Global optimization of robust chance constrained
problems

Panos Parpas*, Ber¢ Rustem*, Efstratios N. Pistikopoulos’
March 30, 2007

Abstract

We propose a stochastic algorithm for the global optimization of chance
constrained problems. We assume that the probability measure with
which the constraints are evaluated is known only through its moments.
The algorithm proceeds in two phases. In the first phase the probability
distribution is (coarsely) discretized and solved to global optimality using
a stochastic algorithm. We only assume that the stochastic algorithm ex-
hibits a weak* convergence to a probability measure assigning all its mass
to the discretized problem. A diffusion process is derived that has this
convergence property. In the second phase, the discretization is improved
by solving another nonlinear programming problem. It is shown that the
algorithm converges to the solution of the original problem. We discuss
the numerical performance of the algorithm and its application to process
design.

1 Introduction

We discuss the global optimization of a model for decision making under uncer-
tainty. Consider the following problem:

iy
st P(f(z,w)>~) <4 (1.1)
P(g(z,w) >0) <4

Where f:R” x Q2 — R, and g : R" x Q — R™, are assumed to be smooth but
not necessarily convex. The random variables are assumed to live in the space
(92, B, P). Where ( is some compact subspace of R!. The problem in (1.1) can
be interpreted as follows: one tries to compute the optimal strategy x, so that
the probability of the realized optimal value deviating from the optimal one is
small. At the same time, the optimal strategy must satisfy the constraints (g)
of the system with a certain probability. The parameter § > 0 is specified by the
decision maker. If § is small, then the decision will be feasible for almost all the
possible realizations of the uncertainties. However, for a small §, the optimal
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objective function value will increase. Therefore the parameter ¢ is used by the
decision maker to select the level of robustness required.

Problems in the form of (1.1) are known as chance constraints. They have a
long history in the realm of decision making under uncertainty. They were first
proposed in [1]. Despite the fact that this class of problems has been studied
for a long time, their solution poses a significant challenge. One of the reasons
is that even if f and g are linear, the resulting problem may not be convex (see
[2] pp 104 for an example).

One of the key aspects of the modeling phase of any decision making problem,
is the description of the probability measure P. If the solution of a Stochastic
Programming problem is to have any value then the chosen uncertainty repre-
sentation must conform to the beliefs of the decision maker about the problem.
Making assumptions about the distribution of the random variables, while the-
oretically convenient, hinders the usefulness of applying optimization methods
in decision making. A review of available methods to generate meaningful de-
scriptions of the uncertainties from data can be found in [3]. In this work we
will concentrate on a moment matching approach. That is, we assume that the
decision maker can not provide an exact description of the distribution but only
knows some of its moments. We therefore assume that P € P, and that P is
defined using moment information. In concrete terms we propose to discuss an
algorithm for the optimization of the following system:

min ~y
zeX,y

stP(f(z,w)>~v) <d. YPeP (P)
P(g(xz,w) >0) <4. VYPeP.

Different ¢’s can be used in the formulation above, for clarity of exposition one
0 will be used. In this paper we discuss the global optimization of the problem
in (P). A similar problem formulation was also proposed in [4]. In [4] uncer-
tainty was assumed to be uniform and with a support given by closed intervals.
Moreover, in [4] linear problems were considered. The distinctive feature of
this paper is that we propose a stochastic global optimization algorithm that is
applicable to problems that are not convex. Moreover we discuss more general
distributions as well as allowing the support of the distribution to be (more or
less) arbitrary. The approach is based on an appropriately defined Stochastic
Differential Equation (SDE) discussed in Section 2.3. The basic idea is to select
some realizations of the uncertainties and solve a deterministic version of (P).
We then formulate another nonlinear programming problem which we use in
order to improve the discretization. The algorithm will be explained in detail in
Section 2. The proposed model has been motivated by practical applications in
chemical engineering. Using a standard case study analyzed by Floudas [5, 6],
Androulakis et. al.[7], and Rénnqvist [8] (among others), we discuss initial nu-
merical experience with the proposed algorithm in Section 4. Convergence of
the algorithm will be discussed in an appendix.

