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Abstract The 0-1 linear programming problem with nonnegative constraint matrix

and objective vector e origins from many NP-hard combinatorial optimization prob-

lems. In this paper, we consider recovering an optimal solution to the problem from a

weighted linear programming. We first formulate the problem equivalently as a sparse

optimization problem. Next, we consider the consistency of the optimal solution of

the sparse optimization problem and the weighted linear programming problem. In

order to achieve this, we establish nonnegative partial s-goodness of the constraint

matrix and the weighted vector. Further, we use two quantities to characterize a suffi-

cient condition and necessary condition for the nonnegative partial s-goodness. How-

ever, the two quantities are difficult to calculate, therefore, we provide a computable

upper bound for one of the two quantities to verify the nonnegative partial s-goodness.

Finally, we give three examples to illustrate that our theory is effective and verifiable.

Keywords Integer programming · Nonnegative partial s-goodness · Weighted linear

programming · Sparse optimization

1 Introduction

In this paper, we consider the integer programming (IP) with linear inequalities:

min
x
{

n

∑
i=1

xi : Ax ≥ b, x ∈ {0,1}n}, (1)
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where A ≥ 0 ∈ Rm×n is a given matrix, b ∈ Rm is a given vector. Problem (1) arises

from many combinatorial optimization problems, such as the minimum vertex cov-

ering [4], the maximum independent set, and the max-cut problems [2], etc. These

problems have been proven to be NP-hard, and many exact and heuristics or approx-

imation algorithms have been proposed, including cutting-plane method [9], branch

and bound [5] and local branch [13] algorithms, relaxation induced neighbourhood

search [6], and objective scaling ensemble approach [14].

It is worth to note that most of the above mentioned algorithms are based on the

corresponding linear programming relaxation. Therefore, it is natural to ask under

which conditions the integer programming problem (1) is equivalent to its corre-

sponding linear programming relaxation problem:

min
x
{

n

∑
i=1

xi : Ax ≥ b, 0 ≤ x ≤ 1}.

At present, there are some theories for ensuring that the above linear programming

problem has integral solution.

The first well known theory is totally unimodular (TUM for short), under which

it holds that

Theorem 1 ([10]) If A is totally unimodular and b is an integer vector, then the

vertices of the polyhedron P = {x : Ax ≤ b, 0 ≤ x ≤ 1} are integral.

Another well known theory is the totally dual integrality (T DI for short) proposed

by Edmonds and Giles [8], which is a weaker sufficient condition than TUM.

Theorem 2 ([8]) If the linear system Ax ≤ b is TDI and b is integer valued, then

P = {x : Ax ≤ b, 0 ≤ x ≤ 1} is an integral polyhedron.

Note that the linear programming relaxation of problem (1) can be written into

the form of linear complementarity problem (LCP):

q+Mz ≥ 0,

zT (q+Mz) = 0,

z ≥ 0.

(2)

where z ∈ Rn is the vector of variables. Assuming that the solution set of LCP is

non-empty, Chandrasekaran et al. [3] gave the class I of integral matrices M if the

corresponding LCP has an integer solution for each integral vector q. Utilizing TDI,

Dubey and Neogy [7] obtained some new conditions for the existence of an integer

solution to LCP with a hidden Z−matrix and hidden K−matrix. These results are

extended from TUM or TDI.

In this paper, we wish to establish a sufficient and necessary condition other than

TUM and T DI, such that the integer program (1) is solvable by linear programming

relaxation. We consider providing an adjustable weight c, 0 < c ≤ 1, such that the

optimal solution of the weighted linear programming relaxation problem

min
x
{cT x : Ax ≥ b,0 ≤ x ≤ 1}, (3)
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is an optimal solution of problem (1).

Let the l0−norm ‖x‖0 be defined as the number of nonzero elements in the vector

x. In Section 2 of this paper, we will prove that problem (1) can be written equiva-

lently as the l0−norm minimization problem

min
x
{‖x‖0 : Ax ≥ b,0 ≤ x ≤ 1}. (4)

Therefore, we expect to establish a sufficient condition through the sparse optimiza-

tion approach, such that problems (4) and (3) have the same unique optimal solution,

and thus provides an optimal solution to problem (1).

Eq. (4) is a sparse optimization problem. In this field, the problem

min
x
{‖x‖0 : A1x+A2y = b} (5)

has been studied mostly, for the optimal solution of min
x
{‖x‖1 : A1x+A2y = b} to be

an optimal solution of the above problem. The proposed well known conditions are

the partial restricted isometry property (PRIP) of the parameter δ r
s−r [1], and the par-

tial null space property (PNSP) of order s− r [1]. In [15,18,16], the authors provided

the k−th order range space property (k-RSP) of the constraint matrix A and a given

matrix W , under which the l0−norm minimization problem has the same unique opti-

mal solution as the problem min
x
{‖W1x+W2y‖1 : A1x+A2y = b}. The condition was

further extended to the l0−norm minimization problem with non-negative constraints

[17].

Another condition is the s-goodness of the constraint matrix A [11], under which

the unique optimal solution of the l1-norm minimization problem min
x
{‖x+ y‖1 :

A1x+A2y = b} is exactly an optimal one of problem (5). In [12], the condition was

extended for considering the problem

min
x
{‖x‖1 : A1x+A2y = b}, (6)

and the partial s-goodness of the constraint matrix (A1,A2) was established, for the

exact partial s-sparse optimal solution via the partial l1−norm minimization.

In this paper, we will propose the nonnegative partial s-goodness condition for

problems (3) and (4), such that they have the same unique optimal solution. Specifi-

cally, we propose a definition of nonnegative partial s-goodness and its characteriza-

tion γs,K(·) and γ̂s,K(·) with respect to the constraint matrices and the coefficients of

the objective function. On this basis, we give a computable upper bound of γ̂s,K(·),
and thus obtain verifiable sufficient conditions for the nonnegative partial s-goodness.

Through which we provide conditions such that the optimal solution of problem (1)

can be obtained from problem (3).

This paper is organized as follows. Section 2 gives an example of problem (1), and

proves the equivalence between problems (1) and (4). In Section 3, we define non-

negative partial s-goodness and its characterization for a constraint matrix A′ and the

coefficient c of the objective function in problem (3). Moreover, we derive necessary

condition and sufficient condition for (A′,c) to be nonnegative partial s-goodness, and

discuss efficiently computable upper bound of γ̂s,K(·) in Section 4. In Section 5, we

give a heuristic algorithm and three examples to show the feasibility of the proposed

theory. Finally, Section 6 concludes this paper.
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2 Problem reformulation

In this section, we prepare some preliminary work for the consequent research. First,

we give an example of the considered problem (1). Then, we show that the consid-

ered integer programming problem (1) can be converted equivalently to an l0-norm

minimization problem.

2.1 An example of the considered integer programming problem

We take the maximum independent set problem as an example to show that it is

a special form of problem (1). Given an undirected graph G = (V,E), where V =
{1, · · · ,n} is the set of vertices and E is the set of edges, the maximum independent

set problem can be formulated as

max
x

n

∑
i=1

xi

s.t. Ax ≤ 1

x ∈ {0,1}n,

(7)

where A is the adjacency matrix of graph G.

Let x̃i = 1− xi, i = 1,2, · · · ,n. Then problem (7) can be written equivalently as

min
x̃

n

∑
i=1

x̃i

s.t. Ax̃ ≥ 1

x̃ ∈ {0,1}n,

which is a special form of problem (1).

2.2 Equivalence between integer programming problem and l0-norm minimization

problem

In this subsection, we show the equivalence between optimal solution of the l0-norm

minimization problem (4) and the integer programming problem (1) after a certain

operation. First, we have the following result.

Theorem 3 For any optimal solution x∗ of the l0-norm minimization problem (4),

x̂∗ = (⌈x∗1⌉,⌈x∗2⌉, · · · ,⌈x∗n⌉)
T is an optimal solution of the integer programming prob-

lem (1) and the l0-norm minimization problem (4) respectively.

Proof For any optimal solution x∗ of problem (4), let x̂∗ = (⌈x∗1⌉,⌈x∗2⌉, · · · , ⌈x∗n⌉)
T ∈

{0,1}n. By noting that x̂∗ ≥ x∗ and A ≥ 0, we have Ax̂∗ ≥ Ax∗ ≥ b. Hence, x̂∗ is

a feasible solution of problems (1) and (4) respectively. Further, since
n

∑
i=1

|x∗i |0 =

n

∑
i=1

|⌈x∗i ⌉|0 =
n

∑
i=1

|x̂∗i |0, x̂∗ is an optimal solution of problem (4).
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Next, for any x ∈ {x ∈ {0,1}n : Ax ≥ b}, x is also a feasible solution of problem

(4). Since
n

∑
i=1

xi =
n

∑
i=1

|xi|0, and by
n

∑
i=1

|x∗i |0 =
n

∑
i=1

|x̂∗i |0, we can obtain that
n

∑
i=1

xi ≥

n

∑
i=1

|x̂∗i |0 =
n

∑
i=1

x̂∗i . Hence x̂∗ is also an optimal solution of problem (1). �

Theorem 3 implies that the following corollary holds.

