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Abstract

Let G = (V,E) be a graph where V and E are the vertex and edge set, respectively. For two
disjoint subsets A and B, we say A dominates B if every vertex of B is adjacent to at least one vertex
of A. A vertex partition π = {V1, V2, . . . , Vk} of G is called a transitive k-partition if Vi dominates
Vj for all i, j where 1 ≤ i < j ≤ k. The maximum integer k for which the above partition exists is
called transitivity of G and it is denoted by Tr(G). The Maximum Transitivity Problem is to
find a transitive partition of a given graph with the maximum number of partitions. It was known
that the decision version of Maximum Transitivity Problem is NP-complete for general graphs,
which was proved by Hedetniemi et al. [Iterated colorings of graphs, Discrete Mathematics, 278,
2004]. This paper first strengthens the NP-completeness result by showing that this problem remains
NP-complete for perfect elimination bipartite graphs. On the other hand, we propose a linear-time
algorithm for finding the transitivity of a given bipartite chain graph. We then characterize graphs
with transitivity at least t for any integer t. This result answers two open questions posed by J. T.
Hedetniemi and S. T. Hedetniemi [The transitivity of a graph, J. Combin. Math. Combin. Comput,
104, 2018].

Keywords. Transitivity, NP-completeness, Linear algorithm, Perfect elimination bipartite graph,
Bipartite chain graphs

1 Introduction

Let G = (V,E) be a graph where V and E are the vertex and edge set, respectively. The neighbourhood
of a vertex v ∈ V is the set of all adjacent vertices of v and is denoted as N(v). The degree of a vertex,
denoted as d(v), is the number of edges incident to v. A vertex v is said to dominates itself and all its
neighbouring vertices. A dominating set of G = (V,E) is a subset of vertices D such that every vertex
x ∈ V \D has a neighbour y ∈ D, i.e., x is dominated by some vertex y of D. For two disjoint subsets
A and B, we say A dominates B if every vertex of B is adjacent to at least one vertex of A. Over the
past few decades, researchers have studied graph partitioning problem where the goal is to partition the
vertex set (or edge set) into some parts with desired properties, such as independence, having minimum
edges across partite sets etc. In this paper, we have studied a special type of graph partitioning problem.
We are interested in partitioning the vertex set into some parts such that the partite sets follow different
types of domination properties.

Cockayne and Hedetniemi, in 1977, introduced the notion of domatic partition of a graph G = (V,E)
where the vertex set is partitioned into k parts, say π = {V1, V2, . . . , Vk}, such that each Vi is a dominating
set of G [CH77]. The maximum order of such a domatic partition is called domatic number of G and
it is denoted by d(G). Another similar type of partitioning problem is Grundy coloring. Christen and
Selkow introduced Grundy coloring of a graph G = (V,E) in 1979 [CS79]. In Grundy coloring problem,
the vertex set is partitioned into k parts, say π = {V1, V2, . . . , Vk}, such that each Vi is an independent
set and for all 1 ≤ i < j ≤ k, Vi dominates Vj . The maximum order of such a domatic partition is called
Grundy number of G and it is denoted by Γ(G). In 2004, S. M. Hedetniemi et al. introduced another
such partitioning problem, namely upper iterated domination partition[EHLP03]. In an upper iterated
domination partition, the vertex set is partitioned into k parts, say π = {V1, V2, . . . , Vk}, such that for
each 1 ≤ i ≤ k, Vi is a minimal dominating set of G \ (∪i−1j=1Vj). The upper iterated domination number,
denoted by Γ∗(G), is equals to the maximum order of such a vertex partition. Recently, in 2018, Haynes
et al. generalized the idea of domatic partition and introduced the concept of upper domatic partition of
a graph G where the vertex set is partitioned into k parts, say π = {V1, V2, . . . , Vk}, such that for each
i, j, 1 ≤ i < j ≤ k, either Vi dominates Vj or Vj dominates Vi or both [HHH+20]. The maximum order of
such a upper domatic partition is called upper domatic number of G and it is denoted by D(G). All these
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problem, domatic number [Cha94, Zel80, Zel83], Grundy number [Zak05, Zak06, FGSS08, HHB82, Eff17],
upper iterated number [EHLP03], upper domatic number [HHH+20] have been extensively studied both
from algorithmic and structural point of view.

In this article, we have studied a similar graph partitioning problem, namely transitive partition.
In 2018, J. T. Hedetniemi and S. T. Hedetniemi [HH18] introduced this notion as a generalization of
Grundy coloring. A transitive k-partition is defined as a partition of the vertex set into k parts, say
π = {V1, V2, . . . , Vk}, such that for all 1 ≤ i < j ≤ k, Vi dominates Vj . The maximum order of such a
transitive partition is called transitivity of G and is denoted by Tr(G). The Maximum Transitivity
Problem and its correcponding decision version is defined as follows:

Maximum Transitivity Problem(MTP)
Instance: A graph G = (V,E)
Solution: A transitive partition of G
Measure: Order of the transitive partition of G

Maximum Transitivity Decision Problem(MTDP)
Instance: A graph G = (V,E), integer k
Question: Does G have a transitive partition of order at least k?

