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Abstract. Two parallel deterministic direct search algorithms are used to find improved

parameters for a system of differential equations designed to simulate the cell cycle of budding

yeast. Comparing the model simulation results to experimental data is difficult because most of

the experimental data is qualitative rather than quantitative. An algorithm to convert simulation

results to mutant phenotypes is presented. Vectors of parameters defining the differential equa-

tion model are rated by a discontinuous objective function. Parallel results on a 2200 processor

supercomputer are presented for a global optimization algorithm, DIRECT, a local optimization

algorithm, MADS, and a hybrid of the two.

Key words: DIRECT (DIviding RECTangles) algorithm, Direct search, MADS (Mesh

Adaptive Direct Search) algorithm, Computational biology

1. Introduction

Molecular cell biology describes how cells convert genes into behavior. This description in-

cludes how a cell creates proteins from genes, how those proteins interact, and how networks

of interacting proteins determine physiological characteristics of the cell. The central biological

question addressed here is how protein interactions regulate the cell cycle of budding yeast (Sac-

charomyces cerevisiae).

The budding yeast cell cycle consists of four phases (G1, S, G2, M), with cell division occurring

in the final phase. A newborn cell starts in G1 phase (unreplicated DNA), during which time it

grows to a sufficiently large size to warrant a new round of DNA synthesis (S phase). After DNA

synthesis has completed, the cell passes briefly through G2 phase (replicated DNA) and then enters

M phase (mitosis, where the two copies of each DNA molecule are separated and the cell divides,

creating two new cells that are in G1 phase).

The protein interactions that govern these cell cycle events are modeled using differential

equations that describe the rate at which each protein concentration changes. In general, the

concentration of protein A, written as [A], changes according to the differential equation

d[A]

dt
= synthesis− degradation− binding + dissociation− inactivation + activation,

where “synthesis” is the rate at which new protein A molecules are synthesized from amino acids

(which depends on the concentration of active messenger RNA molecules for a particular protein),

“degradation” is the rate at which protein A is broken down into amino acids and polypeptide

fragments (which depends on the activity of specific proteolytic enzymes), “binding” is the rate at
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which protein A combines with other molecules to form distinct molecular complexes, “dissociation”

is the rate at which these complexes break apart, “inactivation” is the rate at which certain post-

translational modifications (e.g., phosphorylation) of protein A are made, and “activation” is the

rate at which these modifications are reversed (e.g., dephosphorylation). Each of these rates is

itself a function of the concentrations of the interacting species in the network. For example,

synthesis = k1[transcription factor],

degredation = k2[proteolytic enzyme][A],

binding = k3[A][B],where B is a binding partner,

dissociation = k4[AB],

inactivation =
k5[kinase][A]

J5 + [A]
,

activation =
k6[phosphatase][Ap]

J6 + [Ap]
,where Ap is the phosphorylated form of A.

In these rate laws, the ks are rate constants and the Js are Michaelis constants. Other differ-

ential equations must be used to determine the temporal dynamics of the concentrations of the

“transcription factor,” “proteolytic enzyme,” “kinase,” etc.

The budding yeast cell cycle model consists of 36 such differential equations for two classes of

variables: regulatory proteins and physiological “flags.” The regulatory proteins are triggers for

specific events of the budding yeast cell cycle: Cln2 triggers budding, Clb5 triggers DNA synthesis,

Clb2 drives cells into mitosis, and Esp1 drives cells out of mitosis and back to G1. The physiological

“flags” are dummy variables that track the strength of these trigger proteins. For example, “BUD”

is an integral of the activity of Cln2; when BUD = 1, a new bud is initiated. “ORI,” an integral

of [Clb5], represents the state of “origins of replication.” When ORI = 1 (“fired” origins), DNA

synthesis is initiated; at cell division, when [Clb2]+[Clb5] drops below a threshold level, ORI is reset

to zero (“licensed” origins). Finally, “SPN” represents the alignment of replicated chromosomes

on the mitotic spindle. SPN is driven by Clb2 activity; i.e., SPN is an integral of [Clb2].

In the budding yeast model there are 143 rate constant parameters (ks, Js, etc.). In some cases,

these parameters can be calculated directly from laboratory experiments (e.g., apparent protein

half-lives), but most parameters are difficult to obtain directly from experimentation. Normally,

modelers determine the remaining parameters by making educated guesses, solving the differential

equations numerically, comparing the simulation results with laboratory data, and then refining

their guesses. (Modelers call this process “parameter twiddling” [1].) For the budding yeast cell
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cycle, the laboratory data consists of observed phenotypes of more than 100 mutant yeast strains

constructed by disabling and/or over-expressing the genes that encode the proteins of the regulatory

network.

Although parameter twiddling is extremely tedious, it was used to obtain a parameter vector

(s1, s2, . . . , s143) for which the model’s predictions are consistent with almost all of the budding

yeast mutants being modeled. Obviously, the modelers would prefer a method that allows them

to spend more time working on the model and less time twiddling parameters. In addition, a

person can only keep track of a few parameters at one time, which makes it easy for him or her

to unwittingly miss a portion of the parameter space. For these reasons, modelers would prefer to

use a tool that determines “good” parameters automatically, quickly and accurately.

