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Abstract. The weighted Sitting Closer to Friends than Enemies (SCFE)

problem is to find an injection of the vertex set of a given weighted graph into
a given metric space so that, for every pair of incident edges with different

weight, the end vertices of the heavier edge are closer than the end vertices of
the lighter edge. The Seriation problem is to find a simultaneous reordering of

the rows and columns of a symmetric matrix such that the entries are monotone

nondecreasing in rows and columns when moving towards the diagonal. If
such a reordering exists, it is called a Robinson ordering. In this work, we

establish a connection between the SCFE problem and the Seriation problem.

We show that if the extended adjacency matrix of a given weighted graph G
has no Robinson ordering then G has no injection in R that solves the SCFE

problem. On the other hand, if the extended adjacency matrix of G has a

Robinson ordering, we construct a polyhedron that is not empty if and only if
there is an injection of the vertex set of G in R that solves the SCFE problem.

As a consequence of these results, we conclude that deciding the existence of

(and constructing) such an injection in R for a given complete weighted graph
can be done in polynomial time. On the other hand, we show that deciding if

an incomplete weighted graph has such an injection in R is NP-Complete.

1. Introduction

Consider a data set. The task is to construct a graphic representation of the data
set so that similarities between data points are graphically expressed. To complete
this task, the only information available is a similarity matrix of the data set, i.e.,
a symmetric, square matrix whose entry ij contains a similarity measure between
data points i and j (the larger the value the more similar the data points are).
Hence, the task is to draw all data points in a paper so that for every three data
points i, j, and k, if i is at least as similar to j than k, then i should be placed
closer in the drawing to j than k. In colloquial words, for each data point j, the
farther the other data points are, the less similar they are to j.

A slightly simpler version of this problem, introduced in [12], has been studied
under the name of the Sitting Closer to Friends than Enemies (SCFE) problem.
The SCFE problem uses signed graphs as an input. Therefore, the similarity matrix
has entries 1 and −1, representing similarity and dissimilarity, or friendship and
enmity between the data points, from where the problem obtains its name. The
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SCFE problem has been studied in the real line [12, 8, 18] and in the circumference
[2] (which means that the paper is the real line or the circumference). In both cases,
the real line and the circumference, it has been shown that deciding the existence
of such an injection for a given signed graph is NP-Complete. Nevertheless, in both
cases again, when the problem is restricted to complete signed graphs there exists
a characterization of the families of complete signed graphs that admit a solution
for the SCFE problem and it can be decided in polynomial time [12, 2]. Therefore,
a natural next step is to consider the case when similarities range in an extended
set of values.

The SCFE problem in the line seems to be closely related to the Seriation prob-
lem. Liiv in [16] defines the Seriation problem as “an exploratory data analysis
technique to reorder objects into a sequence along a one-dimensional continuum so
that it best reveals regularity and pattering among the whole series”. Seriation has
applications in archaeology [19], data visualization [4], exploratory analysis [11],
bioinformatics [25], and machine learning [9], among others. Liiv in [16] presents
an interesting survey on seriation, matrix reordering and its applications. The first
important contribution of this document is to show that the SCFE and the Seri-
ation problems are different. Indeed, we show that seriation is a necessary condition
to solve the SCFE problem, but it is not sufficient.

To continue with our exposition, in Section 2 we introduce the notation and def-
initions used along the document. The rest of the document is organized as follows.
In Section 3, we present the state of the art and contextualize our contributions. In
Section 5, we present the characterization of weighted graphs with an injection in
R that satisfies the restrictions of the SCFE problem. Furthermore, we present the
results related with complete weighted graphs. In Section 6, we present the results
regarding incomplete weighted graphs. We conclude in Section 7 with some final
remarks and future work.

2. Notation and Definitions

We use standard notation. A graph is denoted by G = (V,E). We consider only
undirected graphs, without parallel edges and loopless. The set of vertices of G is
V and the set of edges is E, a set of 2-elements subsets of V . We use n and m to
denote |V | and |E|, respectively. Two distinct vertices u and v in V are said to be
neighbors if {u, v} ∈ E. In that case, we say that they are connected by an edge
which is denoted by {u, v}. A graph is said to be complete if every pair of distinct
vertices is connected by an edge, otherwise, we say that it is incomplete.

In this document, we work with weighted graphs. We denote by w : E → R+

a positive real valued function that assigns w({u, v}), a positive real value, to the
edge {u, v} in E. For our purposes, we consider that w is a similarity measure,
i.e., for any {u, v} ∈ E the value w({u, v}) measures how similar u and v are. We
consider that the larger the similarity measure is, the more similar the vertices are.
It is worth mentioning that the fact that the weights are positive is just a choice
made for simplicity. Actually, if we have negative weights, one can translate all
weights by a constant and obtain only positive weights. All our results are still
valid if we remove this assumption.

Let (M, d) be a metric space. A drawing of a graph G = (V,E) into M is
an injection D : V → M. We define a certain type of drawings that capture the
requirements of the SCFE problem.
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Definition 2.1. Let G = (V,E) be a graph, and w : E → R+ be a positive
function on E. Let (M, d) be a metric space. We say that a drawing D of G into
M is valid distance if, for all pair {t, u}, {t, v} of incident edges in E such that
w({t, u}) > w({t, v}),

d(D(t), D(u)) < d(D(t), D(v)).

In colloquial words, a drawing is valid distance, or simply valid, when it places
vertices t and u strictly closer than t and v in M whenever t and u have a strictly
larger similarity measure than t and v. Now, the weighted SCFE problem in its
most general presentation is defined as follows.

Definition 2.2. Given a weighted graph G and a metric space M, the weighted
SCFE problem inM is to decide whether G has a valid drawing inM, and, in case
of a positive answer, find one.

In this document, we focus our attention on the case when the metric space is
the real line, i.e., we consider the metric space to be the set of real values R with
the Euclidean distance.

Since we present a matrix oriented analysis, we introduce the next two matrix
related definitions. Given a matrix A, the entry in the i-th row and j-th column
of A is denoted by Aij . For every weighted graph G = (V,E) and an ordering π of
the vertex set V , we define Aπ(G), the similarity matrix of G ordered according to
π, as follows. Let πi be the i-th element of V according to π, then:

Aπ(G)ij =





∗ if i 6= j and {πi, πj} /∈ E,
w({πi, πj}) if i 6= j and {πi, πj} ∈ E,
maxe∈E w(e) if i = j.