Note that a Grundy coloring is a transitive partition with addition restriction that each partite set must
be independent. In a domatic partition π = {V1, V2, . . . , Vk} of G, since each partite sets are dominating
sets of G, we have domination property in both directions, i.e., Vi dominates Vj and Vj dominates Vi
for 1 ≤ i < j ≤ k. Whereas in a transitive partition π = {V1, V2, . . . , Vk} of G, we have domination
property in one direction, i.e., Vi dominates Vj for 1 ≤ i < j ≤ k. In a upper domatic partition
π = {V1, V2, . . . , Vk} of G, for 1 ≤ i < j ≤ k, either Vi dominates Vj or Vj dominates Vi or both. The
definition of each vertex partitioning problem ensures the following inequality for any graph G. For any
graph G, 1 ≤ d(G) ≤ Γ(G) ≤ Γ∗(G) ≤ Tr(G) ≤ D(G) ≤ n.

In the introductory paper, J. T. Hedetniemi and S. T. Hedetniemi [HH18] showed that the transitivity
of a graph G bounded by ∆ + 1, where ∆ maximum degree of G. They also proved a necessary and
sufficient condition for graphs with Tr(G) = 2 and graphs with Tr(G) ≥ 3. They further showed that
transitivity and Grundy number are the same for trees. Therefore, the linear time algorithm for finding
the Grundy number of a tree, presented in [HHB82], implies that we can find the transitivity of a tree in
linear time as well. Moreover, for any graph, transitivity is equal to upper iterated domination number
[HH18], and the decision version of the upper iterated domination problem is known to be NP-complete
[HHM+04]. Therefore, MTDP is NP-complete for chordal graphs. It is also known that every connected
graph G with Tr(G) ≥ 4 has a transitive partition π = {V1, V2, . . . , Vk} such that |Vk|=|Vk−1| = 1 and
|Vk−i| ≤ 2i−1 for 2 ≤ i ≤ k − 2 [HHH+17]. This implies that MTP is fixed-parameter tractable.

In this paper, we study the computational complexity of the transitivity problem and also prove a
few structural results. The main contributions are summarized below:

1. We show that MTDP is NP-complete for bipartite graphs. As the resultant graph in the polynomial
reduction is a perfect elimination bipartite graph, MTDP remains NP-complete for this important
subclass of bipartite graphs.

2. We prove that finding transitivity of a given bipartite chain graph G is the same as finding the
maximum index t such that G contains either Kt,t or Kt,t−{e} as an induced subgraph. We design
a linear time algorithm for MTP in a bipartite chain graph based on this fact.

3. In [HH18], the authors posed two open problems of characterizing graphs with Tr(G) ≥ 4 and
graphs with Tr(G) = 3. We solve these open problems by giving a general characterization of
graphs with Tr(G) ≥ t, for any integer t.

The rest of the paper is organized as follows. In Section 2, we present the NP-completeness of MTDP
for perfect elimination bipartite graphs. Then in Section 3, we design a linear time algorithm for MTP
in bipartite chain graphs. Section 4 deals with characterization of graphs with Tr(G) for any integer t.
Finally, Section 5 concludes the paper.
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2 NP-complete for bipartite graphs

In this section, we show that Maximum Transitivity Decision Problem is NP-complete for
bipartite graphs. Clearly, this problem is in NP. We prove the NP-completeness of this problem by
showing a polynomial time reduction from Proper 3-Coloring Decision Problem in graphs. A
proper k-colring of a graph G = (V,E) is a funtion g, from V to {1, 2, 3, . . . , k} such that g(u) 6= g(v) for
any edge uv ∈ E. The Proper 3-Coloring Decision Problem is defined as follows:
Proper 3-Coloring Decision Problem
Instance: A graph G = (V,E)
Question: Does there exist a proper 3-coloring of V ?

The Proper 3-Coloring Decision Problem is known to be NP-complete [GJ90]. Given an
instance of Proper 3-Coloring Decision Problem, say G = (V,E), we construct an instance of
MTDP. The construction is as follows:
Construction: Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.

1 For each vertex vi ∈ V , we consider two paths of length three, Pvi = {xi, wi, vi, zi} and P ′vi =
{x′i, w′i, v′i, z′i} in G′, where xi and zi are the pendant vertices of Pvi and x′i and z′i are the pendant
vertices of P ′vi . Similarly, for each edge ej ∈ E, we consider two paths of length three, Pej =
{xej , wej , vej , zej} and P ′ej = {x′ej , w

′
ej , v

′
ej , z

′
ej} in G′. Next consider six more paths of length

three, Pa = {xa, wa, va, za}, P ′a = {x′a, w′a, v′a, z′a}, Pb = {xb, wb, vb, zb}, P ′b = {x′b, w′b, v′b, z′b},
Pe = {xe, we, ve, ze} and P ′e = {x′e, w′e, v′e, z′e} in G′.

