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Abstract

Given a graph G = (V,E), the 3-path partition problem is to find a minimum collection of
vertex-disjoint paths each of order at most 3 to cover all the vertices of V . It is different from but
closely related to the well-known 3-set cover problem. The best known approximation algorithm
for the 3-path partition problem was proposed recently and has a ratio 13/9. Here we present a
local search algorithm and show, by an amortized analysis, that it is a 4/3-approximation. This
ratio matches up to the best approximation ratio for the 3-set cover problem.

Keywords: k-path partition; path cover; k-set cover; approximation algorithms; amortized
analysis

1 Introduction

Motivated by the data integrity of communication in wireless sensor networks and several other
applications, the k-path partition (kPP) problem was first considered by Yan et al. [13]. Given
a simple graph G = (V,E) (we consider only simple graphs), with n = |V | and m = |E|, the order
of a simple path in G is the number of vertices on the path and it is called a k-path if its order is
k. The kPP problem is to find a minimum collection of vertex-disjoint paths each of order at most
k such that every vertex is on some path in the collection.

Clearly, the 2PP problem is exactly the Maximum Matching problem, which is solvable in
O(m

√
n log(n2/m)/ log n)-time [6]. For each k ≥ 3, kPP is NP-hard [5]. We point out the key

phrase “at most k” in the definition, that ensures the existence of a feasible solution for any given
graph; on the other hand, if one asks for a path partition in which every path has an order exactly
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k, the problem is called Pk-partitioning and is also NP-complete for any fixed constant k ≥ 3 [5],
even on bipartite graphs of maximum degree three [10]. To the best of our knowledge, there is
no approximation algorithm with proven performance for the general kPP problem, except the
trivial k-approximation using all 1-paths. For 3PP, Monnot and Toulouse [10] proposed a 3/2-
approximation, based on two maximum matchings; recently, Chen et al. [1] presented an improved
13/9-approximation.

The kPP problem is a generalization to the Path Cover problem [4] (also called Path Par-
tition), which is to find a minimum collection of vertex-disjoint paths which together cover all the
vertices in G. Path Cover contains the Hamiltonian Path problem [5] as a special case, and
thus it is NP-hard and it is outside APX unless P = NP.

The kPP problem is also closely related to the well-known Set Cover problem. Given a
collection of subsets C = {S1, S2, . . . , Sm} of a finite ground set U = {x1, x2, . . . , xn}, an element
xi ∈ Sj is said to be covered by the subset Sj , and a set cover is a collection of subsets which together
cover all the elements of the ground set U . The Set Cover problem asks to find a minimum set
cover. Set Cover is one of the first problems proven to be NP-hard [5], and is also one of the most
studied optimization problems for the approximability [7] and inapproximability [11, 3, 12]. The
variant of Set Cover in which every given subset has size at most k is called k-Set Cover, which
is APX-complete and admits a 4/3-approximation for k = 3 [2] and an (Hk − 196

390)-approximation
for k ≥ 4 [9].

To see the connection between kPP and k-Set Cover, we may take the vertex set V of the
given graph as the ground set, and an `-path with ` ≤ k as a subset; then the kPP problem is the
same as asking for a minimum exact set cover. That is, the kPP problem is a special case of the
minimum Exact Cover problem [8], for which unfortunately there is no approximation result
that we may borrow. Existing approximations for (non-exact) k-Set Cover do not readily apply
to kPP, because in a feasible set cover, an element of the ground set could be covered by multiple
subsets. There is a way to enforce the exactness requirement in the Set Cover problem, by
expanding C to include all the proper subsets of each given subset Sj ∈ C. But in an instance graph
of kPP, not every subset of vertices on a path is traceable, and so such an expanding technique
does not apply. In summary, kPP and k-Set Cover share some similarities, but none contains
the other as a special case.

In this paper, we study the 3PP problem. The authors of the 13/9-approx-imation [1] first
presented an O(nm)-time algorithm to compute a k-path partition with the least 1-paths, for any
k ≥ 3; then they applied an O(n3)-time greedy approach to merge three 2-paths into two 3-paths
whenever possible. We aim to design better approximations for 3PP with provable performance,
and we achieve a 4/3-approximation. Our algorithm starts with a 3-path partition with the least
1-paths, then it applies a local search scheme to repeatedly search for an expected collection of 2-
and 3-paths and replace it by a strictly smaller replacement collection of new 2- and 3-paths.

The rest of the paper is organized as follows. In Section 2 we present the local search scheme
searching for all the expected collections of 2- and 3-paths. The performance of the algorithm is
proved through an amortized analysis in Section 3, where we also provide a tight instance. We
conclude the paper in Section 4.
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2 A local search approximation algorithm

The 13/9-approximation proposed by Chen et al. [1] applies only one replacement operation, which
is to merge three 2-paths into two 3-paths. In order to design an approximation for 3PP with
better performance, we examine four more replacement operations, each transfers three 2-paths to
two 3-paths with the aid of a few other 2- or 3-paths. Starting with a 3-path partition with the
least 1-paths, our approximation algorithm repeatedly finds a certain expected collection of 2- and
3-paths and replaces it by a replacement collection of one less new 2- and 3-paths, in which the net
gain is exactly one.

In Section 2.1 we present all the replacement operations to perform on the 3-path partition with
the least 1-paths. The complete algorithm, denoted as Approx, is summarized in Section 2.2.