2 A Global Optimization Algorithm

In this section we describe the proposed algorithm for the solution of (P). A
convergence analysis will be carried out in the next section. To start the analysis,



suppose that we have an i.i.d sample €y from some probability measure from
P. At the k' (k > 0) iteration, the following approximate problem is solved:

F(k) = mi

stf(z,w) >y VweQy (Dk)
g(z,w) >0 Vw e Q.

The problem above is solved using a stochastic algorithm that is described in
section 2.3. To facilitate the discussion of the development of the algorithm
suppose that a solution of (D) is obtained. For simplicity, ignore the fact that
the solution is only obtained in a probabilistic sense. We will discuss these
aspects of the algorithm in the appendix, the aim of this section is to give an
intuitive idea of how the algorithm works. With the aforementioned warnings
in mind, let (zx,7x) denote the solution of (D). The next step is to check
whether the current solution is also feasible in the original problem (P). In
order to check for feasibility we need to solve the following problem:

D (zp,v) = 81612 JL(F(k))dp

peP, (2.1)

where IC denotes the set of all finite signed measures that are defined on the o-
field F of 2. 1(A) denotes an indicator function on the set A. As was mentioned
in the introduction, the set P is defined by some known moments, and can be
defined as follows: suppose a vector of functions m(w) = [m1(w) ... my(w)] and
a vector of scalars pu = [p; ... up] are given, then P is given by:

P={pek| /mi(w)dp:ui, izl...w,/dp:l}.
Q Q
Finally, F(k) is defined as follows:
F(k)={we Q| flag,w) >, glag,w) > 0}. (2.2)

If the solution of (2.1) yields an optimal solution that is greater than the thresh-
old ¢ specified by the decision maker, then new realizations are needed in order
to ensure that the solution of the next discretized problem to be considered, will
satisfy the constraints in (P). The problem in (2.1) is a well known problem in
probability theory and statistics. Problems of this type are known as optimal
Chebyshev inequalities. They have a long history with contributions made from
various fields. A textbook reference on early results is [9]. For a more recent
survey of this interesting field see [10]. Before discussing the solution of (D),
we will discuss two alternative methods for the solution of (2.1).

2.1 SDP approximations for robust chance constraints

Recently useful results have been obtained by Bertsimas et. al. [11], and
Lasseree [12]. These results are based on the fact that the problem in (2.1)
is a conic optimization problem. Using, suitable approximations of the cone
involved in (2.1) one can find good approximate solutions. The result that (2.1)
can be viewed as a conic optimization problem can be found in [9]. The fact



that these problems can be formulated as tractable cone problems is due to
Bertsimas et. al. [11], and Lasseree [12]. However, in the view of the authors
the SDP approach is not appropriate for the class of problems considered in
this paper. There are two main problems that need to be addressed when solv-
ing moment problems with the SDP approach. Firstly, when the problem is
even of modest size, the SDP formulation is prohibitively large even for the
best available solvers. More importantly, solving the SDP relaxation will only
gives us a bound, and asymptotically we are guaranteed that the bound will
be tight. However, to solve robust chance constrained problems we also need
the realizations of the uncertainties. There is, currently, no known method that
is guaranteed to extract the realizations of the random variables in the SDP
formulation. It is possible, under some rank assumptions, to use the method
described in [13] in order to extract this information. However, after some
numerical experimentation we found that, for the problems considered in this
paper, the software described in [13] could not yield the necessary realizations.
For these reasons, we propose to approach the problem of calculating ® using
the nonlinear programming problem described in the next sub-section.

2.2 Nonlinear programming formulation

It is a well known result (see for example [9]) that any distribution belonging to
the set! P, can be represented as a discrete distribution with w + 1 realizations.
Motivated by this result, we can reformulate (2.1) as follows:

w+1

(I)(xkv’YkaG) = nax E Pi
PY,V,2 1
1=

w1 w+1
s.t. Z pim;(ys) + Z vim;(z;) = pj
i—1 i=1
w+1
Z(Pi +v;) =1 (2:3)
i=1

f(l'kay)_’yk > €

9(wr,y) > €
z,y€Q, p,v>0.

