visited.
4 Let Px and Py be the maximal contiguous paths starting from x and y, respectively.
5 Q:= Maximum of Px and Py.
6 P := P ∪Q.
7 Mark all vertices in Q as visited.

8 Output P .

Now, we give the proof of Theorem 6.1.

18

Proof of Theorem 6.1. Let P ∗ be the optimal path cover obtained from Algorithm 3. A path in P ∗ is
nontrivial if it has at least two vertices. We may assume that the path components of P ∗ are ordered with
respect to their appearance in Algorithm 3. To complete the proof, we will construct a spanning tree by
connecting the paths of P ∗ with edges ofG. Let P andQ be two consecutive nontrivial path components
in P ∗, and we will now find a sufficient edge connecting P and Q. We have four cases to consider.

Case 1: P ends at X side and Q starts from X side
Suppose that P ends at some vertex x and Q starts from some vertex x′, where x < x′. Let y be the
vertex adjacent to x in P , then y ∈ N(x′) as G is a chain graph. Here, we consider the edge yx′ as the
combining edge for path components P and Q. We see that y is internal in P and x′ is pendant in Q.
Fig. 5 provides an illustration.

b bbb b b

b b b b

P Q

x

y

x′

y′

combining edge

Figure 5: Case 1)

Case 2: P ends at Y side and Q starts from Y side
As P ∗ was constructed from Algorithm 3, every path component in P ∗ is maximal contiguous. But, in
this case, P is extendable on right. So, this case will not arise. Fig. 6 provides an illustration.

b

bbb b b

b b b b

P Q

b

Figure 6: Case 2)

Case 3: P ends at Y side and Q starts from X side
This case will also not arise. The reason is same as of Case 2. Fig. 7 provides an illustration.

b

bbb b b

b b b b

P Q

b

Figure 7: Case 3)

Case 4: P ends at X side and Q starts from Y side
Suppose that P ends at some vertex x and Q starts from some vertex y = yj . As the number of vertices
in G is finite, path Q must end at X or Y . Now, we consider two subcases depending on Q ending at X
side or Y side.
Subcase 4.1: Q ends at X side
Let Q = yxiyj+1 . . . xtykxt+1. As G is a chain graph, we have that Q′ = xiyxi+1 . . . yk−1xt+1yk is
also a path in G. Note that V (Q) = V (Q′) and Q′ is a maximal contiguous path. We can replace Q

19

with Q′ in the path cover P ∗. Now as Q′ starts from X , we have reduced to Case 1). Fig. 8 provides an
illustration.

b bbb b b

b b b b

P Q

x

y′

xi

y

combining edge

b

b b

xi+1 xt+1xt

yj+1 ykyj+2

b bbb b b

b b b b

P Q′

x

y′

b

b b

xi xi+1 xt+1xt

y yj+1 ykyk−1

Figure 8: Subcase 4.1

Subcase 4.2: Q ends at Y side
Let y′ be the neighbor of x in P and x′ be the neighbor of y in Q. Since, x < x′ and G is a chain graph,
edge y′x′ ∈ E(G). Here, we consider the edge y′x′ as the combining edge for path components P and
Q. We see that y′ is internal in P and x′ is also internal in Q. Fig. 9 provides an illustration.

b bbb b b

b b b b

P Q

x

y′

x′

y
b b

x0

y0

combining edge

Figure 9: Subcase 4.2

We see that in each possible case, we get a combining edge which connects both the path components
P and Q. If we connect each consecutive nontrivial path component with the combining edges and
connect the remaining single vertex components by an arbitrary edge incident with an internal vertex of
a nontrivial path component, we obtain a spanning tree of G.

Suppose P ∗ has k path components P1, P2, . . . , Pk. Let us denote number of edges of the component
Pi by ei for every 1 ≤ i ≤ k. This implies that e1 + e2 + . . .+ ek = |E(P ∗)|. Note that the number of
internal vertices in a path with ei edges is ei − 1.