2.1 Local operations and their priorities

Throughout the local search, the 3-path partitions are maintained to have the least 1-paths. Our
four local operations are designed so not to touch the 1-paths, ensuring that the final 3-path
partition still contains the least 1-paths. These operations are associated with different priorities,
that is, one operation applies only when all the other operations of higher priorities (labeled by
smaller numbers) fail to apply to the current 3-path partition.1 We remind the reader that the local
search algorithm is iterative, and every iteration ends after executing a designed local operation.
The algorithm terminates when none of the designed local operations applies.

Definition 2.1 With respect to the current 3-path partition Q, a local Operation i1-i2-By-j1-j2,
where j1 = i1 − 3 and j2 = i2 + 2, replaces an expected collection of i1 2-paths and i2 3-paths of Q
by a replacement collection of j1 2-paths and j2 3-paths on the same subset of 2i1 + 3i2 vertices.

In the rest of this section we determine the configurations for all the expected collections and
their priorities, respectively.

2.1.1 Operation 3-0-By-0-2, highest priority 1

When three 2-paths of Q can be connected into a 6-path in the graph G (see Figure 2.1 for an
illustration), they form into an expected collection. By removing the middle edge on the 6-path,
we achieve two 3-paths on the same six vertices and they form the replacement collection. In the
example illustrated in Figure 2.1, with the two edges (u1, v2), (u2, v3) ∈ E outside of Q, Operation
3-0-By-0-2 replaces the three 2-paths u1-v1, u2-v2, and u3-v3 of Q by two new 3-paths v1-u1-v2
and u2-v3-u3.

We point out that Operation 3-0-By-0-2 is the only local operation executed in the 13/9-
approximation [1].

An Operation 3-0-By-0-2 does not need the assistance of any 3-path of Q. In each of the
following operations, we need the aid of one or two 3-paths of Q to transfer three 2-paths to two
3-paths. We first note that for a 3-path u-w-v ∈ Q, if (u, v) ∈ E too, then if desired, we may rotate
u-w-v into another 3-path with w being an endpoint (see Figure 2.2 for an illustration). In the
following, any 3-path in an expected collection can be either the exact one in Q or the one rotated
from a 3-path in Q.

1We remark that the priorities are set up to ease the presentation and the amortized analysis.
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u1 u2 u3

v1 v2 v3

Figure 2.1: The configuration of the expected collection for Operation 3-0-By-0-2, which has the
highest priority 1, where solid edges are in Q and dashed edges are in E but outside of Q.

u

w

v

u

w

v

u

w

v

Figure 2.2: A 3-path u-w-v ∈ Q can be rotated so that w becomes an endpoint if (u, v) ∈ E, where
solid edges are in Q and dashed edges are in E but outside of Q.

2.1.2 Operation 3-1-By-0-3, priority 2

Consider an expected collection of three 2-paths P1 = u1-v1, P2 = u2-v2, P3 = u3-v3, and a 3-path
P4 = u-w-v in Q. Note that an Operation 3-1-By-0-3 applies only when Operation 3-0-By-
0-2 fails to apply to the current Q, that is, P1, P2, P3 cannot be connected into a 6-path.2 We
identify only the following two classes of configurations for the expected collection in an Operation
3-1-By-0-3.

In the first class, which has priority 2.1, u,w, v are adjacent to an endpoint of P1, P2, P3 in G,
respectively (see Figure 2.3 for an illustration). The operation breaks the 3-path u-w-v into three
singletons and connects each of them to the respective 2-path to form the replacement collection of
three new 3-paths. In the example illustrated in Figure 2.3, Operation 3-1-By-0-3 replaces the
expected collection by three new 3-paths u-u1-v1, w-u2-v2, and v-u3-v3.

u

w

v

P1

P2

P3

P4

u1

u2 v2

u3 v3

v1

Figure 2.3: The first class of configurations of the expected collection for Operation 3-1-By-0-3,
which has priority 2.1, where solid edges are in Q and dashed edges are in E but outside of Q.

In the second class, which has priority 2.2, two of the three 2-paths, say P1 and P2, are adjacent
and thus they can be replaced by a new 3-path and a singleton. We distinguish two configurations
in this class (see Figure 2.4 for illustrations). In the first configuration, the singleton is adjacent to
the midpoint w and P3 is adjacent to one of u and v; in the second configuration, the singleton and
P3 are adjacent to u and v, respectively. For an expected collection of any of the two configurations,

2This is one of the places where the priorities ease the presentation, by excluding some cases for discussion.
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the operation replaces it by three new 3-paths.

In the example illustrated in Figure 2.4a, the singleton is u1 and P3 is adjacent to u. Operation
3-1-By-0-3 replaces the expected collection by three new 3-paths v1-u2-v2, v-w-u1, and u-u3-v3.
In the example illustrated in Figure 2.4b, the singleton is u1 and P3 = u3-v3 is adjacent to u.
Operation 3-1-By-0-3 replaces the expected collection by three new 3-paths v1-u2-v2, w-v-u1,
and u-u3-v3.

u

w

v

P1

P2

P3 P4
v3

u1u3

v1

u2

v2
(a)

u

w

v

P1

P2

P3 P4
v3

u1u3

v1

u2

v2
(b)

Figure 2.4: The second class of configurations of the expected collection in Operation 3-1-By-0-3,
which has priority 2.2, where solid edges are in Q and dashed edges are in E but outside of Q.