2 For each edge ej ∈ E, we take two vertices, ej and e′j in G′ and also we take two extra vertices e and
e′ in G′. Let A = {e1, e2, . . . , em, e} and B = {e′1, e′2, . . . , e′m, e′}. We make a complete bipartite
graph with vertex set A ∪B.

3 Next we add the following edges: for every edge ek = (vi, vj) ∈ E, we join the edges (vi, ek), (vj , ek),
(vek , ek), (v′i, e

′
k), (v′j , e

′
k) and (v′ek , e

′
k). Also we add the edges (va, e), (vb, e), (ve, e), (v′a, e

′), (v′b, e
′)

and (v′e, e
′).

4 Finally, we set k = m+ 5.

From the above construction, it is clear that the graph G′ = (V ′, E′) consists of 10m+8n+26 vertices
and m2 + 14m+ 6n+ 25 edges. The construction is illustrated in Figure 1.

Now we show that G has a proper 3-coloring if and only if G′ has a transitive k-partition. For the
forward direction, we have the following lemma.

Lemma 1. If G = (V,E) has a proper 3-coloring, then G′ = (V ′, E′) has a transitive k-partition.

Proof. Given a proper 3-coloring g from V to {1, 2, 3}, a partition π = {V1, V2, . . . , Vm+5} of the vertices
of G′ can be obtained in the following ways:

• If g(vi) = q in G, then vi, v
′
i ∈ Vq and we put va, v

′
a ∈ V1, and vb, v

′
b ∈ V2.

• For an edge ek = (vi, vj) in G, we put vek , v
′
ek
∈ Vl, where l = {1, 2, 3}\{g(vi), g(vj)}. Also, we put

ve, v
′
e ∈ V3. The other vertices of all P4 and P ′4, i.e. {x,w, z} and {x′, w′, z′}, are put to a partition

based on the partition of v or v′, respectively as shown in Figure 2.

• Lastly, we put ej , e
′
j ∈ V3+j , for all 1 ≤ j ≤ m, and e ∈ Vm+4, e′ ∈ Vm+5.

Now we show that the above process produces a transitive k-partition π = {V1, V2, . . . , Vm+5} of G′.
Let H be the complete bipartite graph induced by A ∪ B. Since H is a complete bipartite graph, then
Vi dominates Vj for 4 ≤ i < j ≤ m + 5. Also each vertex from A ∪ B is adjacent to a vertex from each
V1, V2 and V3. Hence Vi dominates Vt, for all i = 1, 2, 3 and t > 3. Also from Figure 2, it is clear that Vi
dominates Vj for 1 ≤ i < j ≤ 3. Therefore, π is a transitive k-partition of G′.

The following lemma shows that the converse of the statement is also true.

Lemma 2. If G′ has a transitive k-partition, then G has a proper 3-coloring.

Proof. Let π = {V1, V2, . . . , Vk} be a transitive k-partition of G′. By Proposition 11 of [HH18], we know
that π can be transformed into π′ = {V ′1 , V ′2 , . . . , V ′k}, such that |V ′k| = |V ′k−1| = 1. So, without loss of
generality, let us assume G has a transitive k-partition π = {V1, V2, . . . , Vk}, such that |Vk| = |Vk−1| = 1.
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Claim 3. In the transitive k-partition π, the partitions {V1, V2, V3} contain only vertices from V ′\(A∪B)
and the partitions {V4, V5, . . . Vk} contain only vertices from A ∪B.

Proof. We divide the proof into the following four cases based on the partition of e and e′:

Case 1. e ∈ Vm+5 and e′ ∈ Vm+4

Note that {va, vb, ve} cannot be in Vp for p ≥ 4 because in that case e would be in V3. Similarly,
{v′a, v′b, v′e} cannot be in Vp for p ≥ 4 as well. Therefore, the vertices from {va, vb, ve} and {v′a, v′b, v′e}
belong to Vp for 1 ≤ p ≤ 3. To dominate e and e′, the vertices from {e′1, e′2, . . . , e′m} and {e1, e2, . . . , em}
must belong to {V4, V5, . . . , Vm+3}, respectively. Moreover, for 4 ≤ i ≤ m + 3, each Vi contains exactly
one vertex from {e′1, e′2, . . . , e′m} to dominate e and exactly one vertex from {e1, e2, . . . , em} to domi-
nate e′. Hence, the vertices of A ∪ B belong to {V4, V5, . . . Vm+5}. Note that none of the vertices from
{v1, v2, . . . , vn, v′1, v′2, . . . , v′n, ve1 , ve2 , . . . , vem , v′e1 , v

′
e2 , . . . , v

′
em} can belong to Vp for p ≥ 4 because other-

wise there exists a vertex in A ∪ B which belongs to V3. Since degree of every other vertices is at most
2, they cannot belong to Vp for p ≥ 4. Hence, {V4, V5, . . . Vk} contain only vertices from A ∪ B and
{V1, V2, V3} contain only vertices from V ′ \ (A ∪B).

