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Abstract

The anti-Kekulé number of a connected graph G is the smallest number
of edges whose deletion results in a connected subgraph having no Kekulé
structures (perfect matchings). As a common generalization of (conditional)
matching preclusion number and anti-Kekulé number of a graph G, we intro-
duce s-restricted matching preclusion number of G as the smallest number
of edges whose deletion results in a subgraph without perfect matchings such
that each component has at least s + 1 vertices. In this paper, we first show
that conditional matching preclusion problem and anti-Kekulé problem are
NP-complete, respectively, then generalize this result to s-restricted matching
preclusion problem. Moreover, we give some sufficient conditions to compute
s-restricted matching preclusion numbers of regular graphs. As applications,
s-restricted matching preclusion numbers of complete graphs, hypercubes and
hyper Petersen networks are determined.

Key words: Anti-Kekulé; Matching preclusion; Conditional matching preclu-
sion; s-restricted matching preclusion; NP-complete; Hypercube

1 Introduction

Let G = (V,E) be a simple and connected graph. Let N(v) be the set of
neighbors of a vertex v and d(v) = |N(v)|, the degree of v. The minimum degree of
G is denoted by δ(G). A matching M of G is a set of pairwise nonadjacent edges
of G. The vertices of G incident to the edges of M are called saturated by M ;
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the others are unsaturated. A matching in G of maximum cardinality is called a
maximum matching. The cardinality of a maximum matching is called the matching

number of G, denoted by ν(G). A perfect matching is a matching of cardinality
|V (G)|/2. An almost perfect matching is a matching covering all but one vertex of
G. Let F be a set of edges of G. If G − F has neither a perfect matching nor
an almost perfect matching, then we call F a matching preclusion set of G. The
matching preclusion number of G, denoted by mp(G), is the minimum cardinality
over all matching preclusion sets of G. A matching preclusion set of a graph G
with even order is trivial if all its edges are incident to a vertex of G. Based on
the definition, we set mp(G) = 0 if G has neither a perfect matching nor an almost
perfect matching. For other standard graph notations and terminologies not defined
here please refer to [2].

In organic molecule graphs, perfect matchings correspond to Kekulé structures,
which play an important role in analyzing resonant energy and stability of hydrocar-
bon compounds. In [22], Vukičević and Trinajstić proposed the anti-Kekulé number

of a connected graph G, denoted by ak(G), as the smallest number of edges such
that after deleting these edges of G the resulting graph remains connected but has
no Kekulé structures (perfect matchings). For convenience, we call such a set of
edges of G an anti-Kekulé set. Anti-Kekulé numbers of some chemical graphs were
studied, such as a hexagonal system [4], cata-condensed benzenoids [23], fullerene
graphs [27] and (4, 5, 6)-fullerenes [29]. It is noticeable that not every graph neces-
sarily has an anti-Kekulé set, such as K2 and even cycles. Recently, graphs which do
not have anti-Kekulé set were characterized and constructed by Wu and Zhang [26].

The concept of matching preclusion was first introduced by Brigham et al. [3]
as a measure of robustness of interconnection networks under the condition of edge
failure. In the same paper, the authors showed that it will be more robust under
edge failure if each vertex has a special matching vertex at any time, and they also
determined the matching preclusion number of Petersen graph, complete graphs
Kn, complete bipartite graphs Kn,n and hypercubes. Recently, matching preclusion
numbers for Cayley graphs generated by transposition trees and (n, k)-star graphs
[11], tori (including related Cartesian product graphs) [12], binary de Bruijn graphs
[18], n-grid graphs [6] and data center networks [20] have been determined.

In large networks failure is inevitable, but it is unlikely that all the edges incident
to a common vertex are all faulty simultaneously. Thus, it is meaningful to consider
matching preclusion of a graph with some restriction on the order of components
after edge deletion. Motivated by this, Cheng et al. [9] considered conditional match-
ing preclusion set (resp. number) of a graph G. The conditional matching preclusion

number of a graph G, denoted by mp1(G), is the minimum number of edges whose
deletion leaves the resulting graph with no isolated vertices and without a perfect
matching or an almost perfect matching. This problem has been solved for complete
graphs, complete bipartite graphs and hypercubes [9], Cayley graphs generated by 2-
trees and hyper Petersen networks [10], HL-graphs [21], k-ary n-cubes [25], balanced
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hypercubes [19] and cube-connected cycles [17].
From definitions of the anti-Kekulé number, the matching preclusion number,

and the conditional matching preclusion number, it can be seen that the common
point is that edge deletion results in the remaining graph no longer possessing a
perfect matching, and the difference is variable requirements about the orders of
components of the remaining graph. Motivated by k-restricted edge-connectivity
[14], it is natural to ask how the minimum size of matching preclusion sets F changes
if each component of G−F contains at least s+1 vertices, where s is a nonnegative
integer. This is closely related to the changing and unchanging of invariants studied
in many areas [15]. Based on this fact, we generalize them as follows.

