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Abstract. Given a graph G with a terminal set R ⊆ V (G), the Steiner tree problem (STREE) asks
for a set S ⊆ V (G) \ R such that the graph induced on S ∪ R is connected. A split graph is a graph
which can be partitioned into a clique and an independent set. It is known that STREE is NP-complete
on split graphs [1]. To strengthen this result, we introduce convex ordering on one of the partitions
(clique or independent set), and prove that STREE is polynomial-time solvable for tree-convex split
graphs with convexity on clique (K), whereas STREE is NP-complete on tree-convex split graphs
with convexity on independent set (I). We further strengthen our NP-complete result by establishing
a dichotomy which says that for unary-tree-convex split graphs (path-convex split graphs), STREE
is polynomial-time solvable, and NP-complete for binary-tree-convex split graphs (comb-convex split
graphs). We also show that STREE is polynomial-time solvable for triad-convex split graphs with
convexity on I, and circular-convex split graphs. Further, we show that STREE can be used as a
framework for the dominating set problem (DS) on split graphs, and hence the classical complexity
(P vs NPC) of STREE and DS is the same for all these subclasses of split graphs. Furthermore, it is
important to highlight that in [2], it is incorrectly claimed that the problem of finding a minimum
dominating set on split graphs cannot be approximated within (1− ε) ln |V (G)| in polynomial-time for
any ε > 0 unless NP ⊆ DTIME nO(log logn). When the input is restricted to split graphs, we show that
the minimum dominating set problem has 2 − 1

|I| -approximation algorithm that runs in polynomial
time. Finally, from the parameterized perspective with solution size being the parameter, we show that
the Steiner tree problem on split graphs is W [2]-hard, whereas when the parameter is treewidth and
the solution size, we show that the problem is fixed-parameter tractable, and if the parameter is the
solution size and the maximum degree of I (d), then we show that the Steiner tree problem on split
graphs has a kernel of size at most (2d− 1)kd−1 + k, k = |S|.
Keywords: Steiner tree, Domination, Split graphs, Tree-convex, Circular-convex split graphs, Approxi-
mation algorithms, Parameterized complexity.

1 Introduction

The classical complexity of the Steiner tree problem (STREE), the dominating set problem (DS), and their
variants for different classes of graphs have been well studied. Given a graph G with a terminal set R ⊆ V (G),
STREE asks for a set S ⊆ V (G) \R such that the graph induced on S ∪R is connected. In the literature,
the set S is referred to as the Steiner set. The objective is to minimize the number of vertices in S. STREE is
NP-complete for general graphs, chordal bipartite graphs [3], and split graphs [1] whose vertex set can be
partitioned into a clique and an independent set. It is polynomial-time solvable in strongly chordal graphs [1],
series-parallel graphs [4], outerplanar graphs [5], interval graphs [6] and for graphs with fixed treewidth [7].
The only known subclass of split graphs where STREE is polynomial-time solvable is the class of threshold
graphs. Interestingly the results of [8] strengthen the result of [1] by providing a dichotomy result which says
that STREE is polynomial-time solvable in K1,4-free split graphs, whereas in K1,5-free split graphs, STREE
is NP-complete. In this paper, we focus on new subclasses of split graphs and study the tractability versus
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intractability status (P vs NPC) of STREE in those subclasses of split graphs.
It is important to highlight that many problems that are NP-complete on bipartite graphs become polynomial-
time solvable when a linear ordering is imposed on one of the partitions. Such graphs are known as convex
bipartite graphs in the literature [9–11]. For example, DS is NP-complete on bipartite graphs, whereas
it is polynomial-time solvable in convex bipartite graphs [9]. A bipartite graph G = (X,Y ) is said to be
tree-convex if there is a tree (imaginary tree) on X such that the neighborhood of each y in Y is a subtree in X.
Apart from linear ordering (path-convex ordering), tree-convex ordering, comb-convex ordering, star-convex
ordering, triad-convex ordering, and circular-convex ordering on bipartite graphs have been considered in
the literature [12–14]. Further, the convex ordering on bipartite graphs yielded many interesting algorithmic
results for STREE, DS, Hamiltonicity, and its variants [6, 11,12]. Similarly, the feedback vertex set problem
(FVS) is NP-complete on star-convex bipartite graphs, and comb-convex bipartite graphs, whereas it is
polynomial-time solvable on convex bipartite graphs [11]. Thus, the convex ordering on bipartite graphs
reinforces the borderline separating P-versus-NPC instances of many classical combinatorial problems.
Imposing the property convexity on bipartite graphs is a promising direction for further research because many
problems that are NP-complete on bipartite graphs become polynomial-time solvable on convex bipartite
graphs. Further, some of the NP-hard reductions restricted to bipartite graphs can be reinforced further by
introducing convex properties such as star, comb, tree, etc., For example, Hamiltonian cycle and Hamiltonian
path are NP-hard on star-convex bipartite graphs [11]. While convexity in bipartite graphs seems to be a
promising direction in strengthening the existing classical hardness result or in discovering a polynomial-time
algorithm, we wish to investigate this line of research for STREE and DS problems restricted to split graphs.
Since the tractability versus intractability status of many combinatorial problems on bipartite graphs (graphs
with two partitions satisfying some structural properties) can be investigated with the help of convex ordering
on bipartite graphs, it is natural to explore this line of study on graphs having two partitions satisfying
some structural properties. A natural choice after bipartite graphs is the class of split graphs. We wish to
extend this line of study to split graphs by considering convex ordering with respect to the clique part and
independent set part. To the best of our knowledge, this paper makes the first attempt in introducing convex
properties on split graphs for STREE and DS. We believe that our results shall strengthen the result of [1],
and also we discover a dichotomy similar to [8]. As part of this paper, we consider the following convex
properties; path-convex, star-convex, comb-convex, tree-convex, and circular-convex split graphs. Henceforth,
we refer to split graphs satisfying some convex properties (path, star, comb, triad, tree, and circular) as
convex split graphs.
Recently in [6], a framework for STREE and DS was developed, and as per [8], the classical complexity of
STREE is the same as the classical complexity of DS for split graphs. We attempt a similar framework for
STREE and DS, and its variants are restricted to convex split graphs.
For tree-convex and its subclasses, and circular-convex split graphs, the computational complexity of the
following graph problems is studied in this paper.

1. The Steiner tree problem (STREE).
Instance: A graph G, a terminal set R ⊆ V (G), and a positive integer k.
Question: Does there exist a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

2. The Dominating set problem (DS).
Instance: A graph G, and a positive integer k.
Question: Does G admit a dominating set of size at most k ?

3. The Connected Dominating set problem (CDS).
Instance: A graph G, and a positive integer k.
Question: Does G admit a connected dominating set of size at most k ?

4. The Total Dominating set problem (TDS).
Instance: A graph G, and a positive integer k.
Question: Does G admit a total dominating set of size at most k ?

Figure 1 illustrates the hierarchical relationship on various convex split graphs. An interesting theoretical
question is
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Fig. 1: The Hierarchical relationship among subclasses of convex split graphs

-What is the boundary between the tractability and intractability of STREE in split graphs when convex
ordering is imposed on one of the partitions ?

In this paper, we answer this question by imposing a convex ordering on clique or independent set. In
particular, we show that STREE is polynomial-time solvable for tree-convex split graphs with convexity on K,
and is NP-complete for star-convex and comb-convex split graphs, and thus for tree-convex split graphs with
convexity on I. Further, we investigate path, triad, and circular-convex properties, and show that STREE is
polynomial-time solvable for triad, path-convex split graphs with convexity on I, circular-convex split graphs
with convexity on I, and circular-convex split graphs with convexity on K. We then ask

-For which convex property on split graphs with convexity on K, STREE is intractable?

In this paper, we show that if the convex property is chordality, then STREE is NP-complete for chordal-
convex split graphs with convexity on K.

To deal with computationally intractable problems, the practical approach is to use approximation al-
gorithms or parameterized algorithms. Algorithms that output near-optimal solutions in polynomial time are
precisely the class of approximation algorithms. It is known [15], that DS has an approximation algorithm
with approximation ratio (1 + lnn) on general graphs. On the negative side, DS does not admit (1− ε) lnn on
general graphs, for any ε > 0 unless NP ⊆ DTIME (nO(log logn)) [2]. In this paper, restricted to split graphs,
we prove that DS exhibits 2− 1

|I| -approximation algorithm.

For decision problems with input size n, and a parameter k (which can be a tuple of parameters), the goal
of parameterized algorithms is to obtain an algorithm with runtime f(k)nO(1), where f is a function of k
and independent of n. Problems having such algorithms are Fixed-Parameter Tractable (FPT). There is a
hierarchy of intractable parameterized problem classes above FPT [16], they are:

FPT ⊆ M[1] ⊆W[1] ⊆ M[2] ⊆W[2] ⊆ . . . ⊆W[P] ⊆ XP.

In [17] it is shown that STREE in general graphs is in FPT if the parameter is the size of the terminal set. It
is known [18] that STREE in general graphs with parameter |S| (solution size) is W[2]-hard. We strengthen
the result of [18] by proving that the Steiner tree problem on split graphs is still W[2]-hard with the parameter
being the solution size. Further, the parameterized Steiner tree problem is in FPT, when parameters are
(i) the solution size and the treewidth,
(ii) the solution size and the maximum degree of I.
We reiterate that our FPT results for STREE are true for DS as well, restricted to split graphs.

This paper is structured as follows: In Section 2, we analyze the classical complexity of STREE on convex
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split graphs and present dichotomy results for convex split graphs with convexity on I as well as for convex
split graphs with convexity on K. We also identify polynomial-time solvable instances and FPT instances
of STREE on star-convex split graphs with convexity on I which we present in Section 2.1.1, and we also
prove that the Steiner tree problem with the parameter being solution size and backbone path length on
comb-convex split graphs is in XP in Section 2.1.2. We then present results on the dominating set problem
and its variants on convex split graphs in Section 3. In Section 4, we present parameterized hardness of
STREE on split graphs, and we also identified parameters for which parameterized version of STREE on split
graphs becomes fixed-parameter tractable. Further, we present 2− 1

I -approximation algorithm for domination
on split graphs in Section 5.

Graph preliminaries: In this paper, we consider connected, undirected, unweighted, and simple graphs.
For a graph G, V (G) denotes the vertex set, and E(G) represents the edge set. For a set S ⊆ V (G), G[S]
denotes the subgraph of G induced on the vertex set S. The open neighborhood of a vertex v in G is
NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood of v in G is NG[v] = {v} ∪NG(v). The degree
of vertex v in G is dG(v) = |NG(v)|. A split graph G is a graph in which V (G) is partitioned into two
sets; a clique K and an independent set I. In a split graph, for each vertex u in K, N I

G(u) = NG(u) ∩ I,
dIG(u) = |N I

G(u)|, and for each vertex v in I, NK
G (v) = NG(v)∩K, dKG (v) = |NK

G (v)|. For each vertex u in K,
N I

G[u] = (NG(u) ∩ I) ∪ {u}, and for each vertex v in I, NK
G [v] = (NG(v) ∩K) ∪ {v}. For a split graph G,

∆I
G = max{dIG(u)}, u ∈ K and ∆K

G = max{dKG (v)}, v ∈ I. For a set S, G− S denotes the graph induced on
V (G) \ S. For A = {x1, . . . , xp}, max(x1, . . . , xp) is xp; the vertex having largest index.
A tree is a connected acyclic graph. A path is a tree T with V (T ) = {v1, . . . , vn}, n ≥ 1 and E(T ) =
{{vi, vi+1, 1 ≤ i ≤ n − 1}}. A cycle is a graph C with V (C) = {v1, . . . , vn}, n ≥ 3 and E(C) =
{{vi, vi+1, 1 ≤ i ≤ n − 1}} ∪ {{vn, v1}}. We consider three special kinds of trees, namely, star, comb,
and triad. A star is a tree T with V (T ) = {v1, . . . , vn}, n ≥ 2 and E(T ) = {{v1, vi} | 2 ≤ i ≤ n}. The
root of T is v1 and v2, . . . , vn are the pendant vertices in T . A comb is a tree T with V (T ) = {v1, . . . , v2n}
and E(T ) = {{vi, vn+i} | 1 ≤ i ≤ n} ∪ {{vi, vi+1} | 1 ≤ i < n}. The path on {v1, v2, . . . , vn}, n ≥ 1 is the
backbone of the comb, and {vn+1, vn+2, . . . , v2n}, n ≥ 1 are the teeth of the comb. A triad is a tree T with
V (T ) = {u, v1, . . . , vp, w1, . . . , wq, x1, . . . , xr}, p ≥ 2, q ≥ 2, r ≥ 2 and E(T ) = {{u, v1}, {u,w1}, {u, x1}} ∪
∪{{vi, vi+1} | 1 ≤ i ≤ p− 1} ∪ {{wi, wi+1} | 1 ≤ i ≤ q − 1} ∪ {{xi, xi+1} | 1 ≤ i ≤ r − 1}.