Case 2. e ∈ Vm+5 and e′ /∈ Vm+4

Using similar arguments as in the previous case, we know that vertices from {va, vb, ve} belong to Vp
for 1 ≤ p ≤ 3 and the vertices from {e′1, e′2, . . . , e′m, e′} belong to {V4, V5, . . . , Vm+3, Vm+4} to dominate e.
Moreover, every Vi for 4 ≤ i ≤ m+4 contains exatly one vertex from {e′1, e′2, . . . , e′m, e′}. Since the vertices
from {e′1, e′2, . . . , e′m, e′} belong to {V4, V5, . . . , Vm+3, Vm+4}, no vertex from {v′1, v′2, . . . , v′n, v′e1 , v

′
e2 , . . . , v

′
em ,

v′a, v
′
b, v
′
e} can be in Vp for p ≥ 4. As e′ /∈ Vm+4, there exist a vertex from {e′1, e′2, . . . , e′m}, say e′j such that

e′j ∈ Vm+4. To dominate e′j , the vertices from {e1, e2, . . . , em} belong to {V4, V5, . . . , Vm+3}. With similar
arguments as in previous case, we know that every vertex of {v1, v2, . . . , vn, ve1 , ve2 , . . . , vem} belong to
Vp for 1 ≤ p ≤ 3. Hence, {V4, V5, . . . Vk} contain only vertices from A ∪ B and {V1, V2, V3} contain only
vertices from V ′ \ (A ∪B).

Case 3. e /∈ Vm+5 and e′ ∈ Vm+4

Using similar arguments as in Case 1, we know that the vertices from {v′a, v′b, v′e} belong to Vp
for 1 ≤ p ≤ 3 and the vertices from {e1, e2, . . . , em, e} belong to {V4, V5, . . . , Vm+3}. As e /∈ Vm+5,
there exist a vertex from {e1, e2, . . . , em}, say ej such that ej ∈ Vm+5. Therefore, the vertices from
{e1, e2, . . . , em, e} belong to {V4, V5, . . . , Vm+3, Vm+5}. Moreover, every Vi for 4 ≤ i ≤ m + 5 with
i 6= m+4, contains exatly one vertex from {e1, e2, . . . , em, e}. Since the vertices {e1, e2, . . . , em, e} belong
to {V4, V5, . . . , Vm+3, Vm+5}, no vertex from {v1, v2, . . . , vn, ve1 , ve2 , . . . , vem , va, vb, ve} can be in Vp for
p ≥ 4. Since ej ∈ Vm+5, the vertices from {e′1, e′2, . . . , e′m} must belong to {V4, V5, . . . , Vm+3} to dominate
ej . With similar arguments as in Case 1, we know that every vertex of {v′1, v′2, . . . , v′n, v′e1 , v

′
e2 , . . . , v

′
em}

belong to Vp for 1 ≤ p ≤ 3. Hence, {V4, V5, . . . Vk} contain only vertices from A ∪ B and {V1, V2, V3}
contain only vertices from V ′ \ (A ∪B).

Case 4. e /∈ Vm+5 and e′ /∈ Vm+4

Since the degree of each vertex of V ′ \ (A∪B) is at most m+2, they cannot belong to Vm+4 or Vm+5,
i.e., only verties from A∪B can be in Vm+4 or Vm+5. Also since we can interchange the vertices between
Vm+4 and Vm+5 in the transitive partition, without loss of generality, we can assume that e1 ∈ Vm+5

and e′s ∈ Vm+4 in the transitive k-partition of G′. Also, let e1 be the edge between v1 and v2 in G and
in the transitive k-partition of G′, v1 ∈ Vl and v2 ∈ Vt where l ≥ t. First we show that every vertex of
the form v′r belong to a partition Vp such that p ≤ l. Because otherwise if v′r ∈ Vl+i For some i ≥ 1,
then each of V3, V4, . . . , Vl+i−1 contains at least one vertex from B \ {e′s}. Also, to dominate e1, each
of {Vl+1, . . . , Vm+3} contains at least one vertex from B \ {e′s}. This implies that each of the (m + 1)
partitions, {V3, V4, . . . , Vm+3}, contains one vertex from the set of m vertices, B\{e′s}, which is impossible.
Next we show that the vertex e belong to a partition Vt such that t ≥ l+ 1. This is because to dominate
e′s, each of {Vl+1, . . . , Vm+3} contains at least one vertex from A \ {e1}. Also, since v1 ∈ Vl, then each of
{V3, V4, . . . , Vl−1} contains at least one vertex from A \ {e1, e}. Therefore, e belong to a partition Vt such
that t ≥ l+ 1. Next we show that l ≤ 3. Since degree of e1 is m+ 4, each of its neighbours should belong
to exactly of the the partitions {V1, V2, . . . Vm+4}. Moreover, since v1 ∈ Vl, no vertex from B can be in Vl.
Also, no vertex of {va, vb, ve} belongs to Vl as l ≥ 4. Hence, none of the neighbours of e belong to Vl. But
e belongs to a partition Vt where t ≥ l + 1. Therefore, Vl cannot dominate Vt, which is a contradiction.
Now, l ≤ 3 implies that the vertices of B belong to {V4, V5, . . . , Vm+4} and Moreover, each of these
partitions contains exatly one vertex from B. And since the vertices of B belong to {V4, V5, . . . , Vm+4},
the vertices of {v′1, v′2, . . . , v′n, v′e1 , v

′
e2 , . . . , v

′
em , v

′
a, v
′
b, v
′
e} belongs to some partition Vp for some p ≤ 3.