Let s be a nonnegative integer and F an edge subset of G. If G−F has neither a
perfect matching nor an almost perfect matching, and each component of G−F has
at least s+ 1 vertices, then F is called an s-restricted matching preclusion set of G.
The s-restricted matching preclusion number, denoted by mps(G), is the minimum
cardinality over all s-restricted matching preclusion sets of G. It is suitable to make
a convention that s ≤ |V (G)| − 1 for a given graph G.

Based on the definition, we set mps(G) = 0 if G contains no components of order
at most s (s > 0), and has neither perfect matchings nor almost perfect matchings.
We define mps(G) = +∞ if the s-restricted matching preclusion set does not exist,
that is, we can not delete edges to satisfy the conditions in the definition.

It is noticeable that 0-restricted matching preclusion problem is equivalent to
matching preclusion problem, 1-restricted matching preclusion problem is the condi-
tional matching preclusion problem and (|V (G)|−1)-restricted matching preclusion
problem is clearly the anti-Kekulé problem. Thus, for notation consistency, we still
use mp(G) to denote mp0(G).

In [16], Lacroix et al. considered matching preclusion problem of graphs with a
perfect matching and proved its NP-completeness for bipartite graphs. In view of
the similarity of the anti-Kekulé problem, the conditional matching preclusion prob-
lem and the s-restricted matching preclusion problem, it is natural to ask what are
the complexities of these problems for general graphs. In this paper, we solve this
question by showing that they are all NP-complete for bipartite graphs. Addition-
ally, we give some methods to compute s-restricted matching preclusion numbers
for regular graphs, and as applications, give examples of calculating s-restricted
matching preclusion number of three kinds of interconnection networks.

The rest of the paper is organized as follows. In Section 2, we prove NP-
completeness of the conditional matching preclusion problem by reducing MBPMP
to it, and then, as a direct corollary, obtain NP-completeness of the anti-Kekulé prob-
lem. Moreover, we obtain relationships of s-restricted matching preclusion numbers
concerning anti-Kekulé number when s increases, and also obtain NP-completeness
of the s-restricted matching preclusion problem. In Section 3, we present some suffi-
cient conditions to calculate s-restricted (s ≥ 2) matching preclusion number of reg-
ular graphs. Applications of determining s-restricted matching preclusion numbers
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of complete graphs, hypercubes and hyper Petersen networks are given in Section
4. Finally, we conclude this paper in Section 5.

2 Complexity results

Let G = (V,E) be a graph with matching number ν(G). A blocker for G is
a set of edges whose removal results in matching number of G smaller than ν(G).
The decision problem of blocker problem (BP) is defined as follows. Given G and a
positive integer k, does there exist an edge subset B of E with |B| ≤ k such that
B is a blocker for G? In [28], Zenklusen et al. showed that BP of a bipartite graph
is NP-complete. Later, Lacroix et al. [16] considered a special case of BP, called
minimum blocker perfect matching problem (MBPMP), where G is a graph with a
perfect matching. They proved the following statement.

Lemma 2.1 [16]. MBPMP of a bipartite graph is NP-complete.

The decision problem of matching preclusion problem is defined as follows.
Matching preclusion problem:

Instance: A nonempty connected graph G = (V,E) and a positive integer k.
Question: Does there exist a subset B ⊆ E with |B| ≤ k such that G − B has

neither perfect matchings nor almost perfect matchings?
Clearly, MBPMP is equivalent to matching preclusion problem when we restrict

our consideration to graphs with a perfect matching. Thus, the following result is
straightforward.

Corollary 2.2. Matching preclusion problem of a bipartite graph is NP-complete.

We shall prove the NP-completeness of conditional matching preclusion problem
by reducing from MBPMP to it. We present its decision problem as follows.

Conditional matching preclusion problem:

Instance: A nonempty connected graph G = (V,E) having a perfect matching
and a positive integer k.

Question: Does there exist a subset B ⊆ E with |B| ≤ k such that G − B has
neither isolated vertices nor perfect matchings?

Theorem 2.3. Conditional matching preclusion problem of a bipartite graph is
NP-complete.

Proof. Obviously, conditional matching preclusion problem is in NP, because we can
check in polynomial time whether a set of edges is a conditional matching preclusion
set. We will prove NP-hardness of conditional matching preclusion problem by
reducing MBPMP to it in polynomial time.