Corollary 1 If problem (4) has a unique integer optimal solution x̂∗, then x̂∗ is also

an optimal solution of the integer programming problem (1).

Conversely, we next prove that an optimal solution of problem (1) is also an opti-

mal solution of problem (4).

Theorem 4 If x is an optimal solution of problem (1), then x is also an optimal solu-

tion of problem (4).

Proof If x is an optimal solution of problem (1), then x is a feasible solution of prob-

lem (4), and satisfies that
n

∑
i=1

xi =
n

∑
i=1

|xi|0. For any optimal solution x∗ of problem (4),

by Theorem 3, x̂∗ = (⌈x∗1⌉,⌈x∗2⌉, · · · ,⌈x∗n⌉)
T is an optimal solution of problems (1) and

(4). Hence,
n

∑
i=1

xi =
n

∑
i=1

x̂∗i =
n

∑
i=1

|⌈x∗i ⌉|0 =
n

∑
i=1

|x∗i |0. So x is also an optimal solution of

problem (4). �

By introducing slack variables, letting A′ := [A1,A2]∈R(m+n)×(m+2n), where A1 =
(A

I

)

∈ R(m+n)×n, A2 =
(−I 0

0 I

)

∈ R(m+n)×(m+n), b′ =
( b

1

)

∈ Rm+n, then problem (4)

can be rewritten as the form

min
x,y

{‖x‖0 : A1x+A2y = b′,x ≥ 0,y ≥ 0}. (8)

Correspondingly, the weighted linear programming problem (3) can be written in the

form of the partially weighted linear programming problem

min
x,y

{cT x : A1x+A2y = b′,x ≥ 0,y ≥ 0}. (9)

Then, to study the equivalence between the integer programming problem (1) and

the weighted linear programming problem (3), we turn to derive conditions under

which problems (8) and (9) have the same optimal solutions. In the sequel, we adapt

the concept of s-goodness [11] to problem (8), such that problems (8) and (9) have

the same unique optimal solution. Through this optimal solution, we can obtain the

optimal solution of problem (1).

3 Nonnegative partial s-goodness

Since problem (8) is NP-hard, we are interested in establishing some conditions,

under which both of problems (8) and (9) have the same unique optimal solution.

Firstly, we give the following nonnegative partial s-goodness definition of matrix A′

and weighted vector c, where A′ = (A1,A2).
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3.1 Definition of nonnegative partial s-goodness

Definition 1 Let A′ be a (m+ n)× (m+ 2n) matrix and s be an integer, 0 ≤ s ≤ n.

0 < ci ≤ 1, i = 1,2, ...,n. We say that (A′,c) is nonnegative partially s-good with

respect to the columns of A1, if for any pair of vectors w1 ≥ 0 ∈ Rn, w2 ≥ 0 ∈ Rm+n

with that w1 ∈ Rn has at most s nonzero elements, (w1,w2)T is the unique optimal

solution to the optimization problem

min
x,y

{

cT x : A1x+A2y = A1w1 +A2w2,x ≥ 0,y ≥ 0
}

. (10)

For the convenient of description, we say (A′,c) is nonnegative partially s-good

to refer that (A′,c) is nonnegative partially s-good with respect to the columns of A1.

Moreover, without loss of generality, for s ∈ {0,1,2, · · · ,n}, we say w1 ∈ Rn with

‖w1‖0 ≤ s to mean that the nonzero entries of w1 is no more than s. Meanwhile, in

this paper, a vector is said to be s-sparse when this vector contains at most s nonzero

components.

It is obvious that, if the partially weighted linear problem (9) has multiple opti-

mal solutions, then (A′,c) is not nonnegative partially s-good. However, we want to

recover the optimal solution of problem (8) from problem (9), in which c is not fixed.

So we adjust the coefficient c in problem (9), such that one of the optimal solutions

is the unique optimal solution of problem (9).

By Definition 1, taking a step closer to our goal, we obtain the following results,

which characterize the consistency of solutions to the problems (8) and (9).

Theorem 5 For any optimal solution (w1,w2)T of problem (8), where w1 is an s-

sparse vector, if (A′,c) is nonnegative partially s-good, then (w1,w2)T is the unique

optimal solution to the partially weighted linear programming problem (9).

Proof For any optimal solution (w1,w2)T of problem (8), where w1 is an s-sparse

vector, it holds that A1x+ A2y = b′ = A1w1 + A2w2 and w1 ≥ 0, w2 ≥ 0. That is,

(w1,w2)T is a feasible solution of problem (9). If (A′,c) is nonnegative partially s-

good, then according to Definition 1, (w1,w2)T with ‖w1‖0 ≤ s is a unique optimal

solution of problem (9). �

Under the nonnegative partial s-goodness condition, Theorem 5 shows that an

optimal solution of problem (8) is a unique optimal solution of problem (9). In the

above theorem, there is no requirement for the uniqueness of the solution of the l0-

norm minimization problem (8), while only the uniqueness of the partially weighted

linear problem (9) is required.

Next, we give a stronger result that both problems (8) and (9) have a unique

optimal solution.

Theorem 6 Given an integer 0 ≤ s ≤ n, and let (w1,w2)T with ||w1||0 ≤ s be a fea-

sible solution to problem (9). Suppose (A′,c) is nonnegative partially s-good, then

(w1,w2)T is both the unique optimal solution to the partially weighted linear prob-

lem (9) and the l0-norm minimization problem (8).
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Proof Suppose (A′,c) is nonnegative partially s-good, and (w1,w2)T with ||w1||0 ≤ s

is a feasible solution to problem (9). Then by Definition 1, (w1,w2)T is the unique

optimal solution to problem (9).
Next, we prove that (w1,w2)T is also the unique optimal solution to the l0−norm

minimization problem (8). Suppose (x1,y1)T is another solution to problem (8), and

‖x1‖0 ≤ ‖w1‖0 ≤ s. Then A1x1 +A2y1 = b′ = A1w1 +A2w2 and x1 ≥ 0, y1 ≥ 0. By

Definition 1, (x1,y1)T is also a unique optimal solution to problem (9), and then we

can get (x1,y1)T = (w1,w2)T . Hence (w1,w2)T is the unique optimal solution of the

l0−norm minimization problem (8). �

According to Section 2.2 and Theorems 5 and 6, we can immediately get that

an optimal solution of the integer programming problem (1) can be recovered from

problem (9), as in the following corollary.

Corollary 2 Suppose (A′,c) is nonnegative partially s-good, let (w1,w2)T with ||w1||0
≤ s be an optimal solution to the partially weighted linear programming problem (9).
Then ⌈w1⌉ is an optimal solution of integer programming problem (1).

It seems not easy to completely characterize the nonnegative partial s-goodness of

the constraint matrix A′ and the coefficient c of the objective function (3). In the next

subsection, we utilize two quantities to characterize nonnegative partial s-goodness.

3.2 Two quantities of nonnegative partial s-goodness

In this section, we introduce two quantities: γs,K

(

A′,c,β
)

and γ̂s,K

(

A′,c,β
)

, where

K := {1,2, · · · ,n} is the index set of x, i.e., the index set of the columns of matrix A1.

In particular, for a vector θ ∈ Rm+n, let ‖ · ‖∗ be the dual norm of ‖ · ‖ specified by

‖θ‖∗ = max
d

{dT θ : ‖d‖ ≤ 1}. In this paper, we consider the dual norm of ‖ · ‖1.

Definition 2 Let A′ ∈ R(m+n)×(m+2n), s is an integer and 0 ≤ s ≤ n, 0 < ci ≤ 1, i =
1,2, . . . ,n, β ∈ [0,∞]. We define γs,K

(

A′,c,β
)

, γ̂s,K

(

A′,c,β
)

as follows:

(1) γs,K

(

A′,c,β
)

is the infimum of γ > 0 such that for every pair of vectors z1 ∈

Rn,z2 ∈ Rm+n, where z1 ∈ Rn has s nonzero entries, each is equal to 1, there exists a

vector θ ∈ Rm+n such that

‖θ‖∗ ≤ β ,
(

AT
1 θ

)

i

{

= ciz
1
i , i f z1

i = 1;

∈ [−γ,γ], i f z1
i = 0,

and
(

AT
2 θ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

(11)

If for some pair of vectors z1 ∈ Rn,z2 ∈ Rm+n as above, there does no θ with

‖θ‖∗ ≤ β , such that AT
1 θ coincides with c ◦ z1 on the support set of z1, and AT

2 θ
coincides with 0 on the support set of z2, then we let γs,K

(

A′,c,β
)

=+∞.