Section 3 describes a proposed mathematical formulation of “good” that allows a computer

code to find an acceptable vector of parameters. This formulation uses a discontinuous objective

function that evaluates to zero when there is a perfect match between the experimental data

(mutant phenotypes) and the simulation results, and it evaluates to increasingly larger numbers to

indicate worse matches. Another possible formulation for future consideration would use a smooth

system of inequalities that would be satisfied if and only if the simulation results are acceptable.

Section 2 describes the biological problem in some detail. Section 3 formulates a discontin-

uous objective function, reflecting biological criteria for an acceptable model. Two deterministic

algorithms, DIRECT and MADS, that are applicable to global parameter estimation, are briefly

described in Section 4. Numerical results on a parallel supercomputer (2200 processor System

X) are given in Section 5. Parallel efficiency and scalability are important issues to be addressed

separately—the emphasis here is on the biological problem, the discontinuous objective function

formulation, and the practical applicability of DIRECT and MADS to such optimization problems.

Throughout this paper, the observed phenotype refers to the phenotype that was recorded in

a laboratory experiment. The predicted phenotype refers to the phenotype that the mathematical

model (with its associated parameters) predicts. The wild type is the normal strain of an organism.

The mutant strains have genetic changes that make them behave differently from the wild type in

some way.
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2. Observed and Predicted Phenotypes

Experimental biologists have studied many budding yeast mutants to learn about the cell cycle

regulatory system. Of these mutants, 115 were chosen to model (see Appendix A). A model of

budding yeast can be considered acceptable only if it is able to duplicate the behavior of most of

these mutants. (It would be too much to expect a model to account for all the “observations” be-

cause of lingering uncertainties about the reaction network and inevitable mistakes in phenotyping

mutants.) When the model is used to simulate a mutant, the parameter vector can be changed

only in ways that are dictated by the genetic changes in the mutant. Consider the hypothetical

proteins A and B presented in the previous section: if a mutant had a modified form of B that did

not bind to A, then in the parameter vector for that mutant, k3 would be set to zero and all the

other parameters would be kept at the wild type values.

When comparing the model to the experimental data, it is important to realize that much of

the data from laboratory experiments is qualitative. Such data is of the form “the cell is viable but

considerably larger than wild type cells” or “the cell arrests in G1 phase and eventually dies.” The

quantitative data that is available (e.g., duration of G1 phase, cell mass at division) is generally

imprecise. With all these uncertainties, there may be many, clustered parameter vectors that allow

the model to reproduce the experimental data sufficiently well.

2.1. rules of viability

To compare solutions of the differential equations with experimental data, it is necessary

to predict cell cycle properties from a simulation of regulatory protein dynamics. Viability is

determined by four rules:

1. The simulation must execute the following events in order, or else the modeled cell is considered

inviable:

(a) origin relicensing (modeled by a drop in [Clb2] + [Clb5] below a threshold Kez2);

(b) origin activation (due to a subsequent rise in [Clb2] and [Clb5], causing [ORI] to increase

above one) before a wild-type cell in the same medium would divide twice;

(c) spindle alignment (due to a rise in [Clb2], causing [SPN] to increase above one);

(d) Esp1 activation (modeled by [Esp1] increasing above 0.1);

(e) cellular division (modeled by [Clb2] dropping below a threshold Kez).

2. The cell is inviable if division occurs in an “unbudded cell” (i.e., if [BUD] does not reach the

value 0.8 before event (e) occurs).

5



Figure 1. The five stages of the cell cycle, delineated by the events described in the first
rule of viability. The four biological phases of the cell are above the stages, and two of
the phases within M phase are shown below their corresponding stages.

3. The cell cycle should be stable, i.e., the squared relative differences of the masses and G1

phase durations in the last two cycles should both be less than 0.05.

4. Lastly, the modeled cell is considered inviable if cell mass at division is greater than four times

or less than one-fourth times the steady-state mass at division of the wild type in the same

medium.

As mentioned in Section 1, the physiological flags are reset when certain events (a-e) occur.

For a complete description of the resetting rules, see [5].

The viability rules are used by an algorithm[2] (called a transform) that outputs a phenotype

from a solution of the differential equations. The transform keeps track of what stage the cell is in,

where the stages are demarcated by the events (a-e) above. The first stage is unlicensed, which ends

when the first event, origin relicensing, occurs. The other four stages are, in chronological order,

licensed, fired, aligned, and separated. When the simulated cell is in the separated stage, cellular

division signals the transition back to the unlicensed stage. The relations among the stages, events,

and biological phases of the cell are shown in Figure 1. If one of the rules of viability is broken,

the transform sets an error flag and records the stage when the error occurred and the number of

cycles (i.e., cell divisions) completed from the time when the mutation was expressed to the time

when the cell arrested.

2.2. initial conditions

In the experimental data set, many of the mutations are conditional, that is, the mutant cells

when grown under “normal” conditions (say, glucose medium at room temperature) behave like

wild-type cells, but when grown under “restrictive” conditions (say, galactose medium or elevated

temperature) the cells express the genetic mutation and the aberrant phenotype. To model this

situation at sample points in parameter space, start a “wild-type” simulation from arbitrary (but

reasonable) initial conditions and integrate the differential equations for two full cycles, in order
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to wash out any effects of the initial conditions. Then record the state of the control system just

after origin relicensing (see Figure 1) at the beginning of the third cycle. These recorded values

are used as initial conditions for simulating a steady state wild-type cell and for simulating each

of the mutants.