Let G = (U ∪ V,E) be a bipartite graph with bipartition U and V such that
|U | = |V | = t. Suppose that G has a perfect matching. Let u1, u2, . . . , ut (resp.
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Fig. 1. The graph G′ constructed from G for proving NP-completeness of conditional
matching preclusion problem.

v1, v2, . . . , vt) denote the vertices in U (resp. V ). The graph G′ = (U ′ ∪ V ′, E ′) is
constructed from G as follows (see Fig. 1). U ′ = U ∪ {u′, u′′}, V ′ = V ∪ {v′, v′′},
where u′, u′′, v′ and v′′ are new added vertices. E ′ = E ∪ {u′v : v ∈ V } ∪ {uv′ : u ∈
U} ∪ {u′v′, u′v′′, u′′v′, u′′v′′}. Note that the subgraph of G′ induced by u′, v′, u′′ and
v′′ is a 4-cycle. For convenience, we denote u′′v′′ and u′v′ by e and e′, respectively.

In the following, we shall show that G has a matching preclusion set of cardinality
no greater than k if and only if G′ has a conditional matching preclusion set of
cardinality no greater than k + 1.

Necessity. Suppose that B is a matching preclusion set of G with |B| ≤ k. Then
G − B has no perfect matchings. Let B′ = B ∪ {e}. We will prove that B′ is a
conditional matching preclusion set of G′. Since u′ joins to each vertex in V and v′

joins to each vertex in U , G′ − B′ is connected. Noting that e ∈ B′, if G′ − B′ has
a perfect matching M , then u′v′′, u′′v′ ∈ M . Thus, G − B has a perfect matching
M \{u′v′′, u′′v′}, a contradiction. Hence, B′ is a conditional matching preclusion set
of G′ with |B′| ≤ k + 1.

Sufficiency. Suppose that B′ is a conditional matching preclusion set of G′ such
that |B′| ≤ k + 1. That is, G′ − B′ has no perfect matchings, and each component
of G′ − B′ contains at least two vertices. Let B = B′ ∩ E(G). We consider the
following two cases:

Case 1: e ∈ B′. Then |B| ≤ k. Since each component ofG′−B′ contains at least two
vertices, u′v′′, u′′v′ 6∈ B′. If G−B has a perfect matching M , then M ∪ {u′v′′, u′′v′}
is a perfect matching of G′ −B′, a contradiction. Thus, B is a matching preclusion
set of G.

Case 2: e 6∈ B′. If B is a matching preclusion set of G with |B| ≤ k, we are
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done. If B is not a matching preclusion set of G, then G−B has a perfect matching
M . For convenience, we denote the edges in M by uivi with 1 ≤ i ≤ t. We
claim that e′ ∈ B′. Otherwise, M ∪ {e, e′} is a perfect matching of G′ − B′, a
contradiction. Also, we claim that at least one of v′ui and u′vi is in B′ for each
1 ≤ i ≤ t. Otherwise, M ∪{e}∪{u′vi, v

′ui}\{uivi} is a perfect matching of G′−B′,
a contradiction. Thus, t+1+ |B| ≤ |B′| ≤ k+1, which implies that t ≤ k. Since G
is bipartite, ∆(G) ≤ t ≤ k. It follows that G has a trivial matching preclusion set
with cardinality no greater than k.

We now consider the remaining case: B is a matching preclusion set of G such
that |B| = k + 1. Then B′ ⊆ E(G). Let M be a maximum matching of G − B.
We claim that |M | ≤ t − 2. Otherwise, |M | = t − 1. Suppose that ui (1 ≤ i ≤ t)
and vj (1 ≤ j ≤ t) are the only two vertices in G unsaturated by M . Then
M ∪ {uiv

′, u′vj , e} is a perfect matching of G′ − B′, a contradiction, and the claim
holds. Let e′′ be an arbitrary edge in B and B1 = B \ {e′′}. Then |B1| = k and
ν(G−B1) ≤ ν(G−B) + 1 ≤ t− 1. Thus, B1 is a matching preclusion set of G with
|B1| ≤ k. This completes the proof.

Now we give the decision problem of anti-Kekulé problem as follows.
Anti-Kekulé problem:

Instance: A nonempty graph G = (V,E) having a perfect matching and a posi-
tive integer k.

Question: Does there exist a subset B ⊆ E with |B| ≤ k such that G − B is
connected and G−B has no Kekulé structure (perfect matching)?

Corollary 2.4. Anti-Kekulé problem on bipartite graphs is NP-complete.

Proof. We adopt all the notations defined in Theorem 2.3. If we replace the condition
of G′ − B′ having no singletons by G′ − B′ being connected, then the proof is the
same as that of Theorem 2.3.

For a connected graph G of even order, if G admits an anti-Kekulé set F , then
G − F is connected and has no perfect matchings, implying that F is also an s-
restricted matching preclusion set of G for any integer s with 0 ≤ s ≤ |V (G)| − 1.
On the other hand, if G admits an s-restricted matching preclusion set for small
integer s ≥ 0, an (s+1)-restricted matching preclusion set of G does not necessarily
exist. However, we have the following result.

