
Journal of Combinatorial Optimization (2023) 45:83
https://doi.org/10.1007/s10878-023-01014-9

A complete algebraic solution to the optimal dynamic
rationing policy in the stock-rationing queue with two
demand classes

Quan-Lin Li1 · Yi-Meng Li2 · Jing-Yu Ma3 · Heng-Li Liu2

Accepted: 15 February 2023 / Published online: 18 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we study a stock-rationing queue with two demand classes by means
of the sensitivity-based optimization, and develop a complete algebraic solution to
the optimal dynamic rationing policy. We show that the optimal dynamic rationing
policy must be of transformational threshold type. Based on this finding, we can refine
three sufficient conditions under each of which the optimal dynamic rationing policy
is of threshold type (i.e., critical rationing level). To do this, we use the performance
difference equation to characterize the monotonicity and optimality of the long-run
average profit of this system, and thus establish some new structural properties of the
optimal dynamic rationing policy by observing any given reference policy. Finally,
we use numerical experiments to demonstrate our theoretical results of the optimal
dynamic rationing policy. We believe that the methodology and results developed in
this paper can shed light on the study of stock-rationing queue and open a series of
potentially promising research.

Keywords Stock-rationing queue · Inventory rationing · Optimal dynamic rationing
policy · Sensitivity-based optimization · Markov decision process

Quan-Lin Li and Jing-Yu Ma have contributed to the work equally and should be regarded as co-first
authors

A preliminary result of this work has been published in the conference: Proceeding of the 16th
International Conference on Algorithmic Aspects in Information and Management (AAIM 2022).

B Jing-Yu Ma
mjy0501@126.com

1 School of Economics and Management, Beijing University of Technology, Beijing 100124,
China

2 School of Economics and Management, Yanshan University, Qinhuangdao 066004, China

3 Business School, Xuzhou University of Technology, Xuzhou 221018, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-023-01014-9&domain=pdf
http://orcid.org/0000-0002-0396-1232

83 Page 2 of 54 Journal of Combinatorial Optimization (2023) 45 :83

1 Introduction

In this paper, we consider a stock-rationing queueing problem of a warehouse with one
type of products and two classes of demands, which may be viewed as coming from
retailers with two different priority levels. Now, such a stock-rationing warehouse
system becomes more and more important in many large cities under the current
COVID-19 environment. For example, Beijing has seven super-large warehouses,
which always supply various daily necessities, such as vegetables, meat, eggs, seafood
to more than 40 million people every day. In the warehouses, each type of daily
necessities are supplied by lots of different companies in China and the other countries,
which lead to that the successive supply stream of each type of products can be well
described as a Poisson process. In addition, the two retailers may be regarded as a
large supermarket group and a community retail store group, respectively. Typically,
the large supermarket group has a higher supply priority than the community retail
store group.When theCOVID-19 is at a seriouswarning inBeijing, the stock-rationing
management of the warehouses plays a key role in strengthening the fine management
of the warehouses such that every family at Beijing can have a very comprehensive
life guarantee.

From the perspective of practical applications, such a stock-rationing queueing
problem with multiple demand classes can always be encountered in many different
real areas, for example, assemble-to-order systems, make-to-stock queues and mul-
tiechelon inventory systems by Ha (1997a); manufacturing by Zhao et al. (2005);
airline by Wang et al. (2021); rental business by Altug and Ceryan (2021) and Jain
et al. (2015); health care by Papastavrou et al. (2014) and Baron et al. (2019); and so
forth. All the studies above show that the stock-rationing queues withmultiple demand
classes are not only necessary and important in many practical applications, but also
have their own theoretical interest.

In the stock-rationing queueing systems, the stock rationing policies always assign
different supply priorities to multiple classes of demands. In the early literature, the
so-called critical rationing level was imagined intuitively, and its existence was fur-
ther proved by Veinott (1965) and Topkis (1968). Once the critical rationing level is
given and the on-hand inventory falls below the critical rationing level, a low priority
demand may be either rejected, back-ordered or discarded such that the left on-hand
inventory will be reserved to supply the future high priority demands. Thus designing
and optimizing the critical rationing levels becomes a basicmanagement way of inven-
tory rationing across multiple demand classes. So far, analysis of the critical rationing
levels has been interesting but difficult and challenging in the study of stock-rationing
queues with multiple demand classes.

Some studies have applied the MDPs to discuss inventory rationing and stock-
rationing queues across multiple demand classes by means of the submodular (or
supermodular) technique, among which important examples include Ha (1997a), Ha
(1997b), Ha (2000), Gayon et al. (2009), Benjaafar and ElHafsi (2006) andNadar et al.
(2014). To this end, it is a key that the structural properties of the optimal rationing
policy need to be identified by using a set of structured value functions that is preserved
under an optimal operator. Based on this, the optimal rationing policy of the inventory
rationing across multiple demand classes can be further described and expressed by

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 3 of 54 83

the structural properties. In many more general cases, it is not easy and even very
difficult to set up the structural properties of the optimal rationing policy. For this
reason, some stronger model assumptions have to be further added to guarantee the
existence of structural properties of the optimal policy. To improve the applicability of
the MDPs, we propose a new algebraic method to find a complete algebraic solution
to the optimal rationing policy by means of the sensitivity-based optimization.

The sensitivity-based optimization may be regarded as a new research branch of
the MDPs, which grows out of infinitesimal perturbation analysis of discrete event
dynamic systems, e.g., see Cao (2007). Note that one key of the sensitivity-based
optimization is to set up and use the so-called performance difference equation, which
is based on the perturbation realization factor as well as the performance potential
related to the Poisson equation. To the best of our knowledge, this paper is the first
to apply the sensitivity-based optimization to study the stock-rationing queues with
multiple demand classes.

Based on the above analysis, we summarize the main contributions of this paper as
follows:

(1) A complete algebraic solution This paper develops a complete algebraic solution
to the optimal dynamic rationing policy of the stock-rationing queue by means of
the sensitivity-based optimization, and shows that the optimal dynamic rationing
policy must be of transformational threshold type, which can lead to refining three
sufficient conditions under each of which the optimal dynamic rationing policy is
of threshold type. In addition, it is worthwhile to note that our transformational
threshold type results are sharper than the bang-bang control given in Ma et al.
(2019), Ma et al. (2021) and Xia et al. (2021). Therefore, our algebraic method
provides not only a necessary complement of policy spatial structural integrity
but also a new way of optimality proof when comparing to the frequently-used
submodular (or supermodular) technique of MDPs. Also, the complete algebraic
solution to the optimal dynamic rationing policy can providemore effective support
for numerical computation of the optimal policy and the optimal profit of this
system.

(2) A unified computational framework To the best of our knowledge, this paper is
the first to apply the sensitivity-based optimization to analyze the stock-rationing
queues with multiple demand classes. It is necessary and useful to describe the
three key steps: (a) Setting up a policy-based Markov process. (b) Constructing a
policy-based Poisson equation, whose general solution can be used to characterize
the monotonicity and optimality of the long-run average profit of this system. (c)
Finding the optimal dynamic rationing policy in the three different areas of the
penalty cost. In addition, the computational framework can sufficiently support
numerical solution of stock-rationing queues with multiple demand classes while
the submodular (or supermodular) technique of MDPs is very difficult to deal with
more general stock-rationing queues.

(3) Two different methods can sufficiently support each other Our algebraic method
sets up a complete algebraic solution to the optimal dynamic rationing policy,
thus it can provide not only a necessary complement of policy spatial structural

123

83 Page 4 of 54 Journal of Combinatorial Optimization (2023) 45 :83

integrity but also a newway of optimality proof when comparing to the frequently-
used submodular (or supermodular) technique of MDPs. On the other hand, since
our algebraic method and the submodular (or supermodular) technique are all
important parts of the MDPs (the former is to use the poisson equations; while
the latter is to apply the optimality equation), it is clear that the two different
methods will sufficiently support each other in the study of inventory rationing
and stock-rationing queues with multiple demand classes.

The remainder of this paper is organized as follows. Section2 provides a litera-
ture review. Section3 gives model description for the stock-rationing queue with two
demand classes. Section4 establishes an optimization problem to find the optimal
dynamic rationing policy, in which we set up a policy-based birth-death process and
define a more general reward function. Section5 establishes a policy-based Poisson
equation and provides its general solution with two free constants. Section6 provides
an explicit expression for the perturbation realization factor, and discusses the solution
of the linear equation in the penalty cost. Section7 discusses the monotonicity and
optimality of the long-run average profit of this system, and finds the optimal dynamic
rationing policy in three different areas of the penalty cost. Section8 analyzes the
stock-rationing queue under a threshold type (statical) rationing policy. Section9 uses
numerical experiments to demonstrate our theoretical results of the optimal dynamic
rationing policy. Finally, some concluding remarks are given in Sect. 10.

2 Literature review

The inventory rationing across multiple demand classes was first analyzed by Veinott
(1965) in the context of inventory control theory. From then on, some authors have
discussed the inventory rationing problems. Readers may refer to a book byMöllering
(2007); survey papers by Li et al. (2019a); and a research classification by Teunter
and Haneveld (2008), Möllering and Thonemann (2008), Van Foreest and Wijngaard
(2014) and Alfieri et al. (2017).

In the inventory rationing system, a critical rationing level was imagined from early
research andpractical experience.Veinott (1965) first proposed such a critical rationing
level; while Topkis (1968) proved that the critical rationing level really exists and it
is an optimal policy. It is a most basic problem how to mathematically prove whether
a rationing inventory system has such a critical rationing level. Ha (1997a) made a
breakthrough by applying the MDPs to analyze the inventory rationing policy for a
stock-rationing queue with exponential production times, Poisson demand arrivals,
lost sales and multiple demand classes.

Since the seminal work of Ha (1997a), it has been interesting to extend and gen-
eralize the way to apply the MDPs to deal with the stock-rationing queues and the
rationing inventory systems. Important examples include the Erlang production times
by Ha (2000) and Gayon et al. (2009); the backorders with two demand classes by
Ioannidis et al. (2021); the capacity allocation by Shen and Yu (2019); omni-channel
retailing by Goedhart et al. (2022); the batch ordering by Huang and Iravani (2008),
the batch production by Pang et al. (2014); the utilization of information by Gayon

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 5 of 54 83

et al. (2009); an assemble-to-order production system by Elhafsi et al. (2015); ElHafsi
et al. (2018) and Nadar et al. (2014); supply chain by van Wijk et al. (2019); dynamic
price by Ding et al. (2016), Schulte and Pibernik (2017); and so forth.

In the inventory rationing literature, there exist two kinds of rationing policies:
The static rationing policy and the dynamic rationing policy. Note that the dynamic
rationing policy allows a threshold rationing level to change in time, depending on the
number and ages of outstanding orders. In general, the static rationing policy is possi-
ble to miss some chances to further improve system performance, while the dynamic
rationing policy should reflect better by means of various continuously updated infor-
mation, the system performance can be improved dynamically. Deshpande et al.
(2003) indicated that the optimal dynamic rationing policy may significantly reduce
the inventory cost compared with the static rationing policy.

If there exist multiple replenishment opportunities, then the ordering policies are
taken as two different types: Continuous review and periodic review. Therefore, our
literature analysis for inventory rationing focuses on four different classes through
combining the rationing policy (static vs. dynamic) with the inventory review (contin-
uous vs. periodic) as follows: Static-continuous, static-periodic, dynamic-continuous
and dynamic-periodic.

2.1 The static rationing policy (periodic vs. continuous)

The periodic review Veinott (1965) is the first to introduce an inventory rationing
across different demand classes and propose a critical rationing level (i.e., the static
rationing policy) in a periodic review inventory system with backorders. Subse-
quent research further investigated the periodic review inventory system with multiple
demand classes, for example, the (s, S) policy byCohen et al. (1988) and Tempelmeier
(2006); the (S − 1, S) policy by Ha (1997a, b); the lost sales by Dekker et al. (2002);
the backorders byMöllering and Thonemann (2008); and the anticipated critical levels
by Wang et al. (2013).

The continuous review Nahmias and Demmy (1981) is the first to propose and
develop a constant critical level (Q, r ,C) policy in a continuous review inventory
model with multiple demand classes, where Q is the fixed batch size, r is the reorder
point and C = (C1,C2, . . . ,Cn−1) is a set of critical rationing levels for n demand
classes. From that time on, some authors have discussed the constant critical level
(Q, r ,C) policy in continuous review inventory systems. Readers may refer to recent
publications for details, amongwhich areMelchiors et al. (2000), Dekker et al. (1998),
Deshpande et al. (2003), Isotupa (2006), Arslan et al. (2007), Möllering and Thone-
mann (2008, 2010) and Escalona et al. (2015, 2017). In addition, the (S − 1, S,C)

inventory system was discussed by Dekker et al. (2002), Kranenburg and van Houtum
(2007) and so on.

2.2 The dynamic rationing policy (continuous vs. periodic)

The continuous review Topkis (1968) is the first to analyze the dynamic rationing
policy and indicate that the optimal rationing policy is a dynamic policy. Melchiors

123

83 Page 6 of 54 Journal of Combinatorial Optimization (2023) 45 :83

(2003) considered a dynamic rationing policy in a (s, Q) inventory system with a
key assumption that there was at most one outstanding order. Teunter and Haneveld
(2008) developed a continuous time approach to determine the dynamic rationing
policy for two Poisson demand classes, analyzed the marginal cost to determine the
optimal remaining time for each rationing level, and expressed the optimal threshold
policy through a schematic diagram or a lookup table. Fadıloğlu and Bulut (2010)
proposed a dynamic rationing policy:RationingwithExponentialReplenishment Flow
(RERF), for continuous review inventory systems with either backorders or lost sales.
Wang et al. (2013) developed a dynamic threshold mechanism to allocate backorders
when the multiple outstanding orders for different demand classes exist for the (Q, R)

inventory system.
The periodic review:For the dynamic rationing policy in a periodic review inventory

system, readers may refer to, such as two demand classes by Sobel and Zhang (2001),
Frank et al. (2003) and Tan et al. (2009); dynamic critical levels and lost sales by
Haynsworth and Haynsworth and Price (1989); multiple demand classes by Hung
and Hsiao (2013); two backorder classes by Chew et al. (2013); general demand
processes by Hung et al. (2012); mixed backorders and lost sales by Wang and Tang
(2014); uncertain demand andproduction rates byTurgay et al. (2015); and incremental
upgrading demands by You (2003).

3 Model description

In this section, we describe a stock-rationing queue with two demand classes, in which
a single class of products are supplied to stock at a warehouse, and the two classes
of demands come from two retailers with different priorities. In addition, we provide
system structure, operational mode and mathematical notations.

A stock-rationing queue The warehouse has the maximal capacity N to stock a
single class of products, and the warehouse needs to pay a holding costC1 per product
per unit time. There are two classes of demands to order the products, in which the
demands of Class 1 have a higher priority than that of Class 2, such that the demands
of Class 1 can be satisfied in any non-zero inventory; while the demands of Class 2
may be either satisfied or refused based on the inventory level of the products. Figure1
depicts a simple physical system to understand the stock-rationing queue.

The supply process The supply stream of the products to the warehouse is a Poisson
process with arrival rate λ, where the price of per product is C3 paid by the warehouse
to the external product supplier. If the warehouse is full of the products, then any new
arriving product has to be lost. In this case, the warehouse will have an opportunity
cost C4 per product rejected into the warehouse.