TriadStar Comb

v1

v2 v3 v4 v5 v6

v1 v2 v3 v4

v5 v6 v7 v8

u

v1

v2

v3

v4

x1

x2

x3

w1

w2

Fig. 2: An example; Star, Comb, and Triad

Definition 1. A split graph G is called π-convex with convexity on K if there is an associated structure π
on K such that for each v ∈ I, NG(v) induces a connected subgraph in π.

Definition 2. A split graph G is called π-convex with convexity on I if there is an associated structure π on
I such that for each v ∈ K, N I

G(v) induces a connected subgraph in π.

In general π can be any arbitrary structure. In this paper, We consider the following structures for π; ”tree”,
”star”, ”comb”, ”path”, ”triad”, and ”cycle”. Note that the structure π in G is an imaginary structure.
In the rest of the sections, we solve STREE for the case R = I and it is sufficient to look at this case and all
other cases can be solved using R = I as a black box. In Section 6, we present a transformation using which
we can solve other cases.
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2 The classical complexity of STREE

In Section 2.1, we analyze the classical complexity of STREE on split graphs with convexity on I, and in
Section 2.2, we analyze the classical complexity of STREE on split graphs with convexity on K.

2.1 STREE in split graphs with convexity on I

When we refer to convex split graphs in this section, we refer to convex split graphs with convexity on I. For
STREE on split graphs with convexity on I, we establish hardness results for star-convex and comb-convex
split graphs, and polynomial-time algorithms for path-convex, triad-convex, and circular-convex split graphs.

2.1.1 Star-convex split graphs

In this section, we establish a classical hardness of STREE on star-convex split graphs by presenting a
polynomial-time reduction from the Exact-3-Cover problem to STREE on star-convex split graphs.
The decision version of Exact-3-Cover problem (X3C) is defined below:

X3C (X, C)
Instance: A finite set X = {x1, . . . , x3q} and a collection C = {C1, C2, . . . , Cm} of 3-element subsets of
X.
Question: Is there a subcollection C′ ⊆ C such that for every x ∈ X, x belongs to exactly one member
of C′ (that is, C′ partitions X) ?

The decision version of Steiner tree problem (STREE) is defined below:

STREE (G,R, k)
Instance: A graph G, a terminal set R ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

Theorem 1. For star-convex split graphs, STREE is NP-complete.

Proof. STREE is in NP: Given a star-convex split graph G and a certificate S ⊆ V (G), we show that
there exists a deterministic polynomial-time algorithm for verifying the validity of S. Note that the standard
Breadth First Search (BFS) algorithm can be used to check whether G[S ∪ R] is connected. It is easy to
check whether |S| ≤ k. The certificate verification can be done in O(|V (G)|+ |E(G)|). Thus, we conclude
that STREE is in NP.
STREE is NP-Hard: It is known [19] that X3C is NP-complete. X3C can be reduced in polynomial time
to STREE on star-convex split graphs using the following reduction. We map an instance (X, C) of X3C
to the corresponding instance (G,R, k) of STREE as follows: V (G) = V1 ∪ V2, V1 = {ci | 1 ≤ i ≤ m},
V2 = {x1, x2, . . . , x3q, x3q+1}, E(G) = {{ci, xj} | xj ∈ Ci, 1 ≤ j ≤ 3q, 1 ≤ i ≤ m} ∪ {{x3q+1, ci} | 1 ≤ i ≤
m} ∪ {{ci, cj} | 1 ≤ i ≤ j ≤ m}. Let R = V2, k = q. Note that G is a split graph with V1 being a clique and
V2 being an independent set. Now we show that G is a star-convex split graph by defining an imaginary star
T on V2:
Let V (T ) = V2 and E(T ) = {{x3q+1, xi} | 1 ≤ i ≤ 3q}. We see that x3q+1 is the root of the star T .
An illustration for X3C with X = {x1, x2, x3, x4, x5, x6} and C = {C1 = {x1, x2, x3}, C2 = {x2, x3, x4}, C3 =
{x1, x2, x5}, C4 = {x2, x5, x6}, C5 = {x1, x5, x6}}, and the corresponding graph G with R = I, k = 2 is shown
in Figure 3. Note that the imaginary star on I with the root x7 is also shown in Figure 3. For this instance
the solution to X3C is C′ = {C2, C5}, and the corresponding solution for graph G is S = {c2, c5}.
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x1 x2 x6
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KI

Clique on K(K5)

Imaginary star on I

Fig. 3: Reduction: An instance of X3C to STREE on star-convex split graphs

Claim 1.1. G is a star-convex split graph.

Proof. For each ci ∈ V1, N I
G(ci) ⊆ V2. By construction x3q+1 is adjacent to all of V1. Therefore, for each

ci ∈ K, N I
G(ci) is a subtree in T . Hence G is a star-convex split graph. ut

Claim 1.2. Exact-3-Cover (X, C) if and only if STREE (G,R = V2, k = q)

Proof. Only if: If there exists C′ ⊆ C which partitions X, then the set of vertices S = {ci ∈ V1 | Ci ∈ C′},
where ci is the vertex corresponding to Ci, forms a Steiner set with R = V2.
If: Assume that there exists a Steiner tree T in G for R = V2. Let S ⊆ V1 be the Steiner set of T , |S| = q.
We now construct the corresponding solution to X3C, C′ = {Ci ∈ C | ci ∈ S}. Since |S| = q, we have |C′| = q.
Further, S is the Steiner set for the terminal set R = {x1, . . . , x3q, x3q+1}. Therefore, for any ci ∈ S, we have
|N I

G(ci)\{x3q+1}| = 3. Since |S| = q and |I\{x3q+1}| = 3q, for all ci, cj ∈ S, i 6= j, N I
G(ci)∩N I

G(cj) = {x3q+1}.
Hence for all {Ci, Cj} ⊆ C ′, we see that Ci ∩Cj 6= ∅. Therefore, C′ is the corresponding solution to X3C. ut

Thus we conclude STREE is NP-Hard on the star-convex split graph. Therefore, STREE is NP-complete on
star-convex split graphs. ut

Corollary 1. For tree-convex split graphs, STREE is NP-complete.

Proof. Since star-convex split graphs are a subclass of tree-convex split graphs, from Theorem 1, this result
follows. ut

We next define the parameterized version of the Steiner tree problem and prove that Theorem 1 is indeed a
parameter preserving reduction which we establish in Theorem 2. Further, the following result strengthens
the result of [18].
The parameterized version of Steiner tree problem (PSTREE) is defined below:

PSTREE (G,R, k)
Instance: A star-convex split graph G, a terminal set R ⊆ V (G).
Parameter: A positive integer k.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

Theorem 2. For star-convex split graphs, STREE is W[1]-hard with parameter |S|.

Proof. It is known [20] that the parameterized Exact Cover problem (generalization of X3C) with parameter
|C′| is W[1]-hard. Note that the reduction presented in Theorem 1 maps (X, C, q) to (G,R, k = q). From
Claim 1.2 of Theorem 1, we can observe that the reduction is a solution preserving reduction. Hence the
reduction is a deterministic polynomial-time parameterized reduction. Therefore, PSTREE on star-convex
split graphs is W[1]-hard. ut
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Since the Steiner tree problem for R = I on star-convex split graphs is unlikely to have a polynomial-time
algorithm, we shall explore the following two subclasses of star-convex split graphs: (i) star-convex split
graphs with bounded degree d such that for each y ∈ I, dG(y) ≤ d, and (ii) star-convex split graph with
imaginary star T on I with l pendent vertices. For (i), we present a polynomial-time algorithm, and for (ii),
we present an FPT algorithm. Let T be the imaginary star on I. In a graph G, the vertices a, b ∈ V (G) are
called twins, if NG[a] = NG[b]. Observe that twins in a split graph can occur only in K. For (i) and (ii), we
consider graphs that do not have twins.
We shall now present a polynomial-time algorithm for star-convex split graphs with bounded degree d such
that for each y ∈ I, dG(y) ≤ d.

Theorem 3. Let G be a star-convex split graph with bounded degree d such that for each y ∈ I, dG(y) ≤ d.
A minimum Steiner tree S can be found in polynomial time on G for R = I.

Proof. Let the root of T be z. By the structure of star-convex split graphs, we know that any v ∈ K is either
adjacent to z or it is adjacent to exactly one vertex in T . We consider the following two cases to find a
minimum Steiner set of G for R = I.
Case 1: There exists y in (T − {z}) such that NG(y) ∩NG(z) = ∅.
Let R1 = {r | r ∈ (I \ {z}) such that NG(r) ∩NG(z) = ∅}. For each r ∈ R1, we include the neighbor of r in
S1, say v. The set S1 can be found in linear time.
Case 2: There exists y in (T − {z}) such that NG(y) ∩NG(z) 6= ∅.
Let R2 = {s | s ∈ (I \ {z}) such that NG(s) ∩ NG(z) 6= ∅}. Since |NG(z)| ≤ d, we find a minimum sized
subset S2 in NG(z) such that for each s ∈ R2, NG(s)∩R2 6= ∅. Since d is a constant, the set S2 can be found
in linear time.
If R1 6= ∅, R2 6= ∅, then the S of G for R = I is S1 ∪ S2. If S2 = ∅, then the Steiner set S of G for R = I is
S = S1 ∪ {v}, where v ∈ NG(z). If S1 = ∅, then the Steiner set S of G for R = I is S = S2. Observe that for
each a ∈ I, NG(a) ∩ S 6= ∅. It is clear that S is a Steiner set of G for R = I.
For each vertex r ∈ R1, |NG(r)∩ S| = 1, and for each vertex s ∈ R2, |NG(s)∩ S| = 1. Note that R1 ∩R2 = ∅
and R1 ∪R2 = I. Therefore, S is a minimum Steiner set of G for R = I. ut

Further, we analyze the complexity of STREE for R = I on star-convex split graphs with the number of
pendent vertices in the imaginary star is bounded, say l (degree of root vertex in imaginary star T ). The
parameterized version of the Steiner tree problem (PSTREE1) is defined below:

PSTREE1 (G,R, k)
Instance: A star-convex split graph G with imaginary star T on I with l pendent vertices, a terminal
set R = I.
Parameter: A positive integers l and k.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

Theorem 4. Let G be an instance of PSTREE1. Then G has a kernel of size 2l − 1.