This matrix is also known as the extended weighted adjacency matrix of G. The
i-th row (and i-th column) contains the similarities between vertex πi and the rest
of the vertices of G. We may use only Aπ when the graph G is contextually clear
or only A when G and π are contextually clear. Note that any similarity matrix
of any weighted graph is symmetric since w is symmetric. A similarity matrix of a
complete weighted graph does not have entries with the symbol ∗. In that case, we
say that a similarity matrix is complete, otherwise we say that it is incomplete.

W. S. Robinson in [22] introduced Robinsonian matrices. A complete similarity
matrix A is said to be Robinson if its entries are monotone nondecreasing in rows
and columns when moving towards the diagonal, i.e., if for all integers 1 ≤ i < j ≤
n,

Aij ≤ min{Aij−1, Ai+1j}.
Equivalently, a complete similarity matrix A is Robinson if for all integers 1 ≤ i <
l ≤ n and j, k ∈ [i, l]:

Ail ≤ min{Aij , Akl}.
On the other hand, a complete similarity matrix A is Robinsonian if its rows and
columns can be reordered simultaneously by a permutation π such that Aπ is Robin-
son.

The Robinson matrix definition can be naturally extended to incomplete ma-
trices. In that case, a similarity matrix is Robinson if its specified entries are
monotone nondecreasing in rows and columns when moving towards the diagonal,
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i.e., an incomplete similarity matrix A is Robinson if for all integers 1 ≤ i < l ≤ n
and j, k ∈ [i, l], such that Ail 6= ∗, Aij 6= ∗ and Akl 6= ∗,

Ail ≤ min{Aij , Akl}.
Again, we say that a similarity matrix is Robinsonian if its rows and columns can

be simultaneously reordered in such a way that it passes to be Robinson. Finally,
we say that an ordering π of the vertex set V of a weighted graph G = (V,E) is
Robinson if Aπ(G) is Robinson.

3. Context, Related Work, and Our Contributions

Robinsonian matrices were defined by W. S. Robinson in [22] in a study on how
to order chronologically archaeological deposits. The Seriation problem introduced
in the same work is to decide whether the similarity matrix of a data set is Robin-
sonian and reorder it as a Robinson matrix if possible. Recognition of complete
Robinsonian matrices has been studied by several authors. Mirkin et al. in [17]
presented an O(n4) recognition algorithm, where n×n is the size of the matrix. On
the other hand, using divide and conquer techniques, Chepoi et al. in [5] introduced
an O(n3) recognition algorithm. Later, Préa and Fortin in [20] provided an O(n2)
optimal recognition algorithm for complete Robinsonian matrices using PQ trees.

Using the relationship between Robinsonian matrices and unit interval graphs
presented in [21], Monique Laurent and Matteo Seminaroti in [13] introduced a
recognition algorithm for Robinsonian matrices that uses Lex-BFS, whose time
complexity is O(L(m + n)), where m is the number of nonzero entries in the ma-
trix, and L is the number of different values in the matrix. Later in [14], the same
authors presented a recognition algorithm with time complexity O(n2 + nm log n)
that uses similarity-first search, an extension of breadth-first search for weighted
graphs. Again, using the relationship between Robinsonian matrices and unit in-
terval graphs, Laurent et al. in [15] gave a characterization of Robinsonian matrices
via forbidden patterns.

The Seriation problem also has been studied as an optimization problem. Given
an n × n matrix D, seriation in the presence of errors is to find a Robinsonian
matrix R that minimizes the error defined as: max ||Dij − Rij || over all i and j
in {1, 2, 3, . . . , n}. Chepoi et al. in [6] proved that seriation in the presence of
errors is an NP-Hard problem. Later in [7], Chepoi and Seston gave a factor 16
approximation algorithm. Fortin in [10] surveyed the challenges for Robinsonian
matrix recognition.

The SCFE problem was first introduced by Kermarrec and Thraves in [12]. Be-
sides the introduction of the SCFE problem, the authors of [12] also characterized
the set of complete signed graphs with a valid drawing in R and presented a poly-
nomial time recognition algorithm. Later, Cygan et al. in [8] proved that the SCFE
problem is NP-Complete if it is not restricted to complete signed graphs. Moreover,
they gave a different characterization of the complete signed graphs with a valid
drawing in R. Actually, the authors of [8] proved that a complete signed graph has
a valid drawing in R if and only if its positive subgraph is a unit interval graph.
The SCFE problem in the real line also was studied as an optimization problem by
Pardo et al. in [18]. In that work, the authors defined as an error a violation of the
inequality in Definition 2.1 and provided optimization algorithms that construct a
drawing attempting to minimize the number of errors.



THE WEIGHTED SCFE PROBLEM IN THE LINE 5

The SCFE problem also has been studied for different metric spaces. First,
Benitez et al. in [2] studied the SCFE problem in the circumference. The authors of
that work proved that the SCFE problem in the circumference is NP-Complete and
gave a characterization of the complete signed graphs with a valid drawing. Indeed,
they showed that a complete signed graph has a valid drawing in the circumference
if and only if its positive subgraph is a proper circular arc graph. Later, Becerra in
[1] studied the SCFE problem in trees. The main result of her work was to prove
that a complete signed graph G has a valid drawing in a tree if and only if its
positive subgraph is strongly chordal.

Spaen et al. in [23] studied the SCFE problem from a different perspective.
They studied the problem of finding L(n), the smallest dimension k such that any
signed graph on n vertices has a valid drawing in Rk, with respect to the Euclidean
distance. They showed that log5(n− 3) ≤ L(n) ≤ n− 2.
Our Contributions. Our first contribution is to show that the Seriation and the
SCFE problems are not the same. Indeed, we show that the SCFE problem implies
a stronger condition than the Seriation problem. In Lemma 4.1, we show that if a
weighted graph G = (V,E) has a valid drawing in R, there is a Robinson ordering of
V . Nevertheless, in Lemma 4.2, we show that there is a weighted graph G = (V,E)
with a Robinson ordering of V , but G does not have a valid drawing in R.

On the other hand, for each weighted graph G with a Robinson ordering of its
vertex set, we construct a polyhedron defined by an inequality system M(G)x ≤ b
which we use to provide a characterization of the set of weighted graphs with a
valid drawing in R. Indeed, we show in Theorem 5.2 that a weighted graph G has
a valid drawing in R if and only if its polyhedron defined by M(G)x ≤ b is not
empty.