The service processes The service times provided by the warehouse to satisfy the
demands of Classes 1 and 2 are i.i.d. and exponential with service rates μ1 and μ2,
respectively. The service disciplines for the two classes of demands are all First Come
First Serve (FCFS). The warehouse can obtain the service price R when one product
is sold to Retailer 1 or 2. Note that each demand of Class 1 or 2 is satisfied by one
product every time.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 7 of 54 83

Fig. 1 A stock-rationing queue with two demand classes

The stock-rationing rule For the two classes of demands, each demand of Class 1
can always be satisfied in any non-zero inventory; while for satisfying the demands of
Class 2, we need to consider three different cases as follows:

Case one: The inventory level is zero. In this case, there is no product in the ware-
house. Thus any new arriving demand has to be rejected immediately. This leads to the
the lost sales cost C2,1 (resp. C2,2) per unit time for any lost demand of Class 1 (resp.
2). We assume that C2,1 > C2,2, which is used to guarantee the higher priority service
for the demands of Class 1 when comparing to the lower priority for the demands of
Class 2.

Case two: The inventory level is low. In this case, the number of products in the
warehouse is not more than a key threshold K , where the threshold K is subjectively
designed by means of some real experience. Note that the demands of Class 1 have a
higher priority to receive the products than the demands of Class 2. Thus thewarehouse
will not provide any product to satisfy the demands of Class 2 under an equal service
condition if the number of products in the warehouse is not more than K . Otherwise,
such a service priority is violated (i.e., the demands of Class 2 are satisfied from a low
stock), so that the warehouse must pay a penalty cost P per product supplied to the
demands of Class 2 at a low stock. Note that the penalty cost P measures different
priority levels to provide the products between the two classes of demands.

Case three: The inventory level is high. In this case, the number of products in the
warehouse is more than the threshold K . Thus the demands of Classes 1 and 2 can be
simultaneously satisfied due to enough products in the warehouse.

IndependenceWe assume that all the random variables defined above are indepen-
dent of each other.

In what follows, we use Table 1to further summarize some above notations.

Remark 1 The penalty cost P is a necessary variable (setting up conditions of control
classification) to dynamically control and optimize that the products are supplied to
the demands of Class 2 at a low stock, and specifically, when the stock is not empty.
While the lost sales costs, satisfying C2,1 > C2,2, are introduced to provide some
static and not enough penalties for that the products are supplied to the demands of
Class 2 at a low stock.

123

83 Page 8 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Table 1 Some costs and prices in the stock-rationing queue

C1 The holding cost per unit time per product stored in the warehouse

C2,1 The lost sales cost of each lost demand of Class 1

C2,2 The lost sales cost of each lost demand of Class 2

C3 The price of per product paid by the warehouse to the external product supplier

C4 The opportunity cost per product rejected into the warehouse

P The penalty cost per product supplied to the demands of Class 2 at a low stock

R The service price of the warehouse paid by each satisfied demand

4 Optimizationmodel formulation

In this section, we establish an optimization problem to find the optimal dynamic
rationing policy in the stock-rationing queue. To do this, we set up a policy-based
birth-death process, and define a more general reward function with respect to both
states and policies of the policy-based birth-death process.

To study the stock-rationing queue with two demand classes, we first need to define
both ‘states’ and ‘policies’ to express stochastic dynamics of the stock-rationing queue.

Let I (t) be the number of products in the warehouse at time t . Then it is regarded
as the state of this system at time t . Obviously, all the cases of State I (t) form a state
space as follows:

� = {0, 1, 2, . . . , N }.

Also, State i ∈ � is regarded as an inventory level of this system.
From the states, some policies are defined with a little bit more complicated. Let

di be a policy related to State i ∈ �, and it expresses whether or not the warehouse
prefers to supply some products to the demands of Class 2 when the inventory level
is not more than the threshold K for 0 < K ≤ N . Thus, we have

di =
⎧
⎨

⎩

0, i = 0,
0, 1, i = 1, 2, . . . , K ,

1, i = K + 1, K + 2, . . . , N ,

(1)

where di = 0 and 1 represents that the warehouse rejects and satisfies the demands of
Class 2, respectively. Obviously, not only does the policy di depend on State i ∈ �,
but also it is controlled by the threshold K . Of course, for a special case, if K = N ,
then di ∈ {0, 1} for 1 ≤ i ≤ N .

Corresponding to each state in �, we define a time-homogeneous policy of the
stock-rationing queue as

d = (d0; d1, d2, . . . , dK ; dK+1, dK+2, . . . , dN).

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 9 of 54 83

Fig. 2 State transition relations of the policy-based Markov process

It follows from (1) that

d = (0; d1, d2, . . . , dK ; 1, 1, . . . , 1). (2)

Thus Policy d depends on di ∈ {0, 1}, which is related to State i for 1 ≤ i ≤ K . Let
all the possible policies of the stock-rationing queue, given in (2), form a policy space
as follows:

D = {d : d = (0; d1, d2, . . . , dK ; 1, 1, . . . , 1), di ∈ {0, 1} , 1 ≤ i ≤ K } .

Remark 2 In general, the threshold K is subjective and is designed by means of the
real experience of the warehouse manager. If K = N , then the policy is expressed as

d = (0; d1, d2, . . . , dN).

Thus our K -based policy d = (0; d1, d2, . . . , dK ; 1, 1, . . . , 1) is more general than
Policy d = (0; d1, d2, . . . , dN).

Let I (d)(t) be the state of the stock-rationing queue at time t under any given policy
d ∈ D. Then

{
I (d)(t) : t ≥ 0

}
is a continuous-time policy-based Markov process on

the state space � whose state transition relations are depicted in Fig. 2.
It is easy to see from Fig. 2 that

{
I (d)(t) : t ≥ 0

}
is a policy-based birth-death

process. Based on this, the infinitesimal generator is given by

B(d) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ λ

v (d1) − [λ+v (d1)] λ

. . .
. . .

. . .

v (dK) − [λ+v (dK)] λ

v (1) − [λ+v (1)] λ

. . .
. . .

. . .

v (1) − [λ+v (1)] λ

v (1) −v (1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3)
where v (di) = μ1 + diμ2 for i = 1, 2, . . . , K , and v (1) = μ1 + μ2. It is clear that
v (di) > 0 for i = 1, 2, . . . , K . Thus the policy-based birth-death process B(d) must
be irreducible, aperiodic and positive recurrent for any given policy d ∈ D. In this

123

83 Page 10 of 54 Journal of Combinatorial Optimization (2023) 45 :83

case, we write the stationary probability vector of the policy-based birth-death process{
I (d)(t) : t ≥ 0

}
as

π(d) =
(
π(d)(0);π(d)(1), . . . , π(d)(K);π(d)(K + 1), . . . , π(d)(N)

)
. (4)

Obviously, the stationary probability vector π(d) is the unique solution to the system
of linear equations: π(d)B(d) = 0 and π(d)e = 1, where e is a column vector of ones
with a suitable dimension. We write

ξ0 = 1, i = 0,

ξ
(d)
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λi

i∏

j=1
v(d j)

, i = 1, 2, . . . , K ,

λi

(μ1+μ2)
i−K

K∏

j=1
v(d j)

, i = K + 1, K + 2, . . . , N ,
(5)

and

h(d) = 1 +
N∑

i=1

ξ
(d)
i .

It follows from Subsection 1.1.4 of Chapter 1 in Li (2010) that

π(d) (i) =
{

1
h(d) , i = 0
1

h(d) ξ
(d)
i , i = 1, 2, . . . , N .

(6)

By using the policy-based birth-death process B(d), now we define a more general
reward function in the stock-rationing queue. It is seen from Table 1 that the reward
function with respect to both states and policies is defined as a profit rate (i.e. the total
system revenue minus the total system cost per unit time). By observing the impact of
Policy d on the profit rate, the reward function at State i under Policy d is given by

f (d) (i) = R
(
μ11{i>0} + μ2di

)− C1i − C2,1μ11{i=0} − C2,2μ2 (1 − di)

− C3λ1{i<N } − C4λ1{i=N } − Pμ2di1{1≤i≤K }, (7)

where, 1{·} represents the indicator function whose value is one when the event occurs;
otherwise it is zero. By using the indicator function, satisfying and rejecting the
demands of Class 1 are expressed as 1{i>0} and 1{i=0}, respectively; the external prod-
ucts enter or are lost by the warehouse according to 1{i<N } and 1{i=N }, respectively;
and a penalty cost paid by the warehouse is denoted by means of 1{1≤i≤K } due to that
the warehouse supplies the products to the demands of Class 2 at a low stock.

For the convenience of readers, it is necessary and useful to explain the reward
function (7) from four different cases as follows:

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 11 of 54 83

Case (a): For i = 0,

f (0) = −C2,1μ1 − C2,2μ2 − C3λ. (8)

In Case (a), there is no product in the warehouse, thus it has to reject any demand of
Classes 1 and 2.

Case (b): For 1 ≤ i ≤ K ,

f (d) (i) = R (μ1 + μ2di) − C1i − C2,2μ2 (1 − di) − C3λ − Pμ2di . (9)

In Case (b), since the inventory level is low for 1 ≤ i ≤ K , the penalty cost is paid by
the warehouse when it supplies the products to the demands of Class 2.

Differently from Cases (a) and (b), the inventory level is high for K + 1 ≤ i ≤ N
in Cases (c) and (d), thus it can synchronously satisfy the demands of Classes 1 and 2.

Case (c): For K + 1 ≤ i ≤ N − 1,

f (i) = R (μ1 + μ2) − C1i − C3λ. (10)

Case (d): For i = N ,

f (N) = R (μ1 + μ2) − C1N − C4λ. (11)

Note that C3 is the price per product paid by the warehouse to the external product
supplier; while C4 is the opportunity cost per product rejected into the warehouse.

Based on the above analysis, we define an (N + 1)-dimensional column vector
composed of the elements f (0) , f (d) (i) for 1 ≤ i ≤ K , and f (j) for K+1 ≤ j ≤ N
as follows:

f (d) =
(
f (0) ; f (d) (1) , f (d) (2) , . . . , f (d) (K) ; f (K + 1) , f (K + 2) , . . . , f (N)

)T
.

(12)
Now, we consider the long-run average profit of the stock-rationing queue (or the

continuous-time policy-based birth-death process
{
I (d)(t) : t ≥ 0

}
) under any given

policy d. Let

ηd = lim
T→∞ E

{
1

T

∫ T

0
f (d)

(
I (d)(t)

)
dt

}

.

Then
ηd = π(d)f (d), (13)

where π(d) and f (d) are given by (4) and (12), respectively.
To further observe the long-run average profit ηd, here we show how ηd depends

on the penalty cost P , and particularly, ηd is linear in P . To do this, we write that for
i = 0,

A0 = 0, B0 = −C2,1μ1 − C2,2μ2 − C3λ;

123

83 Page 12 of 54 Journal of Combinatorial Optimization (2023) 45 :83

for i = 1, 2, . . . , K ,

A(d)
i = μ2di , B(d)

i = R (μ1 + μ2di) − C1i − C2,2μ2 (1 − di) − C3λ;

for i = K + 1, K + 2, . . . , N − 1,

Ai = 0, Bi = R (μ1 + μ2) − C1i − C3λ;

for i = N ,

Ai = 0, BN = R (μ1 + μ2) − C1N − C4λ.

Then it follows from (8) to (11) that for i = 0,

f (0) = B0; (14)

for i = 1, 2, . . . , K ,

f (d) (i) = B(d)
i − PA(d)

i ; (15)

for i = K + 1, K + 2, . . . , N ,

f (i) = Bi . (16)

It follows from (6) and (14) to (16) that

ηd = π(d)f (d)

= π(d) (0) f (0) +
K∑

i=1

π(d) (i) f (d) (i) +
N∑

i=K+1

π(d) (i) f (i)

= D(d) − PF (d), (17)

where

D(d) = π(d) (0) B0 +
K∑

i=1

π(d) (i) B(d)
i +

N∑

i=K+1

π(d) (i) Bi

and

F (d) =
K∑

i=1

π(d) (i) A(d)
i .

Hence the long-run average profit ηd is linear in the penalty cost P .
We observe that when the inventory level is low, supplying the products to the

demands of Class 2 leads to that both the total system revenue and the total system
cost increase synchronously. Thus there is a tradeoff between the total system revenue
and the total system cost. This motivates us to find an optimal dynamic rationing

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 13 of 54 83

policy such that the warehouse has the maximal profit. Therefore, our objective is to
find an optimal dynamic rationing policy d∗ such that the long-run average profit ηd

is maximal for d = d∗, that is,

d∗ = argmax
d∈D

{
ηd
}

. (18)

In fact, it is difficult and challenging not only to analyze some interesting structural
properties of the optimal rationing policies d∗, but also to provide some effective
algorithms for computing the optimal dynamic rationing policy d∗.

In the remainder of this paper, we apply the sensitivity-based optimization to study
the optimal policy problem (18), where the Poisson equations will play a key role in
the study of MDPs and sensitivity-based optimization.

5 A policy-based poisson equation

In this section, for the stock-rationing queue,we set up a policy-based Poisson equation
which is derived bymeans of the law of total probability and analysis on some stopping
times of the policy-based birth-death process

{
I (d) (t) , t ≥ 0

}
. It is worth noting that

the policy-based Poisson equation provides a useful relation between the sensitivity-
based optimization and the MDPs, see, e.g. Puterman (2014) and Cao (2007).

For any given policy d ∈ D, it follows from Chapter 2 in Cao (2007) that for
the continuous-time policy-based birth-death process

{
I (d) (t) , t ≥ 0

}
, we define the

performance potential as

g(d) (i) = E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i

}

, (19)

where ηd is defined in (13). It is seen from Cao (2007) that for Policy d ∈ D, g(d) (i)
quantifies the contribution of the initial State i to the long-run average profit of the
stock-rationing queue. Here, g(d) (i) is also called the relative value function or the
bias in the traditional MDP theory, see, e.g. Puterman (2014). We further define a
column vector g(d) as

g(d) =
(
g(d) (0) ; g(d) (1) , . . . , g(d) (K) ; g(d) (K + 1) , . . . , g(d) (N)

)T
. (20)

To compute the vector g(d), we define the first departure time of the policy-based
birth-death process

{
I (d)(t) : t ≥ 0

}
beginning from State i as

τ = inf
{
t ≥ 0 : I (d) (t) �= i

}
,

where I (d) (0) = i . Clearly, τ is a stopping time of the policy-based birth-death
process

{
I (d)(t) : t ≥ 0

}
. Based on this, if i = 0, then it is seen from (3) that State 0

123

83 Page 14 of 54 Journal of Combinatorial Optimization (2023) 45 :83

is a boundary state of the policy-based birth-death process B(d), hence I (d) (τ) = 1.
Similarly, for each State i ∈ �, a basic relation is established as follows:

I (d) (τ) =
⎧
⎨

⎩

1, i = 0,
i − 1 or i + 1, i = 1, 2, . . . , N − 1,
N − 1, i = N .