For the optimal value of (2.1) given by ®(xk, k), it can be established that
limejo ®(zk, Vi, €) = P(zk,7%). The value of € can be selected to be a small
positive constant. This will guarantee that the realization of y have their support
in (2.2).

In this paper we use the formulation in (2.3) in order to numerically compute
the solution of (2.1). The formulation above has the obvious disadvantage that it
is a non-convex problem, whereas the SDP formulation is convex. However, the
formulation in (2.3) can be used to give the numerical values of the realizations
of the uncertainties. Since obtaining these realizations is pivotal to the proposed
algorithm the formulation in (2.3) is better suited for this class of problems. The
only case where the SDP formulation would be appropriate is when the problem
involves linear or quadratic functions. In such a case, the SDP formulation can

1Under the assumption that y is in the interior of the moment space.



be more attractive. However, if the problem only involves linear or quadratic
functions then the formulation given here will only involve linear and quadratic
functions. Thus even in this sense both formulations are equally powerful. Given
that we are discussing the general non-convex case, the formulation in (2.3) is
more appropriate. A further advantage of the formulation above is that it is
easier to integrate together with the algorithm used to solve (Dy) (see section
2.3). Finally, the SDP formulation requires the solution of a possibly infinite
sequence of convex problems. The formulation in (2.3) requires the solution of
a single non-convex problem.

A potential complication with the formulation in (2.3) is that a solution may

be found such that:
w—+1

Zpi>(5butpi<§w.
i=1
In such a case it will be unclear which realization to add to €2, so that we ensure
that problem in (Dy) is the correct discretization of the original problem. This
point is subtle so we will discuss it briefly.
When ¢ is taken to be zero, the the problem in (P) can be written as:

min 5
reX,y
st P(f(z,w)>~v)=0. VPeP (2.4)

P(g(z,w) >0)=0. VPeP.

If one wanted to solve the problem above, then (2.3) could be solved and all the
y realizations would be added to €. If this iterative process is stopped when
the optimal objective function value of (2.3) is less than §, then we essentially
seek to find a ¢ feasible solution to (2.4). Such a solution may, or may not be
optimal (it necessarily is feasible) for (P). Consequently, if all the realizations
computed in (2.3) are used we may end up with a bound on the optimal solution.
Such problems can be avoided if the following assumption is made about the
problem under consideration.

A 2.1. If (p,y,v, 2) is an optimal solution of (2.3), and moreover:

w—+1

Z pi > 0.
i=1

Then there exists an event ¢ > § and an associated realization u, such that the
following system of equations has a feasible solution:

w+1
om;(u) + > vim;(z) =
=1
w—+1

Q-i—Zl/i:l
i=1

f('rlﬁu)_’yk > €
g(wk,u) > €
z2,y €Q, o,v>0..



In our numerical experiments we always found this assumptions to be satis-
fied. Using the above assumption the problem in (2.3) can be simplified to:

max o
w+1

s.t om;(u) + Z vim;(z;) = lj
i=1

w+1
o+ Z v =1 (M)
i=1

f(@r,u) — v > €
g(Tk,u) > €
z,y €Q, o,v>0..

If the assumption does not hold then we can not add all the computed realiza-
tions to k41 as this may lead to an over-conservative solution. One option is
to add extra constraints to (Dy). For example if J realizations are found, with
associated probabilities p; such that:

f(xr,uj) — v, > €
9(wk,uj) > €
J
> pj>06 max{p;} <6
J

Jj=1

In addition if Assumption (2.1) does not hold then all the J realizations can be
added to € along with the additional constraints:

If f(z,u;) —v > eand g(z,u;) —y > e then h; = 1, otherwise h; = 0.
Zhjpj S 5
J

Since in our numerical experiments assumption 2.1 was always satisfied we will
assume it holds true for the rest of the paper.

