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Abstract

This paper discusses the global minimization of rational functions with or without constraints.
The sum of squares (SOS) relaxations are proposed to find the global minimum and minimizers.
Some special features of the SOS relaxations are studied. As an application, we show how to find
the nearest common divisors of polynomials via global minimization of rational functions.

keywords: Rational function, polynomial, global minimization, sum of squares (SOS), great-
est common divisor, quadratic module.

1 Introduction

Consider the problem of minimizing a rational function

r∗ = min
x∈Rn

r(x) :=
f(x)

g(x)
(1.1)

s.t. h1(x) ≥ 0, · · · , hm(x) ≥ 0. (1.2)

where f(x), g(x), hi(x) ∈ R[X]. Here R[X] is the ring of real polynomials in X = (x1, · · · , xn).
Our goal is to find the global minimum r∗ of the rational polynomial r(x), and if possible, one or
more global minimizer(s) x∗ such that r(x∗) = r∗. This contains a broad class of nonlinear global
optimization problems. Without loss of generality, assume that g(x) is not identically zero and

nonnegative on the feasible set, otherwise we can replace f(x)
g(x)

by f(x)g(x)

g2(x)
.

When n = 1 and there are no constraints, i.e., the case of one-dimensional unconstrained
minimization, the problem is simpler. As we can see, γ is a lower bound for r(x) if and only if
the univariate polynomial f(x)− γg(x) is nonnegative, i.e.,

f(x)− γ · g(x) ≥ 0 ∀x ∈ R.

As is well-known, a univariate polynomial is nonnegative if and only if it can be written as sum of
squares (SOS) of polynomials [24]. This poses a convex condition [21, 27] (actually it is a linear
matrix inequality (LMI)) on γ for given f(x), g(x). Thus the problem (1.1) can be reformulated
as maximizing γ subject to a particular LMI. Therefore the problem (1.1) can be solved efficiently
as a semidefinite program (SDP) [5, 31].

∗Department of Mathematics, University of California, Berkeley, CA 94720, email: njw@math.berkeley.edu
†Department of Math & EECS, University of California, Berkeley, CA 94720, email: demmel@cs.berkeley.edu
‡Department of Mathematics, University of California, Berkeley, CA 94720, email: mgu@math.berkeley.edu

1

http://arxiv.org/abs/math/0601110v1


However, when n > 1, the problem (1.1) can be very hard even if there are no constraints, which
is due to the difficulty that a nonnegative multivariate polynomial might not be sum of squares of
polynomials [24]. Even in the special case that deg(f) = 4 and deg(g) = 0, that is, r(x) becomes
a multivariate polynomial of degree 4, to find its global minimum is NP-hard, as mentioned in
Nesterov [17]. So we need some approximations of nonnegative polynomials to find an approximate
minimum value (often a guaranteed lower bound) and extract approximate minimizer(s). One
frequently used technique in polynomial optimization is to approximate nonnegative polynomials
by sum of squares of polynomials, i.e., SOS relaxations. We refer to [13, 20, 21].

To test nonnegativity of a general polynomial of degree 4 or higher is NP-hard in n, the number
of variables. For instance, for a given generic n− by − n symmetric matrix A = (aij)n,n, to test
whether the quartic homogenous polynomial

[x2]TA[x2] :=

n
∑

i,j=1

aijx
2
ix

2
j

is nonnegative is NP-hard [7]. The matrix A is said to be co-positive if [x2]TA[x2] is nonnegative for
every vector x ∈ R

n. However, to test whether a polynomial is a sum of squares of polynomial can
be determined efficiently by solving a semidefinite program [20, 21]. Recently, there has been much
work on finding the global minimum of polynomial functions via sum of squares (SOS) relaxations
(also called semidefinite programming or LMI relaxation). We refer to [10, 13, 18, 20, 21] and the
references therein for work in this area. Our goal is to use SOS relaxations to solve the global
minimization problem (1.1)-(1.2).

Throughout this paper, we will use the following notation. R (C) is the field of real (complex)
numbers. For any complex number z, z̄ denotes its complex conjugate. N is the set of nonnegative
integers. For any integer vector α ∈ N

n, define xα := xα1

1 · · ·xαn

n and |α| := α1+· · ·+αn.
∑

R[X]2

denotes the cone of sums of squares of polynomials in R[X]. For any real matrix (or vector) A,
AT denotes its transpose. For a symmetric matrix W , W � (≻)0 means that W is positive
semidefinite (definite). For any two given matrices U and V of the same size, their inner product
U • V is defined as U • V :=

∑

i,j UijVij . For any x ∈ R
n, its two norm ‖x‖2 is defined as

√

x2
1 + · · ·+ x2

n.

This paper is organized as follows. Section 2 discusses the method of SOS relaxation and
the special features in minimizing rational functions without constraints. Section 3 shows one
application of minimizing rational functions in finding nearest GCDs. Section 4 then discusses
SOS relaxations and the special features in constrained case. In Section 5, we draw conclusions.

2 SOS relaxation

In this section, we discuss the global minimization of (1.1) without any constraints. The con-
strained case will be handled in Section 4.

Obviously, γ is a lower bound for r∗ if and only if the polynomial f(x)− γg(x) is nonnegative.
By approximating the nonnegativity of f(x) − γg(x) by a sum of squares, we get the following
SOS relaxation

r∗sos := sup
γ

γ

s.t. f(x)− γg(x) ∈
∑

R[X]2.

For any feasible γ, we immediately have r(x) ≥ γ for every x ∈ R
n. Thus every feasible γ

(including r∗sos) is a lower bound for r(x), i.e., r∗sos ≤ r∗.
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Let 2d = max(deg(f),deg(g)) (it must be even for r(x) to have a finite minimum) and m(x)
be the column vector of monomials up to degree d

m(x)T = [ 1, x1, · · · , xn, x
2
1, x1x2, · · · , x2

n, x
3
1, · · · , xd

n ].