(21)

To compute the column vector g(d), we derive a policy-based Poisson equation in
terms of both the stopping time τ and the basic relation (17). Based on this, we set up
the Poisson equation according to four parts as follows:

Part (a): For i = 0, we have

g(d) (0) = E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = 0

}

= E
{
τ

∣
∣
∣I (d) (0) = 0

} [
f (0) − ηd

]

+ E

{∫ +∞

τ

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (τ)

}

= 1

λ

[
f (0) − ηd

]
+ E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = 1

}

= 1

λ

[
f (0) − ηd

]
+ g(d) (1) ,

where for the policy-based birth-death process
{
I (d)(t) : t ≥ 0

}
, it is easy to see from

Fig. 2 that by using I (d) (t) = 0 for 0 ≤ t < τ,

∫ τ

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt = τ

[
f (0) − ηd

]
,

E
{
τ

∣
∣
∣I (d) (0) = 0

}
= 1

λ
.

We obtain
− λg(d) (0) + λg(d) (1) = ηd − f (0) . (22)

Part (b): For i = 1, 2, . . . , K , it is easy to see from Fig. 2 that

g(d) (i) = E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i

}

= E
{
τ

∣
∣
∣I (d) (0) = i

} [
f (d) (i) − ηd

]

+ E

{∫ +∞

τ

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (τ)

}

= 1

v (di) + λ

[
f (d) (i) − ηd

]

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 15 of 54 83

+ λ

v (di) + λ
E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i + 1

}

+ v (di)

v (di) + λ
E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i − 1

}

= 1

v (di) + λ

[
f (d) (i) − ηd

]
+ λ

v (di) + λ
g(d) (i + 1)

+ v (di)

v (di) + λ
g(d) (i − 1) ,

where

E
{
τ

∣
∣
∣I (d) (0) = i

}
= 1

v (di) + λ
.

We obtain

v (di) g
(d) (i − 1) − [v (di) + λ] g(d) (i) + λg(d) (i + 1) = ηd − f (d) (i) . (23)

Part (c): For i = K + 1, K + 2, . . . , N − 1, by using Fig. 2 we have

g(d) (i) = E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i

}

= E
{
τ

∣
∣
∣I (d) (0) = i

} [
f (i) − ηd

]

+ E

{∫ +∞

τ

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (τ)

}

= 1

μ1 + μ2 + λ

[
f (i) − ηd

]

+ λ

μ1 + μ2 + λ
E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i + 1

}

+ μ1 + μ2

μ1 + μ2 + λ
E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i − 1

}

= 1

μ1 + μ2 + λ

[
f (i) − ηd

]
+ λ

μ1 + μ2 + λ
g(d) (i + 1)

+ μ1 + μ2

μ1 + μ2 + λ
g(d) (i − 1) ,

where

E
{
τ

∣
∣
∣I (d) (t) = i

}
= 1

μ1 + μ2 + λ
.

We obtain

(μ1 + μ2) g
(d) (i − 1)− (μ1 + μ2 + λ) g(d) (i)+λg(d) (i + 1) = ηd− f (i) . (24)

123

83 Page 16 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Part (d): For i = N , by using Fig. 2 we have

g(d) (N) = E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = N

}

= E
{
τ

∣
∣
∣I (d) (0) = N

} [
f (N) − ηd

]

+ E

{∫ +∞

τ

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (τ)

}

= 1

μ1 + μ2

[
f (N) − ηd

]

+ E

{∫ +∞

0

[
f (d)

(
I (d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = N − 1

}

= 1

μ1 + μ2

[
f (N) − ηd

]
+ g(d) (N − 1) ,

where

E
{
τ

∣
∣
∣I (d) (t) = N

}
= 1

μ1 + μ2
.

We obtain

(μ1 + μ2) g
(d) (N − 1) − (μ1 + μ2) g

(d) (N) = ηd − f (N) . (25)

Thus it follows from (22), (23), (24) and (25) that

− B(d)g(d) = f (d) − ηde, (26)

where B(d), f (d) and ηd are given in (3), (12) and (13), respectively.
In what follows we provide an effective method to solve the policy-based Poisson

equation, and show that there exist infinitely-many solutions with two free constants
of additive terms. This leads to a general solution with the two free constants of the
policy-based Poisson equation.

To solve the system of linear equations (26), it is easy to see that rank
(
B(d)

) = N
and det

(
B(d)

) = 0 due to the fact that the size of the matrix B(d) is N + 1. Hence, this
system of linear equations (26) exists infinitely-many solutions with a free constant
of an additive term.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 17 of 54 83

Let B be a matrix obtained through omitting the first row and the first column
vectors of the matrix B(d). Then,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− [λ + ν (d1)] λ

ν (d2) − [λ + ν (d2)] λ

. . .
. . .

. . .

ν (dK) − [λ + ν (dK)] λ

ν (1) − [λ + ν (1)] λ

. . .
. . .

. . .

ν (1) − [λ + ν (1)] λ

ν (1) −ν (1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Obviously, rank(B) = N . Since the size of thematrixB is N , thematrixB is invertible,
and (−B)−1 > 0.

Let H(d) and ϕ(d) be two column vectors of size N obtained through omitting the
first elements of the two column vectors f (d) −ηde and g(d) of size N +1, respectively.
Then,

H(d) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H (d)
1

H (d)
2
...

H (d)
K

H (d)
K+1
...

H (d)
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (d) (1) − ηd

f (d) (2) − ηd

...

f (d) (K) − ηd

f (K + 1) − ηd

...

f (N) − ηd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[
B(d)
1 − D(d)

]
− P

[
A(d)
1 − F (d)

]

[
B(d)
2 − D(d)

]
− P

[
A(d)
2 − F (d)

]

...[
B(d)
K − D(d)

]
− P

[
A(d)
K − F (d)

]

[
BK+1 − D(d)

]− P
[
AK+1 − F (d)

]

...[
BN − D(d)

]− P
[
AN − F (d)

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

ϕ(d) =
(
g(d) (1) , g(d) (2) , . . . , g(d) (K) ; g(d) (K + 1) , g(d) (K + 2) , . . . , g(d) (N)

)T
.

Therefore, it follows from (26) that

− Bϕ(d) = H(d) + ν (d1) e1g(d) (0) , (27)

where e1 is a column vector with the first element be one and all the others be zero.
Note that the matrix −B is invertible and (−B)−1 > 0, thus the system of linear
equations (27) always has one unique solution

ϕ(d) = (−B)−1H(d) + ν (d1) (−B)−1 e1 · 	, (28)

123

83 Page 18 of 54 Journal of Combinatorial Optimization (2023) 45 :83

where g(d) (0) = 	 is any given constant. Let’s take a convention

(
a
b

)

= (a,b)T ,

where b may be a column vector. Then we have

g(d) =
(
g(d) (0) , ϕ(d)

)T

=
(
	, (−B)−1H(d) + ν (d1) (−B)−1 e1 · 	

)T

=
(
0, (−B)−1H(d)

)T +
(
1, ν (d1) (−B)−1 e1

)T 	. (29)

Note that B(d)e = 0, thus a general solution to the policy-based Poisson equation is
further given by

g(d) =
(
0, (−B)−1H(d)

)T +
(
1, ν (d1) (−B)−1 e1

)T 	 + ξe, (30)

where 	 and ξ are two free constants.
Based on the above analysis, the following theorem summarizes the general solution

of the policy-based Poisson equation.

Theorem 1 For the Poisson equation −B(d)g(d) = f (d) − ηde, there exists a key

special solution gdSp = (
0, (−B)−1H(d)

)T
, and its general solution is related to two

free constants 	 and ξ such that

g(d) = gdSp +
(
1, ν (d1) (−B)−1 e1

)T 	 + ξe,

where ξ is a potential displacement constant, and 	 is a solution-free constant.

Remark 3 (1) To our best knowledge, this is the first to provide the general solution
of the Poisson equations in the MDPs by means of two different free constants.

(2) Note that π(d)g(d) = ηd and the matrix −B(d) + eπ(d) is invertible, thus the
Poisson equation −B(d)g(d) = f (d) − ηde can become

(
−B(d) + eπ(d)

)
g(d) = f (d).

This gives a solution of the Poisson equation as follows:

g(d) =
(
−B(d) + eπ(d)

)−1
f (d) + ξe,

which is a special solution of the Poisson equation by comparing with that in
Theorem 1.

(3) To further understand the solution of the Poisson equation, readers may refer to,
for example, Cao (2007) and Ma et al. (2019) for more details.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 19 of 54 83

6 Impact of the penalty cost

In this section, we provide an explicit expression for the perturbation realization factor
of the policy-based birth-death process. Based on this, we can set up a linear equation
with respect to the penalty cost, which is well related to the performance difference
equation. Furthermore, we discuss some useful properties of policies in the set D by
means of the solution of the linear equation in the penalty cost.

6.1 The perturbation realization factor

We define a perturbation realization factor as

G(d) (i)
def= g(d) (i − 1) − g(d) (i) , i = 1, 2, . . . , N . (31)

It is easy to see from Cao (2007) that G(d) (i) quantifies the difference among two
adjacent performance potentials g(d) (i) and g(d) (i − 1), and measures the effect on
the long-run average profit of the stock-rationing queue when the system state is
changed from i − 1 to i . By using the policy-based Poisson equation (26), we can
derive a new system of linear equations, which can be used to directly express the
perturbation realization factor G(d) (i) for i = 1, 2, . . . , N .

By using (30), we can directly express the perturbation realization factor G(d) (i)
for i = 1, 2, . . . , N . On the other hand, by observing the special structure of the
policy-based Poisson equation (26), we can propose a new method of sequence to set
up an explicit expression for G(d) (i).

For i = 1, it follows from (22) that

−λ
[
g(d) (0) − g(d) (1)

]
= −λG(d) (1) ,

we have
λG(d) (1) = f (0) − ηd. (32)

For i = 2, 3, . . . , K , it follows from (23) that

v (di)
[
g(d) (i − 1) − g(d) (i)

]
− λ

[
g(d) (i) − g(d) (i + 1)

]

= v (di)G
(d) (i) − λG(d) (i + 1) ,

this gives
λG(d) (i + 1) = v (di)G

(d) (i) + f (d) (i) − ηd. (33)

For i = K + 1, K + 2, . . . , N − 1, it follows from (24) that

(μ1 + μ2)
[
g(d) (i − 1) − g(d) (i)

]
− λ

[
g(d) (i) − g(d) (i + 1)

]

= (μ1 + μ2)G
(d) (i) − λG(d) (i + 1) ,

123

83 Page 20 of 54 Journal of Combinatorial Optimization (2023) 45 :83

we obtain
λG(d) (i + 1) = (μ1 + μ2)G

(d) (i) + f (i) − ηd. (34)

For i = N , it follows from (25) that

(μ1 + μ2)G
(d) (N) = ηd − f (N) . (35)

By using (32), (33), (34) and (35), we obtain a new system of linear equations satisfied
by G(d) (i) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

λG(d) (1) = f (0) − ηd, i = 1,
λG(d) (i + 1) = v (di)G(d) (i) + f (d) (i) − ηd, i = 2, 3, . . . , K ,

λG(d) (i + 1) = (μ1 + μ2)G(d) (i) + f (i) − ηd, i = K + 1, K + 2, . . . , N − 1,
(μ1 + μ2)G(d) (N) = ηd − f (N) , i = N .

(36)
Fortunately, the following theorem can provide an explicit expression for the

perturbation realization factor G(d) (i) for 1 ≤ i ≤ N .

Theorem 2 For any given policy d, the perturbation realization factor G(d) (i) is given
by

(a) for 1 ≤ i ≤ K,

G(d) (i) = λ−i
[
f (0) − ηd

] i−1∏

k=1

v (dk)+
i−1∑

r=1

λr−i
[
f (d) (r) − ηd

] i−1∏

k=r+1

v (dk) ;
(37)

(b) for K + 1 ≤ i ≤ N,

G(d) (i) = λ−i
[
f (0) − ηd

] K∏

k=1

v (dk) [v (1)]i−K−1

+
K−1∑

r=1

λr−K
[
f (d) (r) − ηd

] K∏

k=r+1

v (dk)

+
i−1∑

r=K

λr−i
[
f (r) − ηd

]
[v (1)]i−r−2 .

Proof We only prove (a), since the proof of (b) is similar.
It follows from (36) that

G(d) (1) = f (0) − ηd

λ
.

Similarly, we obtain

G(d) (i + 1) = v (di)

λ
G(d) (i) + f (d) (i) − ηd

λ
, i = 1, 2, . . . , K .

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 21 of 54 83

By using (1.2.4) in Chapter 1 of Elaydi (1996), we can obtain the explicit expression
of the perturbation realization factor as follows:

G(d) (i) = λ−i
[
f (0) − ηd

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
f (d) (r) − ηd

] i−1∏

k=r+1

v (dk)

for i = 1, 2, . . . , K . This completes the proof.
�

6.2 The performance difference equation

For any given policy d ∈ D, the long-run average profit of the stock-rationing queue
is given by

ηd = π(d)f (d),

and the policy-based Poisson equation is given by

B(d)g(d) = ηde − f (d).

It is seen from (3) and (12) that Policy d directly affects not only the elements of the
infinitesimal generator B(d) but also the reward function f (d). Based on this, if Policy
d changes to d′, then the infinitesimal generator B(d) and the reward function f (d) can
have their corresponding changes B(d′) and f(d

′), respectively.
The following lemma provides a useful equation (called performance difference

equation) for the difference ηd
′ − ηd corresponding to any two different policies

d,d′ ∈ D. Here, we only restate the performance difference equation without proof,
readers may refer to Cao (2007) or Ma et al. (2019) for more details.

Lemma 1 For any two policies d,d′ ∈ D, we have

ηd
′ − ηd = π(d′)

[(
B(d′) − B(d)

)
g(d) +

(
f(d

′) − f (d)
)]

. (38)

By using the performance difference Eq. (38), we can set up a partial order relation
for the policies in the policy setD as follows. For any two policies d,d′ ∈ D, we write
that d′
 d if ηd

′
> ηd; d′

≈ d if ηd
′ = ηd; and d′ ≺ d if ηd

′
< ηd. Also, we write

that d′ � d if ηd
′ ≥ ηd; and d′ � d if ηd

′ ≤ ηd.
Under this partial order relation, our research target is to find the optimal policy

d∗ ∈ D such that d∗ � d for any policy d ∈ D, i.e.,

d∗ = argmax
d∈D

{
ηd
}

.

Note that the policy setD and the state set� are all finite, thus an enumeration method
using finite comparisons is feasible for finding the optimal policy d∗ in the policy set
D.

123

83 Page 22 of 54 Journal of Combinatorial Optimization (2023) 45 :83

To find the optimal policy d∗, we define two policies d and d′ with an interrelated
structure at Position i as follows:

d = (
0; d1, d2, . . . , di−1, di , di+1, . . . , dK ; 1, 1, . . . , 1) ,

d′ =
(
0; d1, d2, . . . , di−1, d

′
i , di+1, . . . , dK ; 1, 1, . . . , 1

)
,

where d ′
i , di ∈ {0, 1} with d ′

i �= di . Clearly, if the two policies d and d′ have an
interrelated structure at Position i , then only the difference between the two policies
d and d′ is at their i th elements: di and d ′

i .