2.3 Diffusions for constrained global optimization

In this sub-section we describe an algorithm, based on a stochastic differential
equation (SDE), that can be used to compute the global optima of general non-
linear problems. The algorithm, and its properties will be described in detail
in a forthcoming publication[14]. The aim of this section is to give the intuitive
idea behind the algorithm. In order to describe the algorithm, consider the
following generic problem:

P = mmin flx)
s.t. g(z) =0. (2.5)

Where f : R® — R, g : R* — R™ are twice continuously differentiable. In
order to solve (2.5), one could solve the following ordinary differential equation
(ODE):

dX (1) = =V f(X(t))dt = Vg(X (1)) NX(t))dt,



where the Lagrange multiplier vector, A, is chosen so that it satisfies:

dg _

o = VIEOIVAXQE)+ Va(X()TMX ()] = —g(X (1)) 7> 0.

Such an algorithm was considered in [15]. These algorithms are related to gra-
dient projection algorithms developed in [16, 17]. Gradient projection methods
are not very popular in non-linear programming due to the expensive projection
step. However, results obtained in [18] and in [19], show that these algorithms
can be competitive with the current state of the art. One disadvantage of this
class of algorithms is that they converge to local optima. For the linearly con-
strained case, Parpas et. al.[20] recently proposed to use a stochastic differential
equation (SDE) instead of an ODE. For the unconstrained case the use of SDEs
was also advocated in [21, 22, 23, 24]. The advantage of the SDE is that it can
help the algorithm escape from local minima and eventually reach the global
solution. The SDE used is given by:

dX(t) = -Vf(X()) — Vg(X(t))T)\(X(t),t)dt + VT (t)dB(t) (2.6)
where:
A, t) 2 [Vg(2)Vg(a)'] o(z) + T(t) A g(z) — Vg(z)V f(2)] (2.7)

B represents an n-dimensional Brownian motion. The latter process is assumed
to live on the probability space (R™, F(t),G). The basic idea behind the SDE
in (2.6) can be explained as follows: The first term encourages the trajectory
to reduce the objective function value, but it does not take into account the
constraints of the problem. The second term forces the trajectory to remain
inside the feasible set. This property can be shown to hold, for a large enough
t[14]. Finally, the last term helps the trajectory to escape from local minima
by adding some noise. The function T'(¢) is used to control the level of noise.
This function is usually referred to as the annealing schedule. In order for
the algorithm to theoretically exhibit convergence to the global solution, the
annealing schedule is selected as follows [21, 23, 22, 14]:

T(t)

Cc

=——— ¢>0.
log(2 +1t)’ ¢

Where c is some large constant. For the unconstrained case the algorithm has
been studied in [21, 22, 23, 24]. It has been shown to theoretically converge,
in a probabilistic sense, to the global unconstrained global optimum. For the
case where the constraints are linear, an algorithm has been proposed in [20].
Numerical experiments from [20] show that the algorithm can be used for large
scale problems (about n = 103), and the algorithm is also robust. For a more
detailed discussion of the performance of the algorithm, we refer the reader to
[20].

It can be shown that the diffusion in (2.6) eventually converges to a stochastic
process with some distribution, say o [14] . It can also be shown that o assigns
positive mass only to the global minima of the constrained problem in (2.5).
The proof is rather long, but the basic idea is quite simple and will briefly be
explained below.



The diffusion in (2.6) is a Markov process, and under quite general conditions
its generator is given by:

Ap(w,t) = Z %ﬁ(j) N Z 89;‘(3:))\]_ (1) pla,t) ) Z 9*pla,t)

ox; 0x; Ox?
(2.8)
The transition density of (2.6) is then given by the solution of the following
PDE: 5 .
p(;;’ ) Ap(a, 1), (2.9)

Where A* denotes the adjoint of A, and it is given by:

(2.10)

arptet) =3 o [ S+ 32280 ) ) ity | 10 T T,

%

The transition density of the diffusion defines the probability of moving at time
s from point x4, to some point z, € B, at a later time 7 > s. It is given by:

(zs,s,B,7) = / p(zs, s,y,T)dy.
B
It can be shown that, under quite general conditions, the transition density
function also satisfies (2.10). The equation in (2.10) is known as the Fokker—
Planck or Kolmogorov’s forward equation. The proof in [14] (as well as the
proof for the linear case in [20]) take advantage of this property of diffusions,
by establishing that, asymptotically, the solution of (2.10) converges to some
function say 6. It is then shown that 6 assigns mass only to the global minima

of (2.5). This result is summarized in the following theorem (for a proof see
[14]).