As e′s ∈ Vm+4, to dominate e′s, the vertices from A \ {e1} belong to {V4, V5, . . . , Vm+3}. With similar
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arguments as in Case 1, we know that each vertex of {v1, v2, . . . , vn, ve1 , ve2 , . . . , vem , va, vb, ve} belong to
Vp for some p ≤ 3. Hence, {V4, V5, . . . Vk} contain only vertices from A∪B and {V1, V2, V3} contain only
vertices from V ′ \ (A ∪B).

Therefore, for all the cases, the partitions {V1, V2, V3} contain only vertices from V ′ \ (A∪B) and the
partitions {V4, V5, . . . Vk} contain only vertices from A ∪B.

Now let us define the mapping g from V to {1, 2, 3}. We set g(vi) = p, if vi is in the partition Vp in
G′. By the previous claim, the mapping is well-defined. Let ek = (vi, vj) be an edge in G. By Claim
3, in G′ the vertex ek belongs to some partition Vt where t ∈ {4, 5, . . . , k}. Moreover, since none of
the vertices of A ∪ B belongs to V1, V2 or V3, the vertices vi, vj and vek must belong to three different
partitions among V1, V2, V3. Hence, vi and vj belong to different partitions among V1, V2, V3. This imples
that g(vi) 6= g(vj). Therefore g defines a proper 3-coloring in G.

Hence, we have the following theorem.

Theorem 4. The Maximum Transitivity Decision Problem is NP-complete for bipartite graphs.

An edge uv in a bipartite graph G is called bisimplicial if N(u) ∪N(v) induces a biclique in G. For
an edge ordering (e1, e2, . . . , ek), let Si be the set of endpoints of {e1, e2, . . . , ei} and S0 = ∅. An ordering
(e1, e2, . . . , ek) is a perfect edge elimination ordering for a bipartite graph G = (V,E) if G[V \ Si] has no
edges and each edge ei is a bisimplicial edge in G[V \ Si]. A graph G is a perfect elimination bipartite
if and only if it admits a perfect edge elimination ordering [GG78]. Note that, the construction implies
that G′ in a perfect elimination bipartite graph. If we consider all the pendant edges of G′ in any order
and after that a matching of the complete subgraph H, then these edges form a perfect edge elimination
ordering of G′. Therefore, we have the following corollary.

Corollary 5. The Maximum Transitivity Decision Problem remains NP-complete for perfect elim-
ination bipartite graphs.

3 Transitivity in bipartite chain graph

In this section, we design a linear time algorithm to solve the transitivity of a given bipartite chain
graph. A bipartite graph G = (X ∪ Y,E) is called a bipartite chain graph if there exist an ordering of
vertices of X and Y , say σX = (x1, x2, . . . , xm) and σY = (y1, y2, . . . , yn), such that N(xm) ⊆ N(xm−1) ⊆
. . . ⊆ N(x2) ⊆ N(x1) and N(yn) ⊆ N(yn−1) ⊆ . . . ⊆ N(y2) ⊆ N(y1). This ordering of X and Y is called
a chain ordering. A chain ordering of a bipartite chain graph can be computed in linear time [HK07]. To
design the algorithm, we first prove that if t is the maximum integer such that G contains either Kt,t or
Kt,t − {e} as an induced subgraph, then Tr(G) = t + 1. After that, we design an algorithm for finding
maximum integer t such that G contains either Kt,t or Kt,t − {e} as an induced subgraph.

Lemma 6. Let G = (X ∪ Y,E) be a chain graph and t be the maximum integer such that G contains
either Kt,t or Kt,t − {e} as an induced subgraph, then Tr(G) = t+ 1.

Proof. Suppose t is the maximum integer such that G = (X ∪ Y,E) contains either Kt,t or Kt,t − {e} as
an induced subgraph. In this case, Tr(G) ≥ t+ 1 because transitivity of Kt,t or Kt,t−{e} is t+ 1. Next,
we show that Tr(G) cannot be greater than t+ 1 by proving the following claim.

Claim 7. If Tr(G) = m + 1, then G = (X ∪ Y,E) contains either Km,m or Km,m − {e} as an induced
subgraph.

Proof of Claim 7. To prove this claim, we use induction on m. For m = 1, i.e., Tr(G) = 2, by the
Proposition 5 of [HH18], G contains at least one edge. This implies that G contains K1,1 as an induced
subgraph. Also, for m = 2, i.e., Tr(G) = 3, G contains either an induced C3, an induced P4 or an induced
C4 by the Proposition 7 of [HH18]. Since G is a bipartite chain graph, it cannot contain C3. Therefore
G contains either P4, i.e., K2,2 − {e} or C4, i.e., K2,2 as an induced subgraph.