Lemma 2 For the two policies d and d′ with an interrelated structure at Position i: di
and d ′

i , we have

ηd
′ − ηd = μ2π

(d′) (i)
(
d ′
i − di

) [
G(d) (i) + b

]
, (39)

where b = R + C2,2 − P.

Proof For the two policies d and d′ with an interrelated structure at Position i : di and
d ′
i , we have

d = (
0; d1, d2, . . . , di−1, di , di+1, . . . , dK ; 1, 1, . . . , 1) ,

d′ =
(
0; d1, d2, . . . , di−1, d

′
i , di+1, . . . , dK ; 1, 1, . . . , 1

)
.

It is easy to check from (3) that

B(d′) − B(d)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0
. . .

. . . 0(
d ′
i − di

)
μ2 − (

d ′
i − di

)
μ2

0 0
. . .

. . .

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (40)

Also, from the reward function (9), we obtain

f (d) (i) = (
R + C2,2 − P

)
μ2di + Rμ1 − C1i − C2,2μ2 − C3λ

and

f (d
′) (i) = (

R + C2,2 − P
)
μ2d

′
i + Rμ1 − C1i − C2,2μ2 − C3λ.

This gives
f(d

′) − f (d) = (
0, 0, . . . , 0, bμ2

(
d ′
i − di

)
, 0, . . . , 0

)T
. (41)

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 23 of 54 83

Thus, it follows from Lemma 1, (40) and (41) that

ηd
′ − ηd = π(d′)

[(
B(d′) − B(d)

)
g(d) +

(
f(d

′) − f (d)
)]

= μ2π
(d′) (i)

(
d ′
i − di

) [
g(d) (i − 1) − g(d) (i) + b

]

= μ2π
(d′) (i)

(
d ′
i − di

) [
G(d) (i) + b

]
. (42)

This completes the proof.
�
For d ′

i , di ∈ {0, 1} with d ′
i �= di , we have

d ′
i − di =

{
1, d ′

i = 1, di = 0;
−1, d ′

i = 0, di = 1.

Therefore, it is easy to see from (39) that to compare ηd
′
with ηd, it is necessary to

further analyze the sign of function G(d) (i) + b. This will be developed in the next
subsection.

6.3 The sign of G(d) (i) + b

As seen from (42), the sign analysis of the performance difference ηd
′ − ηd directly

depends on that of G(d) (i) + b. Thus, this subsection provides the sign analysis of
G(d) (i) + b with respect to the penalty cost P .

Suppose that the inventory level is low. If the service priority is violated (i.e. the
demands of Class 2 are served at a low stock), then the warehouse has to pay the
penalty cost P for each product supplied to the demands of Class 2. Based on this, we
study the influence of the penalty cost P on the sign of G(d) (i) + b.

Substituting (14), (15), (16) and (17) into (37), we obtain that for 1 ≤ i ≤ K ,

G(d) (i) + b

= R + C2,2 + λ−i
[
B0 − D(d)

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
B(d)
r − D(d)

] i−1∏

k=r+1

v (dk)

− P

{

1 + λ−i
[
A0 − F (d)

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
A(d)
r − F (d)

] i−1∏

k=r+1

v (dk)

}

,

(43)

which is linear in the penalty cost P .
From G(d) (i) + b = 0, we have

P

{

1 + λ−i
[
A0 − F (d)

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
A(d)
r − F (d)

] i−1∏

k=r+1

v (dk)

}

123

83 Page 24 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Table 2 Numerical analysis of solutions for three different policies

P
(d)
i i = 0 1 2 3 4 5 6 7 8 9 10

d1 11 11 38.3 20.7 21.4 21.3 20.9 20.7 20.4 20.1 19.8

d2 11 11 −6.5 14.3 88.4 384.9 1.5e3 5.6e3 2.1e4 7.5e4 2.6e5

d3 11 11 −7.1 23.0 −181.4 −80.4 −68.6 15.0 13.7 13.3 13.1

= R + C2,2 + λ−i
[
B0 − D(d)

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
B(d)
r − D(d)

] i−1∏

k=r+1

v (dk) ,

(44)

thus, the unique solution of the penalty cost P to Equation (44) is given by

P
(d)
i =

R + C2,2 + λ−i
[
B0 − D(d)

] i−1∏

k=1
v (dk) +

i−1∑

r=1
λr−i

[
B(d)
r − D(d)

] i−1∏

k=r+1
v (dk)

1 + λ−i
[
A0 − F (d)

] i−1∏

k=1
v (dk) +

i−1∑

r=1
λr−i

[
A(d)
r − F (d)

] i−1∏

k=r+1
v (dk)

.

(45)
It’s easy to see from (43) that if P(d)

i > 0 and 0 ≤ P ≤ P
(d)
i , then G(d) (i) + b ≥ 0;

while if P ≥ P
(d)
i , then G(d) (i) + b ≤ 0. Note that the equality can hold only if

P = P
(d)
i

To understand the solution P
(d)
i for 1 ≤ i ≤ K , we use a numerical example to

show the solutions in Table 2 . To do this, we take the system parameters: λ = 3,
μ1 = 4, μ2 = 2, C1 = 1, C2,1 = 4, C2,2 = 1, C3 = 5 and C4 = 1. Further, we
observe three different policies:

d1 = (0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1) ,

d2 = (0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 1, 1) ,

d3 = (0; 0, 0, 0, 0, 0, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1) .

In the stock-rationing queue, we define two critical values related to the penalty
cost P as

PH (d) = max
d∈D

{
0,P(d)

1 ,P
(d)
2 , . . . ,P

(d)
K

}
, (46)

and
PL (d) = min

d∈D

{
P

(d)
1 ,P

(d)
2 , . . . ,P

(d)
K

}
. (47)

From Table 2, we see that it is possible to have PL (d) < 0 for Policy d = d2 or
d = d3.

The following proposition uses the two critical values PH (d) and PL (d), together
with the penalty cost P , to provide some sufficient conditions under which the function
G(d) (i) + b is either positive, zero or negative.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 25 of 54 83

Proposition 1 (1) If P ≥ PH (d) for any given policy d ∈ D, then for each i =
1, 2, . . . , K,

G(d) (i) + b ≤ 0.

(2) If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d ∈ D, then for each
i = 1, 2, . . . , K,

G(d) (i) + b ≥ 0.

Proof (1) For any given policy d ∈ D, if P ≥ PH (d), then it follows from (46) that
for each i = 1, 2, . . . , K ,

P ≥ P
(d)
i ,

this leads to that G(d) (i) + b ≤ 0.
(2) For any given policy d ∈ D, if PL (d) > 0 and 0 ≤ P ≤ PL (d), then it follows

from (47) that for each i = 1, 2, . . . , K ,

0 ≤ P ≤ P
(d)
i ,

this gives that G(d) (i) + b ≥ 0. This completes the proof.

�

However, for the case with PL (d) < P < PH (d) for any given policy d ∈ D, it is
a little bit complicated to determine the sign of G(d) (i) + b for each i = 1, 2, . . . , K .
For this reason, our discussion will be left in the next section.

For any two policies d, c ∈ D,

d = (0; d1, d2, . . . , di−1, di , di+1, . . . , dK ; 1, 1, . . . , 1) ,

c = (0; c1, c2, . . . , ci−1, ci , ci+1, . . . , cK ; 1, 1, . . . , 1) .

we write

S (d, c) = {i : di �= ci , i = 1, 2, . . . , K − 1, K }

and its complementary set

S (d, c) = {i : di = ci , i = 1, 2, . . . , K − 1, K } .

Then

S (d, c) ∪ S (d, c) = {1, 2, . . . , K − 1, K } .

The following lemma sets up a policy sequence such that any two adjacent policies
of them have the difference at the corresponding position of only one element. The
proof is easy and is omitted here.

123

83 Page 26 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Lemma 3 For any two policies d, c ∈ D, S (d, c) = {i1, i2, i3, . . . , in−1, in}, then
there exists a policy sequence: d(k) for k = 1, 2, 3, . . . , n − 1, n, such that

S
(
d,d(1)

)
= { j1} ,

S
(
d(1),d(2)

)
= { j2} ,

...

S
(
d(n−1),d(n)

)
= { jn} ,

where d(n) = c, and {i1, i2, i3, . . . , in−1, in} = { j1, j2, j3, . . . , jn−1, jn}. Also, for
k = 1, 2, 3, . . . , n − 1, n, we have

S
(
d,d(k)

)
= { j1, j2, j3, . . . , jk} .

The following theoremprovides a class property of the policies in the setD bymeans
of the function G(c) (i) + b for any policy c ∈ D and for each i ∈ S (d, c), where
Policy d is any given reference policy in the set D. Note that the class property will
play a key role in developing some new structural properties of the optimal dynamic
rationing policy.

Theorem 3 (1) If P ≥ PH (d) for any given policy d, then for any policy c ∈ D and
for each i ∈ S (d, c),

G(c) (i) + b ≤ 0.

(2) If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d, then for any policy
c ∈ D and for each i ∈ S (d, c),

G(c) (i) + b ≥ 0.

Proof We only prove (1), while (2) can be proved similarly.
If P ≥ PH (d) for any given policy d, then it follows from (1) of Proposition 1 that

for i = 1, 2, . . . , K ,

G(d) (i) + b ≤ 0.

From Policy d, we observe any different policy c ∈ D. If the two policies d
and c have n different elements: dil �= cil for l = 1, 2, . . . , n, then S (d, c) =
{il : l = 1, 2, . . . , n}.

Note that the performance difference Eq. (39) can only be applied to two policies
d′ and d with an interrelated structure at Position i : d ′

i , di ∈ {0, 1} with d ′
i �= di , thus

for a policy c ∈ D with S (d, c) = {i1, i2, i3, . . . , in−1, in}, our following discussion
needs to use the policy sequence: d(k) for k = 1, 2, 3, . . . , n − 1, n, given in Lemma

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 27 of 54 83

3. To this end, our further proof is to use the mathematical induction in the following
three steps:

Step one: Analyzing the two policies d and d(1).
For each j1 ∈ {i1, i2, i3, . . . , in−1, in}, we take S

(
d,d(1)

) = { j1}. It follows from
the performance difference Eq. (39) that

ηd
(1) − ηd = μ2π

(
d(1)

)

(j1)

(

d
(
d(1)

)

j1
− d j1

)[
G(d) (j1) + b

]
. (48)

Similarly, we have

ηd − ηd
(1) = μ2π

(d) (j1)

(

d j1 − d
(
d(1)

)

j1

)[
G
(
d(1)

)

(j1) + b
]
. (49)

It is easy to see from (48) and (49) that

G
(
d(1)

)

(j1) + b =π
(
d(1)

)

(j1)

π(d) (j1)

[
G(d) (j1) + b

]
≤ 0. (50)

Therefore, for Policy d(1) ∈ D, G
(
d(1)

)

(j1) + b ≤ 0 for each j1 ∈
{i1, i2, i3, . . . , in−1, in}.

Step two: Analyzing the two policies d(1) and d(2).
For each j2 ∈ {i1, i2, i3, . . . , in−1, in}, we take S

(
d(1),d(2)

) = { j2}. It is easy to
see from (50) that

G
(
d(2)

)

(j2) + b = π
(
d(2)

)

(j2)

π(d(1)) (j2)

[
G
(
d(1)

)

(j2) + b
]

≤ 0.

Therefore, for Policy d(2) ∈ D, G
(
d(2)

)

(j2) + b ≤ 0 for each j2 ∈
{i1, i2, i3, . . . , in−1, in}.

Step three: Assume that for l = 3, 4, . . . , k − 2, k − 1, we have obtained that
for Policy d(l) ∈ D with S

(
d(l−1),d(l)

) = { jl}, G
(
d(l)

)

(jl) + b ≤ 0 for each jl ∈
{i1, i2, i3, . . . , in−1, in}. Now, we prove the next case with l = k.

For each jk ∈ {i1, i2, i3, . . . , in−1, in}, we take S
(
d(k−1),d(k)

) = { jk}. It is easy
to see from (50) that

G
(
d(k)

)

(jk) + b = π
(
d(k)

)

(jk)

π(d(k−1)) (jk)

[
G
(
d(k−1)

)

(jk) + b
]

≤ 0.

This gives that for Policy d(k) ∈ D, G
(
d(k)

)

(jk) + b ≤ 0 for each jk ∈
{i1, i2, i3, . . . , in−1, in}. Thus, this result holds for the case with l = k.

Following the above analysis, we can prove by induction that for Policy d(n) ∈ D,
G
(
d(n)

)

(jn) + b ≤ 0 for each jn ∈ {i1, i2, i3, . . . , in−1, in}. Since c = d(n), we obtain

123

83 Page 28 of 54 Journal of Combinatorial Optimization (2023) 45 :83

that for Policy c ∈ D, G(c) (i) + b ≤ 0 for each i ∈ {i1, i2, i3, . . . , in−1, in}. This
completes the proof.
�

7 Monotonicity and optimality

In this section, we analyze the optimal dynamic rationing policy in the three different
areas of the penalty cost: P ≥ PH (d); PL (d) > 0 and 0 < P ≤ PL (d); and
PL (d) < P < PH (d), which are studied as three different subsections, respectively.
For the three areas, some new structural properties of the optimal dynamic rationing
policy are given by using our algebraic method. Also, it is easy to see that for the first
two areas: P ≥ PH (d); and PL (d) > 0 and 0 < P ≤ PL (d), the optimal dynamic
rationing policy is of threshold type; while for the third area: PL (d) < P < PH (d),
it may not be of threshold type but must be of transformational threshold type.

As seen fromLemma 2, to compare ηd
′
with ηd, our aim is to focus on only Position

i with d ′
i �= di for d ′

i , di ∈ {0, 1}. Also, Lemma 3 provides a useful class property
of the policies in the set D under the function G(c) (i) + b for any policy c,d ∈ D
and for each i ∈ S (d, c). The two lemmas are very useful for our research in the next
subsections.

7.1 The penalty cost P ≥ PH
(
d
)

In this subsection, for the area of the penalty cost: P ≥ PH (d) for any given policy d,
we find the optimal dynamic rationing policy of the stock-rationing queue, and further
compute the maximal long-run average profit of this system.

The following theorem uses the class property of the policies in the setD, given in
(1) of Theorem 3, to set up some basic relations between any two policies. Thus, we
find the optimal dynamic rationing policy of the stock-rationing queue.

Theorem 4 If P ≥ PH (d) for any given policy d, then the optimal dynamic rationing
policy of the stock-rationing queue is given by

d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1) .

This shows that if the penalty cost is higher with P ≥ PH (d) for any given policy d,
then the warehouse can not supply any product to the demands of Class 2.

Proof If P ≥ PH for any given policy d, then our proof will focus on that for any
policy c ∈ D, we can have

d∗ � c.

Based on this, we need to study some useful relations among the three policies: d,
c and d∗, where d∗ is deterministic with d∗

i = 0 for each i = 1, 2, . . . , K − 1, K .
To compare ηc with ηd

∗
, let S (d∗, c) = {nl : l = 1, 2, . . . , n} for 1 ≤ n ≤ K .

Then cnl = 1 for l = 1, 2, . . . , n, since d∗
i = 0 for each i = 1, 2, . . . , K − 1, K .