Theorem 2.2. Let p denote the solution of (2.10), so that:

H($07OaBat):/p($0a0,y7t)dy7
B

where B is any Borel set in R™. Let r be any bounded and continuous function,
then

lim r(x)p(xo,(),y,t)dy:/Br(x)ﬁ(y)dy,

t—o0 B
where 0 is the density function of a probability measure that assigns all its mass
to the global minima of (2.5).

The type of convergence established above is known as weak* convergence.
In the next section, we show how to use the algorithm we just described for the
solution of (P) using the approximate problems (Dy) and (My).

3 Description of the algorithm

We finally have the necessary tools to specify the proposed algorithm. As was
mentioned in the previous section, the algorithm proceeds in two phases. In the



first phase the discretized problem in (Dy) is solved. Then using the obtained
solution we solve (M}).

Let Z(t) = [X(t),7(t)] € R**L, then at the k" iteration, the following SDE
is considered for the solution of (Dy):

dZy,(t) = =VH(Zy(t), ., t)dt + \/T(t)dBy (t), (3.1)

where VH denotes the gradient of the Lagrangian of (D), when the Lagrange
multipliers are given by (2.7).

Similarly for the problem in (M), let U(t) denote the 2(w + 1) decision
vector. The relevant SDE is given by:

dUk(t) = —VJ(Uk(t)7 t, Tk, ’yk)dt + v T(t)dBQ(t)
We assume that the two Brownian motions are independent.
Step 0: Let Thy > 0 and (x,70) be given. Set k=0.

Step 1: For t = kT to T = (k 4 1)Tys estimate:
T T
Ui(T) = Ug(t) —/ VI (Uk(T), T, e, Y )dT +/ VT (7)dBy (7).
t t

Step 1.A: Let U(k) = Ep|Ui(T)|Fr]. From Uy, let p(k), and u(k) denote the
probability and realization vector respectively.

Step 1.B: If k > 0 and p(k) < ¢ then stop, z(k) is optimal.
Step 1.C: Otherwise, Q11 = Qp Uu(k), and set k := k + 1.

Step 2: For t = (k — 1)Ty to T = kT estimate:
T T
2T) = 240) - | VH(Z(r), Qi+ [ VTEIB(r).
t t

Step 2a: Let Z(k) = Ep[Z,(T)|Fr]. From Z(k) let x(k), and (k) denote the
part of the vector corresponding the x, and the  variables respectively.
Go to Step 1.

4 A nonlinear pooling problem

In this section we discuss the numerical performance of the algorithm on a
classical pooling problem. Due to space limitations we do not discuss how
the implementation of the algorithm is done. We only point out that for the
algorithm to be implementable then the process defined in (2.6) needs to be
discretized to:

X(t+5t) = X(t) — VF(X ()5t — Va(X (#)TAX (1), )6t + /T(t)dtu.

where u ~ N(0,1). We also note that it is not necessary to exactly compute
gradients (and the Laplacian) as defined in the previous sections. This problem
was first considered in [25], the formulation given here is closer to the one in



Table 1: Uncertainty Specification

Variable Support Mean Variance
Dg: Demand for Q | [50,100] 75 5
Rg: Demand for R | [100,200] 150 20
Cy4: Costs for A [5,10] 7.5 1
Cp: Costs for B [10,20] 15 4
C¢: Costs for C [12,25] 18 4

[8, 6]. We note that this is an interesting global optimization problem with
many applications and it has been considered in the past by many authors (see
e.g. [5, 6]). It is well known that this problem is non—convex (see e.g. [5]). The
example given here is a modified version of the one in [8]. An illustration is
given in Figure 2. There are three input chemicals A,B and C. These chemicals
when blended provide two output products Q and R. We assume that demand
for Q and R is uncertain but has mean (ug,ur) and variance (012{,0'%). No
distribution assumptions are made on the demands. We also assume that the
cost per unit of chemical (raw materials) is also uncertain. The specification of
the uncertainties is given in Table 1. We also assume that each product has a
fixed profit per unit (Cg = 100 and Cr = 150). Any product that is not sold is
stored. Storage costs are fixed and are denoted by So(= 5) and Sg(=8). The
full problem specification is given by:

max y

s.t P[Comin{y/Xq,/Dq}? + Cqmin{y/Xr, /Dr}’ (4.1)
—CaXa—CpXp—CcXo (4.2)
— Sgmax{Xqg — Dg,0}* — Sgmax{Xg — Dg,0}> <4] <§ VP (4.3)
Xa+Xp=Yo+Ygr
Yo +Xcq = Xq
Yr+Xcr =Xr
XCQ + Xcr = X
ZYq +4Xcg < 2.5Xg
ZYr +4Xcp < 1.5XR
3Xa+Xp=2Z(Xa+ Xp)
1<7<3.

The variables in the optimization problem above are as follows:

X; : Amount (in units) of chemical or product i used, i = A, B,C, R, Q.
Y; : Flow (in units) from the pooling tank to product ¢, i = @, R.
: Flow (in units) from chemical C' to product i, i = @, R.

Z : Sulphur concentration (in percentage) of the pooling tank.

The objective of the problem is to maximize profits. This objective is expressed
in constraint (4.1)-(4.3). The first part of the constraint (4.1) attempts to
maximize profits, the second part (4.2) takes into consideration the costs of the
raw materials. The third part (4.3) represents the costs of storage. The aim is

10
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Figure 1: The Haverly Pooling Problem

to calculate the optimal strategy so that the probability of the profit being less
than the one calculated is less than § (taken to be 0.05 in our implementation).
In Figure (2) we show how the probability of satisfying constraint (4.1)-(4.3)
is reduced. In iteration 1, the optimal strategy yields a profit of $27067.4, but
with probability 0.79, the realized profit will be different. The robust strategy
yileds a profit of $21708.8, and the probability that profits will be different from
this value is 0.048. Results on the optimal strategies are shown in Table 4.

Probability of diviation from the optimal value
0.8 T T T T \ \

0.5 - .

0.1 |-

L
0 5 10 15 20 25 30 35

Iteration

Figure 2: P, is the probability of the optimal function value being less then the
the calculated, i.e. the probability of constraint (4.1)-(4.3) being violated
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Variable k=1 | Robust Solution
Xa 48.74 37.04
Xp 146.26 111.2
Xo 30 31.81
Xo 75 79.55
Xr 150 100.51
Yo 45 47.75
Yr 150 100.5
Xcq 30 31.80
Xcr 0.002 0.005
A 1.5 1.5
Profit 27067.4 21708.8
Probability 0.21 0.95

Table 2: Comparison of optimal solutions. When k = 1 i.e. in the first iteration
of the algorithm the optimal solution obtained is shown in the second column.
With this strategy the profit is 27067.4, but with probability 0.79 the profits
will change. The robust solution is shown in the last column. The profit has
been reduced to 21708.8 but the probability of not achieving this is less than
0.05.

Appendix

The basic idea behind the convergence analysis is to show that if €2, is generated
as in Step 1.C of the algorithm, then the problem in (Dy) will eventually yield
a solution that is feasible in (P). Of course, any such feasible solution must also
be optimal (note that we are making use of assumption 2.1). The second part
of the convergence analysis shows that the diffusion process generated for the
solution of (3.1) will converge. From Theorem 2.2 we must then have that (3.1)
eventually converges to a stochastic process that assigns its mass to the global
minima of (P).

Theorem 4.1. Suppose that assumption (2.1) holds, and that Qy, is generated
as in Step 1.C of the algorithm. Moreover assume that the original problem is
feasible, and that (My) has a solution, for any (x, v). Finally, assume that Tpy
is large enough so that the solution obtained in Step 1 is globally optimal (with
probability 1) for (My). Then there exists a ko, such that for any k > ko the
solution of:

F(k) = mi
)=z, !
st fry,w) >y VYwe Qy (4.4)

gz, w) >0 Yw e Q,
will eventually yield an optimal solution for (P).