Proposition 2.5. Let G be a nontrivial graph of even order. If |V (G)|/2-restricted
matching preclusion set exists in G, then s-restricted matching preclusion set exists
inG when 0 ≤ s ≤ |V (G)|−1 andmps(G) = ak(G) when |V (G)|/2 ≤ s ≤ |V (G)|−1.

Proof. Note that after deleting a |V (G)|/2-restricted matching preclusion set F from
G, each component of G− F contains more than |V (G)|/2 vertices, making G− F
connected. Therefore, F is an anti-Kekulé set of G, which implies that F is also an
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s-restricted matching preclusion set when 0 ≤ s ≤ |V (G)| − 1. Moreover, we have
mps(G) = ak(G) when |V (G)|/2 ≤ s ≤ |V (G)|−1. Hence, the statement holds.

If G has no anti-Kekulé set, let s′ be the smallest integer such that mps′(G) =
+∞. That is, s′-restricted matching preclusion set does not exist, so mps(G) = +∞
for each integer s′ ≤ s ≤ |V (G)|−1 and mps(G) < +∞ for each nonnegative integer
s smaller than s′. Combining with the previous proposition, we have the following
result.

Proposition 2.6. Let G be a nontrivial graph of even order. Then

mp(G) ≤ mp1(G) ≤ · · · ≤ mp|V (G)|/2(G) = · · · = mp|V (G)|−1(G) = ak(G). (2.1)

Proof. If G has no anti-Kekulé set, we know that (s′−1)-restricted matching preclu-
sion set exists in G if s′ ≥ 1. Note that s′ ≤ |V (G)|/2. Otherwise, s′−1 ≥ |V (G)|/2,
which implies that |V (G)|/2-restricted matching preclusion set exists in G, leading
to the existence of an anti-Kekulé set in G, a contradiction. Accordingly, s-restricted
matching preclusion set exists in G for each integer 0 ≤ s ≤ s′ − 1. Moreover, an s-
restricted matching preclusion set of G is clearly a special (s−1)-restricted matching
preclusion set of G with 1 ≤ s ≤ s′ − 1. Thus, mps(G) ≥ mps−1(G). Additionally,
mps(G) = +∞ for each integer s′ ≤ s ≤ |V (G)| − 1. If G has an anti-Kekulé set, by
the same reason, we have mps(G) ≥ mps−1(G) for any integer 1 ≤ s ≤ |V (G)| − 1.
Further, by Proposition 2.5, we arrive at the relation (2.1).

Note that the strict inequalities in Proposition 2.6 can hold. It is known that
mp(G) < mp1(G) for a large number of famous interconnection networks, namely
hypercube [3, 9], folded Petersen cube [7], cube-connected cycles CCCn for n ≥ 4
[17], de Bruijn graph UB(n) for n ≥ 4 [18], balanced hypercube [19] and k-ary
n-cube with even k ≥ 4 [25]. In the following, we shall give an example to show
that other part of strict inequalities in Proposition 2.6 may also hold.

Example 2.7. Let G be a cubic graph with a cut edge e shown in Fig. 2. We
note that, on the left and right sides of the cut edge, there are k disjoint P3✷K2’s
and l disjoint P3✷K2’s respectively, where “✷” means the Cartesian product of
graphs, l ≥ k ≥ 0. We can check that G has a perfect matching. Clearly, G − e
has two components of order 6k + 5 and 6l + 5 respectively, implying that it has
no perfect matchings. This shows that {e} is a minimum s-restricted matching
preclusion set of G for every 0 ≤ s ≤ 6k+4. On the other hand, the removal of any
edge other than the cut edge from G results in a connected graph with a perfect
matching. Observe also that there exists two edges e1 and e2 (dotted lines) such
that G − {e1, e2} is connected and has no perfect matchings. Hence, {e1, e2} is a
minimum s-restricted matching prelusion set of G for every 6k+5 ≤ s ≤ |V (G)|−1.
So 1 = mp(G) = · · · = mp6k+4(G) < mp6k+5(G) = · · · = mp|V (G)|/2(G) = · · · =
mp|V (G)|−1(G) = ak(G) = 2.
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Fig. 2. A cubic graph with a strict inequality of (2.1) in which k = 3 and l = 3.

To give the complexity of s-restricted matching preclusion problem, we present
the following decision problem.

s-restricted matching preclusion problem:

Instance: A nonempty graph G = (V,E) having a perfect matching, a positive

integer k and a positive integer s.
Question: Does there exist a set B ⊆ E with |B| ≤ k such that G − B has no

perfect matching and each component of G− B has at least s+ 1 vertices?

Theorem 2.8. s-restricted matching preclusion problem on bipartite graphs is
NP-complete.