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 29 of 54 83

For the two policies d and c, we have di , ci ∈ {0, 1}. Further, for the three elements:
di , ci and d∗

i = 0 for i ∈ S (d∗, c), we need to consider four different cases as follows:
Case one: di = ci = d∗

i = 0. Since ci = d∗
i , this case does not require any analysis

by using Lemma 2.
Case two: di = 1 and ci = d∗

i = 0. Since ci = d∗
i , this case does not require any

analysis by using Lemma 2.
Case three: ci = 1 and di = d∗

i = 0. Note that ci �= di , by using (1) of Theorem
3, we obtain that G(c) (i) + b ≤ 0. On the other hand, since ci �= d∗

i , it follows from
the performance difference Eq. (39) that for each i ∈ S (d∗, c),

ηd
∗ − ηc = μ2π

(d∗) (i)
(
d∗
i − ci

) [
G(c) (i) + b

]

= −μ2π
(d∗) (i)

[
G(c) (i) + b

]
≥ 0.

Thus ηd
∗ ≥ ηc, this gives d∗ � c.

Case four: di = ci = 1 and d∗
i = 0. Note that d∗

i �= di , by using (1) of Theorem

3, we obtain that G(d∗) (i) + b ≤ 0. On the other hand, since ci �= d∗
i , it follows from

the performance difference Eq. (39) that for each i ∈ S (d∗, c),

ηc − ηd
∗ = μ2π

(c) (i)
(
ci − d∗

i

) [
G(d∗) (i) + b

]

= μ2π
(c) (i)

[
G(d∗) (i) + b

]
≤ 0.

Thus ηd
∗ ≥ ηc, this gives d∗ � c.

Based on the above four discussions, we obtain that d∗ � c for any policy c ∈ D.
This completes the proof.
�

For d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1), let d(n) be a policy in the policy set D with

S
(
d∗,d(n)

)
= {il : l = 1, 2, . . . , n}

for 1 ≤ n ≤ K . To understandPolicyd(n), we take three examples: S
(
d∗,d(1)

) = {i1},
S
(
d∗,d(2)

) = {i1, i2}, S
(
d∗,d(3)

) = {i1, i2, i3}. Also, S
(
d(n−1),d(n)

) = {in} for
1 ≤ n ≤ K . Note that

d(K) = (0; 1, 1, . . . , 1; 1, 1, . . . , 1) .

The following corollary provides a set-structured decreasing monotonicity of the
policies d(n) ∈ D for n = 1, 2, . . . , K −1, K . In fact, this monotonicity is guaranteed
by the class property of policies in the set D, given in (1) of Theorem 3. The proof is
easy by using a similar analysis to that in Theorem 4, thus it is omitted here.

Corollary 5 If P ≥ PH (d) for any given policy d, then

d∗ � d(1) � d(2) � d(3) � · · · � d(K−1) � d(K).

123

83 Page 30 of 54 Journal of Combinatorial Optimization (2023) 45 :83

In what follows we compute the maximal long-run average profit of the stock-
rationing queue.

When P ≥ PH (d) for any given policy d, the optimal dynamic rationing policy is
given by

d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1) ,

thus it follows from (5) that

ξ0 = 1, i = 0,

ξ
(d∗)
i =

{
αi , i = 1, 2, . . . , K ,
(

α
β

)K
β i , i = K + 1, K + 2, . . . , N ,

and

h(d∗) = 1 +
N∑

i=1

ξ
(d∗)
i = 1 + α

(
1 − αK

)

1 − α
+
(

α

β

)K βK+1
(
1 − βN−K

)

1 − β
,

where α = λ/μ1 and β = λ/ (μ1 + μ2) . It follows from (6) that

π(d∗) (i) =
{

1
h(d∗)

, i = 0,
1

h(d∗)
ξ

(d∗)
i , i = 1, 2, . . . , N .

At the same time, it follows from (8) to (11) that

f (0) = −C2,1μ1 − C2,2μ2 − C3λ, i = 0;
f (d∗) (i) = Rμ1 − C1i − C2,2μ2 − C3λ, 1 ≤ i ≤ K ;
f (i) = R (μ1 + μ2) − C1i − C3λ1{i<N } − C4λ1{i=N }, K + 1 ≤ i ≤ N .

Since

ηd
∗ =

N∑

i=0

π(d∗) (i) f (d∗) (i) , (51)

we obtain

ηd
∗ = 1

h(d∗)

{

− (
C2,1μ1 + C2,2μ2 + C3λ

)+
K∑

i=0

(
Rμ1 − C1i − C2,2μ2 − C3λ

)
αi

+
N∑

i=K+1

[
R (μ1 + μ2) − C1i − C3λ1{i<N } − C4λ1{i=N }

]
(

α

β

)K

β i

}

= 1

h(d∗)

{

−γ1 + γ2
α
(
1 − αK

)

1 − α
− C1

[
α
(
1 − αK

)

(1 − α)2
− KαK+1

1 − α

]

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 31 of 54 83

+
(

α

β

)K

γ3
βK+1

(
1 − βN−K

)

1 − β

−
(

α

β

)K

C1

[
KβK+1 − NβN+1

1 − β
+ βK+1

(
1 − βN−K

)

(1 − β)2

]}

,

where

γ1 = C2,1μ1 + C2,2μ2 + C3λ,

γ2 = Rμ1 − C2,2μ2 − C3λ,

γ3 = R (μ1 + μ2) − C3λ1{i<N } − C4λ1{i=N }.

7.2 The penalty cost PL
(
d
)
> 0 and 0 ≤ P ≤ PL

(
d
)

In this subsection, we consider the area of the penalty cost: PL (d) > 0 and 0 ≤ P ≤
PL (d) for any given policy d. We first find the optimal dynamic rationing policy of
the stock-rationing queue. Then we compute the maximal long-run average profit of
this system.

The following theorem finds the optimal dynamic rationing policy of the stock-
rationing queue in the area of the penalty cost: PL (d) > 0 and 0 ≤ P ≤ PL (d) for
any given policy d. The proof is similar to that of Theorem 4.

Theorem 6 If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d, then the
optimal dynamic rationing policy of the stock-rationing queue is given by

d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1) .

This shows that if the penalty cost is lower with PL (d) > 0 and 0 ≤ P ≤ PL (d),
then the warehouse would like to supply the products to the demands of Class 2.

Proof If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d, then we prove that
for any policy c ∈ D,

d∗ � c.

For this, we need to consider the three policies:d, c andd∗, whered∗ is deterministic
with d∗

i = 1 for each i = 1, 2, . . . , K − 1, K .
To compare ηc with ηd

∗
, let S (d∗, c) = {nl : l = 1, 2, . . . ,m} for 1 ≤ m ≤ K .

Then cnl = 0 for l = 1, 2, . . . ,m, since d∗
i = 1 for each i = 1, 2, . . . , K − 1, K .

For the two policies d and c, we have di , ci ∈ {0, 1}. Based on this, for the three
elements: di , ci and d∗

i = 1 for i ∈ S (d∗, c), we need to consider four different cases
as follows:

Case one: di = ci = d∗
i = 1. Since ci = d∗

i , this case does not require any analysis
according to Lemma 2.

Case two: di = 0 and ci = d∗
i = 1. Since ci = d∗

i , this case does not require any
analysis by using Lemma 2.

123

83 Page 32 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Case three: ci = 0 and di = d∗
i = 1. Note that ci �= di , by using (2) of Theorem

3, we obtain that G(c) (i) + b ≥ 0. On the other hand, since ci �= d∗
i , it follows from

the performance difference Eq. (39) that for each i ∈ S (d∗, c),

ηd
∗ − ηc = μ2π

(d∗) (i)
(
d∗
i − ci

) [
G(c) (i) + b

]

= μ2π
(d∗) (i)

[
G(c) (i) + b

]
≥ 0.

Thus ηd
∗ ≥ ηc, this gives d∗ � c.

Case four: di = ci = 0 and d∗
i = 1. Note that d∗

i �= di , by using (2) of Theorem

3, we obtain that G(d∗) (i) + b ≥ 0. On the other hand, since ci �= d∗
i , it follows from

the performance difference Eq. (39) that for each i ∈ S (d∗, c),

ηc − ηd
∗ = μ2π

(c) (i)
(
ci − d∗

i

) [
G(d∗) (i) + b

]

= −μ2π
(c) (i)

[
G(d∗) (i) + b

]
≤ 0.

Thus ηd
∗ ≥ ηc, this gives d∗ � c. This completes the proof.
�

For d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1), let d(n) be a policy in the policy set D with
S
(
d∗,d(n)

) = {kl : l = 1, 2, . . . , n} for 1 ≤ n ≤ K , where

d̃(K) = (0; 0, 0, . . . , 0; 1, 1, . . . , 1) .

The following corollary provides a set-structured decreasing monotonicity of the
policies d(n) ∈ D for n = 1, 2, . . . , K − 1, K . This monotonicity comes from the
class property of the policies in the setD, given in (2) of Theorem 3. The proof is easy
and omitted here.

Corollary 7 If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d, then

d∗ � d(1) � d(2) � d(3) � · · · � d(K−1) � d(K).

If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policyd, then the optimal dynamic
rationing policy is given by

d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1) .

In this case, we obtain

ξ0 = 1, i = 0,

ξ
(d∗)
i = β i , i = 1, 2, . . . , N ,

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 33 of 54 83

and

h(d∗) = 1 +
N∑

i=1

ξ
(d∗)
i = 1 + β

(
1 − βN

)

1 − β
.

It follows from Subsection 1.1.4 of Chapter 1 in Li (2010) that

π(d∗) (i) =
{

1
h(d∗)

i = 0,
βi

h(d∗)
, i = 1, 2, . . . , N ,

At the same time, it follows from (8) to (11) that

f (0) = −C2,1μ1 − C2,2μ2 − C3λ, i = 0;
f (d∗) (i) = R (μ1 + μ2) − C1i − C3λ − Pμ2, 1 ≤ i ≤ K ;
f (d∗) (i) = R (μ1 + μ2) − C1i − C3λ1{i<N } − C4λ1{i=N }, K + 1 ≤ i ≤ N .

Thus we obtain

ηd
∗ = 1

h(d∗)

{

− (
C2,1μ1 + C2,2μ2 + C3λ

)+
K∑

i=1

[R (μ1 + μ2) − C1i − C3λ − Pμ2]β
i

+
N∑

i=K+1

[
R (μ1 + μ2) − C1i − C3λ1{i<N } − C4λ1{i=N }

]
β i

}

= 1

h(d∗)

{

−γ1 + γ4
β
(
1 − βK

)

1 − β
− C1

[
β
(
1 − βK

)

(1 − β)2
− KβK+1

1 − β

]

+ γ3
βK+1

(
1 − βN−K

)

1 − β
− C1

[
KβK+1 − NβN+1

1 − β
+ βK+1

(
1 − βN−K

)

(1 − β)2

]}

,

where

γ1 = C2,1μ1 + C2,2μ2 + C3λ,

γ2 = Rμ1 − C2,2μ2 − C3λ,

γ3 = R (μ1 + μ2) − C3λ1{i<N } − C4λ1{i=N },
γ4 = R (μ1 + μ2) − C3λ − Pμ2.

7.3 The penalty cost PL
(
d
)
< P < PH

(
d
)

In this subsection, we discuss the third area of the penalty cost: PL < P < PH for any
given policy d. Note that this analysis is a little more complicated than those in the
previous two areas. To this end, we propose a new algebraic method to find the optimal
dynamic rationing policy of the stock-rationing queue. Based on this, we show that

123

83 Page 34 of 54 Journal of Combinatorial Optimization (2023) 45 :83

the optimal dynamic rationing policy may not be of threshold type, but it must be of
transformational threshold type.

For convenience of the readers, it is necessary and useful to simply recall several
previous results as follows.

For any given policy d = (0; d1, d2, . . . , . . . , dK−1, dK ; 1, 1, . . . , 1), the unique
solution of the linear equation G(d) (i) + b = 0 in the penalty cost P is given by

P
(d)
i =

R + C2,2 + λ−i
[
B0 − D(d)

] i−1∏

k=1
v (dk) +

i−1∑

r=1
λr−i

[
B(d)
r − D(d)

] i−1∏

k=r+1
v (dk)

1 + λ−i
[
A0 − F (d)

] i−1∏

k=1
v (dk) +

i−1∑

r=1
λr−i

[
A(d)
r − F (d)

] i−1∏

k=r+1
v (dk)

,

which is a fixed real number for 1 ≤ i ≤ K .
We introduce a convention: If P(d)

n−1 < P
(d)
n = P

(d)
n+1 = · · · = P

(d)
n+i = c and

P
(d)
n−1 < P ≤ c, then we write

P
(d)
n−1 < P ≤ P(d)

n = P
(d)
n+1 = · · · = P

(d)
n+i ,

that is, the penalty cost P is written in front of all the equal elements in the sequence{
P

(d)
k : n ≤ k ≤ n + i

}
.

For the sequence
{
P

(d)
k : 1 ≤ k ≤ K

}
, we set up a new permutation from the

smallest to the largest as follows:

P
(d)
i1

≤ P
(d)
i2

≤ · · · ≤ P
(d)
iK−1

≤ P
(d)
iK

,

it is clear thatP(d)
i1

= PL (d) andP(d)
iK

= PH (d). For convenience of the description,

for the incremental sequence
{
P

(d)
i j

: 1 ≤ j ≤ K
}
, we write its subscript vector as

(i1, i2, . . . , iK−1, iK). Note that the subscript vector (i1, i2, . . . , iK−1, iK) depends
on Policy d.

The following lemma shows how the penalty cost P is distributed in the sequence{
P

(d)
k : 1 ≤ k ≤ K

}
.

Lemma 4 If PL (d) < P < PH (d) for any given policy d, then there exists the
minimal positive integer n0 ∈ {1, 2, . . . , K } such that either

P
(d)
in0

< P = P
(d)
in0+1

or

P
(d)
in0

< P < P
(d)
in0+1

.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 35 of 54 83

Proof Note that

PH (d) = max
d∈D

{
0,P(d)

1 ,P
(d)
2 , . . . ,P

(d)
K

}

and

PL (d) = max
d∈D

{
P

(d)
1 ,P

(d)
2 , . . . ,P

(d)
K

}
,

it is easy to see that PH (d) and PL (d) are twofixed real numbers. If PL < P < PH (d)

for Policy d, then there exists the minimal positive integer n0 ∈ {1, 2, . . . , K − 1, K }
such that

PL (d) ≤ P
(d)
in0

< P ≤ P
(d)
in0+1

< PH (d) .

This shows that either for P = P
(d)
in0+1

,

P
(d)
in0

< P = P
(d)
in0+1

;

or for P < P
(d)
in0+1

,

P
(d)
in0

< P < P
(d)
in0+1

.

This completes the proof.
�
Now, our task is to develop a newmethod for finding the optimal dynamic rationing

policy bymeans of the following twouseful information: (a) The incremental sequence

PL (d) = P
(d)
i1

≤ P
(d)
i2

≤ · · · ≤ P
(d)
iK−1

≤ P
(d)
iK

= PH (d) ;

and (b) the penalty cost P has a fixed position: P(d)
in0

< P ≤ P
(d)
in0+1

, where n0 is the

minimal positive integer in the set {1, 2, . . . , K − 1, K }.
In what follows we discuss two different cases: A simple case and a general case.
Case one: A simple case with

PL (d) = P
(d)
1 ≤ P

(d)
2 ≤ · · · ≤ P

(d)
K−1 ≤ P

(d)
K = PH (d) . (52)

In this case, the subscript vector is expressed as {1, 2, 3, . . . , K − 1, K } depending
on Policy d.

