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Abstract 

When multiple followers are involved in a bilevel decision problem, the leader’s decision 

will be affected, not only by the reactions of these followers, but also by the relationships 

among these followers. One of the popular situations within this framework is where 

these followers are uncooperatively making decisions while having cross reference of 

decision information. This situation is called a referential-uncooperative situation in this 

paper. The well-known Kuhn-Tucker approach has been successfully applied to a one-

leader-and-one-follower linear bilevel decision problem. This paper extends this 

approach to deal with the above-mentioned linear referential-uncooperative bilevel multi-

follower decision problem. The paper first presents a decision model for this problem. It 

then proposes an extended Kuhn-Tucker approach to solve this problem. Finally, a 

numeric example illustrates the application of the proposed Kuhn-Tucker approach.  

  

Keywords: bilevel programming, bilevel multi-follower decision, Kuhn-Tucker approach, 

optimization  

 

1. Introduction 

In a bilevel programming (BLP) problem, the leader cannot completely control his/her 

follower but is influenced by the reaction of his/her follower. Such a situation is 

appearing in decision making of many decentralized organizations. BLP was motivated 

by the game theory of Von Stackelberg [1] in the context of unbalanced economic 
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markets [2]. The majority of research on BLP has centered on the linear version of the 

problem in which only one follower is involved. There have been nearly two dozen 

algorithms, such as, the K
th

 best approach [3, 4], Kuhn-Tucker approach [5-7], 

complementarity pivot approach [8], penalty function approach [9-13], proposed for 

solving linear BLP problems since the field being caught the attention of researchers in 

the mid-1970s. Kuhn-Tucker approach has been proven to be a valuable analysis tool 

with a wide range of successful applications for linear BLP [2, 6, 7, 14-16].  

Although much research has been carried out in the area, the existing bilevel technology 

has mainly limited to a specific situation comparing one leader and one follower. 

However, in a real-world bilevel decision problem, the lower level of a bilevel decision 

may involve multiple decision units. For example, the dean of a faculty is the leader, and 

all the heads of departments in the faculty are the followers in making a faculty annual 

budget. The leader (the dean, for example)’s decision will be affected, not only by the 

reactions of the multiple followers (these heads of departments in the faculty), but also by 

the relationships among these followers.  Each of the leader's possible decisions is 

influenced by the various reactions of his/her followers who may have had a share in 

decision information, objectives and constraints. Hence, a bilevel multi-follower (BLMF) 

decision problem is a common case in any organizational decision practice, and involves 

various different decision situations. 

Our previous work [17-20] presented overcame some fundamental deficiency of existing 

linear BLP theory. Based on that, we have recently generalized a framework for BLMF 

decision problems, and identified nine main kinds of relationships amongst these 

followers [21]. The uncooperative model is the most popular situation for BLMF decision 

problems. This model handles the case in which there is no shared decision variable 

among the followers. Under this uncooperative model, the most basic situation is that any 

follower also doesn’t make any reference to other followers’ decision.  For a model and 

related approaches in finding an optimal solution for this particular decision situation, the 

reader is referred to [21-23]. Another such uncooperative situation is that though these 

followers are uncooperative (no sharing of decision variables) but have cross reference of 

information by considering other followers’ decision results in each of their own decision 
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objective and constraint. We call this case as a referential-uncooperative situation, and 

this paper will particularly focus on this situation. 

 

Following the introduction, this paper proposes a model for linear BLMF decision 

making in a referential-uncooperative situation in Section 2. An extended Kuhn-Tucker 

approach for solving this model is presented in Section 3. A numeric example for this 

approach is illustrated in Section 4. Further remarks are concluded in Section 5.  

 

2. The linear BLMF decision model in a referential-uncooperative situation 

Under the BLMF framework, if two followers don’t have any shared decision variable, it 

is called an uncooperative relationship. But if one of them has a reference of another 

follower’s decision information in his/her objective or constraint, the two followers are 

defined having a referential-uncooperative relationship. When there is a referential-

uncooperative relationship in a BLMF model, this model is called a referential-

uncooperative BLMF model. We present this model as follows.   