3. Formulation as a Discontinuous Minimization Problem

The objective function takes the observed phenotype and predicted phenotype for all of the

mutants and computes a nonnegative score. Zero indicates a perfect match and larger numbers

indicate increasingly worse matches. The ensuing discussion uses the symbol O for observed phe-

notype values and P for predicted phenotype values.

A budding yeast phenotype for a single mutant is represented by a six-tuple (v, g, m, a, t,

c), where the viability v ∈ {viable, inviable}, the real number g > 0 is the steady state length of

the G1 phase in minutes, the real number m > 0 is the steady state mass at division expressed as

a multiple of the wild type’s steady state mass at division in the same medium (e.g., glucose or

galactose), the stage when arrest occurs is

a ∈ A = {unlicensed, licensed, fired, aligned, separated},

the positive integer t is the arrest type (e.g., if events occur in improper order), and the nonnegative

integer c is the number of successful cycles completed. The observed and predicted phenotypes are

written O = (Ov, Og, Om, Oa, Ot, Oc) and P = (Pv , Pg, Pm, Pa, Pt, Pc), respectively. Arrest types

cannot be compared unless the stage of arrest is the same for both phenotypes.

The rating function, R, compares the observed and predicted phenotypes for a mutant. This

rating function is a modified version of the one developed by N. Allen et al. [2]; the only difference is

that if Pv is missing (if integration fails for some reason), then R(O, P ) = ωv. The rating function

is split into four cases depending on the viability of the observed and predicted phenotypes. If

Ov = inviable, Pv = viable, and Oc is missing, then R(O, P ) = ωv , the same as if Oc = 0.

Otherwise, if a needed classifier is missing, the term is simply dropped and does not contribute to

the objective function. In the case that classifiers are missing, this allows the objective function

value to be at or near zero when viability is in agreement between the phenotypes, and forces larger

objective function values when viability is not in agreement.
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In what follows, the ωs and σs are constants defined in Table 1. The rating function R(O, P )

when all classifiers are present is given by

ωg ×
(
Og − Pg
σg

)2

+ ωm ×
(

ln Om
Pm

σm

)2

,

if Ov = viable and Pv = viable, by

ωv ×
1

1 + Pc
,

if Ov = viable and Pv = inviable, by

δO,P + ωc ×
(
Oc − Pc
σc

)2

,

if Ov = inviable and Pv = inviable, and by

ωv ×
1

1 + Oc
,

if Ov = inviable and Pv = viable. δ is a real-valued discrete function used to assess a penalty for

the arrest stage and type, given by

δO,P =

{
ωa, if Oa 6= Pa,
ωt, if Oa = Pa and Ot 6= Pt,
0, if Oa = Pa and Ot = Pt.

The rating function is tuned by parameters that allow adjusting the relative importance of

classifiers. The parameters given by Table 1 were set so that a rating of around ten indicates a

critical error in the model’s prediction of a phenotype.

Symbol Definition Value
ωg G1 length weight 1.0
σg G1 length scale 10.0
ωm Mass at division weight 1.0
σm Mass at division scale ln 2
ωa Arrest stage weight 10.0
ωt Arrest type weight 5.0
ωc Cycle count weight 10.0
σc Cycle count scale 1.0
ωv Viability weight 40.0

Table 1. Constants used in the objective function.
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Denote the real numbers by R, the nonnegative integers {0, 1, 2, . . .} by Z+, and the integers

by Z . Let

P =
{

(v, g,m, a, t, c)
}

= {viable, inviable} × (0,∞)2 × A× {1, . . . , 10}× Z+

be the space of all budding yeast phenotypes and let the domain of the objective function be the

box

Ω = {x ∈ R143 : ln(si/ui) ≤ xi ≤ ln(si × ui), i = 1, . . . , 143},

where u ∈ R143 is a vector of positive scale factors (most components of u are approximately 100)

reflecting a priori limits on the rate constants, and s ∈ R143 is the modeler’s best guess point. Let

Tj : Ω→ P define the simulated phenotype of the jth mutant with the parameters (p1, . . . , p143) =

(ex1 , . . . , ex143), where (x1, . . . , x143) ∈ Ω. Then the objective function f : Ω→ [0,∞) is defined by

f(x) =
Nm∑

j=1

µjR(Oj , Tj(x)),

where Nm is the number of mutants simulated, and µi > 0 indicates the relative importance of the

ith mutant. The objective function value at the best previously known point [5] is 470.

4. Algorithms

This section describes two algorithms that show promise for optimizing the discontinuous

objective function described in the previous section. Consider the problem of minimizing f : B →
R, where B = [l, u] ⊂ Rn is a box.

4.3. direct

The DIRECT (Dividing Rectangles) global minimization algorithm [11] requires the objective

function to be Lipschitz continuous to guarantee convergence. Even though the objective func-

tion used here is discontinuous, the DIRECT algorithm seems to be an efficient and reasonable

deterministic sampling strategy worth trying.