If PL (d) < P < PH (d) for any given policy d, then there exists the minimal
positive integer n0 ∈ {1, 2, . . . , K − 1, K } such that

PL (d) = P
(d)
1 ≤ · · · ≤ P

(d)
n0−1 < P ≤ P(d)

n0 ≤ · · · ≤ P
(d)
K = PH (d) .

123

83 Page 36 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Based on this, we take two different sets

�1 =
{
P

(d)
1 ,P

(d)
2 , . . . ,P

(d)
n0−1

}

and

�2 =
{
P(d)

n0 ,P
(d)
n0+1, . . . ,P

(d)
K

}
.

By using the two sets �1 and �2, we write

PH (d;1 → n0 − 1) = max
1≤i≤n0−1

{
P

(d)
i

}

and

PL (d;n0 → K) = min
n0≤ j≤K

{
P

(d)
j

}
.

It is clear that PH (d;1 → n0 − 1) = P
(d)
n0−1 and PL (d;n0 → K) = P

(d)
n0 .

For this simple case, the following theorem finds the optimal dynamic rationing
policy, which is of threshold type.

Theorem 8 For the simple case with PL (d) < P < PH (d) for any given policy d, if
there exists the minimal positive integer n0 ∈ {1, 2, . . . , K − 1, K } such that

PL (d) = P
(d)
1 ≤ · · · ≤ P

(d)
n0−1 < P ≤ P(d)

n0 ≤ · · · ≤ P
(d)
K = PH (d) , (53)

then the optimal dynamic rationing policy is given by

d∗ =
⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸
K−n0+1 ones

; 1, 1, . . . , 1
⎞

⎟
⎠ .

Proof The proof follows that in Theorems 4 and 6.
On the one hand, in the set �1, it is easy to see from (53) that P >

PH (d;1 → n0 − 1) for Policy d. Now, our aim is to focus on a sub-policy

d̃a = (
0; d1, d2, . . . , dn0−1, ∗, ∗, . . . , ∗; 1, 1, . . . , 1) .

For the sub-policy
(
d1, d2, . . . , dn0−1

)
, it is easy to see from the set �1 that P >

PH (d;1 → n0 − 1). Thus it follows from Theorem 4 that the optimal dynamic
rationing sub-policy is given by

d̃∗
a = (0; 0, 0, . . . , 0, ∗, ∗, . . . , ∗; 1, 1, . . . , 1) .

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 37 of 54 83

On the other hand, it is seen from the set �2 that 0 ≤ P ≤ PL (d;n0 → K) for
Policy d. We consider another sub-policy

d̃b = (
0; ∗, ∗, . . . , ∗, dn0 , dn0+1, . . . , dK ; 1, 1, . . . , 1) .

For the sub-policy
(
dn0 , dn0+1, . . . , dK

)
, it is easy to see from the set �2 that 0 ≤

P ≤ PL (d;n0 → K). Thus it is easy to see from Theorem 6 that the optimal dynamic
rationing sub-policy is given by

d̃∗
b = (0; ∗, ∗, . . . , ∗, 1, 1, . . . , 1; 1, 1, . . . , 1) .

Based on the above two discussions, from the total set �1 ∪ �2, by observing the
total policy

(
d1, d2, . . . , dn0−1; dn0 , dn0+1, . . . , dK

)
or Policy d, the optimal dynamic

rationing policy is given by

d∗ = (̃
d̃∗
a

)∗
b = (̃

d̃∗
b

)∗
a =

⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸
K−n0+1 ones

; 1, 1, . . . , 1
⎞

⎟
⎠ .

This completes the proof.
�
Remark 4 It is easy to see that in Theorems 4, 6 and 8, the optimal dynamic rationing
policy is of threshold type (i.e., critical rationing level).

Case two: A general case with

PL (d) = P
(d)
i1

≤ P
(d)
i2

≤ · · · ≤ P
(d)
iK−1

≤ P
(d)
iK

= PH (d) .

For the incremental sequence
{
P

(d)
i j

: j = 1, 2, . . . , K
}
, we write its subscript vector

as (i1, i2, . . . , iK−1, iK), which depends on Policy d. In the general case, we assume
that (i1, i2, . . . , iK−1, iK) �= (1, 2, . . . , K − 1, K).

If PL (d) < P < PH (d) for any given policy d, then there exists the minimal
positive integer n0 ∈ {1, 2, . . . , K − 1, K } such that

PL (d) = P
(d)
i1

≤ · · · ≤ P
(d)
in0−1

< P ≤ P
(d)
in0

≤ · · · ≤ P
(d)
iK

= PH (d) .

Based on this, we take two sets

�G
1 =

{
P

(d)
i1

,P
(d)
i2

, . . . ,P
(d)
in0−1

}

and

�G
2 =

{
P

(d)
in0

,P
(d)
in0+1

, . . . ,P
(d)
iK

}
.

123

83 Page 38 of 54 Journal of Combinatorial Optimization (2023) 45 :83

For the two sets �G
1 and �G

2 , we write

P
G
H (d;1 → n0 − 1) = max

1≤k≤n0−1

{
P

(d)
ik

}

and

P
G
L (d;n0 → K) = min

n0≤k≤K

{
P

(d)
ik

}
,

It is clear that P
G
H (d;1 → n0 − 1) = P

(d)
in0−1

and P
G
L (d;n0 → K) = P

(d)
in0

.
Corresponding to the subscript vector of the incremental sequence{

P
(d)
ik

: 1 ≤ k ≤ K
}
, we transfer Policy

d = (
0; d1, d2, . . . , dn0−1, dn0 , dn0+1, . . . , dK ; 1, 1, . . . , 1)

into a new transformational policy

d (Transfer) =
(
0; di1 , di2 , . . . , din0−1 , din0 , din0+1 , . . . , diK ; 1, 1, . . . , 1

)
.

Therefore, a transformation of the optimal dynamic policy d∗ is

(1, 2, . . . , K − 1, K) ⇒ (i1, i2, . . . , iK−1, iK) ;

and an inverse transformation of the optimal transformational dynamic policy
d∗ (Transfer) is

(i1, i2, . . . , iK−1, iK) ⇒ (1, 2, . . . , K − 1, K) .

For the general case, the following theorem finds the optimal dynamic rationing
policy, which may not be of threshold type, but must be of transformational threshold
type.

Theorem 9 For the general case with PL (d) < P < PH (d) for any given policy d,
if there exists the minimal positive integer n0 ∈ {1, 2, . . . , K − 1, K } such that

PL (d) = P
(d)
i1

≤ · · · ≤ P
(d)
in0−1

< P ≤ P
(d)
in0

≤ · · · ≤ P
(d)
iK

= PH (d) ,

then the optimal transformational dynamic rationing policy is given by

d∗ (Transfer) =
⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸
K−n0+1 ones

; 1, 1, . . . , 1
⎞

⎟
⎠ .

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 39 of 54 83

Proof From the set �G
1 , it is easy to see that P > P

G
H (d;1 → n0 − 1). Hence we

consider the transformational sub-policy

d̃a (Transfer) =
(
0; di1 , di2 , . . . , din0−1 , ∗, ∗, . . . , ∗; 1, 1, . . . , 1

)
.

By observing the transformational sub-policy
(
di1 , di2 , . . . , din0−1

)
related to P >

P
G
H (d;1 → n0 − 1), it is easy to see from the proof of Theorem 4 that the optimal

transformational dynamic rationing sub-policy is given by

d̃∗
a (Transfer) = (0; 0, 0, . . . , 0, ∗, ∗, . . . , ∗; 1, 1, . . . , 1) .

Similarly, from 0 ≤ P ≤ P
G
L (d;n0 → K) in the set �G

2 , we discuss the
transformational sub-policy

d̃b (Transfer) =
(
0; ∗, ∗, . . . , ∗, din0 , din0+1 , . . . , diK ; 1, 1, . . . , 1

)
.

By observing the transformational sub-policy
(
dn0 , dn0+1, . . . , dK

)
related to 0 ≤

P ≤ P
G
L (d;n0 → K), it is easy to see from the proof of Theorem 6 that the optimal

transformational dynamic rationing sub-policy is given by

d̃∗
b (Transfer) = (0; ∗, ∗, . . . , ∗, 1, 1, . . . , 1; 1, 1, . . . , 1) .

Therefore, byobserving the total transformational sub-policy (di1 , di2 , . . . , din0−1 , din0 ,

din0+1 , . . . , diK) in the total set �G
1 ∪ �G

2 , the optimal transformational dynamic
rationing policy is given by

d∗ (Transfer) = ˜
(
d̃∗
a (Transfer)

)∗
b (Transfer) = ˜

(
d̃∗
b (Transfer)

)∗
a (Transfer)

=
⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸
K−n0+1 ones

; 1, 1, . . . , 1
⎞

⎟
⎠ .

This completes the proof.
�
Remark 5 (1) For the general case, although the optimal dynamic rationing policy is

not of threshold type, we show that it must be of transformational threshold type.
Thus the optimal transformational dynamic policy of the stock-rationing queue
has a beautiful form as follows:

d∗ (Transfer) =
⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸

; 1, 1, . . . , 1
K−n0 ones

⎞

⎟
⎠ .

123

83 Page 40 of 54 Journal of Combinatorial Optimization (2023) 45 :83

(2) We use an inverse transformation of d∗ (Transfer) to be able to restore the origi-
nal optimal dynamic policy d∗, since d∗ (Transfer) is always obtained easily. To
indicate such an inverse process, we take a simple example:

P
(d)
1 ≤ P

(d)
3 ≤ P

(d)
4 ≤ P

(d)
7 < P ≤ P

(d)
2 ≤ P

(d)
5 ≤ P

(d)
6 ≤ P

(d)
8 ,

it is easy to check that

d∗ = (0; 0, 1, 0, 0, 1, 1, 0, 1; 1, 1, 1, 1) .

Remark 6 The transformational versiond∗ (Transfer)of the optimal dynamic rationing
policy d∗ plays a key role in the applications of the sensitivity-based optimization
to the study of stock-rationing queues. On the other hand, it is worthwhile to note
that the RG-factorization of block-structured Markov processes can be extended and
generalized to a more general optimal transformational version d∗ (Transfer) in the
study of stock-rationing block-structured queues. See Li (2010) and Ma et al. (2019)
for more details.

Remark 7 The bang-bang control is an effective method to roughly describe the opti-
mal dynamic policy, e.g., see Xia et al. (2021) and Ma et al. (2019, 2021). However,
our optimal transformational dynamic policy d∗ (Transfer) provides a more detailed
result, and also can restore the original optimal dynamic policy d∗ by means of an
inverse transformation: (i1, i2, . . . , iK−1, iK) ⇒ (1, 2, . . . , K − 1, K). Therefore,
our optimal transformational dynamic rationing policy is superior to the bang-bang
control.

The following theorem provides a useful summarization for Theorems 4 to 9. Based
on this, for the optimal dynamic policy of the stock-rationing queue, we provide a
complete algebraic solution: (a) The optimal dynamic rationing policy can hold under
each of the three different conditions; and (b) the optimal transformational dynamic
rationing policy (no optimal dynamic rationing policy) can hold under one condition

Theorem 10 For the stock-rationing queue with two demand classes, there must exist
an optimal transformational dynamic rationing policy

d∗ (Transfer) =
⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸

; 1, 1, . . . , 1
K−n0 ones

⎞

⎟
⎠ .

Based on this finding, we can achieve the following two useful results:

(a) The optimal dynamic rationing policyd∗ is of critical rationing level (i.e., threshold
type) under each of the three conditions: (i) P ≥ PH (d) for any given policy
d; (i i) PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d; and (i i i)
PL (d) < P < PH (d) with the subscript vector (1, 2, . . . , K − 1, K) depending
on Policy d.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 41 of 54 83

(b) The optimal dynamic rationing policy is not of critical rationing level (i.e.,
threshold type) if PL (d) < P < PH (d) with the subscript vector
(i1, i2, . . . , iK−1, iK) �= (1, 2, . . . , K − 1, K) depending on Policy d.

7.4 A global optimal analysis

In this subsection, for a fixed penalty cost P , we discuss how to find a global optimal
policy of the stock-rationing queue with two demand classes by means of Theorem
10. Note that if d∗ is a global optimal policy of this system, then d∗ � c for any c ∈ D.
Also, we provide a simple effective method to be able to find the global optimal policy
from the policy set D.

In the policy set D, we define two key policies:

d1 = (0; 0, 0, . . . , 0; 1, 1, . . . , 1)

and

d2 = (0; 1, 1, . . . , 1; 1, 1, . . . , 1) .

Note that there are 2k different policies in the set D, we write

D = {
d1,d2; c3, c4, . . . , c2k−1, c2k

}
.

The following theorem describes a useful characteristics of the two key policies d1
and d2 by means of the class property of the policies in the set D, given in Theorem
3. This characteristics makes us to be able to find the global optimal policy of the
stock-rationing queue.

Theorem 11 (1) If a fixed penalty cost P ≥ PH (d) for any given policy d, then
P ≥ PH (d1).

(2) If a fixed penalty cost PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given policy d,
then PL (d2) > 0 and 0 ≤ P ≤ PL (d2).

Proof We only prove (1), while (2) can be proved similarly.
We assume the penalty cost: P < PH (d1) for Policy d1 =

(0; 0, 0, . . . , 0; 1, 1, . . . , 1). Then there exists the minimal positive integer n0 ∈
{1, 2, . . . , K − 1, K } such that

0 < P ≤ P
(d1)
in0

≤ · · · ≤ P
(d1)
iK

= PH (d1) ,

and also there exists at least a positive integer m0 ∈ {n0 + 1, n0 + 2, . . . , K − 1, K }
such that

P
(d1)
im0−1

< P
(d1)
im0

. (54)

Let

P
G
L (d1, n0 → K) = min

{
P

(d1)
in0

,P
(d1)
in0+1

, . . . ,P
(d1)
iK−1

,P
(d1)
iK

}
= P

(d1)
in0

> 0.

123

83 Page 42 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Then from 0 ≤ P ≤ P
G
L (d1, n0 → K), we discuss the transformational sub-policy

˜(d1)b (Transfer) =
(
0; ∗, ∗, . . . , ∗, din0 , din0+1 , . . . , diK ; 1, 1, . . . , 1

)
.

By observing the transformational sub-policy
(
dn0 , dn0+1, . . . , dK

)
related to 0 ≤

P ≤ P
G
L (d1, n0 → K), it is easy to see from the proof of Theorem 6 that the optimal

transformational dynamic rationing sub-policy is given by

˜(d1)
∗
b (Transfer) = (0; ∗, ∗, . . . , ∗, 1, 1, . . . , 1; 1, 1, . . . , 1) .

This gives
˜(d1)

∗
b (Transfer)
 d1 = d∗ (55)

by using (54), where d∗ is given in Theorem 4.
Since for a fixed penalty cost P ≥ PH (d) for Policy d, it follows from Theorem 4

that the optimal dynamic rationing policy of the stock-rationing queue is given by

d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1) .