For nRXx  , im

ii RYy  , 1

1: RYYXF K   , and 1

1: RYYXf Ki   , 

Ki ,,2,1  , a linear BLMF decision problem where )2(K  followers are involved and 

there are not shared decision variables, but shared information in objective functions and 

constraint functions among the followers is defined as follows:  

                         





K

s

ssK
Xx

ydcxyyxF
1

1 ),,,(min   (1 a) 

                         subject to byBAx
K

s

ss 
1

 (1 b) 

                            





K

s

sisiKi
Yy

yexcyyxf
ii 1

1 ),,,(min   (1 c) 

                 subject to i

K

s

sisi byCxA 
1

,                                          (1 d) 
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where nRc , n

i Rc  , im

i Rd  , sm

is Re  , pRb , iq

i Rb  , npRA  , imp

i RB


 , 

nq

i
iRA


 , si mq

is RC


 , Ksi ,,2,1,  . 

Definition 1 A compact set is compact if every open cover of the entire space has a finite 

subcover. For example, ],[ ba  is compact in R  (the Heine-Borel theorem) [24]. 

Corresponding to (1), we give following basic definition. 

Definition 2 

(a) Constraint region: 

,,),,,{(
1

11 byBAxYYXyyxS
K

s

sskK  


  

},,2,1,
1

KibyCxA i

K

s

sisi 


. 

The constraint region refers to all possible combinations of choices that the leader 

and followers may make. 

(b) Projection of S  onto the leader’s decision space: 

},,2,1,,,:{)(
11

KibyCxAbyBAxYyXxXS i

K

s

sisi

K

s

ssii  


. 

(c) Feasible set for each follower )(XSx : 

  }),,,(:{)( 1 SyyxYyxS Kiii   . 

 The feasible region for each follower is affected by the leader’s choice of x , and  

  the allowable choices of each follower are the elements of S .  

(d) Each follower’s rational reaction set for )(XSx : 

)]}(ˆ:),,,2,1,,ˆ,(min[arg:{)( xSyijKjyyxfyYyxP iijiiiiii   ,  

where Ki ,,2,1  ,  )](ˆ:),,,2,1,,ˆ,(min[arg xSyijKjyyxf iijii   

)}(ˆ),,,,2,1,,ˆ,(),,,(:)({ 1 xSyijKjyyxfyyxfxSy iijiiKiii   . The 

followers observe the leader’s action and simultaneously react by selecting iy  

from their feasible set to minimize their objective functions. 

(e) Inducible region: 

},,2,1),(,),,,(:),,,{( 11 KixPySyyxyyxIR iiKK   .  

 Thus in terms of the above notations, (1) can be written as 



 5 

                         }),,,(:),,,(min{ 11 IRyyxyyxF KK   (2) 

We propose the following theorem to characterize the condition under which there is 

an optimal solution for (1). 

Theorem 1 If S  is nonempty and compact, there exists an optimal solution for a linear 

BLMFP problem. 

Proof: Since S  is nonempty, there exist a point Syyx K ),,,( **

1

*  . Then, we have 

  )(* XSx , 

by Definition 2(b). Consequently, we have 

 )( *xSi , Ki ,,2,1  , 

by Definition 2(c). Because S is compact and Definition 2(d), we have 

)]}(ˆ:),,,2,1,,ˆ,(min[arg:{)( *** xSyijKjyyxfyYyxP iijiiiiii    

:)({:{ *xSyyYy iiiii   

 )}}(ˆ),,,,2,1,,ˆ,(),,,( **

1

* xSyijKjyyxfyyxf iijiiKi  , 

where Ki ,,2,1  . Hence, there exists )( *0 xPy ii  , Ki ,,2,1   such that 

Syyx K ),,,( 00

1

*  .  Therefore, we have 

  },,2,1),(,),,,(:),,,{( 11 KixPySyyxyyxIR iiKK  , 

by Definition 2(e). Because we are minimizing a linear function 







K

s

ssK
Xx

ydcxyyxF
1

1 ),,,(min  over IR , which is nonempty and bounded, an optimal 

solution to the linear BLMFP problem must exist. So the proof is completed.  