(2) γ̂s,K

(

A′,c,β
)

is the infimum of γ > 0 such that for every pair of vectors z1 ∈

Rn,z2 ∈ Rm+n, where z1 ∈ Rn has s nonzero entries, each is equal to 1, there exists a

vector θ̂ ∈ Rm+n such that

‖θ̂‖∗ ≤ β , ‖
(

AT
1 θ̂

)

− c◦ z1‖∞ ≤ γ and
(

AT
2 θ̂

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0,

(12)
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here c◦ z1 means entry-wise product of the two vectors.

Furthermore, when β = ∞, we write γs,K

(

A′,c
)

, γ̂s,K

(

A′,c
)

instead of γs,K

(

A′,c,

∞
)

and γ̂s,K

(

A′,c,∞
)

, respectively.

Remark 1 Obviously, the set of values of the γ is closed. Thus, if γs,K

(

A′,c,β )<+∞,

then for every pair of vectors z1 ∈ Rn,z2 ∈ Rm+n, where z1 ∈ Rn has s nonzero entries,

each is equal to 1, there exists a vector θ ∈ Rm+n such that

‖θ‖∗ ≤ β ,
(

AT
1 θ

)

i

{

= ciz
1
i , i f z1

i = 1;

∈ [−γs,K

(

A′,c,β ),γs,K

(

A′,c,β )], i f z1
i = 0,

(

AT
2 θ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

(13)

Similarly, for every pair of vectors z1 ∈ Rn, z2 ∈ Rm+n, where z1 ∈ Rn has s nonzero

entries, each is equal to 1, there exists a vector θ ∈ Rm+n such that

‖θ̂‖∗ ≤ β , ‖
(

AT
1 θ̂

)

− c◦ z1‖∞ ≤ γ̂s,K

(

A′,c,β
)

and
(

AT
2 θ̂

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

(14)

Before characterizing nonnegative partial s-goodness of (A′,c) more specifically,

we need to give some basic properties of γs,K

(

A′,c,β
)

and γ̂s,K

(

A′,c,β
)

, such as

convexity and monotonicity. Since nonnegative partial s-goodness of (A′,c) requires

γs,K(A
′,c)< ∞, we assume it holds without loss of generality in the sequel.

Lemma 1 γs,K(A
′,c,β ) and γ̂s,K(A

′,c,β ) are convex nonincreasing function of β ∈
[0,+∞].

Proof Here, we only need to prove that the γs,K

(

A′,c,β ) is a convex nonincreasing

function with respect to β ∈ [0,+∞]. The property with respect to γ̂s,K(A
′,c,β ) can

be proved similarly.

Firstly, for the given A′,c and s, we demonstrate that the γs,K

(

A′,c,β ) is a nonin-

creasing function of β . For any β2 ≥ β1, according to the definition of γs,K

(

A′,c,β
)

and Remark 1, for every pair of vectors z1 ∈ Rn,z2 ∈ Rm+n, where z1 ∈ Rn has s

nonzero entries, each is equal to 1, there exists a vector θ ∈ Rm+n such that

‖θ‖∗ ≤ β1 ,
(

AT
1 θ

)

i

{

= ciz
1
i , i f z1

i = 1;

∈ [−γs,K

(

A′,c,β1),γs,K

(

A′,c,β1)], i f z1
i = 0,

(

AT
2 θ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

Since β2 ≥ β1, the θ in the above equation also satisfies that

‖θ‖∗ ≤ β2 ,
(

AT
1 θ

)

i

{

= ciz
1
i , i f z1

i = 1;

∈ [−γs,K

(

A′,c,β1),γs,K

(

A′,c,β1)], i f z1
i = 0,

(

AT
2 θ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.
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Hence by the definition of γs,K

(

A′,c,β2

)

, γs,K

(

A′,c,β1

)

≥ γs,K

(

A′,c,β2

)

.

Next, we prove that γs,K(A
′,c,β ) is a convex function of β . That is to say, for any

β1, β2 ∈ [0,+∞], for any α ∈ [0,1], we need to prove that

γs,K

(

A′,c,αβ1 +(1−α)β2)≤ αγs,K(A
′,c,β1)+ (1−α)γs,K(A

′,c,β2). (15)

Note that, the above inequality (15) obviously holds if one of β1 and β2 is +∞.

Therefore, we only need to verify that for β1,β2 ∈ [0,+∞), the inequality (15) still

holds. By the definition of γs,K

(

A′,c,β ), it is easy to know that for every pair of

vectors z1 ∈ Rn,z2 ∈ Rm+n, where z1 ∈ Rn has s nonzero entries, each is equal to 1,

there exists a vector θℓ ∈ Rm+n, ℓ ∈ {1,2} such that

‖θℓ‖∗ ≤ βℓ , (A
T
1 θℓ)i

{

= ciz
1
i , i f z1

i = 1;

∈ [−γs,K

(

A′,c,βℓ),γs,K

(

A′,c,βℓ)], i f z1
i = 0,

(

AT
2 θℓ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

Clearly, for any α ∈ [0,1], we can easily get

‖αθ1 +(1−α)θ2‖∗ ≤ αβ1 +(1−α)β2.

Moreover,

[AT
1 (αθ1 +(1−α)θ2)]i

{

= ciz
1
i , i f z1

i = 1;

∈ [−kρ ,ρ ], i f z1
i = 0,

[AT
2 (αθ1 +(1−α)θ2)

]

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0,

where ρ =αγs,K(A
′,c,β1)+(1−α)γs,K(A

′,c,β2). Hence, by the definition of γs,K(·),
it holds that

γs,K

(

A′,c,αβ1 +(1−α)β2)≤ αγs,K(A
′,c,β1)+ (1−α)γs,K(A

′,c,β2). �

By Definition 2 and Lemma 1, the set of values of the γ is closed and has a

infimum γs,K(A
′,c,β ). Namely, for the given A′,c and s, if β is large enough, we can

set γs,K(A
′,c,β ) = γs,K(A

′,c). In the same way, for the given A′,c and s, if β is large

enough, we can set γ̂s,K(A
′,c,β ) = γ̂s,K(A

′,c).
From the definitions of γs,K(A

′,c,β ) and γ̂s,K(A
′,c,β ), it is obvious that s is

another important parameter of γ . Next, we give a property of γs,K(A
′,c,β ) and

γ̂s,K(A
′,c,β ) with respect to s.

Lemma 2 γs,K(A
′,c,β ) and γ̂s,K(A

′,c,β ) are monotonically nondecreasing functions

of the parameter s.

Proof Firstly, we prove that γs,K(A
′,c,β ) is a monotonically nondecreasing function

of the parameter s. Let γs,K(A
′,c,β )< ∞. According to the definition of γs,K(A

′,c,β )
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and Remark 1, for every pair of vectors z1 ∈ Rn, z2 ∈ Rm+n, where z1 ∈ Rn has s

nonzero entries, each is equal to 1, there exists a vector θ ∈ Rm+n such that

‖θ‖∗ ≤ β ,
(

AT
1 θ

)

i

{

= ciz
1
i , i f z1

i = 1;

∈ [−γs,K

(

A′,c,β ),γs,K

(

A′,c,β )], i f z1
i = 0,

(

AT
2 θ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

(16)

Then, let ts(z
1,z2) be the minimal value of the optimization problem

min
θ

‖(AT
1 θ )‖∞

s.t. ‖θ‖∗ ≤ β
(AT

1 θ )i = ciz
1
i , i ∈ I1

(AT
2 θ )i = 0, i ∈ I2

(AT
2 θ )i ≤ 0, i ∈ Ī2,

(17)

where I1 = {i : z1
i = 1}, I2 = {i : z2

i 6= 0} and Ī2 = {i : z2
i = 0}. Obviously, ts(z

1,z2)≤
γs,K(A

′,c,β ).
Let s′ = s−1< s. For every pair of vectors z1′ ∈ Rn, z2 ∈ Rm+n, where z1′ ∈ Rn has

s− 1 nonzero entries, each is equal to 1, we can construct a pair of vectors z1 ∈ Rn,

z2 ∈ Rm+n, where z1 is obtained from z1′ by changing one entry with value 0 to 1.

According to (17), it is obvious that

ts′(z
1′,z2)≤ ts(z

1,z2)≤ γs,K(A
′,c,β ).

Hence, γs′,K(A
′,c,β )≤ γs,K(A

′,c,β ).
Using the way similar to the above proof, we can also show that γ̂s′,K(A

′,c,β ) ≤
γ̂s,K(A

′,c,β ), i.e., γ̂s,K(A
′,c,β ) is a monotonically nondecreasing function of s. �

Remark 2 According to Lemma 2, γs,K(A
′,c,β ) and γ̂s,K(A

′,c,β ) are nondecreasing

functions of s, hence for all s′ ≤ s, Remark 1 holds. That means, in Remark 1 for

every pair of vectors z1 ∈ Rn, z2 ∈ Rm+n with ‖z1‖0 ≤ s, there exists θ with ‖θ‖∗ ≤ β
such that Equations (11) and (12) hold.

3.3 Sufficient condition and necessary condition of nonnegative partial s-goodness

In this subsection, via γs,K(A
′,c) we propose a sufficient condition and a necessary

condition for nonnegative partial s-goodness of the constraint matrix A′ and the coef-

ficient c of the objective function.