Notice that the dimension of vector m(x) is
(

n+d

d

)

. Then f(x) − γg(x) is SOS if and only there

exists a symmetric matrix W � 0 of dimension
(

n+d

d

)

such that [21, 27] the identity holds:

f(x)− γg(x) ≡ m(x)TWm(x). (2.1)

Now we write f(x) =
∑

α∈F fαx
α and g(x) =

∑

α∈F gαx
α, where F is a finite subset of Nn. i.e.,

F is the support of polynomials f(x) and g(x).
Throughout this paper, we index the rows and columns of matrix W by monomials up to

degree d, i.e., the indices for the entries in W have the form (α, β) where α, β ∈ N
n. For fixed

α ∈ F , we define the monomial base matrix Bα as follows (see [13])

Bα(η, τ ) =

{

1 if η + τ = α

0 otherwise.

When n = 1, the Bα are Hankel matrices. Now we can see that (2.1) holds if and only if

fα − γgα = Bα •W, ∀α ∈ F.

Therefore the SOS relaxation of problem (1.1) is essentially the following semidefinite program:

r∗sos := sup
γ,W

γ (2.2)

s.t. fα − γgα = Bα •W, ∀α ∈ F (2.3)

W � 0. (2.4)

Notice that the decision variables are γ and W instead of x. We refer to [5, 31] for the theory
and applications of SDP.

Now let us derive the dual problem of SDP (2.2)-(2.3). Its Lagrange function is

L(γ,W, y, S) = γ +
∑

α∈F

(fα − γgα− < Bα,W >)yα +W • S

=
∑

α∈F

fαyα + (1−
∑

α∈F

gαyα)γ + (S −
∑

α∈F

yαBα) •W

where y = (yα) and W are dual decision variables (Lagrange multipliers). Here S � 0 corresponds
to the constraint W � 0. Obviously it holds

sup
γ,W

L(γ,W, y, S) =











∑

α∈F fαyα if
∑

α∈F gαyα = 1,
∑

α∈F yαBα = S

+∞ otherwise.

Therefore, the dual problem of (2.2)-(2.4) is

r∗mom := inf
y

∑

α∈F

fαyα (2.5)

s.t.
∑

α

gαyα = 1 (2.6)

Md(y) � 0. (2.7)
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where the matrix Md(y) :=
∑

α yαBα is called the d-th moment matrix of y. For an integer k, the
k-th moment matrix Mk(y) of a monomial-indexed vector y = (yα) is defined as

Mk(y) = (yα+β)0≤|α|,|β|≤k.

We refer to [13] for a more detailed description of moment matrices. (2.5)-(2.7) can also be
considered as a generalization of moment approaches in [13], except the equality (2.6).

From the derivation of dual problem (2.5)-(2.7) we immediately have that r∗sos ≤ r∗mom, which
is referred to weak duality in optimization duality theory. Actually we have stronger properties
for the SOS relaxation (2.2)-(2.4) and its dual (2.5)-(2.7) as summarized in the following theorem,
which is similar to Theorem 3.2 in [13].

Theorem 2.1. Assume that the SOS relaxation (2.2)-(2.4) has a feasible solution (γ,W ). Then
the following properties hold for the primal problem (2.2)-(2.4) and its dual (2.5)-(2.7):

(i) Strong duality holds, i.e., r∗sos = r∗mom, and f(x)− r∗sosg(x) is SOS.

(ii) The lower bound r∗sos obtained from SOS relaxation (2.2)-(2.4) is exact, i.e., r∗sos = r∗, if
and only if f(x)− r∗g(x) is SOS.

(iii) When r∗sos = r∗ and u(j) (j = 1, · · · , t) are global minimizers, then every monomial indexed
vector y of the following form

y ∈
{

t
∑

j=1

θjm2d(u
(j)) : θj ≥ 0,

t
∑

j=1

θj = 1

}

is an optimal solution to (2.5)-(2.7).

Proof. (i) The result can be obtained from the standard duality theory of convex programming
[25, §30], if we can show that there exists a vector ŷ such that

∑

α gαŷα = 1 and Md(ŷ) ≻ 0. Let µ
be a Lebesgue measure on R

n with strictly positive density everywhere on R
n and finite moments,

i.e., |
∫

xαdµ| < ∞ for all α ∈ N
n (e.g., one density function can be chosen as exp(−∑n

i=1 x
2
i )).

Define the vector y = (yα) as follows:

yα =

∫

xαdµ < ∞.

Then we claim that

0 < τ :=
∑

α

gαyα =

∫

g(x)dµ < ∞.

The second inequality is obvious since all the moments of µ are finite. For the first inequality, for
a contradiction, suppose τ ≤ 0, that is,

∫

g(x)dµ ≤ 0.

Since g(x) is assumed to be nonnegative everywhere and µ has positive density everywhere, we
must have that g(x) should be identically zero, which is a contradiction. Now we prove that
Md(y) is positive definite. For any monomial-indexed nonzero vector q with the same length as
Md(y) (corresponding to a nonzero polynomial q(x)), it holds that

qTMd(y)q =
∑

0≤|α|,|β|≤d

yα+βqαqβ =

∫





∑

0≤|α|,|β|≤d

xα+βqαqβ



 dµ =

∫

q(x)2dµ > 0.

Now let ŷ = y/τ , which obviously satisfies that
∑

gαŷα = 1 and Md(ŷ) ≻ 0. In other words,
the problem (2.5)-(2.7) has an interior point. Therefore, from the duality theory of convex opti-
mization, we know that the strong duality holds, i.e., r∗sos = r∗ and the optimal solution set of
(2.2)-(2.4) is nonempty.
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As already shown in (i), the optimal solution set of (2.2)-(2.4) is nonempty, which implies the
conclusion in (ii) immediately.

(iii) When r∗sos = r∗, the optimal value in (2.5)-(2.7) is also r∗, by strong duality as established
in (i). Now choose an arbitrary monomial-indexed vector y of the form

y =
t

∑

j=1

θjm2d(u
(j))

for any θ such that θj ≥ 0,
∑t

j=1 θj = 1. Then we have

∑

α∈F

fαyα =
t

∑

j=1

θjf(u
(j)) =

t
∑

j=1

θjr
∗ = r∗.

Obviously Md(y) =
∑t

j=1 θjmd(u
(j))md(u

(j))T � 0. So y is a feasible solution with optimal
objective value. Thus y is a optimal solution to (2.5)-(2.7).