The DIRECT algorithm is one of a class of deterministic direct search algorithms that does

not require gradients. It works by iteratively dividing the search domain into boxes that have

exactly one function value at the box’s center. In each iteration, the algorithm determines which

boxes are most likely to contain a better point than the current minimum point—these boxes

are called “potentially optimal”. It then subdivides the potentially optimal boxes along their
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longest dimensions. Intuitively, a box is considered potentially optimal if it has the potentially

best function value for a given Lipschitz constant. The formal definition from [11] follows.

DEFINITION 1. Suppose that the unit hypercube has been partitioned into m (hyper) boxes. Let

ci denote the center point of the ith box, and let di denote the distance from the center point to

the vertices. Let ε ≥ 0 be a positive constant. A box j is said to be potentially optimal if there

exists some K̃ > 0 such that for all i = 1, . . . , m,

f(cj)− K̃dj ≤ f(ci)− K̃di, for all i = 1, . . . , m,

f(cj)− K̃dj ≤ fmin − ε|fmin|.

The DIRECT algorithm is described by the following six steps [10].

Step 1. Normalize the design space B to be the unit hypercube. Sample the center point ci of

this hypercube and evaluate f(ci). Initialize fmin = f(ci), evaluation counter m = 1, and

iteration counter t = 0.

Step 2. Identify the set S of potentially optimal boxes.

Step 3. Select any box j ∈ S.

Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let δ equal one-third of

this maximum side length.

(2) Sample the function at the points c ± δei for all i ∈ I , where c is the center of the box

and ei is the ith unit vector.

(3) Divide the box j containing c into thirds along the dimensions in I , starting with the

dimension with the lowest value of wi = min{f(c+ δei), f(c− δei)}, and continuing to

the dimension with the highest wi. Update fmin and m.

Step 5. Set S = S − {j}. If S 6= 0 go to Step 3.

Step 6. Set t = t+ 1. If iteration limit or evaluation limit has been reached, stop. Otherwise, go

to Step 2.
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Figure 2. These graphs show the function evaluations that DIRECT performed after
zero, one, five, and eleven iterations. Comparing the first and second graphs shows
how DIRECT divides a two-dimensional box. The second and third graphs include the
rectangles that DIRECT had created. After five iterations, DIRECT has found the global
minimum at (−1.8,−1.1). After the fifth iteration DIRECT has explored the domain,
subdividing most of the larger boxes. After eleven iterations, DIRECT has evaluated the
function at points near the local minimum.

For an illustration of how the DIRECT algorithm searches the domain on an example problem,

see Figure 2. Both serial [10] and parallel [7] versions of DIRECT have been described in the

literature.

4.4. mads

A MADS (Mesh Adaptive Direct Search) algorithm, as defined by Audet and Dennis [4],

minimizes a nonsmooth function f : Rn → R ∪ {+∞} under general constraints x ∈ Ω ⊆ Rn,

Ω 6= ∅. If Ω 6= Rn, the algorithm works with fΩ, which is equal to f on Ω and +∞ outside Ω.

Using fΩ in lieu of f is called a “barrier” approach to handling arbitrary constraints x ∈ Ω.
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In each iteration, a MADS algorithm evaluates the objective function fΩ at a finite number

of trial points. Central to these algorithms is the concept of a mesh, which is a discrete set of

points in Rn. Every previous trial point must lie on the current mesh, and in each iteration the

algorithm may only generate new trial points on the current mesh. This is not as restrictive as

it might sound because the algorithm changes the mesh after each iteration (with the restriction

that all previously evaluated points remain in the new mesh).

To further define the mesh, three entities—∆m
k , D, Sk—must be introduced. First, the mesh

size parameter ∆m
k > 0 controls the granularity of the mesh at iteration k; after the kth iteration,

∆m
k+1 is adjusted from ∆m

k depending on the success of that iteration. The second entity is an

n × nD matrix D, where each column D·j = Gzj (for j = 1, 2, . . . , nD) for some fixed nonsingular

generating matrix G ∈ Rn×n and nonzero integer vector zj ∈ Zn. The columns of D must also

be a positive spanning set, Pos(D) = Rn (i.e., the cone generated by nonnegative combinations

of columns of D spans Rn). Lastly, Sk is the set of points where the objective function has been

evaluated by the start of iteration k. Now that those entities have been introduced, the current

mesh can be precisely defined.

DEFINITION 2. At iteration k, the current mesh is defined to be

Mk =
⋃

x∈Sk
{x+ ∆m

k Dz : z ∈ N nD}.

This definition ensures that all previously evaluated points are included in the mesh. It also shows

that a smaller ∆m
k will result in a more refined mesh, while a larger ∆m

k will create a coarser mesh.

Now that the mesh has been defined, the iterations of a MADS algorithm can be described.