Proof. Let us first note that if the solution of (4.4) is feasible for (P) then it must
also be optimal. This is because if (x, %) is feasible in the original problem, no
new discretizations will be generated when solving (M}) (or (2.3)). Since (4.4)
always yields a lower bound for (P) it follows that such a solution must also be
optimal.
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We can now suppose that the algorithm does not stop in Step 1.B. We now
establish that eventually the solution of (4.4) will be feasible for (P). Clearly,
the set be defined by:

PZ{pE/C|/dp:l,/Qmi(w):,ui,izl,...,w} (4.5)

is convex. It follows from the Krein-Milman Theorem that P can be written as
the closure of the convex hull consisting of the extreme points of P:

P = cl[co(Ext P)].

The global solution of (Mj}) consists of vector (o(k),v(k)) € R¥*2 of proba-
bilities, and an associated vector of realizations:(u(k), z(k)) € R**2. We claim
that the finite collection of points (u(k),z(k)) € R¥*? is the support of the
extremal measure that maximizes (2.1). Suppose that this is not the case, then
there must exist some probability measure with support (a(k), 2(k)) € R*+2,
and that satisfies the moment conditions in (4.5). Since we are assuming that
(u(k), z(k)) does not form the extremal support maximizing (2.1) we must have
that o(k) < o(k) contradicting that o(k) is the globally optimal solution of
(My). We conclude that the solution of (M) will yield the required measure
maximizing (2.1).

The algorithm will therefore generate a sequence of probability measures Q.
Such a sequence is tight, since we are assuming that all the measures in P have
compact support. The sequence will therefore, by Prohorov’s Theorem, have a
limit point Q*, say. As a result, there must exist a kg, such that:

Q*(F(x,7)) = Q°(F(z, 7))l < e Yk > ko. (4.6)

Let (x(k),~v(k)) denote an optimal solution for (Dy). Then by using steps 1.A
and 1.C of the algorithm we must also have that:

QFH(F(a(k), v(k))) < QF(F(x(k), v (K))).
Therefore, there must exist an r > 0 such that: Which implies that
Q" (F(x(k),v(K))) < 4.
We conclude that there must exists a lAco, such that

Q7 (F(x(k), v (k) — 0] <e
O

Our next task is to show that the SDE associated with (Dy) will eventually
converge. It is known from Theorem (2.2) that once the transition density func-
tion converges, it will converge to density that assigns positive probability only
to the global minima of (Dy). However, Theorem 2.2 establishes this property
as t grows large. It basically says that if Ty (see Step 2 of the algorithm) is
allowed to be large enough, then Zj(t) to will converge to Zj. The latter pro-
cess will have a density function that assigns positive probability to the global
minima of (Dy). Our main result (Theorem 4.2) will show that as k tends to
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infinity Zj also converges. From Theorem 4.1 we must then have that once Zj,
converges, then we will have a solution to our original problem.
The SDE under consideration is given by:

kT]M kT]M
Z(KTny) = Z((k —1)Tar) — / VH(Z(r), 7, Q)dr + / VT (1)dBs(7)
k‘ 1 T]\/[ (k'fl)TZ\/I

(4.7)
Where VH is the gradient of the Lagrangian of (Dy), when the Lagrange mul-
tipliers are given by (2.7). Associated with the SDE in (4.7) is the following
initial value problem,

o 9 ' 16%p
2= Z i (VH(x, t: Q) ip(z, t)) T3 52 (4.8)
p(z,0) = h(z).

Were h is some continuously differentiable function. Due to the way the noise is
introduced into the system the associated forward equation satisfies a uniform
parobolicity condition. Moreover under our assumptions the coefficients of (4.8)
are regular. Under these assumptions the solution to the initial value problem
is unique, and is given by the integral equation:

p(t,z) = / T(t, 2, y)h(y)dy.

The kernel T is called the fundamental solution. The function p that satisfies
the preceding equation is called a generalized solution. Using the generalized
solution we define a family of operators O, as follows

Ooh(z) = h(z), Osh(z) = / T(t, 2, y)h(y)dy,

where t € [(k — 1)Ta, kTh]. Using this operator we establish the desired con-
vergence of the process as k grows large.