2.1.3 Operation 4-1-By-1-3, priority 3

Consider an expected collection of four 2-paths P1 = u1-v1, P2 = u2-v2, P3 = u3-v3, P4 = u4-v4, and
a 3-path P5 = u-w-v in Q. Note that an Operation 4-1-By-1-3 applies only when Operation
3-0-By-0-2 and Operation 3-1-By-0-3 both fail to apply to the current Q.3 We thus consider
only the cases when the four 2-paths can be separated into two pairs, each of which are adjacent
in the graph G, and we can replace them by two new 3-paths while leaving two singletons which
are adjacent to a common vertex on P5.

In the configuration for the expected collection in an Operation 4-1-By-1-3, the two singletons
are adjacent to a common endpoint, say u, of P5 (see Figure 2.5 for an illustration), then they can
be replaced by a new 2-path v-w and a new 3-path. Overall, the operation replaces the expected
collection by three new 3-paths and a new 2-path. In the example illustrated in Figure 2.5, the two
singletons are u1 and u3, and they are both adjacent to u. Operation 4-1-By-1-3 replaces the
expected collection by three new 3-paths v1-u2-v2, v3-u4-v4, u1-u-u3, and a new 2-path w-v.

u

w

v

P1 P2

P3 P4

P5
v1u1 u2 v2

u3 v3 u4 v4

Figure 2.5: The configuration of the expected collection for Operation 4-1-By-1-3, which has
priority 3, where solid edges are in Q and dashed edges are in E but outside of Q.

3This is another place where the priorities ease the presentation, by excluding some cases for discussion.
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2.1.4 Operation 4-2-By-1-4, lowest priority 4

Consider an expected collection of four 2-paths P1 = u1-v1, P2 = u2-v2, P3 = u3-v3, P4 = u4-v4, and
two 3-paths P5 = u-w-v, P6 = u′-w′-v′ in Q. The four 2-paths can be separated into two pairs, each
of which are adjacent in the graph G, thus we can replace them by two new 3-paths while leaving
two singletons, which are adjacent to P5 and P6, respectively (see Figure 2.6 for illustrations). We
distinguish three classes of configurations for the expected collection in this operation, for which
the replacement collection consists of four new 3-paths and a new 2-path.

In the first class, the two singletons are adjacent to P5 and P6 at endpoints, say u and u′,
respectively; additionally, one of the five edges (u, v′), (v, u′), (w, v′), (v, w′), (v, v′) is in E (see
Figure 2.6a for an illustration). In the example illustrated in the Figure 2.6a, if (u, v′) ∈ E, then
Operation 4-1-By-1-3 replaces the expected collection by four new 3-paths v1-u2-v2, v3-u4-v4,
u1-u-v′, u3-u

′-w′, and a new 2-path w-v.

u

w

v

u′

w′

v′

P1

P2

P3

P4

P5 P6

u1 u3

v1

u2

v2

v3

u4

v4
(a) The first class.

u

w

v

u′

w′

v′

P1

P2

P3

P4

P5

P6

u1 u3

v1

u2

v2

v3

u4

v4
(b) The second class.

u

w

v

u′

w′

v′

P1

P2

P3

P4

P5 P6

u1 u3

v1

u2

v2

v3

u4

v4
(c) The third class.

Figure 2.6: The three classes of configurations of the expected collections for an Operation 4-
2-By-1-4, where solid edges are in Q, dashed edges are in E but outside of Q, and dotted edges
could be in E but outside of Q. In every class, each dotted edge between P5 and P6 corresponds
to one configuration.

In the second class, one singleton is adjacent to an endpoint of a 3-path, say u on P5, and the
other singleton is adjacent to the midpoint w′ of P6; additionally, one of the six edges (u, u′), (u, v′),
(w, u′), (w, v′), (v, u′), (v, v′), is in E (see Figure 2.6b for an illustration). In the example illustrated
in Figure 2.6b, if (u, u′) ∈ E, then Operation 4-1-By-1-3 replaces the expected collection by four
new 3-paths v1-u2-v2, v3-u4-v4, u1-u-u′, u3-w

′-v′, and a new 2-path w-v.

In the third class, the two singletons are adjacent to the midpoints of the two 3-paths, w and w′,
respectively; additionally, one of the four edges (u, u′), (u, v′), (v, u′), (v, v′) is in E (see Figure 2.6c
for an illustration). In the example illustrated in Figure 2.6c, if (u, u′) ∈ E, then Operation 4-
1-By-1-3 replaces the expected collection by four new 3-paths v1-u2-v2, v3-u4-v4, u1-w-v, u3-w

′-v′,
and a new 2-path u-u′.

2.2 The complete local search algorithm Approx

The first step of our local search algorithm Approx is to compute a 3-path partition Q with the
least 1-paths. The second step is iterative, and in each iteration the algorithm tries to apply one
of the four local operations, from the highest priority to the lowest, by finding a corresponding
expected collection and determining the subsequent replacement collection. When no expected
collection can be found, the second step terminates. The algorithm outputs the achieved 3-path
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partition Q as the solution. A high-level description of the complete algorithm Approx is depicted
in Figure 2.7.

Algorithm Approx on G = (V,E):

Step 1. Compute a 3-path partition Q with the least 1-paths in G;

Step 2. Iteratively perform:
2.1. if Operation 3-0-By-0-2 applies, update Q and break;
2.2. if Operation 3-1-By-0-3 with priority 2.1 applies, update Q and break;
2.3. if Operation 3-1-By-0-3 with priority 2.2 applies, update Q and break;
2.4. if Operation 4-1-By-1-3 applies, update Q and break;
2.5. if Operation 4-2-By-1-4 applies, update Q and break;

Step 3. Return Q.