Proof. We shall keep the definitions and notations introduced in Theorem 2.3. As
mentioned earlier, matching preclusion is 0-restricted matching preclusion, whose
NP-completeness has already been obtained. So we may assume that s ≥ 1 in
the remaining proof. We shall prove the NP-completeness of s-restricted matching
preclusion problem by reducing MBPMP to it in polynomial time.

In the following, we shall show that G has a matching preclusion set of cardinality
no greater than k if and only if G′ has an s-restricted matching preclusion set of
cardinality no greater than k + 1.

Necessity. Suppose that B is a matching preclusion set of G with |B| ≤ k. Then
G−B has no perfect matchings. Let B′ = B∪{e}. Since u′ joins to each vertex in V
and v′ joins to each vertex in U , G′−B′ is connected and has no perfect matchings.
Thus, B′ is an s-restricted matching preclusion set of G′ with |B′| ≤ k + 1.

Sufficiency. Suppose that B′ is an s-restricted matching preclusion set of G′

such that |B′| ≤ k+1. By Proposition 2.6, B′ is also an (s− 1)-restricted matching
preclusion set of G′. Using this argument repeatedly, it follows that B′ is a condi-
tional matching preclusion set of G′ with |B′| ≤ k + 1. By sufficiency of the proof
of Theorem 2.3, it implies that there exists a matching preclusion set B of G with
|B| ≤ k. This completes the proof.
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3 s-restricted matching preclusion number

In what follows, we will give some methods for determining s-restricted (s ≥ 2)
matching preclusion numbers of regular graphs and anti-Kekulé numbers as well.

Cheng et al. [9] discussed the basic obstruction to a perfect matching or an
almost perfect matching in a graph with no isolated vertices. For a graph without
isolated vertices, they showed that a basic obstruction to a perfect matching will be
the existence of a path uwv, where the degree of u and v are 1, respectively. We
define ve(G) = min{dG(u) + dG(v)− 2− yG(u, v): there exists a vertex w such that
uwv is a 2-path}, where dG(.) is the degree function and yG(u, v) = 1 if u and v are
adjacent and 0 otherwise.

Lemma 3.1 [9]. Let G be a graph with an even number of vertices. Suppose every
vertex in G has degree at least three. Then mp1(G) ≤ ve(G).

If mp1(G) = ve(G), then G is called conditionally maximally matched. And the
optimal solution of the form induced by ve(G) is called a trivial conditional matching
preclusion set.

Cheng et al. [8] showed that there exists a close relationship between mp1(G)
and super edge-connectivity of G. A graph G is maximally edge-connected if the
edge-connectivity of G is δ(G). A maximally edge-connected graph G is called super

edge-connected if the deletion of at most δ(G) edges results in either a connected
graph or exactly two connected components, one of which is a singleton. A graph
is super m-edge-connected of order q if the deletion of at most m edges results in
either a connected graph or a graph consisting of one big component together with
a number of small components with at most q vertices in total. A set of edges
F in a connected graph G is called a g-extra edge cut if G − F is disconnected
and each remaining component of G − F contains at least g vertices. The g-extra
edge-connectivity of G, denoted by λg(G), is the minimum number of edges over all
g-extra edge cuts of G. By convention, λ1(G) and λ2(G) are denoted by λ(G) and
λ′(G), respectively. Therefore, G is super-λ′, if every minimum 2-extra edge cut
isolates one edge of G. For k-regular bipartite graphs, Cheng [8] presented sufficient
conditions for graphs to be conditionally maximally matched as follows.

Theorem 3.2 [8]. Let G be a k-regular bipartite graph that is super (3k−6)-edge-
connected of order 2. Then mp1(G) = 2k − 2.

Naturally, we need the condition k ≥ 3 since this ensures the resulting graph has
no isolated vertices after some edges are deleted. So we assume that k ≥ 3 in the
remaining paper. Mirroring the above theorem, we obtain the following result.

Theorem 3.3. Let G be a k-regular bipartite graph that is super (3k − 6)-edge-
connected of order 2. Then mps(G) = 2k − 2 for all integers s ≥ 1.

9



Proof. By Theorem 3.2, we need only to consider s ≥ 2. By Proposition 2.6, we
have mps(G) ≥ mp1(G) = 2k − 2 for all integers s ≥ 2. It remains to show that
mps(G) ≤ 2k − 2 for all integers s ≥ 2. Let (U, V ) be the bipartition of G, where
|U | = |V |. In addition, let uwv be any 2-path in G. Without loss of generality,
suppose u, v ∈ U and w ∈ V . We shall show that the trivial conditional matching
preclusion set obtained by uwv (all the edges incident to u or v but not w), denoted
by F , is also an s-restricted matching preclusion set of G.