Theorem 4.2. Suppose that the Lagrangian of (Dy) is three times continuously
differentiable and has compact support. Ty in Steps 1 and 2 of the algorithm
is sufficiently large for Theorem 2.2 to hold. Suppose that T(t) is defined as

follows:
c

OB et

The there exists a ¢ such that for ¢ > ¢, and as k — oo the operator given by
Oh(x), with t € [(k — 1)Tar, kThr], will converge to OF.

Proof. Consider the following SDEs:

(s) = —VH(Z(s),s;Q)ds + /T (s)dBz(s) (4.9)

s) = +/T(s)dBs(s) (4.10)
Z(( — 1)T]\/[) = Zz s& [(k‘ — 1)T]\47 ]{ZTM]
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Let R, and @, be the transition probability measures, associated with (4.9),
and (4.10), respectively. Then, by Girsanov’s theorem, the Radon-Nikodym
derivative of Q w.r.t R, is given by:

k)T]y[ kTIVI
aQ VH(Z()52) 4p o IVHZ(s), 5 I,

(k=1)Tnm (k—1)Ts

(4.11)
From (4.9) we have:
dZ(s) + VH(Z(s),s; Qu)ds
T(s '

dBQ(S) =

~

Consequently, (4.11) can be written as follows:

flgzc):exp{ 7 (THEDS, i) )

(k—1)Tm
TR (s), 5 )
S)y 83880k .
+ <M,VH(Z(S),S,Qk)>dS}
(k—1)Tnm

Under our assumptions Z(s; ) (with s in [(k — 1)Tar, kTps]) will remain in a
compact set. Using this fact the following bound can be derived:

kT
VH(Z(s),s; Q) _
< TR0 ,VH(Z(s),s; Qk))> ds
(k=1)Tm
<__a
- T(kTM)’

where to derive the last inequality we used the monotonicity property of T'(t).
By It6’s Lemma:

2
d[H(Z(s), ;)] = (VH(Z(5), s; ., dZ(s)) + %ds + % T(s) Z 8877; ds.
Therefore,
S 2
(Vi) L) = (2 (5)s:900) -  Gds— l _ f;“] s
L 413)

Integrating by parts, we can calculate the following bound for the first term in
the right-hand-side of (4.12):

kT 1
/ T M), 52
k—1)Ts
|z . I Z(s),5: )d | 2
=T HEE S| _(H)T H(Z(s), ) {T(s)} = T(kTwr)’



where we used the fact that Z remains in a compact set. Using the same
argument, bounds for the rest of the terms in (4.12) can be found:

1 om
C3
—ds| < .
/ T(S) ot 1= T(kT]\J)
k—1)Ta
g 0*H
- Z = <
/ 5 ( 52 ) ds| < ¢4
k—1)Tar v

Therefore, there must exist a constant cs, such that:

%Z(J SeXp{T(kc;l\d)}'

Under (4.10), Z(kTys) is normally distributed. Indeed, its mean and covariance
matrix are given by:

kT

E[(Z(kTa)] = E[Z((k — )Ta)) + E / (VIT().dB()) | = =
(k—1)Tn
= E[ZZ(kTA[)ZJ(kTM)] — ZZ'Z]'
kT kT
=F||z+ / VT(s)dBi(s) | | 2 + / VT(s)dBy(s) || — ziz
(k—1)Tn (k=1)Tnm
kT
= / T(S)(S”ds
(k—=1)Tnm

By A we denote the covariance matrix, whose ij*" entry is given by the preceding
equation. Let € be an arbitrary positive constant.

I ex _lu_ZT—lu_Z
FlZT) =W = = exp {TU€5TA4)} / o igw)s(()ietAA);( L
[<e

lu—W|<

It is easy to see that there exists a cg, such that:

R[|Z(kTy) — W| < €] > exp {_ < } .

Therefore,

5k = lnfp((k - 1)TM, z, kTM& y)
I’y

e 1
= g}nﬂ% WROZ(kTM) -W|<e)

2o { it
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Finally, if we choose ¢ > ¢; then T(t) satisfies:

o . Cr > 1
AT [ T 3 Ky

Therefore

Jim O, (x),0]” = 0.

The result now follows from Theorem 7.4.1 in [26]. O
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