Theorem 7 Given A′ ∈ R(m+n)×(m+2n), s is an integer and 0 ≤ s ≤ n, 0 < c ≤ 1, we

can obtain:

(a) if (A′,c) is nonnegative partially s-good, then γs,K(A
′,c)≤ max

0<i≤n
ci;

(b) if γs,K(A
′,c)< min

0<i≤n
ci, then (A′,c) is nonnegative partially s-good.
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Proof (a) Suppose (A′,c) is nonnegative partially s-good. For any given w=(w1,w2)T

≥ 0 ∈ Rn ×Rm+n with ‖w1‖0 ≤ s, let I1 = {i : w1
i > 0}, Ī1 = {i : w1

i = 0}, I2 =
{i : w2

i > 0} and Ī2 = {i : w2
i = 0}.

By Definition 1, w is the unique optimal solution to problem (10). According

to the optimality condition, there exists θ ∈ Rm+n such that fθ (x,y) =
n

∑
i=1

ci|xi| −

θ T (A1x+A2y−A1w1 −A2w2) attains its minimum value at (x,y)T = (w1,w2)T , i.e.,

0 ∈ ∂ fθ (w
1,w2). This implies that

(AT
1 θ )i

{

= ci, i ∈ I1;

∈ [− max
0<i≤n

ci, max
0<i≤n

ci], i ∈ Ī1,
and (AT

2 θ )i

{

= 0, i ∈ I2;

≤ 0, i ∈ Ī2.

Since w ≥ 0, hence, for the optimization problem

min
θ ,γ

{

γ : (AT
1 θ )i

{

= ci, i ∈ I1;

∈ [−γ,γ], i ∈ Ī1,
and (AT

2 θ )i

{

= 0, i ∈ I2;

≤ 0, i ∈ Ī2,

}

the optimal value γ ≤ max
0<i≤n

ci. By Definition 2, γs,K(A
′,c) is the infimum of γ , thus

γs,K(A
′,c)≤ max

0<i≤n
ci.

(b) Suppose γs,K(A
′,c)< min

0<i≤n
ci, next we prove (A′,c) is nonnegative partially s-

good. That is, for a vector w = (w1,w2)T ≥ 0 with A1w1 +A2w2 = b′ and ‖w1‖0 ≤ s,

we need to prove that w is the unique optimal solution to problem (10).

First, we consider the special case that (w1,w2)T = (0,w2)T . Obviously, (x,y)T =
(0,w2)T is the unique optimal solution to problem (10). The reason is that, when

w1 = 0, then A2y = A2w2, and since A2 =
(−I 0

0 I

)

is injective, it is easy to see that

y = w2 is unique.

Now, suppose ‖w1‖0 = s′, 0 ≤ s′ ≤ s, and its support set is I1. Meanwhile, let I2

be the support index set of w2. According to Lemma 2, we have γ := γs′,K(A
′,c) ≤

γs,K(A
′,c). Since γs,K(A

′,c) < min
0<i≤n

ci, we get that γ < min
0<i≤n

ci. Moreover, by the

definition of γs,K(·), there exists θ ∈ Rm+n such that

‖θ‖∗ ≤ β , (AT
1 θ )i

{

= cisign(w1
i ), i ∈ I1;

∈ [−γ,γ], i ∈ Ī1,
(AT

2 θ )i

{

= 0, i ∈ I2;

≤ 0, i ∈ Ī2,
(18)

where I1 = {i : w1
i > 0}, Ī1 = {i : w1

i = 0}, I2 = {i : w2
i > 0} and Ī2 = {i : w2

i = 0}.

Furthermore by (a), there exists θ ∈ Rm+n satisfying Eq. (18) which is the optimal La-

grange multiplier of problem (10). Then for any feasible solution (x,y)T of problem
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(10), it holds that

f (x,y) = cT x−θ T (A1x+A2y−A1w1 −A2w2)

= cT x− (AT
1 θ )T (x−w1)− (AT

2 θ )T (y−w2)

= ∑
i∈I1

ciw
1
i + ∑

i∈Ī1

(ci − (AT
1 θ )i)xi − ∑

i∈Ī2

(AT
2 θ )iyi

≥ ∑
i∈I1

ciw
1
i + ∑

i∈Ī1

(ci − (AT
1 θ )i)xi

≥ cT w1.

(19)

According to (19), it is obvious that the minimum value of the Lagrange function

can be attained at x = w1. Further, since (x,y) and (w1,w2) have the relationship

A1x+A2y = A1w1 +A2w2, A1x = A1w1 and A2 =
(−I 0

0 I

)

is an injective matrix, it is

easy to show that A2y = A2w2. Therefore, (x,y)T = (w1,w2)T is an optimal solution

of problem (10).

Next, it is necessary to prove that this optimal solution is unique. Suppose (x̃, ỹ)T

is another optimal solution of problem (10). That is,

f (x̃, ỹ)− f (w1,w2) = ∑
i∈Ī1

(ci − (AT
1 θ )i)x̃i − ∑

i∈Ī2

(AT
2 θ )iỹi = 0.

By the assumption that γ < min
0<i≤n

ci, and from Eq. (18), |AT
1 θ |i < min

0<i≤n
ci for all i ∈ Ī1,

which means that x̃i = 0 and ∑
i∈Ī2

(AT
2 θ )iỹi = 0. Therefore, x̃i = w1

i = 0 for all i ∈ Ī1.

Hence, ‖x̃−w1‖0 ≤ s.

Further, for the above vector x̃i −w1
i , define

h(x̃−w1, ỹ−w2) :=
n

∑
i=1

ci|(x̃−w1)i|− θ̃ T (A1(x̃−w1)+A2(ỹ−w2)).

Similar to the proof of part (a) in Theorem 7, there exists θ̃ ∈ Rm+n such that

(AT
1 θ̃ )i

{

= cisign((x̃−w1)i), i f (x̃−w1)i 6= 0;

∈ [− max
0<i≤n

ci, max
0<i≤n

ci], i f (x̃−w1)i = 0,

and

(AT
2 θ̃ )i

{

= 0, i f (ỹ−w2)i 6= 0;

≤ 0, i f (ỹ−w2)i = 0.

Therefore, for the θ̃ in the function h(x̃−w1, ỹ−w2), we have

0 = (AT
1 θ̃ )T (x̃−w1)+ (AT

2 θ̃ )T (ỹ−w2)

= ∑
i∈I1

(AT
1 θ̃ )T

i (x̃i −w1
i )+ ∑

i∈I2

(AT
2 θ̃ )T

i (ỹi −w2
i ),
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and then we can get x̃i = w1
i for all i ∈ I1. This combined with the fact A1x̃+A2ỹ =

A1w1 +A2w2 can lead to A2ỹ = A2w2. Further, since A2 =
(−I 0

0 I

)

is an injective

matrix, we have ỹ = w2 and then (x̃, ỹ)T = (w1,w2)T . �

Below, we show the relationship between γs,K(·) and γ̂s,K(·).

Proposition 1 For arbitrary β ∈ [0,∞], if γ̂ := γ̂s,K(A
′,c,β )< 1

2
min

0<i≤n
ci, then

γs,K(A
′,c,

min
0<i≤n

ci

min
0<i≤n

ci − γ̂
β )≤

min
0<i≤n

ci

min
0<i≤n

ci − γ̂
γ̂ < min

0<i≤n
ci. (20)

Proof Suppose γ̂ := γ̂s,K(A
′,c,β ) < 1

2
min

0<i≤n
ci. Now let I1 be an s-element subset of

{1,2, . . . ,n}, Ī1 := {1,2, . . . ,n}\ I1, and let I2 be a subset of {n+1,n+2, . . .,m+2n},

Ī2 := {n+ 1,n+ 2, . . .,m+ 2n} \ I2.

For the I1, Ī1 and I2, Ī2, we define a closed convex set ΠI1 in Rn as

ΠI1 =

{

τ ′ ∈ Rn : ∃θ ∈ Rm+n,‖θ‖∗ ≤ β ,(AT
1 θ )i

{

= ciτ
′
i , i ∈ I1;

∈ [−γ̂ , γ̂ ], i ∈ Ī1,
(AT

2 θ )i

{

= 0, i ∈ I2;

≤ 0, i ∈ Ī2

}

.

Similar to the proof of Proposition 2.1 in [11], we claim that ΠI1 contains the

‖ · ‖∞-ball B centered at the origin and with the radius
min

0<i≤n
ci−γ̂

min
0<i≤n

ci
. The proof is as

follows.

Define a subspaces LI1 := {τ ′ ∈ Rn : τ ′i = 0, i ∈ Ī1} and let L⊥
I1

:= {τ ′ ∈ Rn : τ ′i =
0, i ∈ I1} be the orthogonal complement of LI1 . Let P be the projection of ΠI1 onto

LI1 and P′ be the projection of ΠI1 onto L⊥
I1

. Note that ΠI1 is the direct sum of P and

P′. Thus, P is a closed convex set. Obviously, LI1 can be naturally identified with Rs.