Our first result applied to complete weighted graphs allows us to conclude in
Corollary 5.6 that given a complete weighted graph G, determining whether G has
a valid drawing in R, and finding one if applicable, can be done in polynomial time.

On the other hand, when the weighted graph is not complete, the previous
result does not apply anymore. In Corollary 6.2, we state that recognition of
incomplete Robinsonian matrices is NP-complete. Furthermore, using results shown
in [8] by Cygan et al., we conclude, under the assumption of the Exponential Time
Hypothesis, the nonexistence of a subexponential-time algorithm that determines
if an incomplete similarity matrix is Robinsonian. Therefore, the construction of
the polyhedron cannot be done in polynomial time (unless P=NP). Nevertheless,
in Section 6, we provide a recognition algorithm of n × n incomplete Robinsonian
matrices with time complexity O(n · 22n).

4. Robinson Orderings and Valid Distance Drawings

In this section we connect Robinson orderings and valid distance drawings. We
start this section showing that, if a weighted graph has a valid drawing in R its
similarity matrix is Robinsonian. Therefore, having a Robinsonian similarity matrix
is a necessary condition to have a valid distance drawing in R.

Lemma 4.1. Let G = (V,E) be a weighted graph. If G has a valid distance drawing
in R, then V has a Robinson ordering.

Proof. Let G = (V,E) be a weighted graph with weight function w. Let D : V →
R be a valid distance drawing of G in R. The valid drawing D determines an
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ordering on the set of vertices V . Indeed, for u and v in V , we say that u <D v if
D(u) < D(v). We show that A(G) is Robinson when it is written using the ordering
determined by D for its rows and columns.

Enumerate V according to the ordering determined by D. Consider any inte-
gers i, j, k, l such that 1 ≤ i < l ≤ n, j, k ∈ [i, l], and A(G)il 6= ∗, A(G)ij 6= ∗
and A(G)kl 6= ∗. First, we point our that A(G)il ≤ A(G)ij , since D is valid
distance, and d(D(i), D(l)) > d(D(i), D(j)). Equivalently, since D is valid dis-
tance and d(D(i), D(l)) > d(D(k), D(l)), we have A(G)il ≤ A(G)kl. Therefore,
A(G)il ≤ min{A(G)ij , A(G)kl}. In conclusion, A(G), the similarity matrix of G
written according to the ordering determined by D, is Robinson. Hence, the order-
ing determined by D is Robinson.

�

Nevertheless, having a Robinson similarity matrix is not enough to have a valid
distance drawing in R. In the next, lemma we show the existence of a weighted
graph with a Robinson ordering of its vertices but without valid distance drawing
in R.

Lemma 4.2. There exists a complete weighted graph G with Robinson similarity
matrix but without a valid distance drawing in R.

Proof. Let G be the complete weighted graph with vertex set {a, b, c, d, e} and
similarity matrix

A(G) =




5 2 2 1 1
2 5 3 2 1
2 3 5 4 1
1 2 4 5 5
1 1 1 5 5




written with rows and columns ordered as a, b, c, d, e. A(G) is Robinson, never-
theless, we will show by contradiction that G does not have a valid drawing in
R.

Assume that G has a valid drawing D in R. Since the order a, b, c, d, e of the
rows and columns of A(G) is the only one that makes A(G) Robinson, D has to be
such that

(4.1) D(a) < D(b) < D(c) < D(d) < D(e).

Since D is a valid drawing, the following inequalities hold:

D(b)−D(a) > D(c)−D(b)(4.2)

D(e)−D(b) > D(b)−D(a)(4.3)

D(c)−D(b) > D(d)−D(c)(4.4)

D(e)−D(c) > D(c)−D(a)(4.5)

D(d)−D(c) > D(e)−D(d).(4.6)

Without loss of generality, assume that D(a) = 0. Then, from inequalities (4.1)
and (4.2) we obtain:

(4.7) D(b) < D(c) < 2D(b).

On the other hand, from inequalities (4.5) and (4.6), we obtain 2D(c) < D(e) <
2D(d)−D(c), which implies:

(4.8) 3D(c) < 2D(d).
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Finally, inequality (4.4) is equivalent to 2D(d) < 4D(c) − 2D(b), which, together
with (4.8), implies 2D(b) < D(c). But, the last inequality contradicts inequality
(4.7). �

5. The Weighted SCFE Problem in the line

The goal of this section is to find a solution for the weighted SCFE problem in
the real line. We transform the weighted SCFE problem in the real line into the
problem of finding a point in a convex polyhedron. Actually, given a weighted graph
G, we construct a convex polyhedron defined by an inequality system M(G)x ≤ b,
where each point x = (x1, x2, . . . , xn) in the convex polyhedron is a valid drawing
of G in R. Indeed, for any given x in the polyhedron, each variable xi represents
the position of vertex i in R for that valid drawing. Therefore, finding a point in
the polyhedron is equivalent to find a valid drawing for G in R.

We first remark that if a given weighted graph G has a valid drawing in R, it
actually has an infinite number of them. Indeed, given a valid drawing in R for a
weighted graph G, one can obtain a different valid drawing for the same graph by
summing or multiplying each vertex position by any positive constant. The second
case (when each position is multiplied by a positive constant) is important for us,
because it allows us to state the following lemma.

Lemma 5.1. Let G = (V,E) be a weighted graph with a valid distance drawing in
R. Then, for any ε > 0 there exists a valid distance drawing Dε of G in R such
that:

min
u,v∈V

|Dε(u)−Dε(v)| ≥ ε.

Proof. Let G be a weighted graph with a valid drawing D in R. We consider without
loss of generality that v is labeled according to the ordering determined by D, i.e.,
1 <D 2 <D 3 <D . . . <D n. Consider any ε > 0. Let δ = min1≤i<nD(i+ 1)−D(i)
be the minimum distance between two consecutive vertices in the drawing. Multiply
every D(i) by ε/δ. Therefore, we obtain a new valid drawing Dε defined as Dε(i) =
εD(i)/δ, such that minu,v∈V |Dε(u)−Dε(v)| ≥ ε.

�

Now, we proceed with the construction of the matrix M(G) and the vector b of
the inequality system M(G)x ≤ b that defines our polyhedron. By Lemma 4.1, the
ordering of the vertex set of G defined by a valid drawing is Robinson. Hence, we
may assume that A(G) is Robinson.