Proof. Let z be the root of the imaginary star T . Since |V (T )| = l, it is clear that S ⊆ (NG(V (T ) \ {z})).
We preprocess the graph G and G′ is obtained as follows; Let Y = {y | y ∈ I, |NG(y)| = 1}. We obtain the
graph G′ = G−NG[Y ] with k = k − |Y |. Let the imaginary structure in I of G′ be T ′. The cardinality of
(NG′(V (T ′) \ {z})) in G′ is at most 2l − 1. Thus S′ ⊆ NG′(V (T ) \ {z}), and we obtain a kernel of size 2l − 1
for PSTREE1. From the kernel of size 2l − 1, we obtain the Steiner set S′ of G′ by finding all possible subsets
of size at most k. Thus the Steiner set S of G for R = I is obtained in time O(2lkn2). ut

Highlights:
It turns out that STREE on tree-convex split graphs is NP-complete. It is natural to ask for complexity when
the imaginary tree has a special structure. For example, binary-tree, ternary tree, and so on. Interestingly,
a comb is a special case of binary trees; in Section 2.1.2, for comb-convex split graphs, we show that
STREE is NP-complete. As far as a study on unary-tree-convex split graphs is concerned, we observe that
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unary-tree-convex split graphs are precisely path-convex split graphs. In Section 2.1.3, we show that STREE
on path-convex split graphs is polynomial-time solvable. This draws a thin line between P-versus-NPC
input instances of STREE; polynomial-time solvable for unary-tree-convex split graphs and NP-complete
for binary-tree-convex split graphs. One can also see the dichotomy status of this problem via these two
structures as well.

2.1.2 Comb-convex split graphs

We present a polynomial-time reduction from the vertex cover problem on general graphs to STREE on
comb-convex split graphs.
The decision version of Vertex Cover problem (VC) is defined below:

VC (G, k)
Instance: A graph G, a non-negative integer k.
Question: Does there exist a set S ⊆ V (G) such that for each edge e = {u, v} ∈ E(G), u ∈ S or v ∈ S
and |S| ≤ k ?

Theorem 5. For comb-convex split graphs, STREE is NP-complete.

Proof. STREE is NP-Hard: It is known [15] that VC on general graphs is NP-complete and this can be
reduced in polynomial time to STREE on comb-convex split graphs using the following reduction. We map an
instance (G, k) of VC on general graphs to the corresponding instance (G∗, R, k′ = k) of STREE as follows:
V (G∗) = V1 ∪ V2 ∪ V3,
V1 = {xi | vi ∈ V (G)},
V2 = {yi | ei ∈ E(G)},
V3 = {zi | ei ∈ E(G)}.
We shall now describe the edges of G∗,
E(G∗) = E1 ∪ E2 ∪ E3. Let n = |V (G)|, m = |E(G)|
E1 = {{yi, xp}, {yi, xq}, | ei = {vp, vq} ∈ E(G), xp, xq ∈ V1, yi ∈ V2, 1 ≤ i ≤ m, 1 ≤ p ≤ n, 1 ≤ q ≤ n}
E2 = {{x, zi}} | x ∈ V1, zi ∈ V3, 1 ≤ i ≤ m}
E3 = {{xi, xj} |, xi, xj ∈ V1, 1 ≤ i ≤ j ≤ n}.
We define K = V1, I = V2 ∪ V3, and the imaginary comb T on I is defined with V3 as the backbone and V2 as
the pendant vertex set. That is, V (T ) = I and E(T ) = {{y1, z1}, {y2, z2}, . . . , {yi, zi} | 1 ≤ i ≤ m}.
An example is illustrated in Figure 4, the vertex cover instance G with k = 2 is mapped to STREE instance
of comb-convex split graph G∗ with R = {y1, y2, y3}, k′ = 2.

v1 v2

v3

x1 x2

x3

e1
e2

e3

y1
y2

y3

z1 z2 z3

G

G∗

z1 z2 z3

y1 y2 y3

Imaginary comb of G∗ with respect to I

Fig. 4: An example: VC reduces to STREE.

Claim 5.1. G∗ is a comb-convex split graph.

Proof. For each xi ∈ V1, N I
G(xi) = V3∪W, W ⊆ V2. By our construction xi is adjacent to all of V3. Therefore,

the graph induced on N I
G(xi) is a subtree in T . Hence G∗ is a comb-convex split graph. ut
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Claim 5.2. (G, k) has a vertex cover with at most k vertices if and only if (G∗, R = {yi | 1 ≤ i ≤ m}}, k′ = k)
has a Steiner tree of size at most k′ = k Steiner vertices.

Proof. (Only if) Let V ′ = {vi | 1 ≤ i ≤ k} is a vertex cover of size k in G. Then we construct the Steiner
set S of G∗ for R = {yi | 1 ≤ i ≤ m} as follows: S = {xi | 1 ≤ i ≤ k, vi ∈ V ′, xi ∈ V (G∗)}. Since V ′ is a
vertex cover, for any edge ei = {vp, vq} ∈ E(G), vp or vq is in V ′. Hence S contains xp or xq. Therefore, by
the definition of V2, for each vertex yi, there exists a neighbor in S. Since V1 is a clique by our construction,
G[R ∪ S] is connected.
(If) For R in G∗, let S = {xi | 1 ≤ i ≤ k′} is a Steiner set of G∗ of size k′. Then, we construct the vertex
cover V ′ of size k in G as follows; V ′ = {vi | xi ∈ S, vi ∈ V (G), 1 ≤ i ≤ k′}. We now claim that V ′ is a
vertex cover in G. Suppose that there is an edge ei = {vp, vq} ∈ E(G) for which neither vp nor vq is in V ′.
This implies that neither xp nor xq is in S. Since R contains yi, it follows that NG(yi)∩ S = ∅. Thus S is not
a Steiner set. A contradiction. Therefore, V ′ is a vertex cover of size k in G. ut

Thus we conclude STREE is NP-Hard. Therefore, STREE is NP-complete on comb-convex split graphs. ut

Having arbitrary comb T as imaginary structure, STREE on comb-convex split graphs is NP-complete. We
show that finding STREE on comb-convex split graphs G with backbone path of length l for R = I is
in XP with respect to the parameter l. Let the backbone path B of imaginary comb T be (a1, a2 . . . , al).
Observe that dT (ai) = 3, 2 ≤ i ≤ l − 1. Hence Lemma 2 in triad-convex split graphs is also true for each
ai ∈ I, 2 ≤ i ≤ l − 1 in the comb-convex split graphs.

Lemma 1. Let G be a comb-convex split graph. Let S be a minimum Steiner set of G for R = I. Then
1 ≤ |NG(z) ∩ S| ≤ 3, where z ∈ {a2, . . . , al−1}.

Proof. The proof is similar to the proof of Lemma 2.

The parameterized version of the Steiner tree problem (PSTREE2) is defined below:

PSTREE2 (G,R, k)
Instance: A star-convex split graph G with imaginary comb T on I with l vertices in the backbone
path, a terminal set R = I.
Parameter: A positive integer l.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

Theorem 6. Let G be an instance of PSTREE2. Then S can be found in O(n3l) time.

Proof. Our proof is constructive. For each ai ∈ I, 2 ≤ i ≤ l− 1, we explore at most three vertex combinations
in NG(ai), which is similar to Algorithm 2. The proof of correctness is similar to the proof of Theorem 9.
Since there are l vertices in the backbone path of T , S can be found in O(n3l) time. ut

Insights into reduction instances of Theorem 5
A closer look at the reduction instances of Theorem 5 reveals that the presence of pendant vertices in
the comb makes the problem NP-hard. It is natural to ask for the complexity of STREE in a variant of
comb-convex split graphs where there are no pendant vertices (no teeth) in the comb which is precisely
the class of path-convex split graphs. Interestingly, STREE on path-convex split graphs is polynomial-time
solvable, which we prove in the next section.

2.1.3 Path-convex split graphs

In this section, we propose a polynomial-time algorithm for STREE on path-convex split graphs. Recall that
a split graph G is called path-convex if there exists a linear ordering σ of vertices in I such that for each
u ∈ K, NG(u) is consecutive in I with respect to σ.
Let G be a path-convex split graph. Let the vertices in K be w1, . . . , wm, and the vertices in I be x1, . . . , xn.
Path-convex split graphs can also be interpreted as follows: there exists an imaginary path P = (x1, . . . , xn)
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on I such that for each u ∈ K, N I
G(u) is an interval (subpath in the imaginary path) in I. When we refer to

xi in σ, the index of xi in σ is i. For u ∈ K, if N I
G(u) = {xp, . . . , xq}, then l(u) = xp and r(u) = xq. That is

l(u) is the least indexed vertex of N I
G(u) in σ, and r(u) is the greatest indexed vertex in N I

G(u). For each
xi ∈ I, 1 ≤ i ≤ n, let α(xi) = u such that u ∈ NG(xi) and r(u) is maximum. For wi, wj ∈ K, when we write
wi ≺ wj , we mean that r(wi) appears before r(wj) with respect to σ. We order the vertices in K as follows;
w1 ≺ w2 ≺ . . . ≺ wm.
The idea behind our Algorithm 1 is to visualize the neighborhood of each vertex in K as intervals and each
vertex in I as points. All points in I are unmarked initially. Choose the largest interval, say γ starting from
x1. Mark all the points in I that are in γ. Among the unmarked points in I choose the point whose index is
minimum, say xj . We continue our algorithm by choosing the interval, say β that contains xj and whose
right endpoint is maximum. Mark all points in I that are contained in β and proceed in the similar line until
we hit the point xt. This greedy approach is indeed optimum, which we establish in this section.

Algorithm 1 STREE for path-convex split graphs.

1: Input: A connected path-convex split graph G and R = I.
2: All vertices in I are unmarked initially. Let i = 1, b = r(α(x1)), the Steiner set S = {α(x1)}.
3: Mark all vertices in I that are adjacent to α(x1).
4: while b 6= xt do
5: Let c be the least indexed unmarked vertex in I.
6: b = r(α(c)), S = S ∪ {α(c)}.
7: end while

Let S = {u1, . . . , up} be the Steiner vertices chosen by the algorithm. Note that as per our algorithm
u1 ≺ u2 ≺ . . . ≺ up. Let S′ = {u′1, . . . , u′q} be the Steiner vertices chosen by any optimal algorithm. Without
loss of generality, we arrange S′ such that u′1 ≺ u′2 ≺ . . . ≺ u′q. Since R = I, observe that S ⊆ K and S′ ⊆ K.

Theorem 7. For all indices i ≤ q, N I
G({u1, . . . , ui}) ⊇ N I

G({u′1, . . . , u′i})

Proof. By mathematical induction on i, i ≥ 1.
Base Case: For i = 1,
Since u′1 ≺ u′j , j > 1, we have {x1, u′1} ∈ E(G). Since our algorithm has chosen u1, {x1, u1} ∈ E(G) and by
Step 2 of Algorithm 1, u1 = α(x1). Therefore, u′1 ≺ u1. The ordering of K and the convexity on I imply that
NG(u1) ⊇ NG(u′1).
Induction Hypothesis: Assume for i ≥ 2, N I

G({u1, . . . , ui−1}) ⊇ N I
G({u′1, . . . , u′i−1}) is true.