Hence, the claim in the above can be more precisely described as that the image

P̄ ⊂ Rs of P contains the ‖ · ‖∞-ball Bs centered at the origin and with the radius
min

0<i≤n
ci−γ̂

min
0<i≤n

ci
in Rs.

Next, we prove that Bs ⊆ P̄. Contradictorily, suppose that P̄ does not contain

Bs. Since P is a closed convex set, P̄ is also a closed convex set. According to the

separating hyperplane theorem, for ν ∈ Bs \ P̄ and ν̄ ∈ P̄, there exists u ∈ Rs with

‖u‖1 = 1, such that

uT ν > max
ν̄∈P̄

uT ν̄ . (21)

In the following, we prove that there does not exist u such that the inequality (21)

holds.

First, define z̄1 ∈ Rn with ‖z̄1‖0 = s and z̄2 ∈ Rm+n as

z̄1 =

{

1, i ∈ I1;

0, i ∈ Ī1,
z̄2

{

6= 0, i ∈ I2;

= 0, i ∈ Ī2.
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By the definition of γ̂s,K(A
′,c,β ), for the given z̄1 ∈ Rn, z̄2 ∈ Rm+n, there exists θ̄ ∈

Rm+n such that

‖θ̄‖∗ ≤ β , ‖
(

AT
1 θ̄ )− cT ◦ z̄1‖∞ ≤ γ̂,

(

AT
2 θ

)

i

{

= 0, i f z̄2
i 6= 0;

≤ 0, i f z̄2
i = 0.

Then for the u with ‖u‖1 = 1 in (21), combining the above inequality with the defini-

tions of ΠI1 and P̄, there exists a vector ν ′ ∈ P̄ such that

|ciν
′
i − cisign(ui)| ≤ γ̂, i ∈ I1.

Thus,

sign(ui)−
γ̂

min
0<i≤n

ci
≤ ν ′

i ≤ sign(ui)+
γ̂

min
0<i≤n

ci
, i ∈ I1.

Since γ̂ < 1
2

min
0<i≤n

ci, the above inequalities imply that the sign of ν ′
i is same as ui, for

all i. Moreover, according to the definition of γ̂s,K(A
′,c,β ), we can get

1−
γ̂

min
0<i≤n

ci

≤ ν ′
i ≤ 1+

γ̂

min
0<i≤n

ci

, i ∈ I1.

Hence, ν ′ > 0, u > 0, and

ν ′
i ≥

min
0<i≤n

ci − γ̂

min
0<i≤n

ci

, i ∈ I1.

So

uT ν ′ ≥
s

∑
i=1

|ui|

min
0<i≤n

ci − γ̂

min
0<i≤n

ci

=

min
0<i≤n

ci − γ̂

min
0<i≤n

ci

.

Further, for the above given ν ∈ Bs and ‖u‖1 = 1, we have

min
0<i≤n

ci − γ̂

min
0<i≤n

ci

≥ ‖ν‖∞ = ‖u‖1‖ν‖∞ ≥ uT ν > uT ν ′ ≥

min
0<i≤n

ci − γ̂

min
0<i≤n

ci

,

which is a contradiction. So the claim holds.

Through the above proof, we can conclude that, for any z = (z1,z2)T ∈ Rn×Rm+n

with z1
i = 1 for i ∈ I1, and z1

i = 0 else, there exists τ ′ ∈ ΠI1 such that

τ ′i = (
min

0<i≤n
ci − γ̂

min
0<i≤n

ci

)z1
i , i ∈ I1.
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Further, by the definition of ΠI1 , there exists θ̂ ∈ Rm+n with ‖θ̂‖∗ ≤
min

0<i≤n
ci

min
0<i≤n

ci−γ̂ β

such that

(AT
1 θ̂ )i















=
min

0<i≤n
ci

min
0<i≤n

ci−γ̂ ciτ
′
i = ciz

1
i , i ∈ I1;

∈ [−
min

0<i≤n
ci

min
0<i≤n

ci−γ̂ γ̂,
min

0<i≤n
ci

min
0<i≤n

ci−γ̂ γ̂], i ∈ Ī1,

and

(AT
2 θ̂ )i

{

= 0, i ∈ I2;

≤ 0, i ∈ Ī2.

So by the definition of γs,K(A
′,c,β ), and since γ̂ < 1

2
min

0<i≤n
ci, we can obtain

γs,K(A
′,c,

min
0<i≤n

ci

min
0<i≤n

ci − γ̂
β )≤

min
0<i≤n

ci

min
0<i≤n

ci − γ̂
γ̂ < min

0<i≤n
ci. �

Based on Proposition 2, Theorem 7 can be equivalently written as:

Theorem 8 Given A′ ∈ R(m+n)×(m+2n), s is an integer and 0 ≤ s ≤ n, 0 < c ≤ 1, if

γ̂s,K(A
′,c)< 1

2
min

0<i≤n
ci, then (A′,c) is nonnegative partially s-good.

According to Theorem 7, to show that (A′,c) is nonnegative partially s-good, we

need to compare the magnitude of γs,K(A
′,c) with min

0<i≤n
ci. Now, due to Theorem 8,

and we know that γ̂s,K(A
′,c,β ) is weaker than γs,K(A

′,c,β ), hence we focus on γ̂(·),
which has a specific representation presented in the next subsection.

3.4 Specific representation of γ̂s,K(·)

γ̂s,K(A
′,c,β )is given in Definition 2, which is essentially obtained from the optimality

condition of problem (10). In this subsection, we give a specific representation of

γ̂s,K(A
′,c,β ) in more detail.

Theorem 9 Consider the polytope

Ps = {τ ∈ Rm+2n
+ : τ = (τ1,τ2)T ,τ1 ∈ Rn,τ2 ∈ Rm+n, ‖τ1‖1 ≤ s, ‖τ1‖∞ ≤ 1},

we have

γ̂s,K(A
′,c,β ) = max

τ,x
{

n

∑
i=1

τ1
i cixi −β‖A1x‖1 : τ ∈ Ps,‖x‖1 ≤ 1, x ≥ 0}. (22)

Particularly,

γ̂s,K(A
′,c) = max

τ,x
{

n

∑
i=1

τ1
i cixi : τ ∈ Ps, ‖x‖1 ≤ 1, A1x = 0, x ≥ 0}. (23)
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Proof For any vector y ≥ 0, let I2(y) be its support set. According to Definition 2,

define

Bβ (y) = {θ ∈ Rm+n : ‖θ‖∗ ≤ β , (AT
2 θ )i = 0 for i ∈ I2(y), (A

T
2 θ )i ≤ 0 otherwise},

B = {ν ∈ Rn : ‖ν‖∞ ≤ 1}.

Then, γ̂s,K(A
′,c,β ) is the smallest γ , such that the set C1,γ,β := AT

1 Bβ (y)+ γB ⊆ Rn is

closed, convex, and contains all vectors with s nonzero elements, which are selected

from ci, i = 1,2, · · · ,n. This statement is equivalent to that C1,γ,β contains the convex

hull of the vectors.

Let ĉ = (cT ,0, · · · ,0)T ∈ Rm+2n. Then C1,γ,β contains the projection of ĉ◦Ps onto

the Rn space. Thus, γ satisfies the relationship of ĉ◦Ps ⊆C1,γ,β ×Rm+n, if and only if

for any pair of (x,y)T ≥ 0 with x ∈ Rn and y ∈ Rm+n,

max
τ∈Ps

n

∑
i=1

τ1
i cixi ≤ max

η∈C1,γ,β

{
n

∑
i=1

ηixi}

= max
θ ,ν

{< x,AT
1 θ >+γ < x,ν >: θ ∈ Bβ (y), ‖ν‖∞ ≤ 1}

≤ max
θ ,ν

{< x,AT
1 θ >+γ < x,ν >: ‖θ‖∗ ≤ β , ‖ν‖∞ ≤ 1}

= max
θ ,ν

{< A1x,θ >+γ < x,ν >: ‖θ‖∗ ≤ β , ‖ν‖∞ ≤ 1}

= β‖A1x‖1 + γ‖x‖1.

(24)

That is, ĉ◦Ps ⊆C1,γ,β ×Rm+n if and only if γ satisfies that

max
τ∈Ps

{
n

∑
i=1

τ1
i cixi −β‖A1x‖1 : x ≥ 0} ≤ γ‖x‖1,

namely,

max
τ,x

{
n

∑
i=1

τ1
i cixi −β‖A1x‖1 : τ ∈ Ps,‖x‖1 ≤ 1, x ≥ 0} ≤ γ.

Therefore Eq. (22) holds, since γ̂s,K(A
′,c,β ) is the smallest γ . Finally, Eq. (23) holds

due to that Eq. (22) can be regarded as a penalty problem of Eq. (23). �

For c◦ x ≥ 0 ∈ Rn, we define the sum of the s largest entries of c◦ x as

‖c◦ x‖s,K,1 := max
τ∈Ps

n

∑
i=1

τ1
i cixi.