 

3 An extended Kuhn-Tucker approach  

Let write a linear programming (LP) as follows. 

 cxxf )(min         

 subject to bAx         

      0x ,       

where c  is an n-dimensional row vector, b  an m-dimensional column vector, A  an 

nm  matrix with nm  , and nRx . 
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Let mR  and nR  be the dual variables associated with constraints bAx   and 

0x , respectively. Bard [2] gave the following proposition. 

 

Proposition 1 A necessary and sufficient condition that )( *x  solves above LP is that 

there exist (row) vectors * , *  such that ),,( *** x  solves: 

 cA           

 0bAx          

 0)( bAx          

 0x           

 0,0,0  x .       

Proof: (See reference [2] PP. 59-60) 

 

Let p

i Ru  , Kqqq

i Rv



21  and im

i Rw  ),,2,1( Ki   be the dual variables associated 

with constraints )(
1

byBAx
K

s

ss 


, )( '

1

'' byCxA
K

s

ss 


 and 0iy  ),,1( Ki  , 

respectively, where T

KAAAA ),,,( 21

'  , T

iKiii CCCC ),,,( 21

'  , T

Kbbbb ),,,( 21

'  . 

We have a following theorem. 

Theorem 2 A necessary and sufficient condition that ),,,( **

1

*

Kyyx   solves the linear 

BLMFP problem (1) is that there exist (row) vectors **

2

*

1 ,,, Kuuu  , **

2

*

1 ,,, Kvvv  and 

**

2

*

1 ,,, Kwww   such that ),,,,,,,,,,,,( **

1

**

1

**

1

**

1

*

KKKK wwvvuuyyx   solves: 

                         





K

s

ssK
Xx

ydcxyyxF
1

1 ),,,(min   (3 a) 

                         subject to byBAx
K

s

ss 
1

 (3 b) 

'

1

'' byCxA
K

s

ss 


 (3 c) 

iiiiiii ewCvBu  '  (3 d) 
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0)()(
1

'''

1

 


ii

K

s

ssi

K

s

ssi ywyCxAbvyBAxbu  (3 e) 

Kjwvuyx jjjj ,,2,1,0,0,0,0,0  , (3 f) 

where Ki ,2,1  . 

Proof: 

(1) Let us get an explicit expression of (2). 

Rewrite (2) as follows: 

 ),,,(min 1 KyyxF   

 subject to IRyyx K ),,,( 1  . 

We have 

 ),,,(min 1 KyyxF   

 subject to Syyx K ),,,( 1   

       )(xPy ii  , 

 where Ki ,,2,1  , by Definition  2(e). Then, we have 

 ),,,(min 1 KyyxF   

 subject to Syyx K ),,,( 1   

                 )](ˆ:),,,2,1,,ˆ,(min[arg xSyijKjyyxfy iijiii   , 

 where Ki ,,2,1  , by Definition  2(d). We rewrite it as: 

 ),,,(min 1 KyyxF   

 subject to Syyx K ),,,( 1   

                  ),,,(min 1 Ki yyxf   

                  subject to )(xSy ii  , 

where Ki ,,2,1  . We have 

 ),,,(min 1 KyyxF   

 subject to Syyx K ),,,( 1   

                  ),,,(min 1 Ki
Yy

yyxf
ii




 

                  subject to Syyx K ),,,( 1  , 
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where Ki ,,2,1  , by Definition  2(c). Consequently, we can have 

                         





K

s

ssK
Xx

ydcxyyxF
1

1 ),,,(min   (4 a) 

                         subject to byBAx
K

s

ss 
1

 (4 b) 

             i

K

s

sisj byCxA 
1

, Kj ,,2,1   (4 c) 

                  





K

s

sisiKii
Yy

yexcyyxf
ii 1

),,,(min   (4 d) 

           subject to byBAx
K

s

ss 
1

  (4 e) 

                        i

K

s

sisj byCxA 
1

, Kj ,,2,1  , (4 f) 

where Ki ,,2,1  , by Definition  2(a). 