Induction Step: We prove that when i ≥ 2, N I
G({u1, . . . , ui}) ⊇ N I

G({u′1, . . . , u′i}).
By the induction hypothesis, we know that up to i− 1, N I

G({u1, . . . , ui−1}) ⊇ N I
G({u′1, . . . , u′i−1}). Observe

that as per Step 6 of the algorithm, we have included ui ∈ S. This implies that after inclusion of u1, . . . ui−1
into the solution, ui refers to α(c) where c is the least indexed unmarked vertex in I.
Assume on the contrary, N I

G({u1, . . . , ui}) + N I
G({u′1, . . . , u′i}). Then there exists y ∈ I such that y ∈ NG(u′i)

and y /∈ NG(ui). It is clear that α(y) ≺ ui. Since our algorithm must have included at least one vertex adjacent
to y, it must be the case that y ∈ NG(uj), for some j, 1 ≤ j ≤ i−1. This implies that y ∈ N I

G({u1, . . . , ui−1}),
which is a contradiction.
Therefore, N I

G({u1, . . . , ui}) ⊇ N I
G({u′1, . . . , u′i}). Hence the proof. ut

Theorem 8. Algorithm 1 outputs a minimum Steiner set, that is p = q.

Proof. By Theorem 7, we know that N I
G({u1, . . . , uq}) ⊇ N I

G({u′1, . . . , u′q}), and hence |S| ≤ |S′|. Since S′ is
an optimal solution, |S| ≥ |S′|. Therefore, |S| = |S′|, and p = q. ut

It is easy to see that Algorithm 1 runs in time O(mn).
Now we see that for comb-convex split graphs, STREE is NP-complete, whereas, for path-convex split graphs,
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STREE is polynomial-time solvable. This brings out the P-versus-NPC investigation of STREE on tree-convex
split graphs. This is one of the objectives of this research.
It is important to highlight that we can solve STREE on triad-convex and circular-convex split graphs by
using the algorithm of STREE on path-convex split graphs as a black box, which we prove in the following
two sections.

Application 1: Triad-convex split graphs

We investigate the classical complexity of STREE on triad-convex split graphs which are a variant of
path-convex split graphs. Since a triad structure has three paths with a common endpoint (root vertex), we
shall explore the possibility of solving STREE on triad-convex split graphs using the algorithm for STREE
on path-convex split graphs as a black box.
We now present a polynomial-time reduction to map the instances of triad-convex split graphs to the instances
of path-convex split graphs. The reduction is similar to the reduction presented in [12].
Let G be a triad-convex split graph with triad T defined on I such that for every u ∈ K, N I

G(u) is a subtree
in T . Let z be the root vertex of the triad T . There are three paths in T − z, let those paths be B1, B2, and
B3. Let the vertices in Bi be (xi1, x

i
2, . . . , x

i
|Bi|), 1 ≤ i ≤ 3. Let the vertices in K be w1, . . . , wm. Since T is

a triad, NT (z) = {x11, x21, x31}. Let NG(z) = {u1, . . . , us}. Observe that NG(z) ⊆ K.
For each vertex uj ∈ NG(z), 1 ≤ j ≤ s, we define r(Bi, uj) = xip such that NG(uj) ∩ Bi 6= ∅, xip ∈ NG(uj)

and there does not exist xiq ∈ NG(uj), p+ 1 ≤ q ≤ |Bi|. Let

αi,j = max
uj

r(Bi, uj), βi,j = v, v ∈ (NG(αi,j) ∩NG(z)), 1 ≤ i ≤ 3, 1 ≤ j ≤ s.

The following lemma is a key result for our reduction in work.

Lemma 2. Let G be a triad-convex split graph. Let S be a minimum Steiner set of G for R = I. Then,
1 ≤ |NG(z) ∩ S| ≤ 3, where z is the root of the triad.

Proof. It is clear that for every vertex y ∈ R, |NG(y) ∩ S| ≥ 1.
Suppose that |NG(z)∩S| > 3. We claim that N I

G(β1,j)∪N I
G(β2,k)∪N I

G(β3,l) ⊇ N I
G(NG(z)∩S), 1 ≤ j < k <

l ≤ s. On the contrary, there exists y ∈ I such that y ∈ N I
G(NG(z)∩S) and y /∈ (N I

G(β1,j)∪N I
G(β2,k)∪N I

G(β3,l)).
Without loss of generality, we shall assume that y ∈ B1. Let α1,j be x1p, for some p, 1 ≤ p ≤ |B1|. Then y ∈
{x11, . . . , x1p}. By the definition of β1,j , we know that {x11, . . . , x1p} ⊆ N I

G(β1,j). Hence, y ∈ (N I
G(NG(z)∩S))∩B1

and y ∈ N I
G(β1,j), which is a contradiction that y /∈ N I

G(β1,j). Similarly, the argument is true if y ∈ β2,k or
y ∈ β3,l. Thus there exists y ∈ I such that y ∈ N I

G(NG(z)∩ S) and y /∈ (N I
G(β1,j)∪N I

G(β2,k)∪N I
G(β3,l)) is a

contradiction and N I
G(β1,j) ∪N I

G(β2,k) ∪N I
G(β3,l) ⊇ N I

G(NG(z) ∩ S).
Observe that β1,j , β2,k, β3,l need not be distinct always. Consider S′ = (S \NG(z))∪{β1,j , β2,k, β3,l}. Note
that |S′| ≤ |S| − 1, which is a contradiction that S is a minimum Steiner set of G for R = I. ut

The above lemma indicates that |NG(z)∩S| = 1, |NG(z)∩S| = 2, and |NG(z)∩S| = 3. Accordingly, for each
triad-convex split graph, we construct a corresponding set of path-convex split graphs as part of Construc-
tion 1, Construction 2, and Construction 3 which are explained below. Further, using our construction and
Algorithm 1, we obtain a polynomial-time algorithm for triad-convex split graphs. We have the following cases:

Case 1: Exactly one neighbor of z is in S.
Case 2: Exactly two neighbors of z is in S.
Case 3: Exactly three neighbors of z is in S.

For each uj ∈ NG(z), 1 ≤ j ≤ s, A(uj) represents a minimum Steiner set of G for R = I containing
uj . For each uj , uk ∈ NG(z), 1 ≤ j < k ≤ s, A(uj , uk) represents a minimum Steiner set of G for R = I
containing uj , uk. For each uj , uk, ul, {uj , uk, ul} ⊆ NG(z), 1 ≤ j < k < l ≤ s, A(uj , uk, ul) represents a
minimum Steiner set of G for R = I containing uj , uk, ul.
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Computation of a minimum Steiner set in each of the three cases.
For each case, we shall construct a set of path-convex split graphs using which we compute a minimum
Steiner set S of G.
Case 1: Exactly one neighbor of z is in S.
Construction 1:
For each uj ∈ NG(z), 1 ≤ j ≤ s, we do the following:
Since (NG(z) \ {uj}) ∩ S = ∅, using the graph Gj = G − (NG(z) ∪ N I

G(uj)), we construct Gi
j , for each

i, 1 ≤ i ≤ 3 as follows;
The graph Gi

j with Iij = Bi ∩ (I \ {N I
G(uj)}), Ki

j = K ∩ (NG(Bi) \ NG(z)), and E(Gi
j) = {{x, y} | x, y ∈

V (Gi
j), {x, y} ∈ E(G)}.

The ordering of Iij for Gi
j is given by Bi ∩ (I \ {N I

G(uj)}) with respect to the ordering I in G. Hence each Gi
j

is a path-convex split graph with ordering on Iij . Let Si
j be a minimum Steiner set Gi

j for R = Iij , obtained

using Algorithm 1. Then a minimum Steiner set of G for R = I containing uj is A(uj) = Si
j ∪ {uj} and the

proof for minimality of A(uj) is established in Lemma 3.

Lemma 3. For some uj ∈ NG(z), if NG(z) ∩ S = {uj} then |S| = |S1
j |+ |S2

j |+ |S3
j |+ 1.

Proof. Let S1
j ∪S2

j ∪S3
j , 1 ≤ j ≤ s be a Steiner set of the graph G1

j ∪G2
j ∪G3

j . Let G′ be the graph induced on

N I
G[uj ]∪V (G1

j )∪V (G2
j )∪V (G3

j ), 1 ≤ j ≤ s. The graph G′ for R = I, the Steiner set is S′ = {uj}∪S1
j ∪S2

j ∪S3
j .

We can observe that G′ is a subgraph of G, since V (G) = V (G′) ∪ NG(z). Thus S′ is a Steiner set of G
for R = I. For any minimum Steiner set S ofG containing uj for R = I, clearly, |S| ≤ |S′| = |S1

j |+|S2
j |+|S3

j |+1.

We now show that for any minimum Steiner set S of G containing uj for R = I, |S| ≥ |S1
j |+ |S2

j |+ |S3
j |+ 1.

Assume S is the minimum Steiner set of G for R = I and NG(z) ∩ S = {uj}. Then S1
j is a Steiner set of G1

j

for R = I1j such that S1
j = S ∩ V (G1

j). For each v ∈ V (G1
j), NG1

j
(v) ∩ S1

j 6= ∅. Similarly, for R = I2j of G2
j ,

S2
j = S ∩ V (G2

j ) and for R = I3j of G3
j , S3

j = S ∩ V (G3
j ). Hence,

S = (S ∩ V (G1
j )) ∪ (S ∩ V (G2

j )) ∪ (S ∩ V (G3
j )) ∪ {uj}

|S| = |(S ∩ V (G1
j )) ∪ (S ∩ V (G2

j )) ∪ (S ∩ V (G3
j )) ∪ {uj}|

= |(S ∩ V (G1
j )) ∪ (S ∩ V (G2

j )) ∪ (S ∩ V (G3
j ))|+ 1

Since |S ∩ V (G1
j )| ≥ |S1

j |, |S ∩ V (G2
j )| ≥ |S2

j |,and |S ∩ V (G3
j )| ≥ |S3

j |, we get

|S| ≥ |S1
j |+ |S2

j |+ |S3
j |+ 1

Therefore, |S| = |S1
j |+ |S2

j |+ |S3
j |+ 1 is a minimum Steiner set of G for R = I. ut

Case 2: Exactly two neighbors of z is in S.
Construction 2:
For each uj , uk ∈ NG(z), 1 ≤ j < k ≤ s, we do the following:
Since (NG(z) \ {uj , uk}) ∩ S = ∅, using the graph Gjk = G− (NG(z) ∪N I

G(uj) ∪N I
G(uk)), we construct Gi

jk,
for each i, 1 ≤ i ≤ 3 as follows;
The graph Gi

jk with Iijk = Bi ∩ (I \ {N I
G(uj) ∪ N I

G(uk)}), Ki
jk = K ∩ (NG(Bi) \ NG(z)), and E(Gi

jk) =

{{x, y} | x, y ∈ V (G1
ij), {x, y} ∈ E(G)}.

The ordering of Iijk for Gi
jk is given by Bi ∩ (I \ ({N I

G(uj)} ∪ N I
G(uk))) with respect to ordering I in G.

Hence each Gi
jk is a path-convex split graph with ordering on Iijk. Let Si

jk a minimum Steiner set of Gi
jk for

R = Iijk is obtained using Algorithm 1. Then a minimum Steiner set of G for R = I containing uj , uk is

A(uj , uk) = Si
jk ∪ {uj , uk} and the proof of minimality of A(uj , uk) is as per Lemma 4.

Lemma 4. For some uj , uk ∈ NG(z), if NG(z) ∩ S = {uj , uk} then |S| = |S1
jk|+ |S2

jk|+ |S3
jk|+ 2.

Proof. The proof is similar to the proof of Lemma 3. ut

Case 3: Exactly three neighbors of z are in S.
Construction 3:
For each uj , uk, ul such that {uj , uk, ul} ⊆ NG(z), 1 ≤ j < k < l ≤ s, we do the following:
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Since (NG(z) \ {uj , uk, ul}) ∩ S = ∅, using the graph Gjkl = G− (NG(z) ∪N I
G(uj) ∪N I

G(uk) ∪N I
G(ul)), we

construct Gi
jkl, for each i, 1 ≤ i ≤ 3 as follows;

The graph Gi
jkl with Iijkl = Bi ∩ (I \ {N I

G(uj) ∪ N I
G(uk) ∪ N I

G(ul)}, Ki
jkl = K ∩ (NG(Bi) \ NG(z)), and

E(Gi
jkl) = {{x, y} | x, y ∈ V (Gi

jkl), {x, y} ∈ E(G)}.