If we want to construct a valid drawing D in R for G, the vertices should be
ordered in the same way as the rows and columns of A(G). Hence, if the i-th row (or
column) of A(G) contains the similarities of vertex i ∈ {1, 2, 3, . . . , n}, then D has
to be so that D(1) < D(2) < · · · < D(n). Therefore, we want x1 < x2 < · · · < xn.
Now, considering Lemma 5.1, we write the following set of restrictions for any ε > 0:

(5.1) xi − xi+1 ≤ −ε, ∀i ∈ {1, 2, 3, . . . , n− 1}.
These restrictions are called ordering restrictions. Lemma 5.1 allows us to pick
any ε > 0 for these restrictions. We set a value for ε, and use that value for the
inequalities we define below.

On the other hand, each row of A(G) provides two types of restrictions. We call
these restrictions right with respect to left and left with respect to right restrictions.
Right with respect to left restrictions are obtained as follows. For each row j
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a

b

c

d

e

4

4
2

1

5

5

3

8

7 10

(a)




a b c d e

a 10 4 4 2 1
b 4 10 5 5 3
c 4 5 10 8 7
d 2 5 8 10 10
e 1 3 7 10 10




(b)




1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
1 −2 0 1 0

−1 2 0 0 −1
0 1 −2 0 1
0 0 1 −2 1




(c)

1

Figure 1. Example of a complete weighted graph, its similarity
matrix, and its corresponding matrix of restrictions. Subfigure
(a) shows a complete weighted graph. Subfigure (b) shows its
Robinson similarity matrix. It also shows the order of the vertices
in which the similarity matrix is written. Subfigure (c) shows the
restriction matrix for the weighted graph in Subfigure (a). In the
first 4 rows appear the ordering restrictions. Rows five and six
show the right with respect to left and left with respect to right
restrictions for vertex b. Rows seven and eight show right with
respect to left restrictions for vertices c and d, respectively.

and for every index k > j, let i(k) be the largest index such that i(k) < j and
A(G)ji(k) < A(G)jk. Therefore, since A(G)ji(k) < A(G)jk, vertices j and k are
more similar between them than vertices j and i(k). Hence, in any valid drawing
D it must occur D(k)−D(j) < D(j)−D(i(k)). We transform this strict inequality
into the following restriction for a sufficiently small ε > 0:

(5.2) xi(k) − 2xj + xk ≤ −ε, ∀j ∈ {2, 3, . . . , n− 1} and ∀k > j.

Left with respect to right restrictions are symmetrical to the previous restriction.
For each row j and for every index i < j, let k(i) be the smallest index such that
j < k(i) and A(G)ji > A(G)jk(i). Therefore, since A(G)ji > A(G)jk(i), vertices i
and j are more similar between them than vertices j and k(i). Hence, in any valid
drawing D, it must occur D(j)−D(i) < D(k(i))−D(j). We transform this strict
inequality into the following restriction for a sufficiently small ε > 0:

(5.3) − xi + 2xj − xk(i) ≤ −ε, ∀j ∈ {2, 3, . . . , n− 1} and ∀i < j.

It is worth mentioning that some of the inequalities described in equations (5.2)
and (5.3) may be obtained from inequalities presented in Equation (5.1) and dif-
ferent inequalities described in equations (5.2) and (5.3). Hence, some restrictions
may be redundant. In an attempt to keep the presentation of this document clean
and simple, we omit a discussion in this regard. It is worth mentioning though that
it does not impact the results of this document.

Given a weighted graph G with n vertices, the matrix of restrictions of G (or
the matrix of coefficients of G), denoted by M(G), is the matrix that includes the
n− 1 ordering restrictions, the at most (n− 2)(n− 1)/2 right with respect to left
restrictions, and the at most (n− 2)(n− 1)/2 left with respect to right restrictions.
In total, the matrix M(G) has h ≤ (n − 1)2 rows and n columns. On the other
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hand, the vector b is a h × 1 vector with a −ε in every entry. An example of a
weighted graph, its Robinson similarity matrix, and its corresponding matrix of
restrictions is given in Figure 1.

Now, we show that for any weighted graph G with Robinson similarity matrix,
the convex polyhedron defined by M(G)x ≤ b is not empty if and only if G has a
valid drawing in R.

Theorem 5.2. Let G be a weighted graph with Robinson similarity matrix A(G).
Let M(G) be the h × n matrix of restrictions of G obtained from A(G). Let b be
the h× 1 vector with −ε < 0 in every entry. Then, G has a valid distance drawing
in R if and only if the polyhedron defined by M(G)x ≤ b is not empty.

Proof. Let G be a weighted graph with valid distance drawing in R. Let D be a
valid drawing of G in R. Label the vertices of G according to the order determined
by D, i.e., the left most vertex in D is vertex 1, the next vertex is vertex 2 and so
on until vertex n. By construction of M(G)x ≤ b, for any ε > 0, D can be scaled
to a valid drawing D′ such that the vector (D′(1), D′(2), . . . , D′(n)) belongs to the
polyhedron M(G)x ≤ b.

On the other hand, assume that the polyhedron M(G)x ≤ b is not empty. Let
x = (x1, x2 . . . , xn) be a point in M(G)x ≤ b. Label the vertices of G according
to the columns of its Robinson similarity matrix A(G), i.e., vertex i is the vertex
corresponding to the i-th column of A(G). Now, consider the drawing D of G in R
defined as follows: D(i) = xi for all 1 ≤ i ≤ n.

We show now that D is valid distance. Assume that D is not a valid distance
drawing. Therefore, there exist three vertices i, j and k such that Aij < Aik,
but |D(i) − D(j)| ≤ |D(i) − D(k)|. Note that the last inequality is not valid
if D(i) < D(k) < D(j) or if D(j) < D(k) < D(i), therefore, these cases are
discarded. If D(i) < D(j) < D(k) or D(k) < D(j) < D(i), there is a contradiction
since Aij < Aik, and, in that case, A(G) would not be Robinson.

Assume that D(j) < D(i) < D(k). Therefore, |D(i) − D(j)| ≤ |D(i) − D(k)|
becomes D(i) − D(j) ≤ D(k) − D(i), or equivalently, 0 ≤ D(j) − 2D(i) + D(k).
Nevertheless, since Aij < Aik, the right with respect to left restriction xj − 2xi +
xk ≤ −ε is included in M(G)x ≤ b. Therefore, since D comes from a point in
M(G)x ≤ b, D(j)− 2D(i) +D(k) ≤ −ε, which is a contradiction since ε > 0.