If k = 3, we shall show that G−F is connected. For any e ∈ F , let F ′ = F \{e}.
Obviously, G−F ′ contains neither isolated vertices nor isolated edges. Since |F ′| = 3
and 3k − 6 = 3 when k = 3, G − F ′ is connected. If G − F is connected, we are
done. So we assume that G − F is disconnected, that is, F is a minimal edge cut
of G. Let x be a neighbor of w (x 6= u, v). Let C1 and C2 be two components of
G − F , we may assume that u, v, w, x ∈ V (C1). Let A = U ∩ (V (C1) \ {u, v, x})
and B = V ∩ (V (C1) \ {w}). Since each vertex in A and B has degree 3, by
Handshaking Lemma, we have 3|A|+dC1

(u)+dC1
(v)+dC1

(x) = 3|B|+dC1
(w), that

is, 3|A|+5 = 3|B|+3, which is a contradiction. Thus, F is an s-restricted matching
preclusion set of G.

If k ≥ 4, the degree of each vertex (except u and v) in G − F is at least two.
Then there exists no component of G−F containing at most two vertices. Therefore,
G−F is connected since G is (3k−6)-edge-connected of order 2 and 3k−6 ≥ 2k−2.
Thus, F is an s-restricted matching preclusion set of G.

We need some more definitions. An independent set in a graph G is a set of
vertices no two of which are adjacent. The cardinality of a maximum independent set
in G is called the independent number of G and is denoted by α(G). For X ⊆ V (G),
we define γG(X) as the set of edges with both ends in X , where the subscript G will
be omitted if the context is clear. Moreover, we define ζ(G, p, q) = min{α(H)|H is
an induced subgraph of G with p vertices and at most q edges}.

For non-bipartite regular graphs, Cheng et al. [10] obtained the following two
theorems.

Theorem 3.4 [10]. Let G = (V,E) be a k-regular graph of even order, where
k ≥ 3. Suppose that G contains a triangle, and G is k-edge-connected and super
(3k − 8)-edge-connected of order 2. Moreover, assume that either |γG(X)| > 2k − 4

for every X ⊆ V of size |X| = |V |+2
2

, or α(G) < ζ(G, |V |−2
2

, 2k − 8). If k = 3, it
is additionally required that G is super (3k − 7)-edge-connected of order 2. Then
mp1(G) = 2k − 3.

Theorem 3.5 [10]. Let G = (V,E) be a k-regular graph of even order, where k ≥ 3.
Suppose that G is triangle-free, and G is k-edge-connected and super (3k− 6)-edge-
connected of order 2. Moreover, either |γG(X)| > 2k − 3 for every X ⊆ V of size

|X| = |V |+2
2

, or α(G) < ζ(G, |V |−2
2

, 2k − 6). Then mp1(G) = 2k − 2.
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We generalize the two statements above to s-restricted matching preclusion prob-
lem as follows.

Theorem 3.6. Let G = (V,E) be a k-regular graph of even order, where k ≥ 3.
Suppose that G contains a triangle, and G is k-edge-connected and super (3k − 8)-
edge-connected of order 2. Let s ≥ 2 be any integer. If mp1(G) = 2k − 3, then
mps(G) = 2k − 3.

Proof. By Proposition 2.6, we have mps(G) ≥ 2k − 3 for all integers s ≥ 2. It
remains to show that mps(G) ≤ 2k − 3. It suffices to find an s-restricted matching
preclusion set F with |F | = 2k − 3. Let uwvu be a triangle of G and let F be the
set of edges incident to u and v but not w. Clearly, uv ∈ F . Thus, F is a trivial
conditional matching preclusion set. Then G − F has no perfect matchings. For
convenience, let F ′ = F \ {uv}. We consider the following two cases.
Case 1. k = 3. Then |F | = 3 and |F ′| = 2. Since G is 3-edge-connected, G− F ′ is
connected. Note that uwvu is also a triangle in G−F ′, by further deleting uv from
G − F ′, so it is obvious that G − F is connected. Therefore, F is an s-restricted
matching preclusion set.
Case 2. k ≥ 4. Then there exist no components of G − F ′ containing at most
two vertices since the degree of each neighbor of u or v is at least two in G − F ′.
Since 2k − 4 ≤ 3k − 8 whenever k ≥ 4, and G is super (3k − 8)-edge-connected of
order 2, G−F ′ is connected. So G−F is connected. Therefore, F is an s-restricted
matching preclusion set with |F | = 2k − 3. This completes the proof.

Theorem 3.7. Let G = (V,E) be a k-regular graph of even order, where k ≥ 3.
Suppose that G is triangle-free, k-edge-connected and super (3k−6)-edge-connected
of order 2. If mp1(G) = 2k − 2, then mps(G) = 2k − 2 for any integer s ≥ 2.