Each iteration consists of two steps: the search step and the poll step. The search step may

evaluate fΩ at any finite number of mesh points. At which mesh points fΩ is evaluated depends

on the precise MADS algorithm in use. A MADS algorithm may even do zero evaluations in

the search step; the search step is said to be empty when no points are considered. If the

search step fails to find a mesh point at which fΩ is less than minx∈Sk fΩ(x), then the algorithm

performs the poll step by generating and evaluating fΩ at new trial points around the current

incumbent solution xk, where fΩ(xk) = minx∈Sk fΩ(x). The poll size parameter ∆p
k limits the

distance between xk and the new trial points. The set of new trial points is called a frame, and xk

is called the frame center. The MADS frame is constructed using xk , ∆p
k , ∆m

k , and D to obtain a

set Dk of positive spanning directions.
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DEFINITION 3. At iteration k, the MADS frame is defined to be the set

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂Mk,

where Dk is a positive spanning set such that 0 /∈ Dk and for each d ∈ Dk,

• d can be written as a nonnegative integer combination of the columns of D: d = Du for some

vector u ∈ N nD ,

• the distance from the frame center xk to a frame point xk + ∆m
k d ∈ Pk is bounded by a

constant times the poll size parameter: ∆m
k ‖d‖∞ ≤ ∆p

k‖D‖∞,

• limits (as defined in Coope and Price [6]) of the normalized sets Dk are positive spanning sets.

The algorithm evaluates fΩ at points in the frame Pk until it encounters an improved point

x∗ (fΩ(x∗) < fΩ(xk)) or it has evaluated fΩ at all of the points in Pk.

After the algorithm has executed the search step and (conditionally) the poll step, it sets

the mesh size and poll size parameters, ∆m
k+1 and ∆p

k+1, for the next iteration. If the iteration

successfully found a better mesh point xk+1 such that fΩ(xk+1) < fΩ(xk), then ∆m
k+1 will be larger

than or equal to ∆m
k ; otherwise, ∆m

k+1 will be smaller than ∆m
k . The poll size parameter ∆p

k+1

must be set such that ∆m
k+1 ≤ ∆p

k+1, and it must satisfy

lim inf
k→∞

∆m
k = 0⇐⇒ lim inf

k→∞
∆p
k = 0.

Exactly how ∆m
k+1 and ∆p

k+1 are generated is determined by the individual algorithm in use.

A typical algorithm uses the following rules to set the mesh size parameter: ∆m
0 = 1, and

∆m
k+1 =





∆m
k /4, if xk is a minimizing

frame center,
4∆m

k , if an improved mesh
point is found, and
if ∆m

k ≤ 1
4 ,

∆m
k , otherwise.

The same example algorithm then uses the simple rule ∆p
k =

√
∆m
k to determine the value of

∆p
k+1. These rules ensure that ∆m

k is always a power of 1/4 less than or equal to one, and ∆m
k is

always less than or equal to ∆p
k.

In summary, the MADS class of algorithms is described by the following five steps.

Step 1. Let x0 ∈ Ω and 0 < ∆m
0 ≤ ∆p

0. Let D be an n×nD matrix with the properties described

earlier. Set the iteration counter k := 0.
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Step 2. Perform the search step. This step varies among the individual algorithms; in all algo-

rithms fΩ is evaluated at a finite subset of points (called trial points) on the mesh Mk .

If a trial point y is found such that fΩ(y) < fΩ(xk), then the algorithm may go to Step

4 with xk+1 := y.

Step 3. Perform the poll step, evaluating fΩ at points from the frame Pk ⊂ Mk until a frame

point xk+1 is found with fΩ(xk+1) < fΩ(xk) or fΩ has been evaluated at all of the points

in Pk .

Step 4. Update ∆m
k+1 and ∆p

k+1 according to the specific algorithm’s rules. In all algorithms,

(1) ∆m
k+1 is greater than or equal to ∆m

k if an improved mesh point is found,

(2) ∆m
k+1 is less than ∆m

k if an improved mesh point is not found,

(3) ∆p
k+1 is greater than or equal to ∆m

k+1, and

(4) lim infj→∞∆m
j = 0 if and only if lim infj→∞∆p

j = 0.

Step 5. If an appropriate stopping criterion has been met, stop. Otherwise, set k := k+ 1 and go

back to Step 2.

The previous discussion presents the MADS class of algorithms. The following discussion

describes a specific instance of the class, and Figure 3 shows how that algorithm behaves on an

example problem. To emphasize the poll step of the algorithm, there is no search step in the

algorithm presented here.

In this MADS algorithm,

D =

(
1 0 −1 0
0 1 0 −2

)
.

Notice that a MADS mesh constructed using this matrix is identical to a mesh constructed using

the matrix

B =

(
1 0 −1 0
0 1 0 −1

)
.

However, ‖D‖∞ = 2 while ‖B‖∞ = 1; thus, a MADS frame constructed using D instead of B

will extend twice as far in every direction. From D, the matrix Dk is generated (using random

coefficients as described in [4]) at the beginning of the kth iteration so that it is a positive spanning

set, and so that the (normalized) columns of Di, for i = 1, 2, . . ., are dense in the unit circle S1.