By induction hypothesis let us assume that the claim is true for any graph G with Tr(G) < m + 1.
Let G be a bipartite chain graph with Tr(G) = m + 1. Also let {V1, V2, . . . , Vm+1} be a transitive
(m + 1)-partition of G. Let G′ = G[V2 ∪ V3 ∪ . . . ∪ Vm+1] and so Tr(G′) = m. By induction hypothesis
G′ contains either Km−1,m−1 or Km−1,m−1 − {e} as an induced subgraph. Let X ′ = {x1, x2, . . . , xm−1}
and Y ′ = {y1, y2, . . . , ym−1} be two sets such that G′[X ′ ∪ Y ′] is either Km−1,m−1 or Km−1,m−1 − {e},
where e = xiyj for some i and j in {1, 2, . . . ,m − 1}. Now, in G, since V1 dominates Vj , for all j ≥ 2,
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V1 contains at least one vertex from X and also at least one vertex from Y . Let {xl1 , xl2 , . . . , xls} and
{yk1

, yk2
, . . . , ykt

} be the vertices in V1 fromX and Y respectively. SinceG is a bipartite chain graph, there
exist xp ∈ {xl1 , xl2 , . . . , xls} and yq ∈ {yk1

, yk2
, . . . , ykt

} such that N(xp) ⊇ N(x) for all x ∈ {xl1 , . . . , xls}
and N(yq) ⊇ N(y) for all y ∈ {yk1 , yk2 , . . . , ykt}. Therefore, xp dominates {y1, y2, . . . , ym−1} and yq
dominates {x1, x2, . . . , xm−1}. Now, if G′[X ′ ∪ Y ′] is Km−1,m−1, then clearly {x1, x2, . . . , xm−1, xp} and
{y1, y2, . . . , ym−1, yq} induces either a Km,m or a Km,m − {e} in G depending on whether the edge xpyq
is in G or not. On the other hand, if G′[X ′ ∪ Y ′] is Km−1,m−1 − {e}, where e = xiyj for some i
and j in {1, 2, . . . ,m − 1}. In this case also, we can argue in a similar way that there exist xp ∈ V1
and yq ∈ V1, such that xp dominates {y1, y2, . . . , ym−1} and yq dominates {x1, x2, . . . , xm−1}. Since
G is a bipartite chain graph, either N(xp) ⊆ N(xi) or N(xp) ⊇ N(xi). If N(xp) ⊆ N(xi), then
{y1, y2, . . . , yj , . . . , ym−1} ⊆ N(xp) ⊆ N(xi), which implies yj ∈ N(xi). This implies that xiyj ∈ E, which
is a contradiction. Also if N(xp) ⊇ N(xi), then {y1, y2, . . . , yj−1, yj+1, . . . , ym−1, yq} ⊆ N(xi) ⊆ N(xp),
which implies xpyq ∈ E. Therefore, G[X ′∪Y ′∪{xp, yq}] induces an Km,m−{e}. Hence, if Tr(G) = m+1,
then G = (X ∪ Y,E) contains either Km,m or Km,m − {e} as an induced subgraph.

From the above claim, it follows that m > t contradicts the maximality of t. Hence Tr(G) = t+1.

Next we present an algorithm to find the maximum integer t, such that a bipartite chain graph G
contains either Kt,t or Kt,t −{e} as an induced subgraph. We show that if t is the maximum index such
that G contains either Kt,t or Kt,t−{e} as an induced subgraph, then first t vertices of the chain ordering
from each partite set induces Kt,t or Kt,t − {e}.

Lemma 8. Let G = (X ∪ Y,E) be a bipartite chain graph and t be the maximum integer such that G
contains either Kt,t or Kt,t−{e} as an induced subgraph, then G[Xt∪Yt] = Kt,t or G[Xt∪Yt] = Kt,t−{e},
where Xt = {x1, x2, . . . , xt} and Yt = {y1, y2, . . . , yt} for all t ≤ min{m,n}.

Proof. First let us assume that t is the maximum integer such that G contains a Kt,t, i.e., there exist
X ′ ⊆ X and Y ′ ⊆ Y such that G[X ′ ∪Y ′] = Kt,t. If X ′ = Xt and Y ′ = Yt, then we are done. Otherwise,
one of the following cases are true:

Case 1. X ′ 6= Xt and Y ′ 6= Yt

Since X ′ 6= Xt, there exist p and q with p < q such that xp /∈ X ′, xq ∈ X ′ and xp ∈ Xt, xq /∈ Xt

and since Y ′ 6= Yt, there exist i and j with i < j such that yi /∈ Y ′, yj ∈ Y ′ and yi ∈ Yt, yj /∈ Yt. Since
i < j, we have N(yi) ⊇ N(yj) and since yj ∈ Y ′ and G[X ′ ∪ Y ′] is a complete bipartite graph, we have
N(yj) ⊇ X ′. Therefore, N(yi) ⊇ X ′. Similarly, we have N(xp) ⊇ Y ′. Moreover, since yi ∈ N(xq) and
N(xq) ⊆ N(xp), we have xpyi ∈ E. Therefore, G[X ′∪Y ′∪{xp, yi}] induces a Kt+1,t+1 which contradicts
the maximality of t.