If we assume now D(k) < D(i) < D(j), then |D(i) − D(j)| ≤ |D(i) − D(k)|
becomes 0 ≤ −D(k) + 2D(i) −D(j). Nevertheless, since Aij < Aik, the left with
respect to right restriction −xk + 2xi − xj ≤ −ε is included in M(G)x ≤ b. By
equivalent arguments than before, we achieve a contradiction.

Therefore, the condition |D(i)−D(j)| ≤ |D(i)−D(k)| is not possible, and hence,
D is a valid distance drawing. �

If the valid drawings are restricted to be nonnegative, then the SCFE problem
can be treated as a linear program. Because, if the polyhedron defined by the
inequality system M(G)x ≤ b is not empty, there is always a point x in that
polyhedron with x1 = 0. Therefore, the SCFE problem is equivalent to find minx1
subject to M(G)x ≤ b, and nonnegative x.

The last Theorem is stated for a weighted graph with a Robinson similarity ma-
trix. It is well known that a Robinsonian matrix may have many different Robinson
orderings. Therefore, the reader may wonder which of these many Robinson order-
ings is the one that we can use to apply Theorem 5.2. In the next part of this
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section, we answer that question for complete weighted graphs. Indeed, we show
that any Robinson ordering will provide the same answer when Theorem 5.2 is
applied.

Now we show that the existence of a valid distance drawing in R corresponding
to a Robinson ordering is consistent among all Robinson orderings of the vertex
set of a complete weighted graph. In other words, we show that, given a complete
weighted graph G = (V,E), if there is a Robinson ordering π of V and a valid
distance drawing D of G such that the ordering induced by D is equal to π, then,
for any Robinson ordering σ of V there exists a valid distance drawing Σ of G such
that the ordering induced by Σ is equal to σ.

Given a Robinson ordering π of V , we say that π has a valid drawing if there is
a valid distance drawing D of G = (V,E) in R such that the ordering induced by
D is equal to π.

To prove our result, we use the fact that all Robinson orderings for a complete
similarity matrix can be represented by a PQ-tree (see [20, 3]). A PQ-tree on a
set V is a tree that represents a set of permutations of V . The nodes of a PQ-tree
are of three types: leaves, that represent the elements of V , P nodes, and Q nodes.
The children of a P node are not ordered, and any permutation of them is allowed.
The children of a Q node are ordered and that order can only be reversed. Hence,
given a PQ-tree T , we obtain a permutation of V represented by T by applying one
of the operations allowed to each P and Q nodes, and then looking at the leaves to
find the resultant permutation. Let say π is a permutation obtained in this way.
If we modify the operation applied to one node α of T and maintain all the other
nodes equal, we say that the new permutation σ is obtained from π by modifying
α.

For a node α of a PQ-tree T , we denote T (α) the subtree of T with root α and
by Sα the set of leaves of T (α). A node of a PQ-tree is said to be basic if all its
children are leaves. Préa et al. in [20] show that for every node α, and for every
Robinson ordering π represented in a PQ-tree T , Sα is consecutive according to
π, i.e., Sα = {πl+1, πl+2, . . . , πl+r} for some 0 ≤ l and 0 ≤ r ≤ n − l, where πi
denotes the i-th vertex according to π. In addition, we denote by SIα := πl+1 and
SRα := πl+r the first and the last elements of Sα, respectively. On the other hand,
Préa et al. also show that

(5.4) w({u, x}) = w({v, x}) ∀u, v ∈ Sα and x ∈ V \ Sα.
We show now that operations on a Q-node of the PQ-tree maintain the charac-

teristic of having a valid distance drawing.

Lemma 5.3. Let G = (V,E) be a complete weighted graph, T be the PQ-tree that
represents all Robinson orderings of V , and α be a Q-node of T . Let π and σ be two
Robinson orderings of V such that σ is obtained from π by applying the operation
associated to α (i.e., reversing the children of α). Then, π has a valid distance
drawing if and only if σ has a valid distance drawing.

Proof. Let G, T , α, π, and σ be as in the statement of the lemma. Assume that
π has a valid drawing D. We show that σ also has a valid drawing. It is worth
noticing that this sense of the equivalence is enough to show the lemma, since the
opposite sense is shown by exchanging π and σ and repeating the analysis.

Let π1, π2, . . . , πn be the vertex set of G ordered according to π. The children of
α can be P nodes, Q nodes or leaves. Without loss of generality, we assume that
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all of them are P nodes or Q nodes, since a leaf can be seen as a Q node with a
single children that is the leaf. Let β1, β2, . . . , βh be α’s children ordered according
to π. We use the following notation for the elements of Sβt :

{πl+Rt−1+1, πl+Rt−1+2, . . . , πl+Rt−1+rt = πl+Rt
},

where R0 = 0 and Rt = Rt−1 + rt, and |Sβt
| = rt.

Let β̃1, β̃2, . . . , β̃h be α’s children ordered according to σ. We use the following
notation for the elements of Sβ̃t

:

{σl+R̃t−1+1, σl+R̃t−1+2, . . . , σl+R̃t−1+r̃t
= σl+R̃t

},

where R̃0 = 0 and R̃t = R̃t−1 + r̃t where |Sβ̃t
| = r̃t = rh−t+1.

Note that R̃t = Rh − Rh−t, Rt = R̃h − R̃h−t and R̃h = Rh. In addition,
Sβ̃t

= Sβh−t+1
and Sβt

= Sβ̃h−t+1
. In particular

SI
β̃t

= πl+Rt−1+1 = SIβh−t+1
= σl+R̃h−t+1

and

SR
β̃t

= πl+Rt
= SRβh−t+1

= σl+R̃h−t+1
.

Hence,

x ∈ Sβ̃t
⇐⇒ x ∈ {σl+R̃t−1+1, . . . , σl+R̃t

}
⇐⇒ x ∈ Sβh−t+1

⇐⇒ x ∈ {πl+Rh−t+1, . . . , πl+Rt−h+1
}.

Assume that σi = x is the j-element of β̃t, then

σi = σl+R̃t−1+j
=⇒ i = l + R̃t−1 + j =⇒ j = i− l − R̃t−1.