The mesh size parameter ∆m is updated according to the rules:

∆m
0 = 1,

∆m
k+1 =





∆m
k /4, if xk is a minimizing frame center,

4∆m
k , if an improved mesh point is found, and if ∆m

k ≤ 1
4 ,

∆m
k , otherwise.
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Figure 3. These three graphs show how a MADS algorithm can refine the mesh, choose
different poll directions, and contract the search area. In Figure 3(a), the intersections of
the dotted lines indicate points that met the criteria for frame points in the first iteration.
From these possibilities, the algorithm chose the four points indicated by the large circles;
these four points constitute P1. At all of these points, the function is higher than at x0,
so the algorithm refined the mesh by setting ∆m

2 = ∆m
1 /4. The intersections of the

solid lines in the same graph indicate possible frame points for the second iteration. The
algorithm evaluated the function at only two points in P2 because the function is lower at
the second point than at x0. Figure 3(b) shows how the mesh allows a MADS algorithm to
choose different poll directions at each iteration. Figure 3(c) highlights three consecutive
iterations of the algorithm. In the first two iterations, the algorithm is unable to find an
improved mesh point, therefore it restricts the search area to be closer to xk. This can be
seen by looking at the points evaluated in the three iterations; the circles are the furthest
away from xk, the squares are closer, and the triangle is the closest. There is only one
triangle because the function value at that point is lower than f(xk), so the algorithm
stopped the poll step and went on to the next iteration.

The poll size parameter ∆p is updated according to the rule ∆p
k =

√
∆m
k .

The example function in Figure 3 has two local minima in the chosen domain. The basin of
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attraction for the global minimum point is smaller than that of the other local minimum point.

For the example problem, Ω = {(x1, x2) : x1 ∈ (−2, 2.4), x2 ∈ (−2, 2.4)}.

5. Results

All computation took place on System X, a cluster of 1100 dual-processor Mac G5 nodes.

NOMAD [4] is a C++ implementation of the MADS class of algorithms. To take advantage

of System X, NOMAD’s implementation of the poll step was parallelized using a master/worker

paradigm. The master ran the MADS algorithm as presented in Section 4 and sent requests to the

workers whenever objective function values were needed. NOMAD, started from the modeler’s best

point s, evaluated the objective function 135,000 times over 813 iterations using 128 processors,

converging at a point for which the objective function value was 299.

pVTDirect [7] is a parallel implementation of DIRECT written in Fortran 95. While the

DIRECT algorithm does not have a traditional “starting point”, the first sample in each subdomain

is always taken at the center of the subdomain bounding box. For this problem, the bounding box

was designed so that the modeler’s best point [5] would be at the center and therefore would be

evaluated before any other points. pVTDirect (with only one subdomain and ε = 0) ran for 473

iterations using 1024 processors and evaluated the objective function 1.5 million times, finding a

point at which the objective function value was 212.

The first set of runs (the results of which are illustrated in Figures 4 and 5) use the same

initial conditions simulating all of the points, not different initial conditions as described in Section

2.2. (These runs led to the discovery of the necessity of the procedure in 2.2.) Figure 4 shows

the progress that each algorithm was able to make in minimizing the objective function. While

NOMAD was able to quickly find a better point than the modeler’s best point, pVTDirect even-

tually found an even lower point. In a later run, NOMAD was started from pVTDirect’s lowest

point, but NOMAD was unable to make any further progress. After looking at Figure 4, it is

tempting to believe that pVTDirect could have been stopped earlier (for instance, after 200,000

evaluations), and NOMAD started at pVTDirect’s last best point could have found a point at

which the objective function value was 212 or less. To test this, NOMAD was started at the best

point at the 54th, 157th, and 239th iterations of pVTDirect. These points correspond to the be-

ginning, middle, and end of the second lowest plateau in Figure 4. As shown in Figure 5, NOMAD

started from the middle point converged to a point at which the objective function value was 210.

However, the NOMAD runs started at the beginning and end plateau points converge to worse
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Figure 4. The objective function value at the best point found versus the number of
evaluations for MADS and DIRECT. (The computations on which Figures 4 and 5 are
based used a standard set of initial conditions for every simulation, not the more accurate
updating of initial conditions described in Section 2.2.)
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Figure 5. The performance of NOMAD when started from the best point at pVTDirect’s
54th, 157th, and 239th iterations. The plots are shown as if the NOMAD runs started as
soon as the respective pVTDirect iterations completed.

points than pVTDirect’s best point. These four extra NOMAD runs (including the one starting

from pVTDirect’s best point) show that using NOMAD to get more value out of a pVTDirect run

is not simple.

When the initial conditions were generated (as described in Section 2.2) for the best points

from the previously described runs, the points received considerably worse objective function values,

leading to the realization that the initial conditions have to be chosen per Section 2.2 for each

parameter vector. To remedy this, the objective function was modified to generate proper initial

conditions (see Section 2.2) for each point before evaluating the point. NOMAD and pVTDirect

were then rerun on the corrected objective function. For this set of runs, pVTDirect was run twice,
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Figure 6. The objective function value at the best point found so far versus the number
of evaluations for MADS, DIRECT with ε = 0, and DIRECT with ε = 0.1.

once with ε = 0 and again with ε = 0.1. Table 2 gives basic information for each method, and the

results of these three runs are shown in Figure 6.

Run lowest f # evaluations # CPUs CPU hours
MADS 325 77,221 64 384
DIRECT, ε = 0 233 1,243,429 400 8,895
DIRECT, ε = 0.1 365 1,452,597 400 10,703

Table 2. Results for the runs that started from the best known point [5].

Figures 7, 8, and 9 give an idea of what areas of parameter space the different runs explored.