Proof. By Proposition 2.6, we have mps(G) ≥ 2k − 2 for all integers s ≥ 2. It
remains to show that mps(G) ≤ 2k − 2. It suffices to give an s-restricted matching
preclusion set F with |F | = 2k − 2. Let uwv be a 2-path of G and let F be the set
of edges incident to u and v but not w. Since G is triangle-free, uv 6∈ F . Thus, F is
a trivial conditional matching preclusion set. Then G−F has no perfect matchings.
We consider the following two cases.
Case 1. k = 3. Then |F | = 4. If G − F is connected, then F is an s-restricted
matching preclusion set, we are done. So we assume that G−F is disconnected. Let
A = NG(u) ∪NG(v) \ {w}. Then 2 ≤ |A| ≤ 4. We consider the following subcases.
Subcase 1.1. |A| = 2. We may assume that A = {x, y}. Thus, dG−F (x) =
dG−F (y) = 1, and xy 6∈ E(G). So there exists a neighbor u′ (resp. v′) of x (resp.
y) in G − F . We have dG−F (u

′) = 3 and dG−F (v
′) = 3. Therefore, there exist no

components of G− F containing at most two vertices. Let e ∈ F be any edge and
let F ′ = F \ {e}. Obviously, there exist no components of G − F ′ containing at
most two vertices. Since G is super (3k−6)-edge-connected of order 2 and |F ′| = 3,
G − F ′ is connected. So F is a minimal edge cut of G. Let C1 and C2 be two
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components of G−F , we may assume that u, w, v ∈ V (C1) and x, y, u′, v′ ∈ V (C2).
Since d(w) = 3, there exists a neighbor w′ (w′ 6= u, v) of w in C1. Thus, w is a cut
vertex in G. It implies that there exist at most two edge-disjoint paths from w to x
in G, which contradicts the fact that G is 3-edge-connected. It follows that G− F
is connected.
Subcase 1.2. |A| = 3. We may assume that A = {x, y, z}. In addition, we assume
that xu, xv ∈ E(G). Since G is triangle-free, xy, xz 6∈ E(G). It implies that x (resp.
y, z) has a neighbor of degree 3 (not w) in G−F . Then there exist no components
of G − F containing at most two vertices. By a similar argument of the proof of
Subcase 1.1, we know that G− F is connected.
Subcase 1.3. |A| = 4. We may assume that A = {x, y, x′, y′}. In addition, we
assume that xu, yu, x′v, y′v ∈ E(G). Since G is triangle-free, xy, x′y′ 6∈ E(G). So
each vertex in A has degree 2 in G− F , indicating that there exist no components
of G−F containing at most two vertices. Again, we know that G−F is connected.

Therefore, F is an s-restricted matching preclusion set with |F | = 4.
Case 2. k ≥ 4. Noting the vertex degree of each neighbor of u or v is at least two
in G−F , then there exist no components of G−F containing at most two vertices.
Since 2k−2 ≤ 3k−6 whenever k ≥ 4, combining G is super (3k−6)-edge-connected
of order 2, G− F is connected. Therefore, F is an s-restricted matching preclusion
set with |F | = 2k − 2. This completes the proof.

4 Applications

In this section, as applications of Theorems 3.3, 3.6 and 3.7 obtained in Section 3,
we shall determine the s-restricted matching preclusion numbers of complete graphs,
hypercubes and hyper Petersen networks.

4.1 Complete graphs

Theorem 4.1 [9]. Let n ≥ 4 be even. Then

mp1(Kn) =

{

(n2 + 2n)/8 if n ∈ {4, 6, 8},

2n− 5 if n ≥ 10.

We need the following lemma.

Lemma 4.2 [24]. Let G be a complete graph with order at least four. Then G is
super-λ′.

Since Kn (n ≥ 4) is super-λ′, we have λ′(Kn) = 2n− 4. Similar to Theorem 4.1,
we have the following result.

12



Theorem 4.3. Let n ≥ 4 be even and let s ≥ 2 be an integer. Then

mps(Kn) =

{

(n2 + 2n)/8 if n ∈ {4, 6, 8},

2n− 5 if n ≥ 10.

Proof. By Proposition 2.6, it suffices to present an s-restricted matching preclusion
set of size mp1(Kn). Let F be a conditional matching preclusion set of Kn with
|F | = mp1(Kn). It follows from Theorem 4.1 that |F | < 2n − 4 whenever n ≥ 4.
By Lemma 4.2, we known that deleting less than 2n − 4 edges from Kn results
in a connected subgraph or a subgraph consisting of exactly two components, one
of which is a singleton. It implies that Kn − F is connected. Thus, F is also an
s-restricted matching preclusion set of Kn.

4.2 Hypercubes

The hypercube Qn is a well-known topology for parallel computing. Any vertex
v of Qn is denoted by an n-bit binary string v1v2 · · · vn, where vi ∈ {0, 1}, for all i,
1 ≤ i ≤ n. Two vertices of Qn are adjacent if and only if their binary strings differ
in exactly one bit position.