We now observe the case where G is a graph such that Subcase 4.2 does not arise. Note then every
combining edge connects one internal and one pendant vertex from different path components. So,
i(T) = e1 − 1 + e2 + e3 + . . . + ek = |E(P ∗)| − 1. Now, suppose that Subcase 4.2 arises for some
consecutive nontrivial paths P and Q. Here, Q ends at Y side, say at y0 and let x0 be the neighbor of
y0 in Q. We claim that x0 = xn1 . If this is not the case then there exists a vertex x∗ in X such that
x∗ > x0 and x∗ /∈ V (Q). But, since G is a chain graph, we have that (y0, x∗) ∈ E(G) which makes Q,
a non-maximal path, a contradiction. Thus, x0 = xn1 which implies that, if Q′′ ∈ P ∗ and appears after
Q in Algorithm 3, then Q′′ is a single vertex path component containing a vertex of Y . This implies that
the Subcase 4.2 appears only once. So, i(T) = e1 − 1 + e2 + e3 + . . .+ ek − 1 = |E(P ∗)| − 2. Hence,
the number of internal vertices in any MIST of G is at least |E(P ∗)| − 2.

Combining Theorem 2.1 and Theorem 6.1, we can state the following corollary.

20

b b b b b

b b b b b

b b b b b

b b b b b

b

b b b b b

b b b b b

b b b b b

b b b b b

b

x5x2 x6x4x1 x3

y1 y2 y3 y5y4

x5x2 x4x1 x3

x5x2 x4x1 x3 x5x2 x4x1 x3 x6

y1 y2 y3 y5y4

y1 y2 y3 y5y4 y1 y2 y3 y5y4

G1 G2

T1 T2

Figure 10: examples showing that bounds are tight

Corollary 6.1. For a chain graph G, if P ∗ denotes an optimal path cover then Opt(G) is either
|E(P ∗)| − 1 or |E(P ∗)| − 2.

Now, we give examples of chain graphs which shows that both the bounds (given by Theorem 2.1
and Theorem 6.1) are tight. In Fig. 10, G1 and G2 are chain graphs and T1 and T2 are Maximum Internal
Spanning Trees of G1 and G2 respectively. We can see that optimal path cover obtained from Algorithm
3 for the graph G1 is {x1y1x2y2x3, y3x4y4x5y5} which has 8 edges and its MIST T1 has 6 internal
vertices i.e. Opt(G1) = |E(P ∗)| − 2 = 8 − 2 = 6. Using Observation 2.2, it can be verified that any
MIST of G1 has at least four pendant vertices, two from X side and two from Y side; so, G1 can have
at most 6 internal vertices in its MIST. Hence, T1 is indeed a MIST of G1. In a similar manner, optimal
path cover obtained from Algorithm 3 for the graph G2 is {x1y1x2y2x3, y3x4y4x5y5x6} which has 9
edges and its MIST T2 has 8 internal vertices i.e. Opt(G2) = |E(P ∗)| − 1 = 9− 1 = 8.

Corollary 6.1 states that |E(P ∗)| − 2 ≤ Opt(G) ≤ |E(P ∗)| − 1 where P ∗ is an optimal path cover
of a chain graph G. We now argue that if G is a bipartite permutation graph, then Opt(G) cannot be
lower bounded with value |E(P ∗)| − k for any fixed natural number k. Below, for every natural number
k, we give a construction of a bipartite permutation graph such that Opt(G) = |E(P ∗)| −O(5k).

For every integer n = 5k (k ≥ 1), we construct a connected bipartite permutation graph Gn with n
vertices and Opt(Gn) = |E(P ∗)| − O(n). For all 1 ≤ i ≤ k, let Xi = {xi1, xi2} and Yi = {yi1, yi2, yi3}
if i is even and Xi = {xi1, xi2, xi3} and Yi = {yi1, yi2} for odd i. Let V (Gn) = V1 ∪ V2 ∪ . . . ∪ Vk where
Vi = Xi∪Yi for all 1 ≤ i ≤ k. Let E(Gn) = E1∪E2∪ . . .∪Ek∪E′ where Ei = {xy|x ∈ Xi, y ∈ Yi}
for each 1 ≤ i ≤ k and E′ is the set of edgs of the form yi2x

i+1
1 if i is odd and xi2y

i+1
1 if i is even for each

1 ≤ i ≤ (k − 1). We see that Gn is a bipartite permutation graph with n vertices and n+ 2k − 1 edges.
Algorithm 3 gives an optimal path cover P ∗ for Gn having 4k edges and Algorithm 2 gives a MIST with
3k internal vertices. So, we get that Opt(Gn) = 3k = 4k − k = 4k − n

5 = |E(P ∗)| − O(n). Fig. 11
provides an illustration for G25.