This simple transformation has shown that solving the linear BLMFP (1) is 

equivalent to solving (4a-f). 

(2) Necessity is obvious from (4a-f). 

(3) Sufficiency. 

If  ),,,( **

1

*

Kyyx   is the optimal solution of (1a-d), we need to show that there exist (row) 

vectors **

2

*

1 ,,, Kuuu  , **

2

*

1 ,,, Kvvv  and **

2

*

1 ,,, Kwww   such that ,,,,,,,( **

1

**

1

*

KK uuyyx   

),,,,, **

1

**

1 KK wwvv   to solve (4a-f). Going one step farther, we only need to proof that 

there exist (row) vectors **

2

*

1 ,,, Kuuu  , **

2

*

1 ,,, Kvvv  and **

2

*

1 ,,, Kwww   such that 

),,,,,,,,,,,,( **

1

**

1

**

1

**

1

*

KKKK wwvvuuyyx   satisfies the follows 

iiiiiii ewCvBu  '  (5 a) 

0)(
1

 


K

s

ssi yBAxbu  (5 b) 

0)(
1

'''  


K

s

ssi yCxAbv  (5 c) 

0ii yw  (5 d) 
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where p

i Ru  , Kqqq

i Rv



21 , im

i Rw  , Ki ,,2,1   and they are not negative 

variables. Because ),,,( **

1

*

Kyyx   is the optimal solution of (1a-d), we have 

 IRyyx K ),,,( **

1

*  , 

by (2). Thus we have 

 )( ** xPy ii  , 

where Ki ,,2,1  , by Definition  2(e). Consequently, 

),,,( **

2

*

1 Kyyy   is the optimal solution to the following problem 

 ))(:),,,(min( *

1

* xSyyyxf iiKi  ,             

where Ki ,,2,1  , by Definition  2(d). Rewrite it as follows 

 ),,,(min 1 Ki yyxf   

 subject to )(xSy ii   

       *xx    

       
*

jj yy  , ijKj  ,,,2,1  , 

where Ki ,,2,1  . From Definition  2(c), we have 





K

s

sisiKi yexcyyxf
1

1 ),,,(min   (6 a) 

                                subject to byBAx
K

s

ss 
1

  (6 b) 

j

K

s

sjsj byCxA 
1

, Kj ,,2,1   (6 c) 

*xx   (6 d) 

0iy  (6 e) 

ijKjyy jj  ,,,2,1,*  , (6 f) 

where Ki ,,2,1  . Let us define: 

1

21

' ),,,(  KAAAA  , 1

21

' ),,,(  Kbbbb  , 1

21

' ),,,(  iKiii CCCC  , Ki ,2,1  . To 

simplify (6c), we can have 
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



K

s

sisiKi yexcyyxf
1

1 ),,,(min                 

subject to byBAx
K

s

ss 
1

                                   

       '

1

'' byCxA
K

s

ss 


                             

      *xx                                                 

                             0iy ,                         

       ijKjyy jj  ,,,2,1,*  ,           

where Ki ,,2,1  . Thus simplify it, we can have 

iiiii yeyf )(min  (7 a) 

                                subject to 
















































K

iss

ssi

K

iss

ss

i

i

i

yCxAb

yBAxb

y
C

B

,1

*'*''

,1

**

'
  (7 b) 

0iy  (7 c) 

where Ki ,,2,1  . 