The ordering of Iijkl for Gi
jkl is given by Bi ∩ (I \ ({N I

G(uj)} ∪ N I
G(uk) ∪ N I

G(ul))) with respect to or-

dering I in G. Hence each Gi
jkl is a path-convex split graph with ordering on Iijkl. Let Si

jkl a minimum Steiner

set of Gi
jkl for R = Iijkl is obtained using Algorithm 1. Then a minimum Steiner set of G for R = I containing

uj , uk, ul is A(uj , uk, ul) = Si
jkl ∪ {uj , uk, ul} and the proof of minimality of A(uj , uk, ul) is as per Lemma

5.

Lemma 5. For some uj , uk, ul such that {uj , uk, ul} ⊆ NG(z), If NG(z) ∩ S = {uj , uk, ul} then |S| =
|S1

jkl|+ |S2
jkl|+ |S3

jkl|+ 3.

Proof. The proof is similar to the proof of Lemma 3. ut

Now we shall present an algorithm to find a minimum Steiner set of G for R = I.

Algorithm 2 STREE for triad-convex split graphs.

1: Input: A connected triad-convex split graph G, R = I.
2: Let z be the central vertex of triad T , and let S = ∅, S1 = ∅, S2 = ∅, S3 = ∅.
3: for all uj , uj ∈ NG(z) do
4: Construct G1

j , G
2
j , G

3
j using Construction 1.

5: Using Algorithm 1, find minimum Steiner sets S1
j , S2

j , and S3
j for G1

j , G
2
j , and G3

j , respectively.
6: Update S1 = S1 ∪ {S1

j ∪ S2
j ∪ S3

j ∪ {uj}}
7: end for
8: for all uj , uk, uj , uk ∈ NG(z) do
9: Construct G1

jk, G
2
jk, G

3
jk using Construction 2.

10: Using Algorithm 1, find minimum Steiner sets S1
jk, S2

jk, and S3
jk for G1

jk, G
2
jk, and G3

jk, respectively.
11: Update S2 = S2 ∪ {S1

jk ∪ S2
jk ∪ S3

jk ∪ {uj , uk}}
12: end for
13: for all uj , uk, ul, {uj , uk, ul} ⊆ NG(z) do
14: Construct G1

jkl, G
2
jkl, G

3
jkl using Construction 3.

15: Using Algorithm 1, find minimum Steiner sets S1
jkl, S

2
jkl, and S3

jkl for G1
jkl, G

2
jkl, and G3

jkl, respectively.
16: Update S3 = S3 ∪ {S1

jkl ∪ S2
jkl ∪ S3

jkl ∪ {uj , uk, ul}}
17: end for
18: The minimum cardinality set in S1 ∪ S2 ∪ S3 is S.

The proof of correctness of Algorithm 2 follows from Lemmas 2, 3, 4, and 5. Observe that in Case 1 for
uj ∈ NG(z), the time required for constructing G1

j , G
2
j , and G3

j is O(n2). Finding the Steiner set for each

of G1
j , G

2
j , and G3

j incurs O(n2) time. Thus finding the Steiner set for each uj ∈ NG(z) incurs O(n3) time.

Similarly, for Case 2, the time required for constructing G1
jk, G

2
jk, and G3

jk is O(n2). Finding the Steiner set

for each of G1
jk, G

2
jk, and G3

jk incurs O(n2) time. Thus the finding the Steiner set for each uj , uk ∈ NG(z)

incurs O(n4) time. Similarly, for the Case 3, the time required for constructing G1
jkl, G

2
jkl, and G3

jkl is O(n2).

Finding the Steiner set for G1
jkl, G

2
jkl, and G3

jkl incurs O(n2) time. Thus finding the Steiner set for each

{uj , uk, ul} ∈ NG(z) incurs O(n5) time. It is clear that the running time of Algorithm 2 is O(n5). Hence the
following theorem holds.

Theorem 9. Let G be a triad-convex split graph. A minimum Steiner set S of G for R = I can be computed
in O(n5) time, where n is the number of vertices in G.
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Application 2: Circular-convex split graphs

We shall explore the possibility of solving STREE on circular-convex split graphs using the algorithm
of STREE of path-convex split graphs as a black box. We present a polynomial-time reduction to map the
instances of circular-convex split graphs to the instances of path-convex split graphs. The reduction is similar
to the reduction presented in [12].
Let G be a circular-convex split graph with |K| = m and |I| = n. Let the circular ordering ≺ on I, say
x1 ≺ x2 ≺ . . . ≺ xm ≺ xm+1 = x1, such that for each v ∈ K, N I

G(v) is a circular arc. For each v ∈ K, let
N I

G(v) be {xa, xa−1, . . . , xb−1, xb}, and l(u) = xa, r(u) = xb.
The following lemma is a key result for our reduction to work.

Lemma 6. Let G be a circular-convex split graph. Let S be a minimum Steiner set of G for R = I. Then,
for a vertex z ∈ I, 1 ≤ |NG(z) ∩ S| ≤ 2.

Proof. It is clear that for every vertex z ∈ R, |NG(z) ∩ S| ≥ 1.
Suppose that |NG(z) ∩ S| ≥ 3. We observe that N I

G(NG(z)) is a circular arc in I containing z. Let the
endpoints of that circular arc be xi, xj , for some i, j, 1 ≤ i < j ≤ n. Then there exist two vertices
wk, wl ∈ NG(z), wk, wl ∈ K, 1 ≤ k < l ≤ m such that xi ∈ NG(wk) and xj ∈ NG(wl). It is clear that
NG(wk) ∪NG(wl) = N I

G(NG(z)). Consider S′ = (S \NG(z)) ∪ {wk, wl}. Note that |S′| ≤ |S| − 1, which is a
contradiction that S is a minimum Steiner set of G for R = I. ut

The above lemma indicates either |NG(z) ∩ S| = 1 or |NG(z) ∩ S| = 2. Accordingly, for each circular-convex
split graph, we construct a corresponding path-convex split graph as part of Construction 4 and Construction
5 which are explained below. Further, using our construction and Algorithm 1. We obtain a polynomial-time
algorithm for circular-convex split graphs. We choose an arbitrary vertex, say xi from I. Since xi ∈ R, we
have the following cases:

Case 1: Exactly one neighbor of xi is in S.
Case 2: Exactly two neighbors of xi is in S.

Let NG(xi) = {u1, . . . , us}. For each uj ∈ NG(xi), 1 ≤ j ≤ s, A(uj) represents a minimum Steiner set
of G for R = I containing uj . For each uj , uk ∈ NG(xi), 1 ≤ j < k ≤ s, A(uj , uk) represents a minimum
Steiner set of G for R = I containing uj , uk.
Computation of minimum Steiner sets for Case 1 and Case 2.
In each of the two cases, corresponding to the circular-convex split graph G, we define a path-convex split
graph.
Case 1: Exactly one neighbor of xi is in S.
Construction 4: We define the graph Gj as follows;
For each uj ∈ NG(xi), 1 ≤ j ≤ s, we do the following:
Let the endpoints of N I

G(uj) be l(u) = xa, r(u) = xb. Since NG(xi) \ {uj} is not in S, using the graph
G − (NG(xi)), we construct Gj as follows; V (Gj) = (V (G) \ NG[xi]) ∪ {α1, α2, β1, β2}, Kj = (K ∩
V (Gj)) ∪ {α1, α2}, Ij = (I ∩ V (Gj)) ∪ {β1, β2}, and E(Gj) = {{x, y} | x, y ∈ V (Gj), {x, y} ∈ E(G)} ∪
{{α1, p}, {α2, p} | p ∈ (K ∩V (Gj))}∪{{α1, q}, {α2, r} | q ∈ {xa, xa+1, . . . , xi−1}, r ∈ {xi+1, . . . , xb−1, xb}}∪
{{α1, β1}, {α2, β2}, {α1, α2}}.

Lemma 7. Gj is a path-convex split graph.

Proof. We prove that Gj is a path-convex split graph, by providing a linear ordering σ on I. The ordering
σ on I is β2 ≺ xi+1 . . . ≺ xb ≺ . . . ≺ xa ≺ . . . xi−1 ≺ β1. We can observe that for every v ∈ Kj , NGj

(v) is
consecutive in σ. Therefore, Gj is a path-convex split graph. ut

Let Sj be a minimum Steiner set Sj of Gj for R = Ij is obtained using Algorithm 1. Then a minimum Steiner
set of G for R = I containing uj is A(uj) = Sj ∪ {uj} and the proof for minimality of A(uj) is established in
Lemma 8.
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Lemma 8. For some uj ∈ NG(xi), if NG(xi) ∩ S = {uj} then |S| = |Sj | − 1.

Proof. We know that Sj is a minimum Steiner set of Gj for R = I containing α1, α2. Construct the graph
G′j from Gj as follows; V (G′j) = (V (Gj) \ {α1, α2, β1, β2})∪ {uj , xi}, and E(G′j) = {{uj , p} | p ∈ (NGj (α1)∪
NGj

(α2))}∪{{x, y} | x, y ∈ V (G′j), {x, y} ∈ E(Gj)}∪{{xi, q} | q ∈ (NGj
(β1)∪NGj

(β2))}∪{{uj , r} | r ∈ Kj}.
The set (Sj \ {α1, α2}) ∪ {uj} is a Steiner set of G′j for R = I. Observe that G′j is a subgraph of G, and
V (G) = V (G′j) ∪NG(xi). Since uj connects NG[xi], the set (Sj \ {α1, α2}) ∪ {uj} is also a Steiner set of G.
For any minimum Steiner set S of G containing uj for R = I, clearly, |S| ≤ |Sj | − 1.

Suppose that S is a minimum Steiner set of G for R = I such that S ∩ NG(xi) = uj . Consider the
graph G′ = G− (NG(xi) \ {uj}). Observe that S is a Steiner set of G′ for R = I. Now we construct Gj from
G′ by using Construction 4. For Gj the set (S \ {uj}) ∪ {α1, α2} is a minimum Steiner set for R = I. Hence
for a minimum Steiner set Sj of Gj , |Sj | ≤ |S|+ 1.
Thus |S| = |Sj | − 1. ut

Case 2: Exactly two neighbors of xi is in S.
Construction 5: We define the graph Gjk as follows;
For each uj , uk ∈ NG(xi), 1 ≤ j < k ≤ s, we do the following:
Let the endpoints of N I

G(uj) ∪N I
G(uk) be l(u) = xa, r(u) = xb. Since (NG(xi)) \ {uj , uk}) ∩ S = ∅, from the

graph G− (NG(xi) \ {uj , uk}), we construct Gjk as follows; V (Gjk) = (V (G) \ (NG[xi] \ {uj , uk}))∪ {β1, β2}
with Kjk = (K ∩ V (Gjk)), Ijk = (I ∩ V (Gjk)) ∪ {β1, β2}, and E(Gjk) = {{x, y} | x, y ∈ V (Gjk), {x, y} ∈
E(G)} ∪ {{uj , p}, {uk, q} | p ∈ {xa, xa+1, . . . , xi−1}, q ∈ {xi+1, . . . , xb−1, xb}} ∪ {{uj , β1}, {uk, β2}}.

Lemma 9. Gjk is a path-convex split graph.