Figure 2.7: A high-level description of the local search algorithm Approx.

Step 1 runs in O(nm) time [1]. Note that there are O(n) 2-paths and O(n) 3-paths in Q at the
beginning of Step 2, and therefore there are O(n6) original candidate collections to be examined,
since a candidate collection has a maximum size of 6. When a local operation applies, an iteration
ends and the 3-path partition Q reduces its size by 1, while introducing at most 5 new 2- and
3-paths. These new 2- and 3-paths give rise to O(n5) new candidate collections to be examined
in the subsequent iterations. Since there are at most n iterations in Step 2, we conclude that the
total number of original and new candidate collections examined in Step 2 is O(n6). Determining
whether a candidate collection is an expected collection, and if so, deciding the corresponding
replacement collection, can be done in O(1) time. We thus prove that the overall running time of
Step 2 is O(n6), and consequently prove the following theorem.

Theorem 2.1 The running time of the algorithm Approx is in O(n6).

3 Analysis of the approximation ratio 4/3

In this section, we show that our local search algorithm Approx is a 4/3-approximation for 3PP.
The performance analysis is done through amortization.

The 3-path partition produced by the algorithm Approx is denoted as Q; let Qi denote the
sub-collection of i-paths in Q, for i = 1, 2, 3, respectively. Let Q∗ be an optimal 3-path partition,
i.e., it achieves the minimum total number of paths, and let Q∗i denote the sub-collection of i-paths
in Q∗, for i = 1, 2, 3, respectively. Since our Q contains the least 1-paths among all 3-path partitions
for G, we have

|Q1| ≤ |Q∗1|. (1)

Since both Q and Q∗ cover all the vertices of V , we have

|Q1|+ 2|Q2|+ 3|Q3| = n = |Q∗1|+ 2|Q∗2|+ 3|Q∗3|. (2)

Next, we prove the following inequality which gives an upper bound on |Q2|, through an amor-
tized analysis:

|Q2| ≤ |Q∗1|+ 2|Q∗2|+ |Q∗3|. (3)
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Combining Eqs. (1, 2, 3), it follows that

3|Q1|+ 3|Q2|+ 3|Q3| ≤ 4|Q∗1|+ 4|Q∗2|+ 4|Q∗3|, (4)

that is, |Q| ≤ 4
3 |Q

∗|, and consequently the following theorem holds.

Theorem 3.1 The algorithm Approx is an O(n6)-time 4/3-approximation for the 3PP problem,
and the performance ratio 4/3 is tight for Approx.

In the amortized analysis, each 2-path of Q2 has one token (i.e., |Q2| tokens in total) to be
distributed to the paths of Q∗. The upper bound in Eq. (3) will immediately follow if we prove the
following lemma.

Lemma 3.1 There is a distribution scheme in which

1. every 1-path of Q∗1 receives at most 1 token;

2. every 2-path of Q∗2 receives at most 2 tokens;

3. every 3-path of Q∗3 receives at most 1 token.

In the rest of the section we present the distribution scheme that satisfies the three requirements
stated in Lemma 3.1.

Denote E(Q2), E(Q3), E(Q∗2), E(Q∗3) as the set of all the edges on the paths of Q2, Q3, Q∗2,
Q∗3, respectively, and E(Q∗) = E(Q∗2)∪E(Q∗3). In the subgraph of G

(
V,E(Q2)∪E(Q∗)

)
, only the

midpoint of a 3-path of Q∗3 may have degree 3, i.e., incident with two edges of E(Q∗) and an edge
of E(Q2), while all the other vertices have degree at most 2 since each is incident with at most one
edge of E(Q2) and at most one edge of E(Q∗).

Our distribution scheme consists of two phases. We define two functions τ1(P ) and τ2(P )
to denote the fractional amount of token received by a path P ∈ Q∗ in Phase 1 and Phase 2,
respectively; we also define the function τ(P ) = τ1(P ) + τ2(P ) to denote the total amount of token
received by the path P ∈ Q∗ at the end of our distribution process. Then, we have

∑
P∈Q∗ τ(P ) =

|Q2|.

3.1 Distribution process Phase 1

In Phase 1, we distribute all the |Q2| tokens to the paths of Q∗ (i.e.,
∑

P∈Q∗ τ1(P ) = |Q2|) such
that a path P ∈ Q∗ receives some token from a 2-path u-v ∈ Q2 only if u or v is (or both are) on
P , and the following three requirements are satisfied:

1. τ1(Pi) ≤ 1 for ∀Pi ∈ Q∗1;

2. τ1(Pj) ≤ 2 for ∀Pj ∈ Q∗2;

3. τ1(P`) ≤ 3/2 for ∀P` ∈ Q∗3.

In this phase, the one token held by each 2-path of Q2 is breakable but can only be broken into
two halves. So for every path P ∈ Q∗, τ1(P ) is a multiple of 1/2.
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u

v

1
P1

(a)

u

v w

1

P1

P2

(b)
v′′vv′

u

1
2 1

2

P1

P2

(c)

Figure 3.1: Illustrations of the token distribution scheme in Phase 1, where solid edges are in E(Q2)
and dashed edges are in E(Q∗). In Figure 3.1c, u or v can be either an endpoint or the midpoint
of the corresponding 3-path of Q∗3.