Thus Opt(G) for bipartite permutation graphs do not have lower bound of the form |E(P ∗)| − k for
some fixed natural number k, independent of n.

7 Conclusion

We studied the Maximum Internal Spanning Tree (MIST) problem, a generalization of Hamiltonian
path problem. As the MIST problem remains NP-hard even for bipartite graphs and chordal graphs due
to a reduction from the Hamiltonian path problem [10, 18], we further investigated the complexity of

21

b b b

b b bbb

bb b b b

b b bbb

bb b b b

b b

x1
1 x1

2 x1
3

y23y11 y12

G25

P ∗

T

x3
1 x3

2 x3
3

x5
1 x5

2 x5
3

y31 y32 y51 y52

x2
1 x2

2
x4
1 x4

2

y21 y22 y43y41 y42

b b b

b b bbb

bb b b b

b b bbb

bb b b b

b b

x1
1 x1

2 x1
3

y23y11 y12

x3
1 x3

2 x3
3

x5
1 x5

2 x5
3

y31 y32 y51 y52

x2
1 x2

2
x4
1 x4

2

y21 y22 y43y41 y42

b b b

b b bbb

bb b b b

b b bbb

bb b b b

b b

x1
1 x1

2 x1
3

y23y11 y12

x3
1 x3

2 x3
3

x5
1 x5

2 x5
3

y31 y32 y51 y52

x2
1 x2

2
x4
1 x4

2

y21 y22 y43y41 y42

Figure 11: Graph G25, its optimal path cover P ∗ from Algorithm 3 and its MIST T from Algorithm 2

special instances of these classes, chain graphs, bipartite permutation graphs and block graphs. We also
investigated cactus graphs and cographs, finding linear-time algorithms for the MIST problem for each
of these graph classes.

[15] proved an upper bound for Opt(G) in terms of an optimal path cover. We further studied
this relationship between path covers and Opt(G) and showed tight lower bounds for chain graphs and
cographs. We also showed this phenomenon does not hold for general graphs with a construction of
bipartite permutation graph and block graph such that Opt(G) is arbitrarily far from |E(P ∗)|.

A convex bipartite graph G with bipartition (X,Y) and an ordering X = (x1, x2, . . . , xn), is a
bipartite graph such that for each y ∈ Y , the neighborhood of y in X appears consecutively. Complexity
status of the MIST problem is still open for convex bipartite graphs, which is a superclass of bipartite
permutation graphs and subclass of chordal bipartite graphs. Designing an algorithm for MIST in convex
bipartite graphs will be a good research direction.

The weighted version of the MIST problem is also well studied in literature [21]. Given a vertex-
weighted connected graph G, the maximum weight internal spanning tree (MwIST) problem asks for a
spanning tree T of G such that the total weight of internal vertices in T is maximized. Since MwIST
problem is a generalization of the MIST problem, one may also investigate the complexity status of
MwIST problem for some special classes of graphs.

To our knowledge, every known hardness proof for the MIST problem on families of graphs relies on
a reduction to Hamiltonian path problem. We leave as an open question if there exists a family of graphs
such that Hamiltonian path problem is polynomial time, yet the MIST problem remains NP-hard.

References

[1] Binkele-Raible D, Fernau H, Gaspers S, Liedloff M, Exact and parameterized algorithms for max
internal spanning tree, Algorithmica 65(1) (2013): 95-128.

[2] Chen ZZ, Harada Y, Guo F, Wang L, An approximation algorithm for maximum internal spanning
tree, Journal of Combinatorial Optimization 35(3) (2018): 955-979.

22

[3] Cohen N, Fomin FV, Gutin G, Kim E, Saurabh S, Yeo A, Algorithm for finding k-vertex out-trees
and its application to k-internal out-branching problem, Journal of Computer and System Sciences
76(7) (2010): 650-662.