Proof. We prove that Gjk is a path-convex split graph, by providing a linear ordering σ on I. The ordering
σ on I is β2 ≺ xi+1 . . . ≺ xb ≺ . . . ≺ xa ≺ . . . xi−1 ≺ β1. We can observe that for every v ∈ Kjk, NGjk

(v) is
consecutive in σ. Therefore, Gjk is a path-convex split graph. ut

Let Sjk be a minimum Steiner set of Gjk for R = Ijk is obtained using Algorithm 1. Then a minimum Steiner
set of G for R = I containing uj , uk is A(uj , uk) = Sjk, and the proof for minimality of A(uj) is established
in Lemma 10.

Lemma 10. For some uj , uk ∈ NG(xi), if NG(xi) ∩ S = {uj , uk} then |S| = |Sjk|.

Proof. We know that Sjk is a minimum Steiner set of Gjk for R = Ijk containing uj , uk. Construct the
graph G′jk from Gjk as follows; V (G′jk) = (V (Gjk) \ {β1, β2}) ∪ {xi}, and E(G′jk) = {{x, y} | {x, y} ∈
E(Gjk), x, y ∈ V (G′jk)} ∪ {{xi, q} | q ∈ (NGjk

(β1) ∪NGjk
(β2))} with I ′jk = (Ijk \ {β1, β2}) ∪ {xi}. The set

Sjk is a Steiner set of G′jk for R = I ′jk. Observe that G′jk is a subgraph of G, and V (G) = V (G′jk) ∪NG(xi).

Since uj , uk connects xi and N I
Gjk

(NGjk
(xi)) , the set Sjk is also a Steiner set of G. For any minimum Steiner

set S of G containing uj , uk for R = I, clearly, |S| ≤ |Sjk|.

Suppose that S is a minimum Steiner set of G for R = I such that S ∩ NG(xi) = {uj , uk}. Consider
the graph G′ = G− (NG(xi) \ {uj , uk}). Observe that S a Steiner set of G′ for R = I. Now we construct Gjk

from G′ by using Construction 5. For Gjk, S is a Steiner set for R = I. Hence for a minimum Steiner set Sjk

of Gjk, |Sjk| ≤ |S|.
Thus |S| = |Sjk|. ut

We shall present an algorithm to find a minimum Steiner set of G for R = I.
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Algorithm 3 STREE for circular-convex split graphs.

1: Input: A connected circular-convex split graph G, R = I.
2: Let S = ∅, S1 = ∅, S2 = ∅.
3: Choose an arbitrary vertex, say xi ∈ I.
4: for all uj , uj ∈ NG(xi) do
5: Construct Gj using construction 4.
6: Using Algorithm 1, find a minimum Steiner set Sj of Gj for R = Ij .
7: UpdateS1 = S1 ∪ {Sj}.
8: end for
9: for all uj , uk, uj , uk ∈ NG(xi) do

10: Construct Gjk using construction 5.
11: Using Algorithm 1, find a minimum Steiner set Sjk of Gjk for R = Ij .
12: Update S2 = S2 ∪ {Sjk}.
13: end for
14: The minimum cardinality set among S1 ∪ S2 is S.

The proof of correctness of Algorithm 3 follows from Lemmas 6, 8, 10. Observe that in Case 1 for uj ∈ NG(z),
the time required for constructing Gj is O(n2). Finding the Steiner set for Gj incurs O(n2) time. Thus
finding the Steiner set for each uj ∈ NG(z) incurs O(n3) time. Similarly, for Case 2, the time required for
constructing Gjk is O(n2). For finding the Steiner set for Gjk incurs O(n2) time. Thus finding the Steiner set
for each uj , uk ∈ NG(z) incurs O(n4) time. It is clear that the running time of Algorithm 2 is O(n4). Hence
the following theorem holds.

Theorem 10. Let G be a circular-convex split graph. A minimum Steiner set S of G for R = I can be
computed in O(n4) time, where n is the number of vertices in G.

Having analyzed the P-versus-NPC status of STREE for convex split graphs with convexity on I, we shall
now analyze the same with respect to split graphs having convexity on K.

2.2 STREE in split graphs with convexity on K

When we refer to convex split graphs in this section, we refer to convex split graphs with convexity on K. For
STREE on split graphs with convexity on K, we establish hardness results for chordal-convex split graphs,
and polynomial-time algorithms for tree-convex, and circular-convex split graphs.

2.2.1 Tree-convex split graphs

In this section, we present a polynomial-time algorithm to find a minimum Steiner tree on tree-convex split
graphs. Let G be a tree-convex split graph with an imaginary tree T on K. We present a polynomial-time
algorithm to find a Steiner set S of G for R = I. We work with the underlying imaginary tree T on K to
compute S for R. As part of our algorithm to compute S, we color vertices of T (gray, white, and black).
Initially, all vertices in the imaginary tree T are colored gray. The vertex colored gray is changed to white or
black as per the following rules:
Rule 1:(Gray-colored vertex is changed to white) The color of a leaf u ∈ T is changed to white when there
does not exist a pendant vertex in N I

G(u).
Rule 2:(Gray-colored vertex is changed to Black) The color of a leaf u ∈ T is changed to black when there
exists a pendant vertex in N I

G(u).
Our algorithm employs Rule 1 and Rule 2 iteratively in computing S. To begin with, we choose an arbitrary
leaf vertex, say u in T . If Rule 1 is applicable, then G is modified to G = G−{u} and T = T −{u}. If Rule 2
is applicable, then S = S ∪ {u} and G is modified to G = G−N I

G[u], T = T − {u}. We continue the process
for |K| − 1 times.
Observe that as per this coloring scheme gray colored vertex is recolored to white or black. The recoloring
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happens exactly once for each vertex in T . The vertices that are colored black during the process are included
in the set S. We shall now show that the set S is indeed minimum in Theorem 11.
Let G be a tree-convex split graph with imaginary tree T . Without loss of generality, we shall arrange the
vertices in T (with the assumption that T is a rooted tree) as per BFS order (w1, . . . , wm). Let the vertices
in Level i be Vi, 1 ≤ i ≤ k, k denotes the height of T such that the root is in level 1. Let S = (a1, . . . , ap)
denotes vertices chosen by our algorithm. Let S′ = (b1, . . . , bq) denote any optimal Steiner of G.
Since S is an optimal Steiner set, it true that |S′| ≤ |S|. To show that |S| = |S′|, we need to prove that
|S′| ≥ |S|. We prove |S′| ≥ |S| by using Theorem 11.

Theorem 11. For each Level i, 1 ≤ i ≤ k, |
k⋃

i=1

Vi ∩ S′| ≥ |
k⋃

i=1

Vi ∩ S|.

Proof. On the contrary, |
k⋃

i=1

Vi ∩ S′| < |
k⋃

i=1

Vi ∩ S|. Let j be the maximum level at which |
k⋃

i=j

Vi ∩ S′| <

|
j⋃

i=1

Vi ∩ S|. Then there exists v ∈ K such that v ∈ Vj ∩ S and v /∈ Vj ∩ S′. Observe that the algorithm has

included v because of Rule 2 and it is adjacent to a pendent vertex in I, say z in that iteration. since S′ is an
optimal solution, there exists u ∈ (NG(z)∩S′). It is clear that u /∈ S, and u ∈ (Vj+1∪ . . .∪Vk). Without loss of
generality we shall assume that u is in level r, (j+ 1) ≤ r ≤ k. Since at level r, u ∈ (Vr ∩S′) and u /∈ (Vr ∩S),

we continue this for each v ∈ (Vj ∩ S) and v /∈ (Vj ∩ S′), and it contradicts that |
k⋃

i=j

Vi ∩ S′| < |
k⋃

i=j

Vi ∩ S|.

We continue this argument for each level, and stop this argument when we reach level 1. Thus we obtain

|
k⋃

i=1

Vi ∩ S′| ≥ |
k⋃

i=1

Vi ∩ S|. ut

It is clear that |S′| ≥ |S|. Therefore, S is also an optimal solution of G.

Remarks: Since STREE on tree-convex split graphs is polynomial-time solvable, STREE is polynomial-
time solvable on well-known special structures such as path, triad, star, and comb-convex split graphs. It is
important to note that the above approach can be used as a black box for STREE on circular-convex split
graphs.

Application 3: Circular-convex split graphs

We investigate the classical complexity of STREE on circular-convex split graphs. We shall explore the
possibility of solving STREE on circular-convex split graphs using the algorithm for STREE on path-convex
split graphs (subclass of tree-convex split graphs) as a black box We now provide a polynomial-time re-
duction to map the instances of circular-convex split graphs to the instances of path-convex split graphs.
Let G be a circular-convex split graph with |K| = m and |I| = n. Let the circular ordering ≺ on K, say
w1 ≺ w2 ≺ . . . ≺ wt ≺ wt+1 = w1, such that for each z ∈ I, NG(z) is a circular arc.
The following lemma is a key result for our reduction to work.

Lemma 11. Let G be a circular-convex split graph. Let S be a minimum Steiner set of G for R = I. Let the
minimum degree vertex in I be z. Then, 1 ≤ |NG(z) ∩ S| ≤ 2.

Proof. It is clear that for every vertex y ∈ R, |NG(y) ∩ S| ≥ 1.
Suppose that |NG(z)∩S| ≥ 3, where z is the minimum degree vertex in I. Observe thatNG(z) is a circular arc in
K. Let the endpoints of circular arc obtained by NG(z) be wi, wj . It is clear that N I

G(wi+1)∪ . . .∪N I
G(wj−1) ⊆

N I
G(wi) ∪N I

G(wj). Consider S′ = (S \NG(z)) ∪ {wi, wj}. Note that |S′| ≤ |S| − 1, which is a contradiction
that S is a minimum Steiner set of G for R = I. ut

The above lemma indicates either |NG(z) ∩ S| = 1 or |NG(z) ∩ S| = 2. Accordingly for each circular-convex
split graph, we construct a corresponding path-convex split graph as part of Construction 6 and Construction
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7 which are explained below. Further, using our construction and Algorithm 1. We obtain a polynomial-time
algorithm for circular-convex split graphs. We have the following cases:

Case 1: Exactly one neighbor of z is in S.
Case 2: Exactly two neighbors of z is in S.

Let NG(z) = {u1, . . . , us}. For each uj ∈ NG(z), 1 ≤ j ≤ s, A(uj) represents a minimum Steiner set
of G for R = I containing uj . For each uj , uk ∈ NG(z), 1 ≤ j < k ≤ s, A(uj , uk) represents a minimum
Steiner set of G for R = I containing uj , uk.
Computation of minimum Steiner sets for Case 1 and Case 2.
For each case, we shall construct a path-convex split graph corresponding to the circular-convex split graph.
Case 1: Exactly one neighbor of z is in S.
Construction 6: We define the graph Gj as follows;
For each uj ∈ NG(z), 1 ≤ j ≤ s, we do the following:
Let NG(z) be {wi = u1, . . . , wk = us}Since (NG(z) \ {uj}) ∩ S = ∅, we consider the graph Gj with
Kj = K \NG(z), Ij = I \N I

G(uj), E(Gj) = {{x, y} | x, y ∈ V (Gj), {x, y} ∈ E(G)}.

Lemma 12. Gj is a path-convex split graph.

Proof. We prove that Gj is a path-convex split graph, by providing a linear ordering σ on Kj . Let the
ordering be wi+1 ≺ wi+2 ≺ . . . ≺ wk+1. We can observe that for every y ∈ I, NGj

(y) is consecutive in σ.
Therefore Gj is a path-convex split graph. ut

Let Sj be a minimum Steiner set of Gj for R = Ij is obtained using the algorithm for STREE on path-convex
split graphs (subclass of tree-convex split graphs).