Case 2. X ′ = Xt and Y ′ 6= Yt

Since Y ′ 6= Yt, with similar arguments as above, we have N(yi) ⊇ X ′. This implies that G[Xt∪Y ′′] =
Kt,t, where Y ′′ = (Y ′ − {yj}) ∪ {yi}. Note that Y ′′ has one more vertex common in Yt than Y ′. So
repeating this process, we finally have G[Xt ∪ Yt] = Kt,t.

Case 3. X ′ 6= Xt and Y = Yt

Since X ′ 6= Xt, with similar arguments, we have N(xp) ⊇ Y ′. This implies that G[X ′′ ∪ Yt] = Kt,t,
where X ′′ = (X ′−{xq})∪{xp}. Note that X ′′ has one more vertex common in Xt than X ′. So repeating
this process, we finally have G[Xt ∪ Yt] = Kt,t.

Hence, if t is the maximum integer such that G contains a Kt,t, then G[Xt ∪ Yt] = Kt,t.
Next, we assume that t is the maximum integer such that G contains a Kt,t − {e} but not a Kt,t.

This implies that t − 1 is the maximum integer such that G contains Kt−1,t−1. So, by the previous
result, G[Xt−1, Yt−1] = Kt−1,t−1. We show that G[Xt ∪ Yt] = Kt,t − {e}. Note that N(xt) contains all
the vertices from the set {y1, y2, . . . , yt−1}. This is because if there exists yi ∈ {y1, y2, . . . , yt−1} such
that yi /∈ N(xt), then yi /∈ N(xj) for all j > t. This implies that {xt, xt+1, . . . , xm} /∈ N(yi). Therefore
{xt, xt+1, . . . , xm} /∈ N(yj), for all j > i. Hence, G cannot contain Kt,t−{e}. Similarly, N(yt) contains all
the vertices from the set {x1, x2, . . . , xt−1}. Also, note that xtyt /∈ E because otherwise G[Xt∪Yt] = Kt,t,
which is a contradiction. Hence, in this case, G[Xt ∪ Yt] = Kt,t − {e}.

Hence, if t is the maximum integer such that G contains either Kt,t or Kt,t − {e} as an induced
subgraph, then G[Xt ∪ Yt] = Kt,t or G[Xt ∪ Yt] = Kt,t − {e}.
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Algorithm 1 MaxIndex(G)

1: Input: A bipartite chain graph G = (X ∪ Y,E) with X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
such that N(xm) ⊆ N(xm−1) ⊆ . . . ⊆ N(x2) ⊆ N(x1) and N(yn) ⊆ N(yn−1) ⊆ . . . ⊆ N(y2) ⊆ N(y1).

2: Output: Maximum t such that G contains either a Kt,t or a Kt,t − {e} as an induced subgraph.
3: i← 1, t← 0
4: while xiyi ∈ E do
5: i = i+ 1
6: end while
7: j ← i
8: if xjyj−1 ∈ E & xj−1yj ∈ E then
9: t← j [G contains Kt,t − {e}]

10: else
11: t← j − 1 [G contains Kt,t]
12: end if
13: return (t)

The following algorithm finds the maximum integer t such that G contains either Kt,t or Kt,t − {e}
as induced subgraph.

Since the condition in line 8 can be checked in constant time, the above algorithm runs linearly. Hence
we have the following theorem.

Theorem 9. The transitivity of a bipartite chain graph can be computed in linear time.

4 Characterization of graphs with Tr(G) ≥ t

In [HH18], the authors showed that the transitivity of a graph G is greater or equal to 3 if and only if
G contains either K3 or an induced P4 or an induced C4. They also posed the following open questions:

Question 1. What is a necessary and sufficient condition for a graph G to have Tr(G) ≥ 4?
Question 2. What is a necessary and sufficient condition for a graph G to have Tr(G) = 3?

In this section, we present a necessary and sufficient condition for a graph G to have Tr(G) ≥ t, for any
integer t. As a consequence of this result, we get a necessary and sufficient condition for a graph G to
have Tr(G) = 3.

Our characterization of graphs with Tr(G) ≥ t is based on the result of M. Zakar, which characterizes
the graphs with a Grundy number greater equal to t. Zakar introduced the notion of a t-atom and proved
that Γ(G) ≥ t if and only if G contains (with respect to the cannonical partition) a t-atom [Zak06]. In
transitivity, we show that the characterization can be done with subgraph containment relation. For the
sake of completeness, we state the definition of t-atom in this article.

Definition 10 ([Zak06] ). A t-atom is defined in a recursive way as follows:

• The only 1-atom is K1.

• The only 2-atom is K2.