For each 2-path u-v ∈ Q2, at most one of u and v can be a singleton of Q∗. If P1 = v ∈ Q∗1,
then the whole 1 token of the path u-v is distributed to v, that is, τ1(v) = 1 (see Figure 3.1a for
an illustration). This way, we have τ1(P ) ≤ 1 for ∀P ∈ Q∗1.

For a 2-path u-v ∈ Q2, we consider the cases when both u and v are incident with an edge
of E(Q∗). If one of u and v, say v, is incident with an edge of E(Q∗2), that is, v is on a 2-path
P1 = v-w ∈ Q∗2, then the 1 token of the path u-v is given to the path P1 ∈ Q∗2 (see Figure 3.1b for
an illustration). Note that if u is also on a 2-path P2 ∈ Q∗2 and P2 6= P1, then the path P2 receives
no token from the path u-v. The choice of which of the two vertices u and v comes first does not
matter. This way, we have τ1(P ) ≤ 2 for ∀P ∈ Q∗2 since the 2-path P1 ∈ Q∗2 might receive another
token from a 2-path of Q2 incident at w.

Next, we consider the cases for a 2-path u-v ∈ Q2 in which each of u and v is incident with
an edge of E(Q∗3). Consider a 3-path P1 ∈ Q∗3: v′-v-v′′. We distinguish two cases for a vertex
of P1 to determine the amount of token received by P1 (see Figure 3.1c for an illustration). In
the first case, either the vertex, say v′, is not on any path of Q2 or it is on a path of Q2 with 0
token left, then P1 receives no token through vertex v′. In the second case, the vertex, say v (the
following argument also applies to the other two vertices v′ and v′′), is on a path u-v ∈ Q2 holding
1 token, and consequently u must be on a 3-path P2 ∈ Q∗3, then the 1 token of u-v is broken into
two halves, with 1/2 token distributed to P1 through vertex v and the other 1/2 token distributed
to P2 through vertex u. This way, we have τ1(P ) ≤ 3/2 for ∀P ∈ Q∗3 since the 3-path P1 ∈ Q∗3
might receive another 1/2 token through each of v′ and v′′.

3.2 Distribution process Phase 2

In Phase 2, we will transfer the extra 1/2 token from every 3-path P ∈ Q∗3 with τ1(P ) = 3/2 to
some other paths of Q∗ in order to satisfy the three requirements of Lemma 3.1. In this phase,
each 1/2 token can be broken into two quarters, thus for a path P ∈ Q∗, τ2(P ) is a multiple of 1/4.

Consider a 3-path P1 = v′′-v′-v ∈ Q∗3. We observe that if τ1(P1) = 3/2, then each of v, v′, and
v′′ must be incident with an edge of E(Q2), such that the other endpoint of the edge is also on a
3-path of Q∗3 (see the last case in Phase 1). Since there are three of them, one of v, v′ and v′′, say
v, on an edge (u, v) ∈ E(Q2), has the associated vertex u on a distinct 3-path P2 ∈ Q∗3 (that is,
P2 6= P1). Let w be a vertex adjacent to u on P2, i.e., (u,w) is an edge on P2. (See Figure 3.2 for
an illustration.) We can verify the following claim.

Claim 3.1 The vertex w is on a 3-path of Q3, being either an endpoint or the midpoint.
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Proof. See Figure 3.2 for an illustration. Firstly, w cannot collide into any of u′, u′′ since
otherwise the three 2-paths u-v, u′-v′, u′′-v′′ could be replaced due to Operation 3-0-By-0-2.
Then, suppose w is on a 2-path w-x of Q2, then the three 2-paths u-v, u′-v′, w-x could be replaced
due to Operation 3-0-By-0-2. Lastly, suppose w is a singleton of Q1, then w and the 2-path u-v
could be merged to a 3-path so that Q is not a partition with the least 1-paths, a contradiction.
Thus, w cannot be a singleton of Q1 or on any 2-path of Q2, and the claim is proved. 2

We conclude from Claim 3.1 that τ1(P2) ≤ 1, and we have the following lemma.

Lemma 3.2 For any 3-path P1 ∈ Q∗3 with τ1(P1) = 3/2, there must be another 3-path P2 ∈ Q∗3
with τ1(P2) ≤ 1 such that

1. u-v is a 2-path of Q2, where v is on P1 and u is on P2, and

2. any vertex adjacent to u on P2 is on a 3-path P3 of Q3.

v′′ v′ v

u w

P1

P2

P3

u′′ u′

1
2 x

Figure 3.2: An illustration of a 3-path P1 = v-v′-v′′ ∈ Q∗3 with τ1(P1) = 3/2, where u-v, u′-v′,
u′′-v′′ ∈ E(Q2). The vertex u is on a distinct 3-path P2 ∈ E(Q∗3); the vertex w is on P2 and is
adjacent to u; w is either the midpoint or an endpoint of a 3-path P3 ∈ Q3.

The first step of Phase 2 is to transfer this extra 1/2 token back from P1 to the 2-path u-v
through vertex v (see Figure 3.2 for an illustration). Thus, we have τ2(P1) = −1/2 and τ(P1) =
3/2− 1/2 = 1.