Then by taking Theorems 8 and 9 into consideration, we can obtain the following

result:

Corollary 3 Given a matrix A1, γ̂s,K(A
′,c) is the least upper bound on ‖c◦x‖s,K,1 :=

max
τ∈Ps

n

∑
i=1

τ1
i cixi over x ≥ 0, x ∈ Ker(A1) and ‖x‖1 ≤ 1. As a result, if the maximum

of ‖c ◦ x‖s,K,1 over x ∈ Ker(A1) and ‖x‖1 ≤ 1 is less than 1
2

min
0<i≤n

ci, then (A′,c) is

nonnegative partially s-good.
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Equations (22) and (23) provide the specific forms of γ̂s,K(·). Thus, we can judge

the nonnegative partial s-goodness of (A′,c) according to Theorem 8, as long as the

Eqs. (22) and (23) can be calculated. However, in Eqs. (22) and (23), the calculation

of γ̂s,K(·) is complicated, and sometimes it is not easy to directly calculate the specific

value of γ̂s,K(A
′,c,β ). In order to make up for this shortcoming, in what follows, we

give effective upper bounding of γ̂s,K(A
′,c,β ) to estimate the value of γ̂s,K(A

′,c,β ).

4 Efficient bounding of γ̂s,K(·)

From the previous sections, we have shown that γ̂s,K(A
′,c,β ) plays an important role

in distinguishing whether (A′,c) is non-negative partially s-good. However, it still

not easy to determine the exact value of γ̂s,K(A
′,c,β ) according to Eqs. (23) and

(22). In this section, we introduce efficiently computable upper bound on the value

of γ̂s,K(A
′,c,β ).

Since γ̂s,K(A
′,c,β ) ≥ γ̂s,K(A

′,c) for any β > 0, we will use Eq. (23) to calculate

an upper bound of γ̂s,K(A
′,c). The difficulty of calculation is in the process of the

linear constraint A1x = 0, which will be handled via Lagrange relaxation.

Since γ̂s,K(A
′,c) > 0, hence, we only consider the case where the elements in x

are not all 0. For any matrix Q = [q1, · · · ,qn] ∈ R(m+n)×n with AT
2 Q ≤ 0, we have

QT A1x =
m+n

∑
ℓ=1

n

∑
j=1

qℓ,iaℓ, jx j, i = 1,2, . . . ,n

= 0,

where aℓ, j is the element of matrix A1 in the ℓ-th row and j-th column, qℓ,i is the

element of matrix Q in the ℓ-th row and i−th column.

Let C ∈ Rn×n be the diagonal matrix diag(c1,c2, · · · ,cn). For the above Q and by

Eq. (23), we can get

γ̂s,K(A
′,c)

= max
τ,x

{
n

∑
i=1

τ1
i cixi : τ ∈ Ps, ‖x‖1 ≤ 1,A1x = 0, x ≥ 0}

≤ max
τ∈Ps
x≥0

{

n

∑
i=1

τ1
i (cixi −

m+n

∑
ℓ=1

n

∑
j=1

qℓ,iaℓ, ju j) : ‖x‖1 ≤ 1,QT A1x = 0,AT
2 Q ≤ 0

}

= max
τ∈Ps
x≥0

{

τ1T (Cx−QT A1x) : ‖x‖1 ≤ 1, QT A1x = 0,AT
2 Q ≤ 0

}

≤ max
τ∈Ps
x≥0

{

τ1T (Cx−QT A1x) : ‖x‖1 ≤ 1,AT
2 Q ≤ 0

}

= max
τ∈Ps
x≥0

{

τ1T (C−QT A1)x : ‖x‖1 ≤ 1,AT
2 Q ≤ 0

}

.

Hence we can solve the problem

max
τ,x

{

τ1T (C−QT A1)x : x ≥ 0,‖x‖1 ≤ 1,τ ∈ Ps,A
T
2 Q ≤ 0

}

(25)
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to obtain an upper bound of γ̂s,K(A
′,c), which is linear in x.

In the above problem, the feasible region for x is the convex hull of just n points

ei, i = 1,2, · · · ,n, where ei is the n-dimensional vector with the i-th component be-

ing 1, and the remaining components being 0. Therefore, the above problem can be

rewritten as

max
τ,x

{

τ1T (C−QT A1)x : x ≥ 0,‖x‖1 ≤ 1,τ ∈ Ps,A
T
2 Q ≤ 0

}

≤ max
τ,0< j≤n

{

|τ1T (C−QT A1)e j| : τ ∈ Ps,A
T
2 Q ≤ 0

}

= max
0< j≤n

{

max
τ∈Ps

|τ1T (C−QT A1)e j| : AT
2 Q ≤ 0

}

= max
0< j≤n

{

‖(C−QT A1)e j‖s,K,1 : AT
2 Q ≤ 0

}

.

(26)

Define gA1,C,s,K(Q) as max
0< j≤n

‖(C−QT A1)e j‖s,K,1, and let

ηs,K(A1,C,∞) :=

{

min
Q

gA1,C,s,K(Q)

s.t. AT
2 Q ≤ 0.

Then

γ̂s,K(A
′,c)≤ ηs,K(A1,C,∞).

Since gA1,C,s,K(Q) is easy to compute, so ηs,K(A1,C,∞) is easy to compute.

Further, from (24) we have

max
τ∈Ps

n

∑
i=1

τ1
i cixi ≤ max

θ ,ν
{< A1x,θ >+γ < x,ν >: ‖θ‖∗ ≤ β ,‖ν‖∞ ≤ 1}

= max
θ

{< A1x,θ >: ‖θ‖∗ ≤ β}+ γ‖x‖1}.

Thus, γ satisfies that

max
τ∈Ps
x≥0

{

n

∑
i=1

τ1
i cixi −max

θ
< A1x,θ >: ‖θ‖∗ ≤ β ,‖x‖1 ≤ 1

}

≤ γ.

Note that γ̂s,K(A
′,c,β ) is the infimum of γ , hence,

γ̂s,K(A
′,c,β ) = max

τ∈Ps,x≥0

{

n

∑
i=1

τ1
i cixi −max

θ
< A1x,θ >: ‖θ‖∗ ≤ β ,‖x‖1 ≤ 1

}

.
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For any matrix Q = [q1, · · · ,qn] ∈ R(m+n)×n with AT
2 Q ≤ 0, ‖qi‖∗ ≤ β for all i,

and QT A1x = 0, we can get

γ̂s,K(A
′,c,β )

= max
τ∈Ps
x≥0

‖x‖1≤1

{

n

∑
i=1

τ1
i cixi −max

θ
< A1x,θ >: ‖θ‖∗ ≤ β

}

≤ max
τ∈Ps
x≥0

‖x‖1≤1

{

n

∑
i=1

τ1
i cixi−< A1x,qi >: ‖qi‖∗ ≤ β ,QT A1x = 0,AT

2 Q ≤ 0

}

= max
τ∈Ps
x≥0

‖x‖1≤1

{

n

∑
i=1

τ1
i (cixi −

m+n

∑
ℓ=1

n

∑
j=1

qℓ,iaℓ, jx j) : ‖qi‖∗≤β ,QT A1x = 0,AT
2 Q ≤ 0

}

= max
τ∈Ps
x≥0

‖x‖1≤1

{

τ1T (Cx−QT A1x) :‖qi‖∗ ≤ β ,QT A1x = 0,AT
2 Q ≤ 0

}

≤ max
τ∈Ps
x≥0

‖x‖1≤1

{

τ1T (C−QT A1)x : ‖qi‖∗ ≤ β ,AT
2 Q ≤ 0

}

,

where qi, i = 1, . . . ,n, is the i-th column of matrix Q, aℓ, ℓ = 1, . . . ,n, is the ℓ-th

column of matrix A1.

Similar to (26), we can solve the following problem

max
τ∈Ps
x≥0

{

τ1T (C−QT A1)x : ‖x‖1 ≤ 1,‖qi‖∗ ≤ β ,AT
2 Q ≤ 0

}

.

Moreover, it is easy to change the above upper bound of γ̂s,K(A
′,c,β ) to ηs,K(A1,C,β ),

which is defined as
min

Q
max

0< j≤n
‖(C−QT A1)e j‖s,K,1

s.t. ‖qi‖∗ ≤ β , 0 < i ≤ n,

AT
2 Q ≤ 0,

(27)

where qℓ is the ℓ-th column of matrix Q.

Obviously, problem (27) is a convex programming and is solvable. Similar to the

properties of γ̂s,K(A
′,c,β ), ηs,K(A1,C,β ) is a nondecreasing function of s, and is a

nonincreasing function of β . Thus we can get an upper bound on γ̂s,K(A
′,c,β ), by

calculating the least upper bound of gA1,C,s,K(Q) with respect to Q, i.e., Eq. (27).