The information about the minimizers of (1.1) can be found from the optimal solutions to the
dual problem (2.5)-(2.7). Suppose y∗ = (y∗

α) (where y∗
(0,··· ,0) 6= 0) is one minimizer of (2.5)-(2.7)

such that the moment matrix Md(y
∗) has rank one. Then there is a vector w, with the same

length as Md(y
∗), such that

Md(y
∗)/y∗

(0,··· ,0) = wwT

where the left hand side is the called normalized moment matrix, with the (1, 1) entry being 1.
Set x∗ := [w(2), w(3), · · · , w(n+1) ]. So for any monomial-index α, it holds that w(α) = (x∗)α.
Now plug the point x∗ into the rational function r(x), evaluate it, then we can see that

r(x∗) =
f(x∗)

g(x∗)
=

∑

α fα(x
∗)α

∑

α gα(x∗)α
=

∑

α fαŷα
∑

α gαŷα
= r∗mom = r∗sos.

In other words, we get a point x∗ at which the evaluation of objective r(x) equals the lower
bound r∗sos. Therefore, x∗ is a global minimizer and r∗sos equals the global minimum r∗. When
Md(y

∗) (with y∗
(0,··· ,0) 6= 0) has rank more than one, but it satisfies some flat extension condition

(rank(Mk(y
∗)) = rank(Mk+1(y

∗)) for some integer 0 ≤ k < d), there is more than one global
minimizer (the number equals the rank of the moment matrix), and they can be found numerically
by solving an eigenvalue problem. We refer to [4, 9] for more details about the flat extension
condition and extracting minimizers. When it happens that y∗

(0,··· ,0) = 0, we can not normalize
the moment matrix Md(y

∗) to represent some measure, which might be due to the case that the
infimum of r(x) is attained at infinity. For instance, consider the example r(x) := 1/(1 + x2

1).
The optimal solution is y∗ = (0, 0, 1), which can not be normalized.

In the following we show some examples of minimizing rational functions via SOS relaxations.
The problem (2.2)-(2.4) and its dual (2.5)-(2.7) are solved by YALMIP [15] which is based on
SeDuMi [30]. They can also be solved by softwares like SOSTOOLS [22] and GloptiPoly [8].

Example 2.2. Consider the global minimization of the rational function

(x2
1 + 1)2 + (x2

2 + 1)2

(x1 + x2 + 1)2
.

Solving (2.2)-(2.4) yields the lower bound r∗sos ≈ 0.7639. The solution y∗ to (2.5)-(2.7) is

y∗ ≈ (0.2000, 0.1236, 0.1236, 0.0764, 0.0764, 0.0764, 0.0472, 0.0472,

0.0472, 0.0472, 0.0292, 0.0292, 0.0292, 0.0292, 0.0292).

The rank of moment matrix M2(y
∗) is one, and we can extract one point x∗ ≈ (0.6180, 0.6180).

The evaluation of r(x) at x∗ shows that r(x∗) ≈ 0.7639. So x∗ is a global minimizer and 0.7639
is the global minimum (approximately, ignoring rounding errors).
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Example 2.3. Consider the global minimization of the rational polynomial

x4
1 − 2x2

1x2x3 + (x2x3 + 1)2

x2
1

The lower bound given by (2.2)-(2.4) is r∗sos ≈ 2.0000. The solution y∗ to (2.5)-(2.7) is

y∗ ≈ (1.0859, −0.0000, −0.0000, −0.0000, 1.0000, 0.0000, −0.0000, 0.8150, −0.0859,

0.8150, −0.0000, −0.0000, −0.0000, −0.0000, 0.0000, −0.0000, −0.0000, −0.0000,

− 0.0000, −0.0000, 1.0859, 0.0000, −0.0000, 0.8150, 0.0859, 0.8150, 0.0000, 0.0000,

− 0.0000, −0.0000, 2.3208, −0.0000, 0.1719, 0.0000, 2.3208).

The moment matrix M2(y
∗) does not satisfy the flat extension condition, and no minimizers can

be extracted. Actually one can see that 2 is the global minimum by observing the identity

f(x)− 2g(x) = (x2
1 − x2x3 − 1)2.

The lower bound 2 is achieved at (1, 0, 0) and hence is the global minimum. There are infinitely
many global minimizers.

The relationship between the bounds is r∗mom = r∗sos ≤ r∗ But it may happen that r∗sos < r∗,
just as in SOS relaxations for minimizing polynomials. Let us see the following example.

Example 2.4. Consider the global minimization of the rational function

x4
1x

2
2 + x2

1x
4
2 + x6

3

x2
1x

2
2x

2
3

.

The lower bound given by (2.2)-(2.4) is r∗sos = 0, and the solution y∗ to (2.5)-(2.7) is

y∗
(2,2,2) = 1, y∗

α = 0, ∀α 6= (2, 2, 2).

The global minimum r∗ = 3 because

x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3 ≥ 0 ∀x ∈ R

3

and r(1, 1, 1) = 3. So in this example, the SOS lower bound r∗sos < r∗. Actually for any 0 < γ ≤ 3,
the polynomial

x4
1x

2
2 + x2

1x
4
2 + x6

3 − γx2
1x

2
2x

2
3

is nonnegative but not SOS. The proof is the the same as to prove that the Motzkin polynomial

x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3

is not SOS [24].

2.1. What if r∗sos < r∗ ?

From Theorem 2.1, we know that r∗sos = r∗ if and only if the polynomial f(x)− r∗g(x) is sum
of squares. But sometimes f(x) − r∗g(x) might not be SOS, as we observed in Example 2.4. In
this subsection, we discuss how to minimize a rational function r(x) when r∗sos < r∗. Here we
generalize the big ball technique introduced in [13], but we must be very careful about the zeros
of the denominator g(x) in r(x).

Suppose we know that at least one global minimizer of r(x) belongs to the ball B(c, ρ) :=
{x ∈ R

n : ρ2 − ‖x − c‖22 ≥ 0} with center c and radius ρ > 0. Let π(x) := ρ2 − ‖x − c‖22. Then
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we immediately have that r∗ = min
x∈Rn

r(x) = min
x∈B(c,ρ)

r(x). In practice, we can often choose the

center c = 0 and radius ρ big enough. So the original unconstrained minimization problem (1.1)
becomes the constrained problem

min
x∈B(c,ρ)

r(x).