Using Lemma 3.2 and its notation, let x1 and y1 be the other two vertices on P3 (i.e., P3 = w-x1-
y1 or P3 = x1-x-y1). Denote P4 ∈ Q∗ (P5 ∈ Q∗, respectively) as the path where x1 (y1, respectively)
is on. Next, we will transfer the 1/2 token from u-v to the paths P4 or/and P5 through some pipe
or pipes.

We define a pipe r → s → t, where r is an endpoint of a source 2-path of Q2 (u-v here) which
receives 1/2 token in the first step of Phase 2, (r, s) is an edge on a 3-path P ′ ∈ Q∗3 with τ1(P

′) ≤ 1
(P ′ = P2 here), s and t are both on a 3-path of Q3 (P3 here), and t is a vertex on the destination
path of Q∗ (P4 or P5 here) which will receive token from the source 2-path of Q2. That is, the pipe
r → s→ t will transfer some token from the source 2-path of Q2 to the destination path of Q∗. r
and t are called the head and tail of the pipe, respectively. For example, in Figure 3.3a, there are
four possible pipes u → w → x1, u → w → y1, u

′′ → w → x1, and u′′ → w → y1. We distinguish
the cases, in which the two destination paths P4 and P5 belong to different combinations of Q∗1,
Q∗2, Q∗3, to determine how they receive token from source 2-paths through some pipe or pipes.

Recall that u can be either an endpoint or the midpoint of P2. We distinguish the following
cases with u being an endpoint of P2 (the cases for u being the midpoint can be discussed the
same), that is, P2 = u-w-u′′, depending on which of Q∗1, Q∗2, Q∗3 the two destination paths P4 and
P5 belong to, to determine the upper bounds on τ(P4) and τ(P5).
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Case 1. At least one of P4 and P5 is a singleton of Q∗1, say P4 = x1 ∈ Q∗1 (see Figure 3.3 for
illustrations). In this case, we have τ1(P4) = 0, so we transfer the 1/2 token from u-v to P4 through
pipe u → w → x1. We observe that if P5 is also a 3-path of Q∗3, with (y1, y2) being an edge on
P5, then y2 → y1 → x1 is a candidate pipe through which P4 could receive another 1/2 token. We
distinguish the following two sub-cases based on whether w is an endpoint or the midpoint of P3

to determine all the possible pipes through each of which could P4 receive 1/2 token.

u w

x1

y1
P1

P2

vv′

u′
u′′

P4

P5y2

1
2

P3

(a)

u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5
y2

1
2

P3

(b)

u

y1

w

x1
P1

P2

vv′

u′
u′′

P5

P4

y2
1
2

P3

(c)

Figure 3.3: The cases when P4 is a singleton of Q∗1, where solid edges are in E(Q2) or E(Q3) and
dashed edges are in E(Q∗). x1 is the tail of the pipe through which the destination path P4 could
receive 1/2 token from the source 2-path u-v.

Sub-case 1.1. w is the midpoint of P3 = x1-w-y1 (see Figure 3.3a for an illustration). If
P5 ∈ Q∗3, with (y1, y2) being an edge on P5, then y2 cannot be on a 2-path of Q2 (suppose y2 is on
a 2-path P ′′ ∈ Q2, then the three 2-paths u-v, u′-v′, P ′′, and the 3-path P3 could be replaced due
to Operation 3-1-By-0-3). Therefore, only through pipe u′′ → w → x1 could P4 receive another
1/2 token. Thus, τ2(P4) ≤ 1/2× 2 = 1, implying τ(P4) ≤ 0 + 1 = 1.

Sub-case 1.2. w is an endpoint of P3, i.e., either P3 = w-x1-y1 (see Figure 3.3b for an
illustration) or P3 = w-y1-x1 (see Figure 3.3c for an illustration). In each sub-case, u′′ cannot be
the head of any pipe (i.e., there does not exist a path u′′-v′′-v′′′-u′′′, where u′′-v′′, v′′′-u′′′ ∈ Q2 and
v′′-v′′′ ∈ Q∗2, since otherwise, the four 2-paths u-v, u′-v′, u′′-v′′, v′′′-u′′′, and the 3-path P3 could be
replaced due to Operation 4-1-By-1-3). If P5 ∈ Q∗3, with (y1, y2) being an edge on P5, then y2
in Figure 3.3b cannot be on a 2-path of Q2 (suppose y2 is on a 2-path P ′′ ∈ Q2, then the three
2-paths u-v, u′-v′, P ′′, and the 3-path P3 could be replaced due to Operation 3-1-By-0-3); y2
in Figure 3.3c cannot be the head of any pipe (i.e., there does not exist a path y2-z-z

′-y′, where
y2-z, z

′-y′ ∈ Q2 and z-z′ ∈ Q∗2, since otherwise, the three 2-paths u-v, y2-z, z
′-y′, and the 3-path

P3 could be replaced due to Operation 3-1-By-0-3). Therefore, through no other pipe could P4

receive any other token in either sub-case. Thus, τ2(P4) ≤ 1/2, implying τ(P4) ≤ 0 + 1/2 = 1/2.

Case 2. Both P4 and P5 are paths of Q∗2 ∪Q∗3 (see Figure 3.4 for illustrations). We distinguish
two sub-cases based on whether w is an endpoint or the midpoint of P3 to determine how to transfer
the 1/2 token from the source 2-path u-v to P4 or P5 or both.