On the other hand, x is the j-element of βh−t+1, i.e., x = πl+Rh−t+j . Hence:

σi = πl+Rh−t+j = πl+Rh−t+i−l−R̃t−1
= πi+Rh−t−Rh+Rh−t+1

.

Therefore, σ is as follows:

σi =





πi if i ∈ [1, l],

πi+Rh−t−Rh+Rh−t+1
if i ∈ [l + R̃t−1 + 1, l + R̃t], t ∈ {1, . . . , h},

πi if i ∈ [l + R̃h + 1, n].

We denote by f : {1, . . . , n} → {1, . . . , n} the implicit bijection defined above in
σi = πf(i). Next, we recursively define the drawing Σ such that Σ(σl+1) = D(πl+1)
and ∀i ∈ {l + 2, . . . , n}:

d(Σ(σi),Σ(σi−1)) =





d(D(πf(i)), D(πf(i)−1)) if σi ∈ Sβ̃t
\ {SI

β̃t
},

and t ∈ {1, . . . , h}
d(D(SRβh−t+2

), D(SIβh−t+1
)) if σi = SI

β̃t
,

and t ∈ {2, . . . , h}.
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Thus, we define the following drawing Σ that induces σ:

Σ(σi) =



D(πi) if i ∈ [1, l],

Σ(σi−1) +D(πi)−D(πi−1) if i = l + 1,

Σ(σi−1) +D(πf(i))−D(πf(i)−1) if i ∈ [l + R̃t−1 + 2, l + R̃t],

and t ∈ [1, h],

Σ(σi−1) +D(πf(l+R̃t−2+1))−D(πf(l+R̃t)
) if i = l + R̃t−1 + 1,

and t ∈ [2, h],

D(πi) if i ∈ [l + R̃h + 1, n].

Observe that:

(1) Σ(σl+1) = Σ(σl) +D(πl+1)−D(πl) = D(πl) +D(πl+1)−D(πl) = D(πl+1),

(2) i = l + R̃t−1 + 1⇐⇒ σi = SI
β̃t

, πf(l+R̃t−2+1) = SI
β̃t−1

and πf(l+R̃t)
= SR

β̃t
.

We show now that Σ is a valid distance drawing for G that induces σ as an
ordering. By contradiction, assume that there exists a triplet σi, σj , σk that breaks
Definition 2.1, for some values 1 ≤ i < j < k ≤ n. If the three elements of the
triplet do not belong to Sα, their positions according to Σ do not change. Therefore,
the distances between them do not change. Hence, they cannot violate Definition
2.1. On the other hand, if the three elements of the triplet belong to Sβt for some
1 ≤ t ≤ h, as we have seen in the previous paragraph, they maintain their distances.
Therefore, they cannot violate Definition 2.1.

Assume that only one element of the triplet belongs to Sα. For instance, σi ∈ Sα,
while σj /∈ Sα and σk /∈ Sα. On the other hand, assume that d(Σ(σi),Σ(σj)) ≥
d(Σ(σj),Σ(σk)), while w(σi, σj) > w(σj , σk). Since σi and σl+1 belong to Sα and
σj /∈ Sα, Equation (5.4) implies w(σl+1, σj) = w(σi, σj). Since, d(Σ(σl+1),Σ(σj)) ≥
d(Σ(σi),Σ(σj)), the triplet σl+1, σj , σk also breaks Definition 2.1.

Now,

d(Σ(σl+1),Σ(σj)) = Σ(σj)− Σ(σl+1) = D(πj)−D(πl+1)

= d(D(πl+1), D(πj)),

and

d(Σ(σj),Σ(σk)) = Σ(σk)− Σ(σj) = D(πk)−D(πj) = d(D(πj), D(πk)).

Therefore, d(D(πl+1), D(πj)) ≥ d(D(πj), D(πk)). On the other hand,

w(σl+1, σj) = w(πl+Rh−1+1, πj),

since σl = πl+Rh−1+1 and σj = πj . But, Equation (5.4) implies

w(πl+Rh−1+1, πj) = w(πl+1, πj),

since πl+Rh−1+1 and πl belong to Sα, and πj /∈ Sα. In conclusion,

w(πl+1, πj) = w(πl+Rh−1+1, πj) = w(σl, σj) > w(σj , σk) = w(πj , πk).

Hence, the triplet πl+1, πi, πk breaks Definition 2.1 in D, which is a contradiction
since D is valid distance. The analysis of all cases when one element of the triplet
belongs to Sα are equivalent to this analysis by showing that either σl+1, σj , σk or
σl+Rh

, σj , σk also breaks Definition 2.1. We omit them to simplify the presentation.
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Assume now that two elements of the triplet belong to Sα. Say σi and σj belong
to Sα, while σk does not belong to Sα. Assume as well that

d(Σ(σi),Σ(σj)) ≥ d(Σ(σj),Σ(σk)),

while w(σi, σj) > w(σj , σk).
Since σ is Robinson, we have that:

w(σl+1, σl+Rh
) ≥ w(σl+1, σj) ≥ w(σi, σj),

and

w(σj , σk) ≥ w(σl+Rh
, σk).

Therefore, w(σl+1, σl+Rh
) > w(σl+Rh

, σk). On the other hand,

d(Σ(σl+1),Σ(σl+Rh
)) ≥ d(Σ(σl+1),Σ(σj)) ≥ d(Σ(σi),Σ(σj))

and

d(Σ(σj),Σ(σk)) ≥ d(Σ(σl+Rh
),Σ(σk)).

Hence,

d(Σ(σl+1),Σ(σl+Rh
)) ≥ d(Σ(σl+Rh

),Σ(σk))

and the triplet σl+1, σl+Rh
, σk also breaks Definition 2.1. Now,

d(Σ(σl+1),Σ(σl+Rh
)) = Σ(σl+Rh

)− Σ(σl+1)

= D(πl+Rh
)−D(πl+1)

= d(D(πl+1), D(πl+Rh
)),

and

d(Σ(σl+Rh
),Σ(σk)) = Σ(σk)− Σ(σl+Rh

)

= D(πk)−D(πl+Rh
)

= d(D(πl+Rh
), D(πk)).

Therefore,

d(D(πl+1), D(πl+Rh
)) ≥ d(D(πl+Rh

), D(πk).

On the other hand, applying repeatedly Equation (5.4) we obtain:

w(πl+Rh
, πl+1) = w(σl+1, σl+Rh

)

> w(σl+Rh
, σk)

= w(πl+1, πk)

= w(πl+Rh
, πk).