[4] Fomin FV, Gaspers S, Saurabh S, Thomassé S, A linear vertex kernel for maximum internal span-
ning tree, Journal of Computer and System Sciences 79(1) (2013): 1-6.

[5] Garey MR, Johnson DS, Computers and intractability, vol 174, freeman San Francisco (1979).

[6] Heggernes P, Kratsch D, Linear-time certifying recognition algorithms and forbidden induced sub-
graphs, Nord J Comput 14(1-2) (2007) :87-108.

[7] Heggernes P, Van’t Hof P, Lokshtanov D, Nederlof J, Computing the cutwidth of bipartite permu-
tation graphs in linear time, SIAM Journal on Discrete Mathematics 26(3) (2012): 1008-1021.

[8] Jung HA, On a class of posets and the corresponding comparability graphs, Journal of Combinato-
rial Theory, Series B 24(2) (1978): 125-133.

[9] Knauer M, Spoerhase J, Better approximation algorithms for the maximum internal spanning tree
problem, Algorithmica 71(4)(2015): 797-811.

[10] Lai TH, Wei SS, The edge hamiltonian path problem is np-complete for bipartite graphs, Informa-
tion processing letters 46(1) (1993): 21-26.

[11] Lai TH, Wei SS, Bipartite permutation graphs with application to the minimum buffer size problem,
Discrete applied mathematics 74(1) (1997): 33-55.

[12] Li W, Wang J, Chen J, Cao Y, A 2k-vertex kernel for maximum internal spanning tree, In: Workshop
on Algorithms and Data Structures, Springer (2015), pp 495-505.

[13] Li W, Cao Y, Chen J, Wang J, Deeper local search for parameterized and approximation algorithms
for maximum internal spanning tree, Information and Computation 252 (2017):187-200.

[14] Li X, Zhu D, Approximating the maximum internal spanning tree problem via a maximum path-
cycle cover, In: International Symposium on Algorithms and Computation, Springer (2014), pp
467-478.

[15] Li X, Feng H, Jiang H, Zhu B, Solving the maximum internal spanning tree problem on interval
graphs in polynomial time, Theoretical Computer Science 734 (2018): 32-37.

[16] Lin R, Olariu S, Pruesse G, An optimal path cover algorithm for cographs, Computers and Mathe-
matics with Applications 30(8) (1995): 75-83.

[17] Lu HI, Ravi R, The power of local optimization: Approximation algorithms for maximum-leaf
spanning tree, In: Proceedings of the Annual Allerton Conference on Communication Control and
Computing, University of Illinois, (1992), pp 533-533.

[18] Müller H, Hamiltonian circuits in chordal bipartite graphs, Discrete Mathematics 156(1-3) (1996):
291-298.

[19] Pak-Ken W, Optimal path cover problem on block graphs, Theoretical computer science 225(1-2)
(1999): 163-169.

23

[20] Prieto E, Sloper C, Either/or: Using vertex cover structure in designing fpt-algorithms-the case of
k-internal spanning tree, In: Workshop on Algorithms and Data Structures, Springer (2003), pp
474-483.

[21] Salamon G, Approximating the maximum internal spanning tree problem, Theoretical Computer
Science 410(50) (2009): 5273-5284.

[22] Salamon G, Degree-based spanning tree optimization, PhD Thesis (2010).

[23] Salamon G, Wiener G, On finding spanning trees with few leaves, Information Processing Letters
105(5) (2008): 164-169.

[24] Seinsche D, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory,
Series B 16(2) (1974):191-193.

[25] Spinrad J, Brandstädt A, Stewart L, Bipartite permutation graphs, Discrete Applied Mathematics
18(3) (1987): 279-292.

[26] Srikant R, Sundaram R, Singh KS, Rangan CP, Optimal path cover problem on block graphs and
bipartite permutation graphs, Theoretical Computer Science 115(2) (1993): 351-357.

24

	1 Introduction
	2 Preliminaries
	3 Block and Cactus Graphs
	3.1 Algorithm for Block and Cactus Graphs
	3.2 Relationship between Opt(G) and E(P*)

	4 Cographs
	5 Bipartite Permutation Graphs
	6 Bounds for Chain Graphs
	7 Conclusion