Now we see that *

iy  is the optimal solution of (7) which is a LP problem. By 

Proposition 1, there exists vector ** , ii  , Ki ,,2,1  that satisfy a system below 

 iii

i

i

i e
C

B
















'
            

 0)(

,1

*'*''

,1

**

'

















































K

iss

ss

K

iss

ss

i

i

i

i

yCxAb

yBAxb

y
C

B
                     

 0ii y ,                           

where Kqqp

i R



1 ,  im

i R , Ki ,,2,1  . 

Let p

i Ru  , Ki qqq

i Rv



2 , im

i Rw   and define  
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 iii vu ,  

iiw  , 

where Ki ,,2,1  . Thus we have ),,,,,,,,,,,,( **

1

**

1

**

1

**

1

*

KKKK wwvvuuyyx  that 

satisfy (8a-n). Our proof is completed.      

Theorem 2 means that the most direct approach to solving (1a-d) is to solve the 

equivalent mathematical program given in (7a-c). One advantage that it offers is that it 

allows for a more robust model to be solved without introducing any new computational 

difficulties. 

4. A numeric example 

Example 1 

Consider a following linear BLMF problem with 1

21, Rxx  , 1

21, Ryy  , 1Rz and 

}0,0{ 21  xxX , }0,0,0{ 321  yyyY ,  

     321212121
,

440448),,,,(min
21

yyyxxzyyxxF
XxXx




 

  subject to 15.022 3211  yyyx   

       3212121211 22),,,,(min
1

yyyxxzyyxxf
Yy




 

                     3212121212 22),,,,(min
2

yyyxxzyyxxf
Yy




 

    3212121213 233),,,,(min
33

yyyxxzyyxxf
Yy




 

         subject to 15.022 3212  yyyx        

                   1321  yyy . 

Let us give Example 1 to show how the Kuhn-Tucker approach works. According to our 

approach, let us write all the inequalities but 0,0,0 321  yxx  of the transferred form 

of Example 1 as follows: 

0)5.022(1),,,,( 3211321211,  yyyxyyyxxgu  

0)5.022(1),,,,( 3212321211,  yyyxyyyxxgv  

0)(1),,,,( 321321212,  yyyyyyxxgv  
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 0),,,,( 1321211,1  yyyyxxgw  

0),,,,( 2321211,2  yyyyxxgw  

0),,,,( 3321211,3  yyyyxxgw . 

From (3a-f), we have 

)440448min( 32121 yyyxx   (8 a) 

subject to 15.022 3211  yyyx  (8 b) 

15.022 3212  yyyx  (8 c) 

1321  yyy  (8 d) 

22 11121111  wvvu  (8 e) 

22 21222121  wvvu  (8 f) 

25.05.0 31323131  wvvu  (8 g) 

0111,1122,111,111,  wgvgvgug wvvu  (8 h) 

0211,2222,211,211,  wgvgvgug wvvu  (8 i) 

0311,3322,311,311,  wgvgvgug wvvu  (8 j) 

0,0,0,0,0 32121  yyyxx  (8 k) 

0,0,0,0 11121111  wvvu  (8 l) 

0,0,0,0 21222121  wvvu  (8 m) 

0,0,0,0 31323131  wvvu . (8 n) 

 

From (8e), (8f), (8g), (8l), (8m) and (8n), we can have following six possibilities. 