Lemma 13. If NG(z) ∩ S = {uj}, then |S| = |Sj |+ 1.

Proof. Suppose that Sj is a minimum Steiner set of Gj for R = I. Construct G′j as follows; V (G′j) =
V (Gj) ∪ {uj} ∪ {z} and E(G′j) = E(Gj) ∪ {{uj , z}} with I ′j = Ij ∪ {z}. Then S′j = S ∪ {uj} is a Steiner set

of G′j for R = I ′j . Observe that G′j is a subgraph of G, and V (G) = V (G′j) ∪N I
G(uj) ∪NG(z). Hence S = S′j

is also a Steiner set of G for R = I. For any minimum Steiner set S of G for R = I containing uj , clearly,
|S| ≤ |Sj |+ 1.
Suppose that S is a minimum Steiner set of G for R = I such that S ∩NG(z) = {uj}. Consider the graph
G′ = G− (NG(z)∪N I

G(uj)) with I ′j = I \{z}. The set S \{uj} is a Steiner set of G′ for R = I ′j . The resultant
graph is Gj . Thus Sj = S \ {uj} is a minimum Steiner set of Gj for R = I. Hence for a minimum Steiner set
Sj of Gj , |Sj | ≤ |S| − 1.
Therefore, |S| = |Sj |+ 1. ut

Case 2: Exactly two neighbors of z is in S.
Construction 7: We define the graph G′ as follows;
For each uj , uk ∈ NG(z), 1 ≤ j < k ≤ s, we do the following:
Since (NG(z) \ {uj , uk}) ∩ S = ∅, from the graph G − (NG(z) \ {uj , uk}), we construct Gjk as follows;
V (Gjk) = Kjk ∪ Ijk, Kjk = K \ {uj , uj−1, . . . , uk}, Ijk = I \ (N I

G(uj) ∪N I
G(uk)), E(Gjk) = {{x, y} | x, y ∈

V (Gjk), {x, y} ∈ E(G)}.

Lemma 14. Gjk is a path-convex split graph.

Proof. We prove that Gjk is a path-convex split graph, by providing a linear ordering σ on I. The ordering σ
on I is uj+1 ≺ uj+2 ≺ . . . uk+1. We can observe that for every v ∈ Kjk, NGjk

(v) is consecutive in σ. Therefore,
Gjk is path-convex split graph. ut

Let Sjk be a minimum Steiner set Sjk of Gjk for R = Ijk is obtained using Algorithm 1.

Lemma 15. If NG(z) ∩ S = {uj , uk}, then |S| = |Sjk|+ 2.
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Proof. We know that Sjk is a minimum Steiner set of Gjk for R = I. Construct the graph G′jk from
Gjk as follows; V (G′jk) = (V (Gjk) ∪ {uj , uk}, and E(G′jk) = {{x, y} | {x, y} ∈ E(Gjk), x, y ∈ V (G′jk)} ∪
{{z, uj}, {z, uk}}. The set S′jk = Sjk ∪ {uj , uk} is a Steiner set of G′jk for R = I ′jk. Observe that G′jk is a
subgraph of G, and V (G) = V (G′jk) ∪NG(z). Since uj , uk connects NG(z), the set S′jk is also a Steiner set
of G. For any minimum Steiner set S of G containing uj , uk for R = I, clearly, |S| ≤ |Sjk|.
Suppose that S is a minimum Steiner set of G for R = I such that S ∩NG(z) = {uj , uk}. Consider the graph
G′ = G− (NG(z) \ {uj , uk}). Observe that S a Steiner set of G′ for R = I. Now we construct Gjk from G′

by using Construction 5. For Gjk, S is a Steiner set for R = I. Hence for a minimum Steiner set Sjk of Gjk,
|Sjk| ≤ |S|.
Thus |S| = |Sjk| ut

Now we shall present an algorithm for finding the minimum Steiner set of G for R = I.

Algorithm 4 STREE for circular-convex split graphs.

1: Input: A connected circular-convex split graph G with R = I.
2: Let S = ∅, S1 = ∅, S2 = ∅.
3: Choose the minimum degree vertex, say z ∈ I.
4: for all uj , uj ∈ NG(z) do
5: Construct Gj using Construction 6.
6: Using Algorithm 1, find a minimum Steiner set Sj of Gj for R = Ij .
7: Update S1 = S1 ∪ {Sj}.
8: end for
9: for all uj , uk, uj , uk ∈ NG(z) do

10: Construct Gjk using Construction 7.
11: Using Algorithm 1, find a minimum Steiner set Sjk of Gjk for R = Ijk.
12: Update S2 = S2 ∪ {Sjk}.
13: end for
14: The minimum cardinality set among S1 ∪ S2 is S.

The proof of correctness of Algorithm 4 follows from Lemmas 13, 15. Observe that in Case 1 for uj ∈ NG(z),
the time required for constructing Gj is O(n2). Finding the Steiner set for Gj incurs O(n2) time. Thus
finding the Steiner set for each uj ∈ NG(z) incurs O(n3) time. similarly, the time required for constructing
Gjk is O(n2). For finding the Steiner set for Gjk incurs O(n2) time. Thus finding the Steiner set for each
uj , uk ∈ NG(z) incurs O(n4) time. It is clear that the running time of Algorithm 2 is O(n4). Hence the
following theorem holds.

Theorem 12. Let G be a circular-convex split graph. A minimum Steiner set S of G for R = I can be
computed in O(n4) time, where n is the number of vertices in G.

It turns out that STREE is Polynomial-time solvable on tree-convex and circular-convex split graphs. Further,
we explore the classical complexity of STREE on a convex split graph having a chordal graph as its imaginary
structure in the next section.

2.2.2 Chordal-convex split graph

We have seen that STREE on tree-convex split graphs is polynomial-time solvable. It is natural to ask;
”Is there a property π such that STREE on π-convex split graphs is NP-complete?” We consider one such
property namely, chordality, and show that STREE on chordal-convex split graphs is NP-complete.

Definition 3. A split graph G is called chordal-convex split graph with convexity on K, if there is an
associated chordal graph G′ defined on K, such that for each v ∈ I, NG(v) induces a subchordal graph in G′.

Theorem 13. STREE on a chordal-convex split graph with convexity on K is NP-complete.
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Proof. STREE is in NP Given an input instance (G,R, k) of STREE, and a certificate set S ⊆ V (G).
By using graph traversal algorithms the connectedness of the graph induced on R ∪ S can be verified in
deterministic polynomial time.
STREE is NP-Hard It is known [1], that STREE on split graphs is NP-complete and this can be reduced
in polynomial time to STREE on the chordal-convex split graph using the following reduction. We map an
instance (G,R, k) of STREE on split graphs to the corresponding instance (G∗, R∗, k′ = k) of STREE on the
chordal-convex split graph as follows:
V (G∗) = V1 ∪ V2 ∪ V3,
V1 = {wi | vi ∈ V (G) ∩K},
V2 = {yi | vi ∈ V (G) ∩ I},
V3 = {xi | vi ∈ V (G) ∩ I}.
We shall now describe the edges of G∗,
E(G∗) = E1 ∪ E2,
E1 = {{wi, wj}, {wi, yk}, {yk, yl} | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n},
E2 = {{wi, xj}, {xj , yj} | {wi, xj} ∈ E(G), wi, yj ∈ K∗, xj ∈ I∗}.
We define K = V1 ∪ V2, I = V3, and an imaginary split graph G′ with clique K ′ and independent set I ′ on
K∗ is defined with split graph G as an imaginary structure.
An example is illustrated in Figure 5, the STREE in split graph with k = 2 is mapped to STREE on
chordal-convex split graph with R = {xi | xi ∈ I}, k′ = 2.
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Fig. 5: An example: STREE in split graphs reduces to STREE on the chordal-convex split graph.

Claim 13.1. G∗ is a chordal-convex split graph.

Proof. For each xi ∈ V3, NG(xi) ⊆ K∗, K∗ = V1 ∪ V2. By our construction, xi is adjacent to a subset of
vertices in K ′. Therefore, the graph induced on NG(xi) is a split graph in G′. Hence G∗ is a chordal-convex
split graph. ut

Claim 13.2. STREE (G,R, k) if and only if STREE (G∗, R∗, k′).

Proof. Since NG(I) \NG(I∗) = ∅ and NG(I∗) \NG(I) = ∅, S is the Steiner set of G is also the Steiner set of
G∗. Similarly, S∗ is the Steiner set of G. ut

Thus we conclude STREE is NP-Hard on the chordal-convex split graph. Therefore, STREE is NP-complete
on chordal-convex split graphs. ut

Note that yet another natural P-versus-NPC line we can observe from this paper is that the tree-convex split
graph with convexity on I is NP-complete whereas the tree-convex split graph is polynomial-time solvable.
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3 Application 4: Domination and its variants

In this section, we prove that the solution to DS, TDS, and CDS, can be obtained from STREE of a convex
split graph for R = I. Let G be some convex split graph. It is known [8], that a minimum Steiner set is also a
minimum dominating set on the class of split graphs. Hence the result is true for a subclass of split graphs as
well. We also show that for a split graph G if dominating set S ⊆ K, then S is also a Steiner set of G for
R = I, which we prove in the following claim.

Claim 14 S ⊆ K is a minimum dominating set if and only if for the Steiner tree problem when R = I,
S ⊆ K is the Steiner solution.

Proof. Let S be a minimum dominating set of G. We know that S ⊆ K ∪ I. Suppose that S ∩ I 6= ∅,
then let S ∩ I = {x1, x2, . . . , xl}. Including any one neighbor for each of x1, x2, . . . , xl in S and removing
{x1, x2, . . . , xl} from S is also a minimum dominating set of G. Hence S is also a minimum Steiner set for
R = I.
Conversely, For the Steiner tree problem Since S is a minimum Steiner set for R = I, it is clear that S
dominates all of I. The vertices in K \ S are dominated by vertices in S. Hence S is also a minimum
dominating set.
Therefore, S ⊆ K is a minimum dominating set if and only if for the Steiner tree problem when R = I,
S ⊆ K is the Steiner solution. ut

Since S ⊆ K, by the definition of CDS, and TDS, S is also a connected dominating set and total dominating
set. The minimality of CDS and TDS can be proved similar to Claim 14. Therefore, the following results hold;

– DS for star-convex split graphs with convexity on I and comb-convex split graphs with convexity on I is
NP-complete. Hence DS is NP-complete for a tree-convex split graph with convexity on I.

– DS for path-convex and triad-convex split graphs with convexity on I is polynomial-time solvable.

– DS for a tree-convex split graph with convexity on K is polynomial-time solvable.

– DS for a circular-convex split graph with convexity on K is polynomial-time solvable.

– DS for a chordal-convex split graph with convexity on K is NP-complete.

The P-versus-NPC status of STREE for split graphs with convex properties discussed in this paper also holds
for DS, CDS, and TDS.

4 Parameterized results

In this section, we analyze the parameterized complexity of the Steiner tree problem on split graphs. We wish
to identify the tractability vs intractability status of the Steiner tree problem on split graphs.
In this section, we ask the following two questions and answer them;

Whether the parameterized version of Steiner tree problem is tractable or intractable for split graphs?
We answer this question by proving that the parameterized version of Steiner tree problem with solution size
as the parameter for split graphs, is W[2]-hard. The parameterized version of Steiner tree problem which we
considered with solution size being parameter k (PSTREE3) is defined below:

PSTREE3 (G,R, k)
Instance: A split graph G, a terminal set R = I.
Parameter: A positive integer k.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?
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4.1 W-hardness of STREE on split graphs

In this section, we show that PSTREE3 on split graphs is in W[2]-hard. We know that the dominating
set problem on split graphs is known to be W[2]-hard [16]. We give a polynomial-time reduction from the
parameterized version of dominating set problem for split graphs to PSTREE2.