By using (54), we obtain
˜(d1)

∗
b (Transfer) ≺ d∗. (56)

This makes a contradiction between (55) and (56), thus our assumption on the
penalty cost: P < PH (d1) should not be correct. This completes the proof.
�

Theorem 11 shows that to find the optimal dynamic rationing policy of the stock-
rationing queue, our first step is to check whether there exists (a) the penalty cost
P ≥ PH (d1), or (b) the fixed penalty cost PL (d2) > 0 and 0 ≤ P ≤ PL (d2). Thus,
the two special policies d1 and d2 are chosen as the first observation of our algebraic
method on the the optimal dynamic rationing policy.

The following theorem provides the global optimal solution to the optimal dynamic
rationing policy of the stock-rationing queue.

Theorem 12 In the stock-rationing queue with two demand classes, we have

(1) If a fixed penalty cost P ≥ PH (d1), then d∗ = d1 � c for any c ∈ D.
(2) If a fixed penalty cost PL (d2) > 0 or 0 ≤ P ≤ PL (d2), then d∗ = d2 � c for

any c ∈ D.
(3) If a fixed penalty cost P satisfies P < PH (d1) and P > PL (d2), then

d∗ = max
{
˜(d1)

∗
b (Transfer) ,˜(d2)

∗
a (Transfer) , (ck)

∗ (Transfer) for k = 3, 4, . . . , K
}

and d∗ � c for any c ∈ D.

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 43 of 54 83

Proof We only prove (3), while (1) and (2) are provided in those of Theorem 11.
If P < PH (d1) or P > PL (d2), then both d1 and d2 are not the optimal dynamic

rationing policy of the system. In this case, by using Theorem 10, we indicate that the
optimal dynamic rationing policy must be of transformational threshold type. Thus
we have

d∗ = max
{
˜(d1)

∗
b (Transfer) ,˜(d2)

∗
a (Transfer) , (ck)∗ (Transfer) for k = 3, 4, . . . , K

}
,

which is of transformational threshold type, since K is a finite positive integer. It is
clear that d∗ � c for any c ∈ D. This completes the proof.
�

8 The static rationing policies

In this section, we analyze the static (i.e., threshold type) rationing policies of the
stock-rationing queue with two demand classes, and discuss the optimality of the
static rationing policies. Furthermore, we provide a necessary condition under which
a static rationing policy is optimal. Based on this, we can intuitively understand some
differences between the optimal static and dynamic rationing policies.

To study static rationing policy, we define a static policy subset of the policy set D
as follows. For θ = 1, 2, . . . , K , K + 1, we write d�,θ as a static rationing policy d
with di = 0 if 1 ≤ i ≤ θ − 1 and di = 1 if θ ≤ i ≤ K . Clearly, if θ = 1, then

d�,1 = (0; 1, 1, . . . , 1; 1, 1, . . . , 1) ;

if θ = K , then

d�,K = (0; 0, 0, . . . , 0, 1; 1, 1, . . . , 1) ;

and if θ = K + 1, then

d�,K+1 = (0; 0, 0, . . . , 0; 1, 1, . . . , 1) .

Let

D� = {
d�,θ : θ = 1, 2, . . . , K , K + 1

}
.

Then

D� =
⎧
⎨

⎩

⎛

⎝0; 0, 0, . . . , 0
︸ ︷︷ ︸

θ−1 zeros

, 1, 1, . . . , 1; 1, 1, . . . , 1
⎞

⎠ : θ = 1, 2, . . . , K , K + 1

⎫
⎬

⎭
.

It is easy to see that the static rationing policy set D� ⊂ D.

123

83 Page 44 of 54 Journal of Combinatorial Optimization (2023) 45 :83

For a static rationing policy d�,θ =
⎛

⎝0; 0, 0, . . . , 0
︸ ︷︷ ︸

θ−1 zeros

, 1, 1, . . . , 1; 1, 1, . . . , 1
⎞

⎠with

θ = 1, 2, . . . , K , K + 1, it follows from (5) that

ξ0 = 1, i = 0;
ξ

(d�,θ)

i =
{

αi , i = 1, 2, . . . , θ − 1;
(

α
β

)θ−1
β i , i = θ, θ + 1, . . . , N .

and

h(d�,θ) = 1 +
N∑

i=1

ξ
(d�,θ)

i

= 1 + α
(
1 − αθ−1

)

1 − α
+
(

α

β

)θ−1 βθ
(
1 − βN−θ+1

)

1 − β
.

It follows from (6) that

π(d�,θ) (i) =

⎧
⎪⎪⎨

⎪⎪⎩

1
h(d�,θ) , i = 0;

1
h(d�,θ) α

i , i = 1, 2, . . . , θ − 1;
1

h(d�,θ)

(
α
β

)θ−1
β i , i = θ, θ + 1, . . . , N .

On the other hand, it follows from (8) to (11) that for i = 0

f (0) = −C2,1μ1 − C2,2μ2 − C3λ;

for i = 1, 2, . . . , θ − 1,

f (d�,θ) (i) = Rμ1 − C1i − C2,2μ2 − C3λ;

for i = θ, θ + 1, . . . , K ,

f (d�,θ) (i) = R (μ1 + μ2) − C1i − C3λ − Pμ2;

and for i = K + 1, K + 2, . . . , N ,

f (i) = R (μ1 + μ2) − C1i − C3λ1{i<N } − C4λ1{i=N }.

Note that

ηd�,θ = π(d�,θ) (0) f (0) +
θ−1∑

i=1

π(d�,θ) (i) f (d�,θ) (i)

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 45 of 54 83

+
K∑

i=θ

π(d�,θ) (i) f (d�,θ) (i) +
N∑

i=K+1

π(d�,θ) (i) f (i) ,

we obtain an explicit expression for the long-run average profit of the stock-rationing
queue under the static rationing policy d�,θ as follows:

ηd�,θ = 1

h(d�,θ)

{

− (
C2,1μ1 + C2,2μ2 + C3λ

)+
θ−1∑

i=1

αi (Rμ1 − C1i − C2,2μ2 − C3λ
)

+
K∑

i=θ

(
α

β

)θ−1

β i [R (μ1 + μ2) − C1i − C3λ − Pμ2]

+
N∑

i=K+1

(
α

β

)θ−1

β i [R (μ1 + μ2) − C1i − C3λ1{i<N } − C4λ1{i=N }
]
}

= 1

h(d�,θ)

{

−γ1 + γ2
α
(
1 − αθ−1

)

1 − α
− C1

[
α
(
1 − αθ−1

)

(1 − α)2
− (θ − 1) αθ

1 − α

]

−
(

α

β

)θ−1

C1

[
(θ − 1) βθ − NβN+1

1 − β
+ βθ

(
1 − βN−θ+1

)

(1 − β)2

]

+
(

α

β

)θ−1

γ4
βθ
(
1 − βK−θ+1

)

1 − β
+
(

α

β

)θ−1

γ3
βK+1

(
1 − βN−K

)

1 − β

}

.

Let

d∗�,θ = argmax
d�,θ∈D�

{
ηd�,θ

}

and

d�,θ∗ = argmax
1≤θ≤K+1

{
ηd�,θ

}
.

Then d∗�,θ = d�,θ∗ . Hence we call d∗�,θ (or d�,θ∗) the optimal static rationing policy

in the static rationing policy setD�. SinceD� ⊂ D, the partially ordered setD shows
that D� is also a partially ordered set. Based on this, it is easy to see from the two
partially ordered sets D and D� that

η
d∗�,θ ≤ ηd

∗
, or d∗�,θ � d∗,

where d∗ is the optimal dynamic rationing policy in the set D.
If η

d∗�,θ = ηd
∗
, then the optimal static rationing policy d∗�,θ is also optimal in

the policy set D, thus the optimal dynamic rationing policy is of threshold type. If
η
d∗�,θ < ηd

∗
, then the optimal static rationing policy d∗�,θ is not optimal in the static

123

83 Page 46 of 54 Journal of Combinatorial Optimization (2023) 45 :83

rationing policy subset D�, i.e., it is also suboptimal in the policy set D, thus the
optimal dynamic rationing policy is not of threshold type.

Now, we set up some conditions under which the optimal static rationing policy
d∗�,θ is suboptimal in the dynamic rationing policy set D.

In the static rationing policy subset D�, it is easy to see that there must exist a
minimal positive integer θ∗ ∈ {1, 2, . . . , K , K + 1} such that

d∗�,θ = d�,θ∗ =
⎛

⎝0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ∗−1 zeros

1, 1, . . . , 1; 1, 1, . . . , 1
⎞

⎠ .

By using the optimal static rationing policy d∗�,θ (or d�,θ∗), the following theorem

determines the sign of the function G(d�,θ) (θ) + b in the three different points:
θ = θ∗ −1, θ∗, θ∗ +1. This may be useful for us to understand how to use Proposition
1 to give the optimal long-run average profit of this system.

Theorem 13 In the stock-rationing queue, the static rationing policies d�,θ∗−1, d�,`∗
and d�,θ∗+1 satisfy the following conditions:

G(d�,θ∗−1)
(
θ∗ − 1

)+ b ≤ 0, G(d�,θ∗) (θ∗ − 1
)+ b ≤ 0,

and

G(d�,θ∗) (θ∗)+ b ≥ 0, G(d�,θ∗+1)
(
θ∗)+ b ≥ 0.

Proof We consider three static rationing policies with an interrelated structure as
follows:

d�,θ∗−1 =
⎛

⎝0; 0, 0, . . . , 0
︸ ︷︷ ︸

,

θ∗−2 zeros

1, 1, 1, 1, . . . , 1; 1, 1, . . . , 1
⎞

⎠ ,

d�,θ∗ =
⎛

⎝0; 0, 0, . . . , 0, 0
︸ ︷︷ ︸

,

θ∗−1 zeros

1, 1, 1, . . . , 1; 1, 1, . . . , 1
⎞

⎠ ,

d�,θ∗+1 =
⎛

⎝0; 0, 0, . . . , 0, 0, 0
︸ ︷︷ ︸

,

θ∗ zeros

1, . . . , 1; 1, 1, . . . , 1
⎞

⎠ .

Note that d�,θ∗ is the optimal static rationing policy, and d∗�,θ = d�,θ∗ . It is clear that
d�,θ∗ � d�,θ∗−1 and d�,θ∗ � d�,θ∗+1. Thus it follows from (39) that

ηd�,θ∗+1 − ηd�,θ∗ = −μ2π
(d�,θ∗+1)

(
θ∗) [G(d�,θ∗) (θ∗)+ b

]
,

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 47 of 54 83

which, together with ηd�,θ∗+1 − ηd�,θ∗ ≤ 0, leads to

G(d�,θ∗) (θ∗)+ b ≥ 0.

On the other hand, it follows from (39) that

ηd�,θ∗ − ηd�,θ∗+1 = μ2π
(d�,θ∗) (θ∗) [G(d�,θ∗+1)

(
θ∗)+ b

]
,

this gives

G(d�,θ∗+1)
(
θ∗)+ b ≥ 0

Similarly, by using ηd�,θ∗ ≥ ηd�,θ∗−1 and

ηd�,θ∗ − ηd�,θ∗−1 = −μ2π
(d�,θ∗) (θ∗ − 1

) [
G(d�,θ∗−1)

(
θ∗ − 1

)+ b
]
,

this gives

G(d�,θ∗−1)
(
θ∗ − 1

)+ b ≤ 0;

and

ηd�,θ∗−1 − ηd�,θ∗ = μ2π
(d�,θ∗−1)

(
θ∗ − 1

) [
G(d�,θ∗) (θ∗ − 1

)+ b
]
,

we obtain

G(d�,θ∗) (θ∗ − 1
)+ b ≤ 0.

This completes the proof.
�

9 Numerical experiments

In this section, by observing several different penalty costs, we conduct numerical
experiments to demonstrate our theoretical results and to gain insights on the optimal
dynamic and static rationing policies in the stock-rationing queue.

In Examples 1–4, we take some common parameters in the stock-rationing queue
with two demand classes as follows:

C1 = 1,C2,1 = 4,C2,2 = 1,C3 = 5,C4 = 1, R = 15, N = 100.

In Examples 1 and 2, we analyze some difference between the optimal static and
dynamic rationing policies, and use the optimal static rationing policy to showwhether
or not the the optimal dynamic rationing policy is of threshold type.

123

83 Page 48 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Fig. 3 The optimal long-run
average profit ηd

∗
versus the

threshold θ

Example 1 We give some useful comparisons of the optimal long-run average profit
between two different penalty costs, and further verify how the optimality depends on
the penalty cost in Theorems 4 and 6 for the the optimal dynamic rationing policy. To
this end, we further take the system parameters as λ = 3, μ1 = 4, μ2 = 2, K = 15
and 1 ≤ i ≤ 15.

Case one: A higher penalty cost
We take a higher penalty cost P = 10. If d∗

i = 0 for 1 ≤ i ≤ 15 such that a possible
optimal dynamic rationing policy d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1), then we obtain
ηd

∗ = 22.3. On the other hand, if d ′∗
i = 1 for 1 ≤ i ≤ 15 such that another possible

optimal dynamic rationing policy d′∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1), then we get
ηd

′∗ = 13. By comparing ηd
∗ = 22.3 with ηd

′∗ = 13, it is easy to see that the possible
optimal dynamic rationing policy should be d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1).

Case two: A lower penalty cost
We choose a lower penalty cost P = 0.1. If d∗

i = 1 for 1 ≤ i ≤ 15 such that a
possible optimal dynamic rationing policy d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1), then we
obtain ηd

∗ = 22.9. On the other hand, if d ′∗
i = 0 for 1 ≤ i ≤ 15 such that another

possible optimal dynamic rationing policy d′∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1), then we
get ηd

′∗ = 22.3. Obviously, the possible optimal dynamic rationing policy should be
d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1).
Example 2 We use the numerical example to demonstrate whether or not the optimal
static rationing policy is suboptimal in the policy set D. If yes, then we show that the
optimal dynamic rationing policy is not of threshold type. To this end, we take some
system parameters: λ = 3, μ1 = 4, μ2 = 2, K = 15, 1 ≤ θ ≤ 15. These parameters
are the same as those in Example 1.

In what follows our observation is to focus on the higher penalty cost P = 10 and the
lower penalty cost P = 0.1, respectively.

Case one: A higher penalty cost
We observe how the optimal long-run average profit ηd

∗
depends on the threshold

from θ = 1 to θ = 15. From Fig. 3, it is seen that the optimal threshold is θ∗ = 9 and
ηd�,θ∗ = 21.4. However, from Case one of Example 1, ηd

∗ = 22.3. Thus we obtain
that ηd�,θ∗ = 21.4 < ηd

∗ = 22.3. This shows that the optimal static rationing policy

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 49 of 54 83

Fig. 4 The optimal long-run
average profit ηd

∗
versus the

threshold θ

Fig. 5 ηd
∗
versus λ under three

different thresholds K

is suboptimal in the policy set D, and the optimal dynamic rationing policy is not of
threshold type. Thus, d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1), given in Example 1, is not
the optimal dynamic rationing policy yet.