• Let H = (V,E) be any (t− 1)-atom with n vertices. Consider an independent set Kr on r vertices
for any r ∈ {1, 2, . . . n}. For that fixed r, consider a r vertex subset W of V and draw a perfect
matching between the vertices of Kr and W . Then join an edge between each vertex of V \W and
an (and to only one) arbitrary vertex of Kr. The resultant graph G is a t-atom.

Let At denote the class of t-atoms. The following figure illustrates the construction of all 3-atom.
Next, we prove the main theorem of this section, which characterizes the graphs with transitivity

greater or equal to tfor any integer t.

Theorem 11. For an integer t, the transitivity of a graph G is greater or equal to t if and only if G
contains a t-atom as a subgraph.

Proof. Suppose G contains a t-atom, say H, as a subgraph. We show, by induction that the transitivity of
H is at least t. Clearly, transitivity of K1 and K2 are 1 and 2, respectively. Let the t-atom be constructed
from a (t− 1)-atom, say H ′, and an independent set Kr. By induction hypothesis, Tr(H ′) = t− 1. Let
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K1

H

K2

H

A3 = {K3, P4}

Figure 3: Construction of all 3-atoms from 2-atom

us assume that {U1, U2, . . . , Ut−1} is a transitive (t− 1)-partition of H ′. By the definition of t-atom, Kr

is a dominating set of H ′. Therefore, {Kr, U1, U2, . . . , Ut−1} forms a transitive t-partition of H. Hence,
the transitivity of H is at least t. Since H is a subgraph of G, then Tr(G) ≥ Tr(H) ≥ t.

Conversely, let us assume that the transitivity of G = (V,E) is greater or equal to t. Therefore, G
has a transitive t-partition [HH18]. Let {V1, V2, . . . , Vt} be a transitive t-partition of G. Once again ,
by induction, we show that G contains a t-atom. For the base case t = 1, the statement is trivially
true. Note that transitivity of G′ ≥ t− 1, where G′ = G \ {V1}. By induction hypothesis, G′ contains a
(t− 1)-atom, say H = (VH , EH). Now, V1 is a dominating set of G, therefore V1 dominates every vertex
of VH . Let us consider a subset of vertices B ⊆ V1 such that B dominates every vertex of VH and |B| ≤
|VH |. By Hall’s theorem [Die05], there exists a matching, say M , between B and VH of size |B|. Let W
be the endpoints of M that are in VH . Since, B dominates every vertex of VH , every vertex of VH \W
has a neighbour in B. Let X be the set of edges between B and VH \W such that every edge of X is
incident to exactly one vertex in VH \W . Now, a t-atom can be obtained from G by removing the vertices
(V \ {B ∪ VH}) and removing all the edges (E \ {EH ∪M ∪X}).

Remark 1. Note that the class of graphs that contains K3 or P4 as a subgraph is equivalent to the
class of graphs that contains K3 or P4 or C4 as an induced subgraph. Therefore, the characterization of
graphs with transitivity greater or equal to 3, proved in [HH18], is a special case of Theorem 11.

Next we list all non-isomorphic copies of A4. Figure 4 and Figure 5 illustrates the 4-atoms that can
be obtained from the two 3-atoms, namely K3 and P4, respectively.

r = 1

r = 2

r = 3

α1

α2 ' {p1, p2}

α3

p1 p2

H = K3

Figure 4: Non-isomorphic 4-atoms obtained from K3

Note that the graph α2 is a subgraph of β2. This implies that the class of graphs containing a member
of A4 is the same as the class of graphs containing a member from A, where A = A4 \ {β2}. Hence, we
have the following corollary, which answers Question 1.

Corollary 12. The transitivity of a graph G is greater or equal to 4 if and only if G contains one of the
graph form A as a subgraph.
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r = 1

r = 2

r = 3

r = 4

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3

e1 e2
e3

β1

β2 ' {a1, c1, c2} β3 ' {a2, b1, b2}

β4 ' {a3, b4, c4} β5 ' {a4}

β6 ' {b3, c3}

β7 ' {d1, e1} β8 ' {d2, e3}

β9 ' {d3} β10 ' {e3}

β11

H = P4

Figure 5: Non-isomorphic 4-atoms obtained from P4

Since, by Remark 1, the transitivity of a graph G is greater or equal to 3 if and only if G contains
either K3 or P4 as subgraph, we have the following corollary which answers Question 2.

Corollary 13. The transitivity of a graph G is equal to 3 if and only if G contains either K3 or P4 as
subgraph but does not contain any graph from A as a subgraph.

Remark 2. Since, given a graph G, in polynomial time, we can check whether another fixed graph H is
a subgraph of G or not, the conditions in Corollary 12 and 13 can also be done in polynomial time.

5 Conclusion

In this paper, we have shown that Maximum Transitivity Decision Problem is NP-complete for
bipartite graphs. On the positive side, we have demonstrated that the transitivity of a given bipartite
chain graph can be computed in linear time. Then, we have provided a necessary and sufficient condition
for a graph to have transitivity greater or equal to tfor any integer t. It would be interesting to investigate
the complexity status of this problem in other subclasses of bipartite graphs. Designing an approximation
algorithm for this problem would be another challenging open problem.
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