One natural SOS relaxation of this constrained problem is

r∗N := sup
γ

γ (2.8)

s.t. f(x)− γg(x) ≡ σ0(x) + σ1(x)π(x) (2.9)

deg(σ1) ≤ 2(N − 1), σ0(x), σ1(x) ∈
∑

R[X]2. (2.10)

Similar to the dual of (2.2)-(2.4), the dual problem of (2.8)-(2.10) can be found to be

r̂∗N := inf
y

∑

α∈F

fαyα (2.11)

s.t.
∑

α

gαyα = 1 (2.12)

MN (y) � 0 (2.13)

MN−1(π ∗ y) � 0 (2.14)

where π is the vector of the coefficients of polynomial π(x). For a general polynomial p(x) =
∑

α pαx
α, the generalized moment matrix Mk(p ∗ y) is defined as

Mk(p ∗ y)(β, τ ) :=
∑

α

pαyβ+τ+α, 0 ≤ |β|, |τ | ≤ k.

We have the following theorem for the SOS relaxation (2.8)-(2.10) and its dual (2.11)-(2.14),
which is similar to Theorem 3.4 in [13].

Theorem 2.5. Assume that r∗ > −∞ and at least one global minimizer of r(x) lies in the ball
B(c, ρ). If the numerator f(x) and denominator g(x) of r(x) have no common real zeros on
B(c, ρ), then the following holds:

(i) The lower bounds converge: lim
N→∞

r∗N = r∗.

(ii) For N large enough, there is no duality gap between (2.8)-(2.10) and its dual (2.11)-(2.14),
i.e., r∗N = r̂∗N .

(iii) For N large enough, r∗N = r∗ if and only if f(x)−r∗g(x) = σ0(x)+σ1(x)π(x) for some SOS
polynomials σ0, σ1 with deg(σ1) ≤ 2(N − 1).

(iv) If r∗N = r∗ for some integer N and u(j) (j = 1, · · · , t) are global minimizers on B(c, ρ), then
every monomial indexed vector y of the following form

y ∈
{

t
∑

j=1

θjm2N (u(j)) : θj ≥ 0,
t

∑

j=1

θj = 1

}

is an optimal solution to (2.11)-(2.14).

Proof. (i) For any fixed γ < r∗, we can see that f(x)− γg(x) > 0 on B(c, ρ) if g(x) 6= 0 (we have
assumed that g(x) is nonnegative). When g(x) = 0, we must have f(x) ≥ 0. Otherwise assume
f(u) < 0 at some point u with g(u) = 0. Then in a neighborhood of u, the rational polynomial
r(x) has a singularity at u, and hence is unbounded from below, which contradicts the assumption
that r∗ > −∞. Thus g(x) = 0 implies f(x) ≥ 0 on B(c, ρ). So we have that

f(x)− γg(x) ≥ 0, ∀x ∈ B(c, ρ).
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Since γ < r∗, f(x)−γg(x) = 0 implies that f(x) = g(x) = 0, which is not possible. Therefore, the
polynomal f(x) − γg(x) is positive on ball B(c, ρ). Now by Putinar’s Theorem [23], there exist
SOS polynomials σ0, σ1 with degree high enough such that

f(x)− γg(x) ≡ σ0(x) + σ1(x)π(x).

So in (2.8)-(2.10), γ can be chosen arbitrarily close to r∗. Therefore we proved the convergence
of lower bounds r∗N .

(ii) Similar to the proof of Theorem 2.1, it suffices to show that the problem (2.11)-(2.14) has
a strictly feasible solution. Let µ be a probability measure with uniform distribution on B(c, ρ).
Define the monomial-indexed vector y = (yα) in the following way:

y :=

∫

xαdu.

Now we show that MN (y) and MN−1(π ∗ y) are positive definite. MN (y) ≻ 0 can be shown in
the same way as in the proof of (i) in Theorem 2.1. Now we show that MN−1(π ∗ y) ≻ 0. For
any nonzero monomial-indexed vector q of the same length as MN−1(π ∗ y) (it corresponds to a
nonzero polynomial q(x) up to degree N − 1), it holds that

qTMN−1(π ∗ y)q =

∫

q(x)2π(x)dµ =
1

Vol(B(c, ρ))

∫

B(c,ρ)

q(x)2π(x)dx > 0,

which implies that MN−1(π ∗y) is positive definite. In the above, Vol(B(c, ρ)) denotes the volume
of the ball B(c, ρ). Since g(x) is not identically zero and always nonnegative, g(x) can not be
always zero on B(c, ρ) and hence

∑

α

gαyα =

∫

g(x)dµ =
1

Vol(B(c, ρ))

∫

B(c,ρ)

g(x)dx > 0.

Now set the vector ŷ = y/
∑

α gαyα. Then can see that ŷ is an interior point for the dual problem
(2.11)-(2.14).

(iii) For any fixed γ̂ < r∗, from the previous arguments we know that the polynomial f(x) −
γg(x) is positive on K. Then by Putinar’s Theorem, there exist SOS polynomials s0(x), s1(x)
with deg(σ1) high enough such that

f(x)− γ̂g(x) ≡ s0(x) + s1(x)π(x).

This means that the primal convex problem (2.8)-(2.10) has a feasible solution. From (ii) we
know its dual problem (2.11)-(2.14) has a strict interior point. Now apply the duality theory of
standard convex programming, then we know the solution set of (2.8)-(2.10) is nonempty. And
notice that r∗ is obviously an upper bound for all r∗N .

When r∗N = r∗, we know r∗N is optimal. For N sufficiently large, by (ii), the primal problem
(2.8)-(2.10) is guaranteed to have a solution. So there exist SOS polynomials σ0(x), σ1(x) with
deg(σ1) ≤ 2(N − 1) such that

f(x)− r∗g(x) ≡ σ0(x) + σ1(x)π(x).

The “if” direction is obvious.
The proof of (iv) is the same as (iii) of Theorem 2.1.