Therefore, the triplet πl+1, πl+Rh
, πk breaks Definition 2.1. Which is a contradiction

because D is valid distance. The analysis of all cases when two elements of the
triplet belong to Sα are equivalent to this analysis. We omit them to simplify the
presentation.

Finally, assume that the three elements of the triplet belong to Sα. These three
vertices cannot all be in Sβ̃t

for any t since, in this case, the distances between
them according to Σ remain the same as in D. Therefore, they could not break
Definition (2.1). Assume that σi and σj belong to Sβ̃t

and σk belongs to Sβ̃p
with

1 ≤ p < t ≤ h. Assume as well that d(Σ(σi),Σ(σj)) ≥ d(Σ(σj),Σ(σk)), while
w(σi, σj) > w(σj , σk).
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It is worth noticing, that σ inverts the ordering of the children of α. Indeed,
using the relationship β̃t = βh−t+1, we have:

Sβ̃t
= {σl+R̃t−1+1, . . . , σl+R̃t

} = Sβh−t+1
= {πl+Rh−t+1, . . . , πl+Rh−t+1

}
and

Sβ̃p
= {σl+R̃p−1+1, . . . , σl+R̃p

} = Sβh−p+1
= {πl+Rh−p+1, . . . , πl+Rh−p+1

}
By Equation (5.4)

w(σi, σj) > w(σj , σk) = w(σk, σl+R̃t−1+1) = w(σl+R̃t−1+1, σl+R̃p
).

Since D is a valid drawing,

d(D(πi), D(πj)) < d(D(πl+Rh−t+1), D(πl+Rh−p+1
)).

Thus,

d(Σ(σi),Σ(σj)) = d(D(πi), D(πj)) < d(D(πl+Rh−t+1), D(πl+Rh−p+1
))

= d(Σ(σl+R̃t
),Σ(σl+R̃p−1+1)) ≤ d(Σ(σj),Σ(σk)),

which is a contradiction. The analysis of all cases when the three elements of the
triplet belong to Sα are equivalent to this analysis. We omit them for simplicity of
the presentation. �

Now, we show that any operation on a P -node of the PQ-tree maintains the
characteristic of having a valid distance drawing.

Lemma 5.4. Let G = (V,E) be a complete weighted graph, T be the PQ-tree that
represents all Robinson orderings of V , and α be a P -node of T . Let π and σ be
two Robinson orderings of V such that σ is obtained from π via a permutation of
the children of α. Then, π has a valid drawing if and only if σ has a valid drawing.

Proof. We use Lemma 5.3 in this proof, since this lemma is a particular case of the
previous lemma.

Let G, T , α, π, and σ be as in the statement of the lemma. Assume that π has a
valid drawing D. We will show that σ also has a valid drawing. It is worth noticing
that, as in the previous lemma, this sense of the equivalence is enough to show the
lemma.

The children of α can be P nodes, Q nodes or leaves. Without loss of generality,
we assume that all of them are P nodes or Q nodes, since a leaf can be seen as
a Q node with a single children that is the leaf. Let β1, β2, . . . , βh be α’s children
ordered according to π. It is enough for us to consider that σ is obtained via a
transposition of two consecutive children of α, since any permutation of Sα can be
expressed as a product of transpositions of consecutive elements in Sα. Let βt and
βt+1 be the two children to be transposed that produce σ. Now, let T ′ be a PQ-tree
obtained from T by replacing βt and βt+1 with a Q node that has as children βt
and βt+1. Now, it is worth noticing that T ′ encodes π and σ. Furthermore, Lemma
5.3 implies that if π has a valid drawing, then σ also has a valid drawing, and the
proof is completed. �

With these two lemmas together we can state the result.

Theorem 5.5. Let G = (V,E) be a complete weighted graph and π be any Robinson
ordering of V . If π has a valid drawing, all Robinson orderings of V have a valid
drawing.
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Since complete Robinsonian matrices can be recognized in time O(n2), it is
possible to construct the matrix M(G) in polynomial time when G is complete.
Therefore, we can state the following corollary.

Corollary 5.6. Let G be a complete weighted graph. Deciding whether G has a
valid drawing in R can be done in polynomial time. Moreover, a valid drawing for
G in R can be computed also in polynomial time if such drawing exists.

6. The Weighted SCFE Problem for Incomplete Weighted Graphs

The construction presented in the previous section can also be applied to in-
complete weighted graphs. The only requirement is that the matrix A is presented
as a Robinson matrix. Nevertheless, we will see in this section that, if the condi-
tion of being complete is not requested for the weighted graph, it is not possible
to determine in polynomial time whether its similarity matrix is Robinsonian or
not, unless P=NP. Despite this bad result, we present an exponential-time algo-
rithm to recognize incomplete Robinsonian matrices. Hence, once this recognition
has been done, we can apply the tools developed in the previous section to solve
the weighted SCFE problem. It is worth noticing that, in the case of incomplete
weighted graphs, we do not have a result equivalent to Theorem 5.5. Hence, we
cannot guarantee that after applying the methodology developed in the previous
section to incomplete weighted graphs, we will obtain a definitive answer.

Cygan et al. in [8] proved the NP-Completeness of the particular case of the
SCFE problem where the weight in the edges can only take values +1 or −1.
On the other hand, Kermarrec and Thraves proved in [12] the following theorem
rephrased in our own words.

Theorem 6.1. [Lemmas 3 and 4 in [12]] Let G = (V,E) be a weighted graph and
w : E → {+1,−1} be its weight function. Then, G has a valid distance drawing
in R if and only if there exists an ordering π of V that verifies the following two
conditions:

(1) For all i < j < k such that {πi, πk} and {πj , πk} belong to E,

w({πj , πk}) = −1 =⇒ w({πi, πk}) = −1.

(2) For all i < j < k such that {πi, πk} and {πi, πj} belong to E,

w({πi, πj}) = −1 =⇒ w({πi, πk}) = −1.

In other words, a weighted graph G = (V,E) with weights +1 or −1 has a valid
distance drawing in the line if and only if there exists an ordering π of V such
that Aπ(G) is Robinson. Hence, using these two results, we can state the following
corollary.

Corollary 6.2. Let G be an incomplete weighted graph and A(G) be its similarity
matrix. Deciding whether A(G) is Robinsonian or not is a NP-Complete problem.