To compute the s-restricted matching preclusion number of the hypercube, we
need the following results.

Lemma 4.4 [13]. Let n ≥ 2 be a positive integer. Then λ′(Qn) = 2n− 2.

Lemma 4.5 [30]. Let n ≥ 2 be a positive integer. Then λ3(Qn) = 3n− 4.

Theorem 4.6 [9]. Let n ≥ 3 be an integer. Then mp1(Qn) = 2n− 2.

Theorem 4.7. Let n ≥ 3. For all integers s ≥ 2, mps(Qn) = 2n− 2.

Proof. It is known that Qn is bipartite and n-regular. We only need to verify the
connectivity condition in Theorem 3.3. By Lemma 4.5, λ3(Qn) = 3n− 4. Let F be
a set of edges in Qn with |F | ≤ 3n − 6. If Qn − F is disconnected, take a largest
component C. Then C has at least three vertices; otherwise, each component of
Qn−F is a singleton or doubleton. Partition the components into two classes, each
having at least three vertices in total, contradicting Lemma 4.5. Similarly, the other
components of Qn − F other than C have two vertices in total. Hence, Qn is super
(3n− 6)-edge-connected of order 2. Therefore, mps(Qn) = 2n− 2.

4.3 Hyper Petersen networks

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product of
G1 and G2 is the graph G1✷G2 whose vertex set is V1×V2 and whose edge set is the
set of all pairs (u1, u2)(v1, v2) such that either u1v1 ∈ E1 and u2 = v2, or u2v2 ∈ E2
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and u1 = v1. Das et al. [5] introduced the hyper Petersen networks PNn for n ≥ 3
as a kind of hypercube-like interconnection network. Some additional properties of
PNn can be found in [1]. PNn is recursively defined as follows: PN3 = P , where P
is the Petersen graph, and PNn = Qn−3✷P for n ≥ 4. Obviously, PNn is n-regular
and has 10× 2n−3 vertices.

Lemma 4.8 [7]. mp1(P ) = 3.

Lemma 4.9. If s ≥ 2, then mps(P ) = 3.

Proof. Let F be a conditional matching preclusion set of P with |F | = 3. It
is easy to see that the Petersen graph is super edge-connected. Then P − F is
connected. So F is also an s-restricted matching preclusion set. By Proposition 2.6,
mps(P ) = 3.

Theorem 4.10 [10]. If n ≥ 4, then mp1(PNn) = 2n− 2.

Theorem 4.11. If n ≥ 4, then mps(PNn) = 2n− 2.

Proof. Obviously, PNn is n-regular and triangle-free. By the proof of Theorem 6.2
in [10], it can be known that PNn is super edge-connected and super (3n− 6)-edge-
connected of order 2 for n ≥ 3. By Theorems 3.7 and 4.10, we have mps(PNn) =
2n− 2.

5 Conclusions

The MBPMP problem, arising in the structural analysis of differential-algebraic
systems, is the same as matching preclusion problem for measuring robustness of
interconnection networks. It is known that MBPMP is NP-complete, thus matching
preclusion problem on bipartite graphs is also NP-complete. By reducing MBPMP
to conditional matching preclusion problem in polynomial time, we prove its NP-
completeness. As a corollary, we prove NP-completeness of anti-Kekulé problem. We
generalize matching preclusion and conditional matching preclusion to s-restricted
matching preclusion and obtain its NP-completeness.

To calculate the s-restricted (s ≥ 2) matching preclusion numbers of graphs,
we present some sufficient conditions for regular graphs and, for example, obtain s-
restricted matching preclusion numbers for complete graphs, hypercubes, Petersen
graph and hyper Petersen networks. It is interesting to study the s-restricted
matching preclusion numbers for general graphs. Additionally, the complexity of
s-restricted matching preclusion problem on graphs with restricted conditions, say
maximum degree, planar, should be further studied.
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[14] J. Fàbrega, M.A. Fiol, On the extraconnectivity of graphs, Discrete Math. 155
(1996) 49–57

[15] F. Harary, Conditional connectivity, Networks 13 (1983) 347–357

[16] M. Lacroix, A.R. Mahjoub, S. Martin, C. Picouleau, On the NP-completeness
of the perfect matching free subgraph problem, Theor. Comput. Sci. 423 (2012)
25–29

[17] Q. Li, W. Shiu, H. Yao, Matching preclusion for cube-connected cycles, Discrete
Appl. Math. 190-191 (2015) 118–126

[18] R. Lin, H. Zhang, Matching preclusion and conditional edge-fault Hamiltonicity
of binary de Bruijn graphs, Discrete Appl. Math. 233 (2017) 104–117
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