These figures confirm that DIRECT evaluates points further away from the starting point than

MADS. What is not shown in Figures 8 and 9 is that DIRECT found only 77,752 points that

evaluated to less than 480 when ε was set to 0.1, but it found 565,982 such points when ε was set

to 0, even though both runs evaluated approximately the same number of points. This, combined

with the information shown in Figures 8 and 9, shows that setting ε to 0.1 caused DIRECT to

spend more time dividing large boxes and less time refining small boxes.

However, Figure 5 showed that MADS may be able to quickly improve on the best points

that DIRECT has found. Unfortunately, it is difficult to guess which points from DIRECT will be

good starting points for MADS. To find points that scored well but were reasonably far apart, the

following algorithm was used.

Step 1. Let P be all of the points that DIRECT evaluated when ε was set to 0. Set k := 1.

Step 2. Find sk ∈ P such that ‖sk − si‖ > 2, i = 1, . . . , k− 1 and f(sk) ≤ f(p) for all p ∈ P .

Step 3. If f(sk) ≥ 300, then stop, else set k := k + 1 and go to Step 2.
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Figure 7. The distribution of points that evaluated to less than 480 when MADS ran.
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Figure 8. The distribution of points that evaluated to less than 480 when DIRECT ran
with ε = 0.
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Figure 9. The distribution of points that evaluated to less than 480 when DIRECT ran
with ε = 0.1.
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This algorithm yielded 13 points to use as starting points for MADS runs. The results of

those runs are given in Table 3. In this table, there does not seem to be any relationship between

f(si) and the objective function value at the point to which MADS converges. It is also interesting

that for 12 of the runs, MADS converges to a point that evaluates to 220–240, but the third run

converges to a point that evaluates to a much lower score of 189. This is the lowest score found by

any of the runs.

i f(si) final f # evaluations CPU hours
1 233 233 1,590 12
2 244 234 22,153 105
3 244 189 76,978 384
4 249 226 39,990 189
5 250 230 82,551 384
6 250 231 79,869 385
7 255 224 59,884 266
8 257 220 80,361 385
9 260 228 86,251 384

10 262 233 81,431 385
11 291 228 79,110 384
12 292 244 53,257 238
13 293 238 84,035 384

Table 3. The MADS runs that started from points found during the DIRECT (with ε = 0) run.
All MADS runs used 64 processors.

6. Conclusion

Even with a discontinuous objective function and a 143-dimension search domain, both DI-

RECT and MADS performed well. When ε was set to zero, DIRECT explored the parameter

space and refined the boxes near local minima. When ε was set to 0.1, DIRECT used most of its

evaluations to explore the parameter space. Any inferences about the choice of ε must be made

with caution, since the box center here was already a very good point, and sizeable volumes of

the 143-dimensional space still remain unsampled. MADS was almost always able to find a better

point than its starting point, and it did so with far fewer evaluations than DIRECT. Using the two

algorithms together yielded the lowest-scoring point.

The best previously known parameter vector from Chen et al. [5] has an objective function

value of 470, and correctly models all of the mutants except (numbers from Appendix A) 7, 16, 35,

41, 45, 53, 76, 93, 97, 103, 104, and 110. The best point from DIRECT/MADS has an objective

function value of 189, and correctly models all but mutants 35, 41, 45, 53, 76, 93, and 110.
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Figure 10. The best DIRECT/MADS parameter vector and the parameter vector from
Chen et al. [5] were uniformly randomly perturbed by up to ±0.5% in all dimensions, and
the objective function was evaluated at each of the perturbed vectors. This figure shows
the percentage of vectors that scored in [x, x+ 100), for x = 200, 300, . . . , 700.

How sensitive is the biological model (as reflected in the objective function) to local distur-

bances of these parameter vectors? If the DIRECT/MADS parameter values were rounded to two

significant figures, would the model be such a good fit to the data? To investigate this question,

random perturbations (up to ±0.5%) were applied to all of the parameter values in both the Chen

et al. parameter vector and the best DIRECT/MADS parameter vector, and histograms of the

resulting objective function values were computed (Figure 10). For the Chen et al. parameter

vector, about 25% of perturbations (white bars in Figure 10) give significantly worse fits to the

data, a reflection of the fact that behavior of the model is quite sensitive to a small number of

the parameters, as described in detail in [5]. The DIRECT/MADS parameter vector (grey bars

in Figure 10) appears to be not only better but also its perturbations are less likely to produce

inferior models than for the Chen et al. parameter vector. Thus the combination of DIRECT and

MADS to perform parameter optimization on discontinuous objective functions in very high dimen-

sional (> 100) parameter spaces is not only feasible computationally but also can find “optimal”

parameter vectors that improve on the best estimates of expert modelers.
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9. Appendix A: Mutants

Listed below are the phenotypic characteristics of all the mutants used to construct the ob-
jective function. The data are expressed as a six-tuple (v, g,m, a, t, c) as described in Section 3.
The meanings of the values for t are described in [2]. For all fields other than viability, a dash (–)
means that the data is either not available or not applicable for that mutant.