Besides this negative result, Cygan et al. also proved in [8] the existence of a
constant C > 0 such that no algorithm solves the SCFE problem in the line in
time O(2C(n+m)), unless the Exponential Time Hypothesis1 (ETH) fails. There-
fore, we conclude that, under the assumption of the ETH, it is impossible to have

1The Exponential Time Hypothesis states that there exists a constant C > 0 such that no
algorithm solving the 3-CNF-SAT problem in O(2CN ) exists, where N denotes the number of

variables in the input formula.
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a subexponential-time algorithm that determines if the similarity matrix of an in-
complete weighted graph is Robinsonian.

On the positive side, using similar ideas to those presented in [8], we present an
exponential-time algorithm that decides if a given incomplete similarity matrix is
Robinsonian or not. We start with the following definition.

Definition 6.3. Let A be an incomplete n× n similarity matrix. Let {V,U} be a
bipartition of the set {1, 2, . . . , n}. We say that an element u ∈ U is good for V if
for all k ∈ V and p ∈ U

Aku 6= ∗ ∧ Akp 6= ∗ =⇒ Aku ≥ Akp,
and

Apu 6= ∗ ∧ Apk 6= ∗ =⇒ Apu ≥ Apk.

Now, we state the following result.

Lemma 6.4. Let A be an incomplete n× n similarity matrix. A is Robinsonian if
and only if there exists an ordering π = π1, π2, . . . , πn of the set {1, 2, . . . , n} such
that for every 1 ≤ j ≤ n− 1, the element πj+1 is good for {π1, . . . , πj}.

Proof. Let A be Robinsonian and π = π1, π2, . . . , πn be a Robinson ordering of its
rows and columns. Therefore, Aπ is Robinson. We show by contradiction that the
ordering π satisfies the conditions of the lemma. Assume for instance that the first
condition is broken for some 1 ≤ j ≤ n− 1. Therefore, there exists 1 ≤ k ≤ j and
j + 1 < p ≤ n such that: Aπkπj+1

6= ∗, Aπkπp
6= ∗, and Aπkπj+1

< Aπkπp
. Since,

Aπkπj+1
= Aπkj+1, Aπkπp

= Aπkp, and j + 1 < p, we obtain a contradiction with the
fact that Aπ is Robinson. A similar conclusion can be drawn if we assume that the
second condition of the lemma is broken for some 1 ≤ j ≤ n − 1. Therefore, the
necessary condition for A to be Robinsonian holds.

Assume now that there exists an ordering π = π1, π2, . . . , πn such that for every
1 ≤ j ≤ n − 1, the element πj+1 is good for the set {π1, . . . , πj}. We show that
Aπ is Robinson. Consider integers i and l such that 1 ≤ i < l ≤ n. Consider now
any integer j in [i, l]. Since the element πj is good for the set {π1, π2, . . . , πj−1},
the first condition of Definition 6.3 implies that if Aπij 6= ∗ and Aπil 6= ∗, then
Aπij ≥ Aπil. Equivalently, since the element πk is good for the set {π1, π2, . . . , πk−1},
if we consider an integer k ∈ [i, l], the second condition of Definition 6.3 implies
that if Aπkl 6= ∗ and Aπil 6= ∗, then Aπkl ≥ Aπil. Therefore, for any 1 ≤ i < l ≤ n and
j, k ∈ [i, l], we have that Aπil ≤ min{Aπij , Aπkl}. Hence, Aπ is Robinson. �

Finally, to determine if an incomplete similarity matrix A is Robinsonian we use
the algorithm presented in [8] which proceeds as follows: construct a directed graph
H = (S, F ) where the vertex set S is formed by all subsets of {1, 2, . . . , n}, and for
every X,Y ⊆ {1, 2, . . . , n} there exists an arc from X to Y if Y \X = {i} and i is
a good element for X. The arc (X,Y ) ∈ F is labeled by i. Thus, the existence of
an ordering π such that Aπ is Robinson is equivalent to the existence of a directed
path from a vertex that is a singleton of {1, 2, . . . , n} to the vertex {1, 2 . . . , n}.
The existence of such directed path in H can be determined in time O(n · 22n),
using repeatedly the single source shortest path algorithm presented in [24] for all
the n vertices representing a singleton. Furthermore, the Robinson ordering π is
determined by the ordering of the labels along that directed path.
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7. Final Remarks

Interestingly, in this work we show that the Seriation and the SCFE problems
are not the same. Nevertheless, there are cases in which they are equivalent. For
instance, an exhaustive analysis shows that if a weighted graph has at most four
vertices then its similarity matrix is Robinsonian if and only if it has a valid drawing
in R. Whereas, in the proof of Lemma 4.2, we present a weighted graph with five
vertices where seriation is not sufficient.

The Seriation and the SCFE problems are also equivalent if the number of dif-
ferent weights is not too big. Indeed, Theorem 6.1 states that when the weight
function can take only two values, seriation and the SCFE problem are equivalent.
Nevertheless, in the proof of Lemma 4.2, we exhibit an example of a weighted graph
with five different weights where seriation is not enough. This final remark rises
an interesting question, when this separation between the Seriation and the SCFE
problems occurs?. Is the Seriation problem equivalent to the SCFE problem when
the graph has four different weights?.

On the other hand, in Theorem 5.5 we have established that, when the weighted
graph is complete, if one Robinson ordering has a valid distance drawing, then
all Robinson orderings have one. Such a result is crucial to show that the SCFE
problem has a polynomial time algorithm when the input is a complete weighted
graph. To prove this Theorem, we use the fact that there is a PQ-tree that encodes
all Robinson orderings for a complete weighted graph. We do not have a result like
that for incomplete weighted graphs. Hence, it is not clear the existence of a result
for incomplete weighted graphs equivalent to Theorem 5.5. We believe that this is
a really interesting problem that remains open. Indeed, is it possible to encode all
Robinson Orderings for an incomplete weighted graph in a PQ-tree?.
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Universidad de Concepción, Chile.
Email address: cthraves@ing-mat.udec.cl


	1. Introduction
	2. Notation and Definitions
	3. Context, Related Work, and Our Contributions
	4. Robinson Orderings and Valid Distance Drawings
	5. The Weighted SCFE Problem in the line
	6. The Weighted SCFE Problem for Incomplete Weighted Graphs
	7. Final Remarks
	References