Remark 2.6. In Theorem 2.5, we need the assumption that the numerator f(x) and denominator
g(x) have no common real zeros on ball B(c, ρ) to show convergence lim

N→∞
r∗N = r∗. When they

have common real zeros, for any γ < r∗, the polynomial f(x) − γg(x) is not strictly positive on
B(c, ρ) and hence Putinar’s Theorem can not be applied. In such situations, the convergence is
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not guaranteed (see Remark 4.5). However, in case of two variables, i.e., n = 2, if f(x) and g(x)
have at most finitely many real common zeros on B(c, ρ), we still have lim

N→∞
r∗N = r∗; furthermore,

if the global minimizers of r(x) are finite, then finite convergence holds, i.e., there exists N ∈ N

such that r∗N = r∗. Please see Theorem 4.7 in Section 4. Notice that the ball B(c, ρ) satisfies
both conditions (i) and (ii) there.

Remark 2.7. When f(x) and g(x) have common zeros on B(c, ρ), the solution to the dual
problem (2.11)-(2.14) is not unique. To see this, suppose w ∈ B(c, ρ) is such that f(w) = g(w) = 0,
and y∗ is an optimal solution to (2.11)-(2.14). Now let ŷ = m2N (w), which is not zero since
ŷ(0,··· ,0) = 1. Then

∑

α fαŷα =
∑

α gαŷα = 0 and MN (ŷ) � 0, MN−1(π ∗ ŷ) � 0. So we can see
that y∗ + ŷ is another feasible solution with the optimal value. In such situations, some extracted
points from the moment matrix MN (y∗+ ŷ) may not be global minimizers and they might be the
common zeros of f(x) and g(x).

Example 2.8. Consider the global minimization of the rational function (obtained by plugging
x3 = 1 into Example 2.4)

x4
1x

2
2 + x2

1x
4
2 + 1

x2
1x

2
2

Choose c = 0 and ρ = 2. For N = 3, the lower bound given by (2.8)-(2.10) is r∗3 = 3, and the
solution to (2.11)-(2.13) is

y∗ = (1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 00, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1).

The moment matrix M3(y
∗) has rank 4, and satisfies the flat extension condition. The following

four points are extracted:
(±1,±1).

They are all global minimizers.

Example 2.9. Consider the global minimization of the rational function (obtained by plugging
x2 = 1 into Example 2.4)

x4
1 + x2

1 + x6
3

x2
1x

2
3

Choose c = 0 and ρ = 2. For N = 4, the lower bound given by (2.8)-(2.10) is r∗4 = 3.0000, and
the solution to (2.11)-(2.13) is

y∗ ≈ (2.8377, 0, 0, 1, 0, 0, 1.0008, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

The moment matrix has rank 6 and satisfies the flat extension condition. Six points are extracted:

(±1.0000,±1.0000), (0.0000,±0.0211)

The evaluation of r(x) at these points shows that the first four points are global minimizers.
The last two points are not global minimizers, but they are approximately common zeros of the
numerator and denominator. See Remark 2.7.
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3 Nearest greatest common divisor

This section discusses the application of minimizing rational polynomials to finding the nearest
common divisors of univariate polynomials.

Let p(z) and q(z) be two monic complex univariate polynomials of degree m such that

p(z) = zm + pm−1z
m−1 + pm−2z

m−2 + · · ·+ p1z + p0 (3.1)

q(z) = zm + qm−1z
m−1 + qm−2z

m−2 + · · ·+ q1z + q0. (3.2)

Their coefficients pi, qj are all complex numbers. When p(z), q(z) have common divisors, their
greatest common divisor (GCD) can be computed exactly by using Euclid’s algorithm or other
refined algorithms [2, 3]. These algorithms need to assume that all the coefficients of p(z) and q(z)
are error-free, and return the exact GCD. However, in practice, it is more interesting to compute
the GCD of two polynomials whose coefficients may not be known exactly. In such situations, we
often get the trivial common divisor (the constant polynomial 1) if we apply exact methods like
Euclid’s algorithm.

So instead, we will seek the smallest possible perturbations of the coefficients of p(z) and
q(z) that cause their GCD to be nontrivial, say z − c for some c. See [11, 12] and [29, §6.4]
for a discussion of this problem. Our contribution is to solve the associated global optimization
problem by the methods we have introduced in the preceding section, instead of finding all the
real critical points (zero gradient) as suggested in [11, 12].

Throughout this paper, we equip the polynomials p(z), q(z) with ‖·‖2 norm of their coefficients,

i.e., ‖p‖2 =
√

∑m−1
k=0 |pk|2, ‖q‖2 =

√

∑m−1
k=0 |qk|2. The perturbations made to p(z), q(z) are

measured similarly. The basic problem in this section is what is the minimum perturbation
such that the perturbed polynomials have a common divisor? To be more specific, suppose the
perturbed polynomials have the form

p̂(z) = zm + p̂m−1z
m−1 + p̂m−2z

m−2 + · · ·+ p̂1z + p̂0 (3.3)

q̂(z) = zm + q̂m−1z
m−1 + q̂m−2z

m−2 + · · ·+ q̂1z + q̂0. (3.4)

with common zero c, i.e., p̂(c) = q̂(c) = 0. The perturbation are measured as

N (c, p̂, q̂) =

m−1
∑

i=0

|pi − p̂i|2 +
m−1
∑

j=0

|qj − q̂j |2.

The problem of finding nearest GCD can be formulated as to find (c, p̂, q̂) such that N (c, p̂, q̂) is
minimized subject to p̂(c) = q̂(c) = 0.

We can see that N (c, p̂, q̂) is a convex quadratic function in (p̂, q̂). But the constraints p̂(c) =
q̂(c) = 0 are nonconvex. However, if the common root c is fixed, the constraints p̂(c) = q̂(c) = 0
are linear with respect to (p̂, q̂), and the reduced quadratic program has a solution with closed
form. N (c, p̂, q̂) is a convex quadratic function about (p̂, q̂). It can be shown that [12] that

min
(p̂,q̂):p̂(c)=q̂(c)=0

N (c, p̂, q̂) =
|p(c)|2 + |q(c)|2
∑m−1

i=0 |c2|i
.

Therefore the problem of finding nearest GCD becomes the global minimization of a rational
function

min
c∈C

|p(c)|2 + |q(c)|2
∑m−1

i=0 |c2|i
. (3.5)

over the complex plane. Karmarkar and Lakshman [12] proposed the following algorithm to find
the nearest GCD:
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Algorithm 3.1 (Nearest GCD Algorithm, [12]).

Input: Monic polynomials p(z), q(z).