In addition, according to the definition of ‖ ·‖s,K,1, given positive integers s and t,

we have ‖ · ‖st,K,1 ≤ t‖ · ‖s,K,1, and

ηs,K(A1,C,β )≤ sη1,K(A1,C,β ). (28)

So, the upper bound ηs,K(A1,C,β ) of γ̂s,K(A
′,c,β ) can be replaced by sη1,K(A

′,C,β ).
This property allows us to reduce the calculation of ηs,K(A1,C) to η1,K(A1,C), which

greatly reduces the amount of calculation.
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Let Q = {Q : ‖qi‖∗ ≤ β , i = 1, . . . ,n, AT
2 Q ≤ 0}. According to the definition of

ηs,K(A1,C,β ), we have

η1,K(A1,C,β ) = min
Q∈Q

max
0< j≤n

‖(C−QT A1)e j‖∞

= min
Q∈Q

max
0< j≤n

∥

∥

∥

∥

∥

∥

∥

∥

∥











|c1 − qT
1 a1|, |− qT

1 a2|, . . . , |− qT
1 an|

|− qT
2 a1|, |c2 − qT

2 a2|, . . . , |− qT
2 an|

. . .

|− qT
n a1|, |− qT

n a2|, . . . , |cn − qT
n an|











e j

∥

∥

∥

∥

∥

∥

∥

∥

∥

∞
= min

Q∈Q
max

0< j≤n
‖(C−AT

1 Q)e j‖∞

= min
Q∈Q

max
0< j≤n

∥

∥

∥

∥

∥

∥

∥

∥

∥











|c1 − aT
1 q1|, |− aT

1 q2|, . . . , |− aT
1 qn|

|− aT
2 q1|, |c2 − aT

2 q2|, . . . , |− a1qT
n |

. . .

|− aT
n q1|, |− aT

n q2|, . . . , |cn − aT
n qn|











e j

∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

= min
Q∈Q

max
0< j≤n

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥





















0

0
...

c j

...

0





















−





















aT
1 q j

aT
2 q j

...

aT
j q j

...

aT
n q j





















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∞
= min

Q∈Q
max

0< j≤n
‖C j −AT

1 q j‖∞,

which is equivalent to solve n convex optimization problems of dimension n:

η j = min
q j∈Q

‖C j −AT
1 q j‖∞. (29)

Obviously, here η1,K(A
′,c,β ) = max

0< j≤n
η j .

In Theorem 8, the sufficient condition for nonnegative partial s-goodness is γ̂s,K(A
′,

c)< 1
2

min
0<i≤n

ci. Note that, γ̂s,K(A
′,c) takes the value of γ̂s,K(A

′,c,β ) for a large enough

β . Similarly, ηs,K(A1,C) takes the value of ηs,K(A1,C,β ) for the above large enough

β .

Given A′, c and s, suppose γ̂s,K(A
′,c) < 1

2
min

0<i≤n
ci, such that for every pair of

vectors z1 ∈ Rn and z2 ∈ Rm+n, where z1 ∈ Rn has s nonzero entries, each is equal to

1, there exists a vector θ ∈ Rm+n such that

‖
(

AT
1 θ

)

− c◦ z1‖∞ ≤ γ̂s,K(A
′,c), and

(

AT
2 θ

)

i

{

= 0, i f z2
i 6= 0;

≤ 0, i f z2
i = 0.

Next, we need to show that under the assumptions the solution of θ is bounded, i.e.,

there exists β̄ such that ‖θ‖∗ < β̄ .

Proposition 2 Suppose {u : ‖u‖1 ≤ ρ ,u ∈ Rm+n} ⊆ R(A1), where R(A1) = {A1d :

‖d‖1 ≤ 1,d ∈Rn}. For every s≤ n, if β ≥ β̄ = 1
ρ ( max

0<i≤n
ci+

1
2

min
0<i≤n

ci) and γ̂s,K(A
′,c)<

1
2

min
0<i≤n

ci, then γ̂s,K(A
′,c) = γ̂s,K(A

′,c,β ).
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Proof According to the definition of γ̂s,K(A
′,c,β ), we have ‖AT

1 θ‖∞ < max
0<i≤n

ci +

1
2

min
0<i≤n

ci. Hence,

max
0<i≤n

ci +
1
2

min
0<i≤n

ci > ‖AT
1 θ‖∞

= max
d

{dT AT
1 θ : ‖d‖1 ≤ 1,d ∈ Rn}

= max
u

{uT θ : u = A1d,‖d‖1 ≤ 1,d ∈ Rn}

≥ max
u

{uT θ : ‖u‖1 ≤ ρ}

= ρ‖θ‖∗.

Then

‖θ‖∗ <
1

ρ
( max

0<i≤n
ci +

1

2
min

0<i≤n
ci),

and we define

β̄ =
1

ρ
(max

0<i≤n
ci +

1

2
min

0<i≤n
ci).

The proposition is proven. �

According to Proposition 2, if we could find a lower bound β̄ of β such that

γ̂s,K(A
′,c, β̄ )< 1

2
min

0<i≤n
ci, then γ̂s,K(A

′,c,β )≤ γ̂s,K(A
′,c, β̄ )< 1

2
min

0<i≤n
ci for all β ≥ β̄ ,

since γ̂s,K(A
′,c,β ) is a nonincreasing function of β . The same applies to ηs,K(A1,C,β ).

5 Heuristic algorithm and examples

In this section, we give three examples to illustrate the proposed non-negative partial

s-goodness condition for the equivalence between the integer programming prob-

lem (1) and the weighted linear programming problem (9). To this aim, according to

Theorem 8, first we should verify that (A′,c) is nonnegative partially s-good. Then,

according to Definition 1, the partially weighted linear programming problem (9) has

the unique optimal solution. Further, according to Theorem 5 or Theorem 6, the opti-

mal solution of problem (9) is also the optimal solution of the l0-norm minimization

problem (8). Meanwhile, according to Theorem 3, it is also an optimal solution of

problem (1).

The main idea of verifying the nonnegative partial s-goodness of (A′,c) is as fol-

lows. Given the β̄ in Proposition 2, for β = β̄ and an arbitrary s, combining Theorem

8 and the definition of ηs,K(A1,C,β ), it is obvious that ηs,K(A1,C, β̄ ) <
1
2

min
0<i≤n

ci is

a sufficient condition for (A′,c) to be nonnegative partially s-good.

Let s∗(A′,c) be a lower bound on the largest s such that ηs,K(A1,C, β̄ )<
1
2

min
0<i≤n

ci,

which will be obtained from Eqs. (28) and (29). In other words, given s∗(A′,c) and

β ≥ β̄ , the value of ηs∗(A′,c),K(A1,C,β ) must be less than 1
2

min
0<i≤n

ci.

According to Theorems 5 and 6, the partially weighted linear programming prob-

lem (9) must have a unique optimal solution. However in some cases, the optimal
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solution of problem (9) may not be unique, and we need to adjust c, such that prob-

lem (9) has a unique optimal solution.

To better understand the role of the weight c, let us divide a non-negative optimal

solution (x∗,y∗)T with ‖x∗‖0 ≤ s of problem (9) into the following three cases:

Case 1 : problem (9) has the unique optimal solution (x∗,y∗)T with ‖x∗‖0 ≤ s;

Case 2 : problem (9) has multiple optimal solutions (x∗,y∗)T with ‖x∗‖0 ≤ s, and

the vectors x∗ have the same sparsity;

Case 3 : problem (9) has multiple optimal solutions (x∗,y∗)T with ‖x∗‖0 ≤ s, and

the vectors x∗ have different sparsity.

Clearly, by Definition 1, it is natural that (A′,c) is nonnegative partially s-good in

Case 1. Example 1 in this section will illustrate this case.

Case 2 shows that there are multiple optimal solutions of problems (8) and (9).

At this point, we may adjust c to a suitable value, such that one of the optimal solu-

tions of problem (9) is a unique optimal solution. Then we go to verify that (A′,c) is

nonnegative partially s-good. Example 2 in this section will illustrate this case.

Note that in Case 2, all optimal solutions of problem (9) are optimal solutions of

problem (8).

Case 3 is a very special case, in which problem (9) has multiple optimal solutions

(x∗,y∗)T , and the vectors x∗ have different sparsity. Firstly, suppose that ηs,K(A1,C, β̄ )
< 1

2
min

0<i≤n
ci, we can obtain s∗(A′,c). Next, we choose one of the optimal solutions of

problem (9), which satisfies ‖x∗‖0 ≤ s∗(A′,c). If such solution cannot be found, then

we should find another s∗(A′,c); otherwise, we may adjust c to a suitable value, such

that this solution is unique, and then we continue to verify that (A′,c) is nonnegative

partially s-good. Example 3 in this section will illustrate this case.

The above idea of verifying the nonnegative partial s-goodness of (A′,c) can be

organized in the following steps. Initially, let ci = 1, i = 1,2, . . . ,n and let β = β̄ =
1
ρ (max

0<i≤n
ci +

1
2

min
0<i≤n

ci) according to Proposition 2.