Sub-case 2.1. w is an endpoint of P3 = w-x1-y1, with y1 on P5 (see Figure 3.4a for an
illustration). In this sub-case, we transfer the 1/2 token from the source 2-path u-v to P5 through
pipe u → w → y1. Similar to the sub-case shown in Figure 3.3b, if (y1, y2) is an edge on P5, then
y2 cannot be on a 2-path of Q2 due to Operation 3-1-By-0-3. Thus, through no other pipe with
tail y1 could P5 receive any other token. Therefore, P5 could receive at most 1/2 token through
pipes with tail y1.

Sub-case 2.2. w is the midpoint of P3 = x1-w-y1 (see Figure 3.4b). In this sub-case, we
break the 1/2 token holding by the source 2-path u-v into two quarters, with 1/4 transferred to
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u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5y2

x2

1
2

P3

(a)

u w

x1

y1

P1

P2

vv′

u′
u′′

P4

P5

x2

y2

1
4

1
4

P3

(b)

Figure 3.4: The cases when both P4 and P5 are in Q∗2 ∪ Q∗3, where solid edges are in E(Q2) or
E(Q3) and dashed edges are in E(Q∗). In Figure 3.4a, y1 is the tail of the pipe through which P5

receives 1/2 token from the source 2-path u-v; in Figure 3.4b, x1 is the tail of the pipe through
which P4 receives 1/4 token from the source 2-path u-v and y1 is the tail of the pipe through which
P5 receives 1/4 token from the source 2-path u-v.

P4 through pipe u → w → x1 and the other 1/4 transferred to P5 through pipe u → w → y1.
Similar to the sub-case shown in Figure 3.3a, if (x1, x2) is an edge on P4 (or (y1, y2) is an edge
on P5, respectively), then x2 (or y2, respectively) cannot be on a 2-path of Q2 due to Operation
3-1-By-0-3. Thus, only through pipe u′′ → w → x1 could P4 receive another 1/4 token and only
through pipe u′′ → w → y1 could P5 receive another 1/4 token. Therefore, P4 (P5, respectively)
could receive at most 1/2 token through pipes with tail x1 (y1, respectively).

Now we discuss if P4 in Figure 3.4b and P5 in Figure 3.4a and Figure 3.4b could receive more
token through pipes with vertices other than x1 and y1 being the tail, respectively. Let (x1, x2)
and (y1, y2) be edges on P4 and P5, respectively. We first prove the following two claims.

Claim 3.2 The vertex y2 in Figure 3.4a and in Figure 3.4b is on a 3-path of Q3; so is the vertex
x2 in Figure 3.4b.

Proof. Firstly, we have already proved in the discussion for Sub-cases 2.1 and 2.2 that y2 in
Figure 3.4a, and in Figure 3.4b, and x2 in Figure 3.4b cannot be on a 2-path of Q2. Suppose x2 in
Figure 3.4b is a singleton of Q1, then the 3-path P3 and the edge (x1, x2) could be reconnected into
two 2-paths, implying Q not a partition with the least 1-paths, a contradiction. This argument
also applies to y2 in Figure 3.4a and Figure 3.4b. Thus, the claim is proved. 2

Claim 3.2 implies that for P5 in Figure 3.4a or 3.4b (P4 in Figure 3.4b, respectively), we have
τ1(P5) ≤ 1/2 (τ1(P4) ≤ 1/2, respectively).

Claim 3.3 The vertex y2 in Figure 3.4a or in Figure 3.4b cannot be the tail of a pipe; neither can
the vertex x2 in Figure 3.4b.

Proof. We only prove that y2 in Figure 3.4a cannot be the tail of a pipe. The same argument
applies to y2 in Figure 3.4b and x2 in Figure 3.4b. Suppose y2 in Figure 3.4a is the tail of a pipe,
say z1 → w′ → y2. That is, y2 and w′ are on the same 3-path, say P ′3, of Q3; there is a path
w′-z1-z2-z3-z4, where w′-z1, z2-z3 ∈ Q∗2 and z1-z2, z3-z4 ∈ Q2. (See Figure 3.5 for an illustration.)
Then the four 2-paths u-v, u′-v′, z1-z2, z3-z4, and the two 3-paths P3 and P ′3 could be replaced due
to Operation 4-2-By-1-4. Thus, the claim is proved. 2
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u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5y2

x2

1
2

w′ z1

z2 z3

z4

P3

P ′
3

Figure 3.5: An illustration of y2 in Figure 3.4a being the tail of a pipe, say z1 → w′ → y2, which
could never happen due to Operation 4-2-By-1-4.

Claim 3.3 implies that through no pipe with tail y2 in Figure 3.4a or in Figure 3.4b (with tail
x2 in Figure 3.4b, respectively) could P5 (P4, respectively) receive any other token. That is, if P5

(P4, respectively) is a 2-path or a 3-path with y1 (x1, respectively) being the midpoint, then it
could receive token only through pipes with tail y1 (x1, respectively), thus we have τ2(P5) ≤ 1/2
(τ2(P4) ≤ 1/2, respectively).

Next, we discuss the cases when P5 in Figure 3.4a is a 3-path, with y1 being an endpoint. The
same argument applies to the cases when P5 in Figure 3.4b is a 3-path, with y1 being an endpoint,
and the cases when P4 in Figure 3.4b is a 3-path with x1 being an endpoint. Let P5 = y1-y2-y3
(see Figure 3.6 for an illustration). According to Claim 3.3, P5 could only receive token through
pipes with tail y1 or y3. We distinguish the following three cases based on whether y3 is on a path
of Q1, or Q2, or Q3.