Step 1 Determine the rational function r(x1, x2)

r(x1, x2) :=
|p(c)|2 + |q(c)|2
∑m−1

k=0 (x2
1 + x2

2)
k
, c = x1 +

√
−1x2.

Step 2 Solve the polynomial system r(x1,x2)
∂x1

= r(x1,x2)
∂x1

= 0. Find all its real solutions inside the

box: −B ≤ x1, x2 ≤ B where B := 5max(‖p‖2, ‖q‖2). Choose the one (x̂1, x̂2) such that
r(x̂1, x̂2) is minimum. Let c := x̂1 +

√
−1x̂2.

Step 3 Compute the coefficient perturbations

λj :=
c̄jp(c)

∑m−1
k=0 |c2|k

, µj :=
c̄jq(c)

∑m−1
k=0 |c2|k

.

Output: The minimum perturbed polynomials with common divisors are returned as

p̂(z) = zm +

m−1
∑

k=0

(pk − λk)z
k, q̂(z) = zm +

m−1
∑

k=0

(qk − µk)z
k.

The most expensive part in the algorithm above is Step 2. Karmarkar and Lakshman [12]
proposed to use numerical methods like Arnon and McCallum [1] or Manocha and Demmel [16]
to find all the real solutions of a polynomial system inside a box.

However, in practice, it is very expensive to find all the real solutions of a polynomial system
inside a box, although a polynomial complexity bound exists as stated in [12]. So in this section,
we propose to solve (3.5) by SOS relaxations introduced in the previous section instead of finding
all the real solutions of a polynomial system. The SOS relaxation of problem (3.5) is the following:

sup γ

s.t. f(x1, x2)− γ(

m−1
∑

i=0

(x2
1 + x2

2)
i) is SOS

where f(x1, x2) = |p(x1 +
√−1x2)|2 + |q(x1 +

√−1x2)|2.

In the following examples, we solve the global optimization problem via SOS relaxation (2.2)-
(2.4) and its dual (2.5)-(2.7). In all the examples here, the global minimizers can be extracted
and the big ball technique introduced in Section 2.1 is not required.

Example 3.2 (Example 2.1,[12]). Consider the following two polynomials

p(z) = z2 − 6z + 5

q(z) = z2 − 6.30z + 5.72.

Solving SOS relaxation (2.2)-(2.4) and its dual (2.5)-(2.7), we find the global minimum and extract
one minimizer:

r∗ ≈ 0.0121, c∗ = x∗
1 +

√
−1x∗

2 ≈ 5.0971.

which are the same as found in [12].
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Example 3.3. Consider the following two polynomials

p(z) = z3 − 6z2 + 11z − 6

q(z) = z3 − 6.24z2 + 10.75z − 6.50.

Solving SOS relaxation (2.2)-(2.4) and its dual (2.5)-(2.7), , we get the lower bound and extract
one point

r∗sos ≈ 0.0563, (x∗
1, x

∗
2) ≈ (3.5725, 0.0000).

Evaluation of r(x) at x∗ shows that r(x∗) ≈ r∗sos, which implies that c∗ ≈ 3.5725 is a global
minimizer for problem (3.5).

Example 3.4. Consider the following two polynomials

p(z) = z3 + z2 − 2

q(z) = z3 + 1.5z2 + 1.5z − 1.25.

Solving SOS relaxation (2.2)-(2.4) and its dual (2.5)-(2.7), we find the lower bound r∗sos ≈ 0.0643
and extract two points

x∗ ≈ (−1.0032, 1.1011) x∗∗ ≈ (−1.0032,−1.1011).

The evaluations of r(x) at x∗ and x∗∗ show that r(x∗) = r(x∗∗) ≈ r∗sos, which implies that x∗

and x∗∗ are both global minimizers. So c∗ = −1.0032±√−1 · 1.1011 are the global minimizers of
problem (3.5).

4 Constrained minimization

In this section, we discuss the global minimization of a rational function subject to constraints
described by polynomial inequalities. Consider the problem

r∗ := min
x∈Rn

r(x) :=
f(x)

g(x)
(4.1)

s.t. h1(x) ≥ 0, · · · , hm(x) ≥ 0 (4.2)

where f(x), g(x), hi(x) are all real multivariate polynomials in x = (x1, · · · , xn). Without confu-
sion, we let r∗ still be the minimum objective value as in the unconstrained case. If some hi are
rational functions, we can reformulate the constraints hi(x) ≥ 0 equivalently as some polynomial
inequalities (one should be careful with the zeros of hi(x)). Denote by S the feasible set. S is in
the form of a basic closed semialgebraic set. Here we assume that g(x) is not identically zero on

S, and g(x) is nonnegative on S (otherwise, replace f(x)
g(x)

by f(x)g(x)

g2(x)
).

When g(x) ≡ 1 (or a nonzero constant), problem (4.1)-(4.2) becomes a standard constrained
polynomial optimization problem. Lasserre [13] proposed a general procedure to solve this kind
of optimization problem by a sequence of SOS relaxations. To be more specific, for each fixed
positive integer N , we seek γ as large as possible such that f(x)− γ has the representation

f(x)− γ ≡ σ0(x) + σ1(x)h1(x) + · · ·+ σm(x)hm(x)

with all σi(x) SOS and deg(σihi) ≤ 2N . Obviously each γ is a lower bound of f(x) on S. Denote
by γN the maximum γ under these conditions, which is also a lower bound. These lower bounds
converge to the minimum of f(x) on S under a certain constraint qualification condition (see
Assumption 4.1 below). A convergence rate is given in [19]. We refer to [9, 13, 14, 18, 20, 21] for
more introductions on SOS methods for polynomial optimization.
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When g(x) is a nonconstant polynomial nonnegative on S, Lasserre’s procedure can be gener-
alized in a natural way. For each fixed positive integer N , consider the SOS relaxation

r∗N := sup γ (4.3)

s.t. f(x)− γg(x) ≡ σ0(x) +
m
∑

i=1

σi(x)hi(x) (4.4)

deg(gi) ≤ 2N − di, σi(x) ∈
∑

R[X]2 (4.5)

where di = ⌈deg(hi)/2⌉. For any feasible γ above, it is obvious that f(x) − γg(x) ≥ 0 on S and
so r(x) ≥ γ. Thus every such γ (including r∗N ) is a lower bound of r(x) on S.