Step 1: According to Eq. (29), we calculate the value of η1,K(A1,C, β̄ ). If η1,K(A1,

C, β̄ )< 1
2

min
0<i≤n

ci, then go to Step 2; otherwise (this will happen in Cases 2 or 3), we

should use Step 5 to update c, such that η1,K(A1,C, β̄ )<
1
2

min
0<i≤n

ci, and go to Step 2.

Step 2: Since s is not known at present, we suppose ηs,K(A1,C, β̄ ) <
1
2

min
0<i≤n

ci.

Then according to (28),

s∗(A′,c) = ⌊

1
2

min
0<i≤n

ci

η1,K(A1,C, β̄ )
⌋.

Step 3: Consider an optimal solution (x∗,y∗) of problem (9). If the solution of

problem (9) is unique and ‖x∗‖0 = s, then we compare s with s∗(A′,c). If s = s∗(A′,c),
then we verify whether s∗(A′,c)η1,K(A1,C, β̄ ) < 1

2
min

0<i≤n
ci. When it holds, go to

Step 4.

Otherwise, such as Case 3, not all solutions satisfy sη1,K(A1,C, β̄ ) <
1
2

min
0<i≤n

ci.

So we choose a solution with ‖x∗‖0 = s∗(A′,c), and use Step 5 to update c, such

that this optimal solution of problem (9) is the unique optimal solution. Next, we
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verify that whether s∗(A′,c)η1,K(A1,C, β̄ ) <
1
2

min
0<i≤n

ci. When it holds, go to Step 4;

otherwise, update c again.

Step 4: According Theorem 8, it implies that (A′,c) is nonnegative partially s-

good. Stop the algorithm.

Step 5: Update c as follows: for the maximum component x∗i in Step 3, select

ci such that 0 < ci ≤ β̄ . For the minimum component x∗j in Step 3, select c j from

(β̄ , 3
2
β̄ ). The other components in c are randomly selected from [ci,c j], i.e., ci and c j

are the minimum and maximum components of c respectively. Let β̄ = 1
ρ ( max

0<i≤n
ci +

1
2

min
0<i≤n

ci).

Below are three examples we provide. Example 1 does not comply with TUM,

Example 2 does not comply with T DI, and Example 3 is neither TUM nor TDI

compliant.

Example 1 Let

A =





1 2 0

0 1 1

1 0 2



 , b =





1

1

1



 .

For c = 1, given β̄ = 0.563, according to Eq. (29), we can calculate the value of

η1,K(A1,C, β̄ ) is 0.2188. Suppose ηs,K(A1,C, β̄ )<
1
2

min
0<i≤n

ci, then according to (28),

s∗(A′,c) = ⌊ 0.5
0.2188

⌋= 2. For c = 1, problem (9) has an optimal solution
(

x1,y1
)T

=
((

0, 1
2
, 1

2

)

,
(

0,0,0,1, 1
2
, 1

2

))T
and ‖x1‖0 ≤ 2. According to (28), ηs,K(A1,C, β̄ )≤ 2η1,K

(A1,C, β̄ ) = 0.4376< 1
2
. Then, by Theorem 8, (A′,c) is nonnegative partially s-good.

Hence, according to Definition 1, (x1,y1)T is the unique optimal solution of problem

(9). Next, according to Theorem 6, (x1,y1)T is an optimal solution of problem (8). So

by Theorem 3, (0,1,1)T is an optimal solution of problems (1) and (4) respectively.

It must be remarked that, sometimes problem (9) has multiple nonnegative opti-

mal solutions when c = 1, and the vectors x have the same sparsity. This situation is

contradict to Definition 1. So the coefficient c must be adjusted, such that problem

(9) has a unique optimal solution. The following Example 2 shows that this can be

achieved.

Example 2 Let

A =





1 0 0

1 1 0

0 1 1



 , b =





0
3
2
1
2



 .

For c = 1, given β̄ = 0.5, according to Eq. (29), we can calculate the value of

η1,K(A1,C, β̄ ) is 0.5. For c = 1, problem (9) has two optimal solutions, which are
(

x1,y1
)T

=
((

1, 1
2
,0
)

,
(

1,0,0,0, 1
2
,1
))T

and
(

x2,y2
)T

=
((

3
4
, 3

4
,0
)

,
(

3
4
,0, 1

4
, 1

4
, 1

4
,1
))T

,

cT x1 = cT x2, and both vectors x1 and x2 are 2-sparse.
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Next, let c = (0.5,0.7,0.8). Given β̄ = 0.7, we have η1,K(A1,C, β̄ ) = 0.1. Sup-

pose ηs,K(A1,C, β̄ ) <
1
2

min
0<i≤n

ci, then according to (28), s∗(A′,c) = ⌊ 0.25
0.125

⌋ = 2. For

c=(0.5,0.7,0.8), problem (9) has an optimal solution
(

x1,y1
)T

=
((

1, 1
2
,0
)

,(1,0,0,

0, 1
2
,1
))T

, and ‖x∗‖0 ≤ 2. According to (28), ηs,K(A1,C, β̄ )≤ 2η1,K(A1,C) = 0.2 <
1
2

min
0<i≤n

ci = 0.25. Then, by Theorem 8, (A′,c) is nonnegative partially s-good. Hence,

according to Definition 1, (x1,y1)T is the unique optimal solution of problem (9).

Furthermore, according to Theorem 5, (x1,y1)T is an optimal solution of problem

(8). Since ‖x1‖0 = ‖x2‖0, it is natural that (x2,y2)T is also an optimal solution to

problem (8). So by Theorem 3, (1,1,0) is an optimal solution of problems (1) and (4)

respectively.

Different from Example 2, another situation to be aware of is that, problem (9)

has multiple nonnegative optimal solutions, and the vectors x have different sparsities,

when c = 1. This situation is also contradict to Definition 1. So the coefficient c must

be adjusted too, such that problem (9) has a unique optimal solution. The following

Example 3 shows that this can be achieved.

Example 3 Let

A =





1 2 0

0 1 1

2 0 1



 , b =





0
1
2
1
3



 .

For c = 1, given β̄ = 0.375, according to Eq. (29), we can calculate the value

of η1,K(A1,C, β̄ ) is 0.2917. Suppose ηs,K(A1,C, β̄ ) <
1
2

min
0<i≤n

ci, then according to

(28), s∗(A′,c) = ⌊ 0.5
0.2917

⌋ = 1. For c = 1, problem (9) has two optimal solutions,

they are:
(

x1,y1
)T

=
((

0, 1
6
, 1

3

)

,
(

1
3
,0,0,1, 5

6
, 2

3

))T
with ‖x1‖0 = 2, and

(

x2,y2
)T

=
((

0,0, 1
2

)

,(0,0, 1
6
,1,1, 1

2
)
)T

with ‖x2‖0 = 1, cT x1 = cT x2. Clearly, ‖x1‖0 > s∗(A′,c),

‖x2‖0 = s∗(A′,c).
Next, let c = (0.5,0.35,0.3). Given β̄ = 0.7, we have η1,K(A1,C, β̄ ) = 0.1. Sup-

pose ηs,K(A1,C, β̄ )<
1
2

min
0<i≤n

ci, then according to (28), s∗(A′,c)= ⌊ 0.15
0.1

⌋= 1. For c=

(0.5,0.7,0.8), problem (9) has an optimal solution
(

x2,y2
)T

=
((

0,0, 1
2

)

,
(

0,0, 1
6
,

1,1, 1
2

))T
with ‖x2‖0 = 1. According to (28), ηs,K(A1,C, β̄ )≤η1,K(A1,C, β̄ )= 0.1<

1
2

min
0<i≤n

ci = 0.15. Hence, by Theorem 8, (A′,c) is nonnegative partially s-good, and

according to Definition 1, (x2,y2)T is the unique optimal solution of problem (9). Fur-

thermore, according to Theorem 6, (x2,y2)T is an optimal solution of problem (8). So

by Theorem 3, (0,0,1)T is an optimal solution of problems (1) and (4) respectively.

6 Conclusion

In this paper, we studied the equivalence of a 0-1 linear program to a weighted linear

programming problem. Firstly, we prove the equivalence between the integer pro-
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gramming problem and a sparse minimization problem. Next, we define the nonneg-

ative partial s-goodness of the constraint matrix and the weight vector in the objec-

tive function of the weighted linear programming problem. Utilizing two quantities

γs,K(·) and γ̂s,K(·) of the nonnegative partial s-goodness, we propose a necessary and

a sufficient condition for the constraint matrix and weighted vector to be nonnegative

partial s-good. Since it is difficult to calculate the two quantities, we further provide

an efficiently computable upper bound of γ̂s,K(A
′,c,β ), such that the above sufficient

condition is verifiable. It is worthy of mentioning that the objective coefficient c of

the weighted linear programming problem is not fixed. When the weighted linear

programming problem has multiple optimal solutions, we may adjust c so that the

weighted linear programming problem has only a unique optimal solution. At the

end, we provide three examples to illustrate the theory in this article.
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