• If y3 is a singleton of Q1, then we have τ1(P5) = 0, and thus with the 1/2 token received
through pipe u→ w → y1, we have τ2(P5) ≤ 1/2, implying τ(P5) ≤ 1/2.

• If y3 is on a 2-path of Q2, then we have τ1(P5) ≤ 1/2, and thus with the 1/2 token received
through pipe u→ w → y1, we have τ2(P5) ≤ 1/2, implying τ(P5) ≤ 1.

• If y3 is on a 3-path of Q3, then we have τ1(P5) = 0. y3 could either be the tail of a pipe as
y1 in Sub-case 2.1 (Figure 3.4a), or be the tail of at most two pipes as x1 or y1 in Sub-case
2.2 (Figure 3.4b). For any of these sub-cases, P5 could receive at most 1/2 token through
pipes with tail y3. Thus, with the 1/2 token received through pipe u → w → y1, we have
τ2(P5) ≤ 1/2 + 1/2 = 1, implying τ(P5) ≤ 0 + 1 = 1.

u

x1

w

y1
P1

P2

vv′

u′
u′′

P4

P5y2

x2

1
2 y3

P3

Figure 3.6: An illustration of y1 being an endpoint of P5 in Figure 3.4a, where P5 = y1-y2-y3, solid
edges are in E(Q) and dashed edges are in E(Q∗). y3 could be on a path of Q1, Q2, or Q3.

From the above discussions, we conclude that for any P ∈ {P4, P5}, if τ2(P ) > 0, then we have
τ1(P ) ≤ 1/2 and τ2(P ) ≤ 1, and it falls into one of the following four scenarios:
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1. If w is an endpoint of P3 and τ1(P ) = 0, then there are at most two pipes through each of
which could P receive 1/2 token. That is, τ2(P ) ≤ 1/2× 2 = 1, implying τ(P ) ≤ 0 + 1 = 1.

2. If w is an endpoint of P3 and τ1(P ) = 1/2, then only through one pipe could P receive the
1/2 token. That is, τ2(P ) ≤ 1/2, implying τ(P ) ≤ 1/2 + 1/2 = 1.

3. If w is the midpoint of P3 and τ1(P ) = 0, then there are at most four pipes through each of
which could P receive 1/4 token. That is, τ2(P ) ≤ 1/4× 4 = 1, implying τ(P ) ≤ 0 + 1 = 1.

4. If w is an endpoint of P3 and τ1(P ) = 1/2, then there are at most two pipes through each
of which could P receive 1/4 token. That is, τ2(P ) ≤ 1/4 × 2 = 1/2, implying τ(P ) ≤
1/2 + 1/2 = 1.

In summary, for any P1 ∈ Q∗ with τ1(P1) = 3/2, we have τ2(P1) = −1/2; for any P ∈ Q∗ with
τ2(P ) > 0, we have τ1(P ) = 0 if τ2(P ) ≤ 1, or τ1(P ) ≤ 1/2 if τ2(P ) ≤ 1/2. Therefore, at the end
of Phase 2, we have

1. τ(Pi) ≤ 1 for ∀Pi ∈ Q∗1,

2. τ(Pj) ≤ 2 for ∀Pj ∈ Q∗2,

3. τ(P`) ≤ 1 for ∀P` ∈ Q∗3.

This proves Lemma 3.1.

3.3 A tight instance for the algorithm Approx

Figure 3.7 illustrates a tight instance, in which our solution 3-path partitionQ contains nine 2-paths
and three 3-paths (solid edges) and an optimal 3-path partition Q∗ contains nine 3-paths (dashed
edges). Each 3-path of Q∗ receives 1 token from the 2-paths in Q in our distribution process. This
instance shows that the performance ratio of 4/3 is tight for Approx, thus Theorem 3.1 is proved.

v1 v2/u1 v3 u3

v4 v5/u4 v6 u6

u9 v9 v8/u7 v7

v10v11/u10v12u12

v13v14/u13

w1 w2 w3

x1 x2 x3

y1 y2 y3

Figure 3.7: A tight instance of 27 vertices, where solid edges represent a 3-path partition produced
by Approx and dashed edges represent an optimal 3-path partition. The edges (u3i+1, v3i+1),
i = 0, 1, . . . , 4, are in E(Q2) ∩ E(Q∗), shown in both solid and dashed. The vertex u3i+1 collides
into v3i+2, i = 0, 1, . . . , 4. In our distribution process, each of the nine 3-paths in Q∗ receives 1
token from the 2-paths in Q.

4 Conclusions

We studied the 3PP problem and designed a 4/3-approximation algorithm Approx. Approx first
computes a 3-path partition Q with the least 1-paths in O(nm)-time, then iteratively applies four
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local operations with different priorities to reduce the total number of paths in Q. The overall
running time of Approx is O(n6). The performance ratio 4/3 of Approx is proved through an
amortization scheme, using the structure properties of the 3-path partition returned by Approx.
We also show that the performance ratio 4/3 is tight for our algorithm.

The 3PP problem is closely related to the 3-Set Cover problem, but none of them is a special
case of the other. The best 4/3-approximation for 3-Set Cover has stood there for more than
three decades; our algorithm Approx for 3PP has the approximation ratio matches up to this best
approximation ratio 4/3. We leave it open to better approximate 3PP.
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