Theorem 15. For split graphs, PSTREE3 is W[2]-hard.

Proof. We prove this by giving a reduction from the parameterized version of dominating set problem on
split graphs. We map an instance (G, k) of the parameterized version of dominating set problem on split
graphs to the corresponding instance (G,R, k) of PSTREE2.
We show that G has a dominating set of size k if and only if G for R = I has a Steiner set of size k.
Only if: Let D be a dominating set of size k in G. If D ∩ I 6= ∅, then by using Claim 14, we obtain S whose
cardinality is equal to the cardinality of D. Clearly, |S| = k.
if: From [8], it is known that S is a dominating set for G.
Therefore, PSTREE2 is W[2]-hard. ut

Further we ask;

Does there exists a parameter for which the corresponding parameterized version of the Steiner tree problem
on split graphs is in FPT?
We prove that for the parameters such as (i)the treewidth, and (ii) the solution size and the maximum degree
of I, then the parameterized version of Steiner tree problem for split graphs is in FPT.
The parameterized version of Steiner tree problem with parameter the treewidth r of G (PSTREE4) is defined
below:

PSTREE3 (G,R, k)
Instance: A split graph G, a terminal set R = I.
Parameter: The treewidth r of G.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

The parameterized version of Steiner tree problem with parameters k and d (PSTREE5) is defined below:

PSTREE5 (G,R, k)
Instance: A split graph G, a terminal set R = I.
Parameter: A positive integer k, and the maximum degree d of I.
Question: Is there a set S ⊆ V (G) \R such that |S| ≤ k, and G[S ∪R] is connected ?

We show that PSTREE4, PSTREE5 are FPT in the following section.

4.2 FPT algorithms for the parameterized version of the Steiner tree problem on split
graphs

4.2.1 FPT algorithm for PSTREE4 on split graphs with treewidth as the parameter

In this section, we show that PSTREE4 on split graphs exhibits an FPT algorithm when the parameters are
the treewidth and the solution size. It is known that STREE can be solved in 3|R|nO(1) on general graphs.
We show that PSTREE4 on split graphs can be solved in 2|K|nO(1).
We use the bounded search tree technique for solving PSTREE4. We shall describe our branching algorithm;
Given an instance (G,R, r), we recursively branch by two cases by considering v ∈ K is in S or not in S.
At any iteration, if N I

K(v) contains a pendant vertex, then the branch is for one case v ∈ K is in S. In the
branch where v ∈ S, we delete v, N I

G(v) from G and reduce the parameter by 1. In the second branch, we
delete v from G and the parameter remains the same. Suppose that dIG(v) = 1, then the second branch is not
possible.
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Lemma 16. The solution set S obtained from the above strategy is a minimum Steiner set of G for R = I.

Proof. Since R = I, S ⊆ K. Let |I| = m. By our approach, we choose an arbitrary vertex in v ∈ K such that
dIG(v) 6= 0, and we branch by having v ∈ S and another branch with u /∈ S. We can observe that length of the
tree is |K| and the number of leaves is at most 2|K|. For each vertex u ∈ K, we explore the two possibilities,
hence one of the paths from the root to the leaf is having minimum Steiner solution. ut

Observe that by this approach we list all feasible solutions. Note that the length of the tree is |K| and the
number of leaves is at most 2|K|. The running time of the algorithm is bounded by the number of nodes
(2|K|) and the time is taken at each node nc, where c is a constant. The algorithm runs in time 2|K|nO(1).

4.2.2 FPT algorithm for PSTREE5 on split graphs with the maximum degree of I and |S| as
the parameter

In this section, we show that PSTREE5 admits a kernel of size (2d − 1)k(d−1) + k. It is known [21], that
d-hitting set guarantees a kernel whose order does not exceed (2d− 1)kd−1 + k. The parameterized version of
d-hitting set can be stated as follows:

d-Hitting set (C, P, k)
Instance: A collection C of subsets of size d obtained from a set P .
Parameter: A positive integer k, cardinality of every element in C is d .
Question: Does C have a hitting set of size k or less ?

We show that PSTREE 5 is FPT by using the FPT algorithm of d-hitting set as a black box. Let
d = max(dG(x1), . . . dG(xm)) be the maximum degree among vertices in I = {x1, x2, . . . , xm}. We con-
vert a given split graph G into a split graph G′ with d as the degree of every vertex z ∈ I as follows;
Let Y = y1, y2, . . . , yk be the vertices in I whose degree is less than d. Then V (G′) = V (G) ∪ U, U =
{ui1, ui2, . . . , ui(d−dG(yi)) | yi ∈ Y, 1 ≤ i ≤ k}, E(G′) = {{x, y} | x, y ∈ V (G′), {x, y} ∈ E(G)} ∪ {{yi, uij} |
yi ∈ Y, uij ∈ U, 1 ≤ i ≤ k, 1 ≤ j ≤ d − dG(yi)} ∪ {{x, y} | x ∈ (V (G′) ∩ K), u ∈ U}. Observe that
K ′ = K ∪ U , and I ′ = I.

We transform an instance of a split graph G′ with each z ∈ I of degree d into the corresponding in-
stance of d-hitting set with C as a collection of subsets of a set P as follows:
The set P = {wi | wi ∈ K ′}, and collection C = {Ai | Ai = NG′(xi), xi ∈ I ′}. Since for each z ∈ I, have
degree d, for each Ai ∈ C, 1 ≤ i ≤ m, it is clear that cardinality of Ai is d.
It is known that d-hitting set admits a kernel of size (2d− 1)kd−1 + k, by using the following lemma we prove
that (G′, R′, k) admits a kernel of size (2d− 1)kd−1 + k.

Lemma 17. If (C, P, k) admits a kernel of size (2d− 1)kd−1 + k, then (G′, R′ = I, k) admits a kernel of size
(2d− 1)kd−1 + k.

Proof. Since we have a kernel for (C, P, k), we construct a kernel for (G′, R′ = I ′, k) as follows; For each
element C in the crown reduction, we replace it with the corresponding NG′(xi), and for each element P in
the crown reduction, we replace it with the corresponding vertex wj ∈ K. This if (C, P, k) admits a kernel
of size (2d− 1)kd−1 + k, then we can transform the kernel such that (G′, R′ = I, k) admits a kernel of size
(2d− 1)kd−1 + k. ut

Theorem 16. There is a polynomial-time algorithm that, for an arbitrary instance (G,R, k) of PSTREE5,
either determines that it is a no instance or computes a kernel instance whose order is bounded above by
(2d− 1)kd−1 + k.

Proof. Theorem holds because of [21] and Lemma 17. ut
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From Theorem 17, it is clear that we can obtain solution to (G′, R, k) in time O(2(2d−1)k
d−1+knc), where c

is a constant (by using brute-force approach for the kernel). We do a polynomial-time transform from the
solution S′ of G′ for R = I ′ to the solution S of G for R = I as follows;
If S′∩U = ∅, then S = S′ is the Steiner of G for R = I. Suppose that S′∩U 6= ∅. Let {a1, . . . , aq}, q ≥ 1 be the
vertices in S′ ∩U . By the construction of G′, we know that dIG(ai) = 1, ai ∈ (S′ ∩U). Assume that a1, . . . , aq
is included in S′ in order to connect y1, . . . , yq. We know that dG′(yi) ≥ 2 in G′, 1 ≤ i ≤ q, yi is adjacent to at
least one vertex in {w1, . . . , wn}∩K. Assume without loss of generality that yi is adjacent to wi, 1 ≤ i ≤ q ≤ n.
We construct S of G for R = I as follows; S = (S′∩V (G))∪{wi | {wi, yi} ∈ E(G)∧ (NG′(yi)∩ (S′∩U) 6= ∅)}.
Observe that S ⊆ K and for each z ∈ R, S ∩NG(z) 6= ∅. Thus S is a Steiner set of split graph G for R = I.

Therefore, (G,R, k) can be solved in time O(2(2d−1)k
d−1+knc), where c is a constant.

5 Approximation algorithm for Domination on split graphs

From [22], the dominating set problem has log n approximation algorithm on general graphs, and it does not
admit (1− ε) log n-approximation algorithm in polynomial time on general graphs, for any ε > 0, unless NP
⊆ DTIME (nO(log logn)). Further, it is known [23], that the dominating set problem is NP-complete on split
graphs, and we are interested in analyzing the approximation algorithm for the dominating set problem on
split graphs. In this section, we show that the dominating set problem has a 2− 1

|I| approximation algorithm

in polynomial time for split graphs. Further, it is important to highlight that in [2], it incorrectly claimed
that split graphs does not admit (1 − ε) log n-approximation algorithm in polynomial time, for any ε > 0,
unless NP ⊆ DTIME (nO(log logn)).

Lemma 18. The dominating set problem has 2− 1
|I| approximation algorithm in polynomial time for split

graphs.

Proof. Since the Steiner set S obtained for STREE of G for R = I is a subset of K, S is also a dominating
set. We know that STREE has 2− 1

|R| approximation algorithm in polynomial time, where R = I for split

graphs. Hence we also have 2− 1
|I| approximation algorithm in polynomial time for split graphs. ut

6 Other cases of STREE

Having seen STREE of G for R = I, we now consider STREE of G for other cases of R. Interestingly for all
other cases, the solution can be obtained using the solution of STREE of G for R = I as a black box.
Case 1: R = K or R ⊂ K.
Observe that G[R] is connected. Therefore, Steiner set S is an empty set.
Case 2: R ⊂ I.
For R ⊂ I, we transform the graph G to G′; V (G′) with K ′ = K, I ′ = I ∩ R, E(G′) = {{u, v} | u, v ∈
V (G′), {u, v} ∈ E(G)}, and R′ = I ′. Observe that R′ \R = ∅ and R \R′ = ∅. Thus, the solution of (G′, R′)
is precisely the solution to (G,R).
Case 3: R ∩K 6= ∅ and R ∩ I 6= ∅.
Similar to Case 2, we obtain the solution for this case using the following transformation. Let W = R ∩K,
and let X = I ∩ R. Let G′ be the transformed graph V (G′) with K ′ = K \W and I ′ = X \ (N I

G(W )),
E(G′) = {{u, v} | u, v ∈ V (G′), {u, v} ∈ E(G)}, and R′ = X. We map the solution of (G′, R′) to the solution
of (G,R) as S = S′ ∪W . Observe that (S) ∩NG(z) 6= ∅, z ∈ I. Thus for (G,R), S is the Steiner set.

Conclusions and directions for further research:
We have proved the classical complexity of STREE, and domination and its variants on tree-convex and
circular-convex split graphs. The results presented in this paper can be used as a framework for the Steiner
tree variants (Steiner path and cycle) and the domination problems (outer-connected domination, Roman
domination) restricted to split, and bipartite graphs.
We have given a 2− 1

|I|approximation algorithm for DS on split graphs, and it would be interesting to explore
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whether c− 1
|I| -approximation algorithm, 1 < c < 2 is possible for STREE and DS on split graphs.

We proved that the parameterized version of Steiner tree problem on split graphs with parameter being
solution is W[2]-hard, and with respect to the parameters such as (i) the treewidth and the solution size, and
(ii) the maximum degree of I and the solution size, we have shown that their corresponding parameterized
version of the Steiner tree problem is FPT. One can look into other parameters of the Steiner tree problem
on a split graph and analyze their parameterized complexity.
Furthermore, one can analyze the classical complexity for STREE and DS restricted to split graphs with
convexity properties other than path, triad, star, comb, tree, and circular. This would open up some new
subclasses of split graphs having nice structural properties.
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