Case two: A lower penalty cost
From Fig. 4, it is seen that the optimal threshold is θ∗ = 3 and ηd�,θ∗ = 22.9. From

Case two of Example 1, we obtained ηd
∗ = 22.9. This gives that ηd�,θ∗ = ηd

∗ = 22.9.
Therefore, the optimal static rationing policy is the same as the optimal dynamic
rationing policy, and it is optimal in the policy setD, and the optimal dynamic rationing
policy is of threshold type. Thus, d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1), given in Example
1, is the optimal dynamic rationing policy.

Example 3 We analyze how the optimal long-run average profit of the stock-rationing
queue depends on the arrival rate. Our observation focuses on the higher penalty cost
P = 10 and the lower penalty cost P = 0.1, respectively. To do this, we further take
the system parameters: μ1 = 30, μ2 = 40 and the threshold: K = 5, 6, 10.

Case one: A higher penalty cost
Let P = 10 and d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1). From Fig. 5 , it is seen that

the optimal long-run average profit ηd
∗
increases as λ increases. In addition, with the

threshold K increases, the optimal long-run average profit ηd
∗
increases less slowly

as λ increases.
Case two: A lower penalty cost

123

83 Page 50 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Fig. 6 ηd
∗
versus λ under three

different thresholds K

Fig. 7 The long-run average
profit ηd

∗
versus the penalty

cost P

Let P = 0.1 and d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1). We discuss how the optimal
long-run average profit ηd

∗
depends on λ for λ ∈ (65, 80). From Fig. 6, it is seen that

the optimal long-run average profit ηd
∗
increases as λ increases. In addition, with the

threshold K increases, the optimal long-run average profit ηd
∗
increases less slowly

as λ increases.

Example 4 Our observation is to focus on how the penalty cost P influences the long-
run average profit ηd for any given policy d. From (17), it is easy to see that for any
given policy d, the long-run average profit ηd is linear in the penalty cost P . To show
this, we take the system parameters: P ∈ (0, 50),μ1 = 4,μ2 = 2, λ = 3 and K = 15.
In this case, we observe the special policy: d1 = d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1).
Figure7 shows that for the special policy d1 = d∗, the long-run average profit ηd

∗

linearly decreases as P increases.

10 Concluding remarks

In this paper, we highlight intuitive understanding on the optimal dynamic rationing
policy of the stock-rationing queue with two demand classes by means of the
sensitivity-based optimization. To find the optimal dynamic rationing policy, we estab-
lish a policy-based birth-death process and amore general reward function such that the

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 51 of 54 83

long-run average profit of the stock-rationing queue is expressed explicitly. Further-
more, we set up a policy-based Poisson equation and provide an explicit expression for
its solution. Based on this, we derive a performance difference equation between any
two policies such that we can find the optimal dynamic rationing policy and compute
the maximal long-run average profit from three different areas of the penalty costs.
Therefore, we provide an algebraic method to set up a complete algebraic solution to
the optimal dynamic rationing policy. We show that the optimal dynamic policy must
be of transformational threshold type, which leads to refining three simple sufficient
conditions under each of which the optimal dynamic policy is of threshold type. In
addition, we develop some new structural properties (e.g., set-structuredmonotonicity,
and class property of policies) of the optimal dynamic rationing policy. Therefore, we
believe that the methodology and results developed in this paper can be applicable to
analyzing supply chain finance and with applications of blockchain technology, and
open a series of potentially promising research.

Along such a line, there are a number of interesting directions for potential future
research, for example:

• Extending to the stock-rationing queues with multiple demand classes, multiple
types of products, backorders, batch order, batch production, and so on;

• analyzing non-Poisson input, such asMarkovian arrival processes (MAPs); and/or
non-exponential service times, e.g. the PH distributions;

• discussing how the long-run profit can be influenced by some concave or convex
reward functions;

• studying individual or social optimization for stock-rationing queues from a
perspective of game theory by means of the sensitivity-based optimization;

• investigating optimal dynamic rationing policy in supply chain finance and with
applications of blockchain technology.

Acknowledgements Some parts of this work were presented at the 16th International Conference on Algo-
rithmic Aspects in Information and Management in 2022: The Optimal Dynamic Rationing Policy in the
Stock-Rationing Queue, see Li et al. (2019b). This paper was supported by the National Natural Science
Foundation of China under grant No. 71932002. In addition, author Jing-YuMa thanks Professor Ding-Zhu
Du at University of Texas, Dallas for recommending this research work enthusiastically.

Funding The authors have not disclosed any funding.

Data availibility Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

Alfieri A, Pastore E, Zotteri G (2017) Dynamic inventory rationing: how to allocate stock according to
managerial priorities. An empirical study. Int J Prod Econ 189:14–29

Altug MS, Ceryan O (2022) Optimal dynamic allocation of rental and sales inventory for fashion apparel
products. IISE Trans 54(6):603–617

123

83 Page 52 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Arslan H, Graves SC, Roemer TA (2007) A single-product inventory model for multiple demand classes.
Manag Sci 53(9):1486–1500

Baron O, Lu T, Wang J (2019) Priority, capacity rationing, and ambulance diversion in emergency
departments. SSRN, 3387439

Benjaafar S, ElHafsi M (2006) Production and inventory control of a single product assemble-to-order
system with multiple customer classes. Manag Sci 52(12):1896–1912

Cao XR (2007) Stochastic learning and optimization: a sensitivity-based approach. Springer
Chew EP, Lee LH, Liu S (2013) Dynamic rationing and ordering policies for multiple demand classes. OR

Spectr 35(1):127–151
Cohen MA, Kleindorfer PR, Lee HL (1988) Service constrained (s, S) inventory systems with priority

demand classes and lost sales. Manag Sci 34(4):482–499
Dekker R, Hill RM, KleijnMJ, Teunter RH (2002) On the (S−1, S) lost sales inventory model with priority

demand classes. Naval Res Logist 49(6):593–610
Dekker R, Kleijn MJ, De Rooij PJ (1998) A spare parts stocking policy based on equipment criticality. Int

J Prod Econ 56:69–77
Deshpande V, Cohen MA, Donohue K (2003) A threshold inventory rationing policy for service-

differentiated demand classes. Manag Sci 49(6):683–703
Ding Q, Kouvelis P,Milner J (2016) Inventory rationing for multiple class demand under continuous review.

Prod Oper Manag 25(8):1344–1362
Elaydi SN (1999) Dynamics of first order difference equations. In: An introduction to difference equations.

Springer, pp 1–48
Elhafsi M, Zhi L, Camus H, Craye E (2015) An assemble-to-order system with product and components

demand with lost sales. Int J Prod Res 53(3):718–735
ElHafsi M, Fang J, Camus H (2018) Optimal control of a continuous-time W-configuration assemble-to-

order system. Eur J Oper Res 267(3):917–932
Escalona P, Ordóñez F, Kauak I (2017) Critical level rationing in inventory systems with continuously

distributed demand. OR Spectr 39(1):273–301
Escalona P, Ordóñez F, Marianov V (2015) Joint location-inventory problem with differentiated service

levels using critical level policy. Transp Res Part E: Logist Transp Rev 83:141–157
Fadıloğlu MM, Bulut Ö (2010) A dynamic rationing policy for continuous-review inventory systems. Eur

J Oper Res 202(3):675–685
Frank KC, Zhang RQ, Duenyas I (2003) Optimal policies for inventory systems with priority demand

classes. Oper Res 51(6):993–1002
Gayon JP, Benjaafar S, De Véricourt F (2009) Using imperfect advance demand information in production-

inventory systems with multiple customer classes. Manuf Serv Oper Manag 11(1):128–143
Gayon JP, De Vericourt F, Karaesmen F (2009) Stock rationing in an M/Ek /1 multi-class make-to-stock

queue with backorders. IIE Trans 41(12):1096–1109
Goedhart J, Haijema R, Akkerman R (2022) Inventory rationing and replenishment for an omni-channel

retailer. Comput Oper Res 140:105647
Ha AY (1997) Inventory rationing in a make-to-stock production system with several demand classes and

lost sales. Manag Sci 43(8):1093–1103
Ha AY (1997) Stock-rationing policy for a make-to-stock production system with two priority classes and

backordering. Naval Res Logist 44(5):457–472
Ha AY (2000) Stock rationing in an M/Ek /1 make-to-stock queue. Manag Sci 46(1):77–87
Haynsworth HC, Price BA (1989) A model for use in the rationing of inventory during lead time. Naval

Res Logist 36(4):491–506
Huang B, Iravani SM (2008) A make-to-stock system with multiple customer classes and batch ordering.

Oper Res 56(5):1312–1320
Hung HC, Chew EP, Lee LH, Liu S (2012) Dynamic inventory rationing for systems with multiple demand

classes and general demand processes. Int J Prod Econ 139(1):351–358
Hung YF, Hsiao JY (2013) Inventory rationing decision models during replenishment lead time. Int J Prod

Econ 144(1):290–300
Isotupa KS (2006) An (s, Q) Markovian inventory system with lost sales and two demand classes. Math

Comput Model 43(7–8):687–694
Ioannidis S, Xanthopoulos AS, Sarantis I, Koulouriotis DE (2021) Joint production, inventory rationing, and

order admission control of a stochastic manufacturing system with setups. Oper Res 21(2):827–855

123

Journal of Combinatorial Optimization (2023) 45 :83 Page 53 of 54 83

Jain A, Moinzadeh K, Dumrongsiri A (2015) Priority allocation in a rental model with decreasing demand.
Manuf Serv Oper Manag 17(2):236–248

Kranenburg AA, van Houtum GJ (2007) Cost optimization in the (S−1, S) lost sales inventory model with
multiple demand classes. Oper Res Lett 35(4):493–502

Li QL (2010) Constructive computation in stochastic models with applications: the RG-factorizations.
Springer

Li QL, Ma JY, Fan RN, Xia L (2019a) An overview for Markov decision processes in queues and networks.
In: Stochastic models in reliability, network security and system safety, pp 44–71

Li QL, Li YM, Ma JY, Liu HL (2019b) A complete algebraic solution to the optimal dynamic rationing
policy in the stock-rationing queue with two demand classes. arXiv: 1908.09295

Ma JY, Xia L, Li QL (2019) Optimal energy-efficient policies for data centers through sensitivity-based
optimization. Discret Event Dyn Syst 29(4):567–606

Ma JY, Li QL, Xia L (2021) Optimal asynchronous dynamic policies in energy-efficient data centers.
Systems 10(2):27

Melchiors P (2003) Restricted time-remembering policies for the inventory rationing problem. Int J Prod
Econ 81(1):461–468

Melchiors P, Dekker R, Kleijn MJ (2000) Inventory rationing in an (s, Q) inventory model with lost sales
and two demand classes. J Oper Res Soc 51(1):111–122

Möllering K (2007) Inventory rationing: a new modeling approach using Markov chain theory. Springer
Möllering KT, Thonemann UW (2008) An optimal critical level policy for inventory systems with two

demand classes. Naval Res Logist 55(7):632–642
Möllering KT, Thonemann UW (2010) An optimal constant level rationing policy under service level

constraints. OR Spectr 32(2):319–341
Nadar E, Akan M, Scheller-Wolf A (2014) Optimal structural results for assemble-to-order generalized

M-systems. Oper Res 62(3):571–579
Nahmias S, DemmyWS (1981) Operating characteristics of an inventory system with rationing. Manag Sci

27(11):1236–1245
Pang Z, Shen H, Cheng TCE (2014) Inventory rationing in a make-to-stock system with batch production

and lost sales. Prod Oper Manag 23(7):1243–1257
Papastavrou E, Andreou P, Efstathiou G (2014) Rationing of nursing care and nurse-patient outcomes: a

systematic review of quantitative studies. Int J Health Plan Manag 29(1):3–25
Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming. Wiley
Schulte B, Pibernik R (2017) Profitability of service-level-based price differentiation with inventory

rationing. Prod Oper Manag 26(5):903–923
Shen X, Yu Y (2019) Capacity allocation with multiple suppliers and multiple demand classes. Prod Oper

Manag 28(11):2792–2807
Sobel MJ, Zhang RQ (2001) Inventory policies for systems with stochastic and deterministic demand. Oper

Res 49(1):157–162
Tan T, Güllü R, Erkip N (2009) Using imperfect advance demand information in ordering and rationing

decisions. Int J Prod Econ 121(2):665–677
Tempelmeier H (2006) Supply chain inventory optimization with two customer classes in discrete time. Eur

J Oper Res 174(1):600–621
Teunter RH, HaneveldWKK (2008) Dynamic inventory rationing strategies for inventory systems with two

demand classes, Poisson demand and backordering. Eur J Oper Res 190(1):156–178
Topkis DM (1968) Optimal ordering and rationing policies in a nonstationary dynamic inventory model

with n demand classes. Manag Sci 15(3):160–176
Turgay Z, Karaesmen F, Örmeci EL (2015) A dynamic inventory rationing problem with uncertain demand

and production rates. Ann Oper Res 231(1):207–228
Van Foreest ND, Wijngaard J (2014) On optimal policies for production-inventory systems with compound

Poisson demand and setup costs. Math Oper Res 39(2):517–532
van Wijk ACC, Adan IJ, van Houtum GJ (2019) Optimal lateral transshipment policies for a two location

inventory problem with multiple demand classes. Eur J Oper Res 272(2):481–495
Veinott Jr AF (1965) Optimal policy in a dynamic, single product, nonstationary inventory model with

several demand classes. Oper Res 13(5):761–778
Wang D, Tang O (2014) Dynamic inventory rationing with mixed backorders and lost sales. Int J Prod Econ

149:56–67

123

http://arxiv.org/abs/1908.09295

83 Page 54 of 54 Journal of Combinatorial Optimization (2023) 45 :83

Wang D, Tang O, Huo J (2013) A heuristic for rationing inventory in two demand classes with backlog
costs and a service constraint. Comput Oper Res 40(12):2826–2835

Wang Y, Zhang SH, Sun L (2013) Anticipated rationing policy for two demand classes under service level
constraints. Comput Ind Eng 65(2):331–340

Wang R, Qin Y, Sun H (2021) Research on location selection strategy for airlines spare parts central
warehouse based on METRIC. Comput Intell Neurosci 2021:1–16

Xia L, Zhang ZG, Li QL (2021) A c/µ-rule for job assignment in heterogeneous group-server queues. Prod
Oper Manag 31(3):1191–1215

You PS (2003) Dynamic rationing policies for product with incremental upgrading demands. Eur J Oper
Res 144(1):128–137

Zhao H, Deshpande V, Ryan JK (2005) Inventory sharing and rationing in decentralized dealer networks.
Manag Sci 51(4):531–547

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A complete algebraic solution to the optimal dynamic rationing policy in the stock-rationing queue with two demand classes
	Abstract
	1 Introduction
	2 Literature review
	2.1 The static rationing policy (periodic vs. continuous)
	2.2 The dynamic rationing policy (continuous vs. periodic)

	3 Model description
	4 Optimization model formulation
	5 A policy-based poisson equation
	6 Impact of the penalty cost
	6.1 The perturbation realization factor
	6.2 The performance difference equation
	6.3 The sign of G(d) (i) +b

	7 Monotonicity and optimality
	7.1 The penalty cost PPH(d)
	7.2 The penalty cost PL(d) >0 and 0leqPleqPL(d)
	7.3 The penalty cost PL(d) <P<PH(d)
	7.4 A global optimal analysis

	8 The static rationing policies
	9 Numerical experiments
	10 Concluding remarks
	Acknowledgements
	References