We denote by M(S) the set of polynomials which can be represented as

σ0(x) + σ1(x)h1(x) + · · ·+ σm(x)hm(x)

with all σi(x) being SOS.M(S) is called the quadratic module generated by polynomials {h1, · · · , hm}.
A subset M of polynomial ring R[X] is a quadratic module if 1 ∈ M, M +M ⊂ M and p2M ⊂ M
for all p ∈ R[X]. Throughout this section, we make the following assumption for M(S):

Assumption 4.1 (Constraint Qualification Condition). There exist R > 0 and SOS poly-
nomials s0(x), s1(x), · · · , sm(x) ∈ ∑

R[X]2 such that

R − ‖x‖22 = s0(x) + s1(x)h1(x) + · · ·+ sm(x)hm(x).

Remark 4.2. When the assumption above is satisfied, the quadratic module M(S) is said to be
archimedean. Obviously, when this assumption holds, the semialgebraic set S is contained in the
ball B(0,

√
R) and hence compact, but the converse might not be true. See Example 6.3.1 in [6]

for a counterexample. Under this assumption, Putinar [23] showed that every polynomial p(x)
positive on S belongs to M(S).

Remark 4.3. When Assumption (4.1) does not hold, we can add in S one redundant constraint
like R − ‖x‖22 ≥ 0 for R sufficiently large (e.g., a norm bound is known in advance for one global
minimizer). Then the new quadratic module is always archimedean.

Similar to the derivation of (2.5)-(2.7), the dual problem of (4.3)-(4.4) can be found to be

inf
y

∑

α∈F

fαyα (4.6)

s.t.
∑

α

gαyα = 1 (4.7)

MN (y) � 0 (4.8)

MN−di(hi ∗ y) � 0, i = 1, · · · , m. (4.9)

The properties of SOS relaxation (4.3)-(4.5) and (4.6)-(4.9) are summarized as follows:

Theorem 4.4. Assume that the minimum r∗ of r(x) on S is finite, and f(x) = g(x) = 0 has no
solutions on S. Then the following holds:

(i) Convergence of the lower bounds: lim
N→∞

r∗N = r∗.

If, furthermore, S has nonempty interior, then (ii) and (iii) below are true.

(ii) For N large enough, there is no duality gap between (4.3)-(4.5) and its dual (4.6)-(4.9).

(iii) For N large enough, r∗N = r∗ if and only if f(x)− r∗g(x) ≡ σ0(x) +
∑m

i=1 σihi(x) for SOS
polynomials σi(x) with deg(σihi) ≤ 2N .
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(iv) If r∗N = r∗ for some integer N and u(j) (j = 1, · · · , t) are global minimizers on S, then every
monomial indexed vector y of the following form

y ∈
{

t
∑

j=1

θjm2N (u(j)) : θj ≥ 0,
t

∑

j=1

θj = 1

}

is an optimal solution to (4.6)-(4.9).

Proof. (i) For any γ < r∗, we have that the polynomial

ϑγ(x) := f(x)− γg(x)

is nonnegative on S. When ϑγ(u) = 0 for some point u ∈ S, we must have f(u) = g(u) = 0,
since otherwise g(u) > 0 (g(x) is assumed to be nonnegative on S) and r(u) = γ < r∗, which
is impossible. Therefore ϑγ(x) is positive on S. By Putinar’s Theorem [23], there exist SOS
polynomials σi(x) of degree high enough such that

ϑγ(x) ≡ σ0(x) +

m
∑

i=1

σi(x)hi(x).

Therefore the claim in (i) is true.
(ii), (iii) & (iv): The proof here is almost the same as for Theorem 2.5. In a similar way,

show that (4.3)-(4.5) has a feasible solution, and (4.6)-(4.9) has an interior point. Then apply
the duality theory of convex programming. In (iv), check every y with given form is feasible and
achieves the optimal objective value.

Remark 4.5. In Theorem 4.4, we made the assumption that f(x) and g(x) have no common
zeros on S. But sometimes f(x) and g(x) may have common zeros, and it is also possible that
the minimum r∗ is attained at the common zero(s) (in this case, f(x) and g(x) are of the same
magnitude order around the common zero(s)). In such situations, we can not apply Putinar’s
Theorem and might not have convergence. For a counterexample, consider the global minimization
(with n = 1)

min r(x) :=
1 + x

(1− x2)2

s.t. (1− x2)3 ≥ 0.

The global minimum is r∗ = 27
32

and the minimizer is x∗ = − 1
3
. However, for any γ < 27

32
, there

do not exist SOS polynomials σ0(x), σ1(x) such that

1 + x− γ(1− x2)2 ≡ σ0(x) + σ1(x)(1− x2)3.

Otherwise, for a contradiction, suppose they exist. Then the left hand side vanishes at x = −1
and so does the right hand side. So x = −1 is a zero of σ0(x) with multiplicity greater than one,
since σ0 is SOS. Hence x = −1 is a multiple zero of the left hand side, which is impossible since
the derivative of 1 + x− γ(1− x2)2 at x = −1 is 1. This counterexample is motivated by the one
given by Stengle [28], which shows that the polynomial 1 − x2 does not belong to the quadratic
module M((1 − x2)3) since 1 − x2 is not strictly positive on {x : (1 − x2)3 ≥ 0}. On the other
hand, if we can know in advance that the global minimum is not attained where the denominator
g(x) vanishes, one way to overcome this difficulty is to add more constraints which keep the global
minimizers but eliminate the zeros of g(x).
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Remark 4.6. When f(x) and g(x) have common zeros on S, the solution to the dual problem
(4.6)-(4.9) is not unique. In such situations, some extracted points from the moment matrix
MN(y∗+ ŷ) may not be global minimizers and they might be the common zeros of f(x) and g(x).
See Remark 2.7.

When n = 2, i.e., in case of two variables, the distinguished representations of nonnegative
polynomials by Scheiderer [26] are very useful. Under some conditions on the geometry of the
feasible set S, convergence or even finite convergence holds if f(x) and g(x) have finitely many
common zeros on S. This yields our next theorem.