Case 1: )0,2,0,0,0,0,2,0,0,0,0,2(),,,,,,,,,,,( 313231312122212111121111 wvvuwvvuwvvu  

Case 2: )0,2,0,0,0,0,2,0,0,2,0,0(),,,,,,,,,,,( 313231312122212111121111 wvvuwvvuwvvu  

Case 3: )0,2,0,0,0,0,2,0,2,0,0,0(),,,,,,,,,,,( 313231312122212111121111 wvvuwvvuwvvu  

Case 4: )0,2,0,0,2,0,0,0,0,0,0,2(),,,,,,,,,,,( 313231312122212111121111 wvvuwvvuwvvu  

Case 5: )0,2,0,0,2,0,0,0,0,2,0,0(),,,,,,,,,,,( 313231312122212111121111 wvvuwvvuwvvu  



 13 

Case 6: )0,2,0,0,2,0,0,0,2,0,0,0(),,,,,,,,,,,( 313231312122212111121111 wvvuwvvuwvvu  

From Case1, (8h), (8i), (8j) and (8k), we have 

0)5.022(1),,,,( 3211321211,  yyyxyyyxxgu  

0)5.022(1),,,,( 3212321211,  yyyxyyyxxgv  

0)(1),,,,( 321321212,  yyyyyyxxgv . 

Consequently, (8) can be rewritten as follows: 

 )440448min( 32121 yyyxx        

 subject to 15.022 3211  yyyx           

      15.022 3212  yyyx  

       1321  yyy       

       0,0,0,0,0 2121  zyyxx . 

Using the simplex algorithm [2], we found that a solution occurs at the point 

)2,0,1,0,5.1(),,,,( 1

3

1

2

1

1

1

2

1

1 yyyxx  with 81 F , 31

1 f , 5.11

2 f  and 5.11

3 f  

By using the same way as that of Case 1, we have that a solution occurs at the point 

)2,0,1,0,5.1(),,,,( 2

3

2

2

2

1

2

2

2

1 yyyxx  with 82 F , 32

1 f , 5.12

2 f  and 5.12

3 f  for 

Case 2; a solution occurs at the point )1,0,0,75.0,75.0(),,,,( 3

3

3

2

3

1

3

2

3

1 yyyxx  with 53 F , 

25.13

1 f , 25.13

2 f  and 5.23

3 f  for Case 3; a solution occurs at the point 

)2,0,1,0,5.1(),,,,( 4

3

4

2

4

1

4

2

4

1 yyyxx  with 84 F , 34

1 f , 5.14

2 f  and 5.14

3 f  for 

Case 4; a solution occurs at the point )2,0,1,0,5.1(),,,,( 5

3

5

2

5

1

5

2

5

1 yyyxx  with 85 F , 

35

1 f , 5.15

2 f  and 5.15

3 f  for Case 5; a solution occurs at the point 

)0,0,0,75.0,75.0(),,,,( 6

3

6

2

6

1

6

2

6

1 yyyxx  with 56 F , 25.16

1 f , 25.16

2 f  and 

5.26

3 f   for Case 6. 

By examining above procedure, we found that the solution occurs at the point 

)2,0,1,0,5.1(),,,,( **

2

*

1

*

1

*

1 zyyxx  with 8* F , 3*

1 f , 5.1*

2 f , 5.1*

3 f for this 

Example 1.  
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5. Further remark 

Different relationships among followers in a BLMF decision problem could cause 

multiple different processes for deriving an optimal solution for the upper level’s decision 

making. The referential-uncooperative situation is one of the popular cases in BLMF 

decision practices. For solving such a BLMF decision problem, this paper extended the 

Kuhn-Tucker approach from dealing with one leader and one follower to dealing with 

referential-uncooperative multiple followers. This paper further illustrated the details of 

the proposed approach by a numeric example. Initial experiment results showed this new 

extended approach more effectively for solving the proposed BLMF decision problem. 

Like most really powerful ideas, the basic notion of Nash equilibrium is very simple, 

even obvious. Its mathematical extensions and implications are not, however. The idea of 

this natural "sticking point" is that no single player can benefit from unilaterally changing 

his or her move - a non-cooperative best-response equilibrium [25]. As a future research, 

we are going to explore how use this concept into our BLMF research. Some practical 

use of this extended algorithm also will be considered as our future research task for 

BLMF decision making in the referential-uncooperative situation.  
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