Theorem 4.7. Suppose n = 2. Let Z(f, g) = {u ∈ S : f(u) = g(u) = 0} and Θ be the set of
global minimizer(s) of r(x) on S. We have convergence lim

N→∞
r∗N = r∗ if Ω = Z(f, g) is finite and

satisfies at least one of the following two conditions:

(i) Each curve Ci = {x ∈ C
2 : hi(x) = 0} (i = 1, · · · ,m) is reduced and no two of them share an

irreducible component. No point in Ω is a singular point of the curve C1 ∪ · · · ∪ Cm.

(ii) Each point of Ω is an isolated real common zero of f(x)− r∗g(x) in R
2, but not an isolated

point of the feasible set S.

Furthermore, if Ω = Z(f, g) ∪ Θ is finite and satisfies at least one of (i) and (ii), then we have
finite convergence, i.e., there exists an integer N such that r∗N = r∗.

Proof. First, assume that Ω = Z(f, g) is finite and satisfies at least one of (i) and (ii). For any
γ < r∗, we have that the polynomial

ϑγ(x) := f(x)− γg(x)

is nonnegative on S. When ϑγ(u) = 0 for some point u ∈ S, we must have f(u) = g(u) = 0,
since otherwise g(u) > 0 and r(u) = γ < r∗, which is impossible. By the assumption in the
theorem, the nonnegative polynomial ϑγ(x) has at most finitely many zeros on S. Now applying
Corollary 3.7(if (i) holds) or Corollary 3.10 (if (ii) holds) in [26], we know that there exist SOS
polynomials σi(x) of degree high enough such that

ϑγ(x) ≡ σ0(x) +

m
∑

i=1

σi(x)hi(x).

Second, assume that Ω = Z(f, g)∪Θ is finite and satisfies at least one of (i) and (ii). Consider
the polynomial ϑr∗(x) := f(x) − r∗g(x), which is nonnegative on S. When ϑr∗(u) = 0 for some
u ∈ S, we must have either f(u) = g(u) = 0 or r(u) = r∗. Thus polynomial ϑr∗(x) has at most
finitely many zeros on S. Corollary 3.7(if (i) holds) or Corollary 3.10 (if (ii) holds) in [26] implies
that there are SOS polynomials σi(x) with deg(σihi) ≤ 2N (N is large enough) such that

ϑr∗(x) ≡ σ0(x) +
m
∑

i=1

σi(x)hi(x)

which completes the proof.

Example 4.8. Consider the problem

min
x

x4
1x

2
2 + x2

1x
4
2 + 1

x2
1x

2
2

s.t. x1, x2 ≥ 0, 1− x2
1 − x2

2 ≥ 0.

SOS relaxation (4.3)-(4.5) with order N = 3 yields lower bound r3 = 5.000, and we can extract
one point x∗ ≈ (0.7071, 0.7071) from the dual solution to (4.6)-(4.9). r(x∗) ≈ 5.0000 shows that
it is a global minimizer.
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Example 4.9. Consider the problem

min
x

x4
1 + x2

1 + x6
3

x2
1x

2
3

s.t. x1, x3 ≥ 0, 1− x2
1 − x2

3 ≥ 0.

SOS relaxation (4.3)-(4.5) with order N = 3 yields lower bound r3 ≈ 3.2324, and we can extract
one point x∗ ≈ (0.6276, 0.7785) from the dual solution to (4.6)-(4.9). r(x∗) ≈ 3.2324 shows that
it is a global minimizer.

Example 4.10. Consider the problem

min
x

x3
1 + x3

2 + 3x1x2 + 1

x2
1(x2 + 1) + x2

2(1 + x1) + x1 + x2

s.t. 2x1 − x2
1 ≥ 0, 2x2 − x2

2 ≥ 0

4− x1x2 ≥ 0, x2
1 + x2

2 −
1

2
≥ 0.

SOS relaxation (4.3)-(4.5) with order N = 2 yields lower bound r∗2 = 1 and we can extract three
points

(0, 1), (1, 0), (1, 1)

from the dual solution to (4.6)-(4.9). The evaluations of r(x) at these three points show that they
are all global minimizers.

Example 4.11. Consider the problem

min
x

x4
1 + x4

2 + x4
3 + x2

1 + x2
2 + x2

3 + 2x1x2x3(x1 + x2 + x3)

x3
1 + x3

2 + x3
3 + 2x1x2x3

s.t. x4
1 + x4

2 + x4
3 = 1 + x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
1

x3 ≥ x2 ≥ x1 ≥ 0

SOS relaxation (4.3)-(4.5) with order N = 3 yields r∗3 = 2.0000 and we can extract two points

x∗ ≈ (0.0000, 0.0000, 1.0000), x∗∗ ≈ (−0.0032, 0.9977, 0.9974)

from the dual solution to (4.6)-(4.9). x∗ is feasible and r(x∗) = 2.0000 implies that x∗ is a global
minimizer. Now x∗∗ is not feasible, but if we round x∗∗ to the nearest feasible point we get
(0, 1, 1), which is another global minimizer since r(0, 1, 1) = 2.

Example 4.12. Consider the problem

min
x

x2
1 + x2

2 + x2
3 + x2

4 + 2(x2 + x3 + x1x3 + x1x4 + x2x4) + 1

x1 + x4 + x1x2 + x2x3 + x3x4

s.t. x2
1 + x2

2 − 2x3x4 = 0

4− x2
1 − x2

2 − x2
3 − x2

4 ≥ 0

x1, x2, x3, x4 ≥ 0.

SOS relaxation (4.3)-(4.5) with order N = 3 yields r∗2 = 2 and we can extract one point

x∗ ≈ (0.0002, 0.0000, 0.0000, 0.9998).

from the dual solution to (4.6)-(4.9). r(x∗) ≈ 2.0000 implies that x∗ is a global minimizer
(approximately). Actually the exact global minimizer is (0, 0, 0, 1).
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5 Conclusions

We have studied the global minimization of rational functions. Sum of squares relaxations are
proposed to solve this problem. The convergence can be shown when the numerator and denom-
inator have no common zeros on the feasible set. When the numerator and denominator have
common zeros, the convergence might not hold. A counterexample is given in Remark 4.5. We
applied our technique to find the smallest perturbation of a pair of univariate polynomials that
makes them have a nontrivial common divisor.

Acknowledgement: The authors would like to thank Bernd Sturmfels for wonderful discussions
and useful comments.
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