Mutant name v g m a t c
1. Wild type in glucose viable 35.2 1 – – –
2. Wild type in galactose viable 109 1 – – –
3. cln1∆ cln2∆ viable – 2 – – –
4. GAL-CLN2 cln1∆ cln2∆ viable – 0.5 – – –
5. cln1∆ cln2∆ sic1∆ viable – – – – –
6. cln1∆ cln2∆ cdh1∆ viable – – – – –
7. GAL-CLN2 cln1∆ cln2∆ cdh1∆ viable – 1.7 – – –
8. cln3∆ viable – 1.7 – – –
9. GAL-CLN3 viable – 0.44 – – –

10. bck2∆ viable – 1.4 – – –
11. Multi-copy BCK2 viable – 0.8 – – –
12. cln1∆ cln2∆ bck2∆ viable – 1.7 – – –
13. cln3∆ bck2∆ inviable – – licensed 5 0
14. cln3∆ bck2∆ GAL-CLN2 cln1∆ cln2∆ viable – – – – –
15. cln3∆ bck2∆ multi-copy CLN2 inviable – – licensed 5 –
16. cln3∆ bck2∆ GAL-CLB5 inviable – – – – –
17. cln3∆ bck2∆ sic1∆ inviable – – – – –
18. cln1∆ cln2∆ cln3∆ inviable – – licensed 5 0
19. cln1∆ cln2∆ cln3∆ GAL-CLN2 viable – – – – –
20. cln1∆ cln2∆ cln3∆ GAL-CLN3 viable – – – – –
21. cln1∆ cln2∆ cln3∆ sic1∆ viable 10 3.5 – – –
22. cln1∆ cln2∆ cln3∆ cdh1∆ inviable – – separated 3 –
23. cln1∆ cln2∆ cln3∆ multi-copy CLB5 viable – – – – –
24. cln1∆ cln2∆ cln3∆ GAL-CLB5 viable – – – – –
25. cln1∆ cln2∆ cln3∆ multi-copy BCK2 viable – – – – –
26. cln1∆ cln2∆ cln3∆ GAL-CLB2 inviable – – licensed 5 0
27. cln1∆ cln2∆ cln3∆ apc-ts inviable – – aligned 3 0
28. sic1∆ viable 15 1 – – –
29. GAL-SIC1 viable 135 2 – – –
30. GAL-SIC1-db∆ inviable – – licensed 5 0
31. GAL-SIC1 cln1∆ cln2∆ inviable – – licensed 5 –
32. GAL-SIC1 cln1∆ cln2∆ cdh1∆ inviable – – licensed 5 –
33. GAL-SIC1 GAL-CLN2 cln1∆ cln2∆ viable – – – – –
34. GAL-SIC1 GAL-CLN2 cln1∆ cln2∆ cdh1∆ viable – – – – –
35. sic1∆ cdh1∆ inviable – – unlicensed 1 1
36. sic1∆ cdh1∆ GALL-CDC20 viable – – – – –
37. cdh1∆ viable – 0.6 – – –
38. Cdh1 constitutively active inviable – – fired 3 –
39. cdc6∆2-49 viable – – – – –
40. sic1∆ cdc6∆2-49 viable – – – – –
41. cdh1∆ cdc6∆2-49 viable 20 2.0 – – –
42. clb1∆ clb2∆ inviable – – fired 3 0
43. GAL-CLB2 viable – – – – –
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44. Multicopy GAL-CLB2 inviable – – separated 3 0
45. GAL-CLB2 sic1∆ inviable – – separated 3 0
46. GAL-CLB2 cdh1∆ inviable – – – – –
47. CLB2-db∆ inviable – – separated 3 –
48. CLB2-db∆ in galactose inviable – – separated 3 –
49. CLB2-db∆ multicopy SIC1 viable – – – – –
50. CLB2-db∆ GAL-SIC1 viable – – – – –
51. CLB2-db∆ clb5∆ inviable – – separated 3 0
52. CLB2-db∆ clb5∆ in galactose viable – – – – –
53. GAL-CLB2-db∆ inviable – – separated 3 –
54. clb5∆ clb6∆ viable 65 – – – –
55. cln1∆ cln2∆ clb5∆ clb6∆ inviable – – licensed 5 0
56. GAL-CLB5 viable – – – – –
57. GAL-CLB5 sic1∆ inviable – – unlicensed – 1
58. GAL-CLB5 cdh1∆ inviable – – – – –
59. CLB5-db∆ viable – – – – –
60. CLB5-db∆ sic1∆ inviable – – – – 1
61. CLB5-db∆ pds1∆ viable – – – – –
62. CLB5-db∆ pds1∆ cdc20∆ inviable – – separated 3 0
63. GAL-CLB5-db∆ inviable – – – – 1
64. cdc20-ts inviable – – aligned 3 0
65. cdc20∆ clb5∆ inviable – – aligned 3 0
66. cdc20∆ pds1∆ inviable – – separated 3 0
67. cdc20∆ pds1∆ clb5∆ viable – – – – –
68. GAL-CDC20 inviable – – fired 10 0
69. cdc20-ts mad2∆ inviable – – aligned 3 0
70. cdc20-ts bub2∆ inviable – – aligned 3 0
71. pds1∆ viable – – – – –
72. esp1-ts inviable – – aligned 1 0
73. PDS1-db∆ inviable – – aligned 1 0
74. GAL-PDS1-db∆ inviable – – aligned 1 0
75. GAL-PDS1-db∆ esp1-ts inviable – – aligned 1 0
76. GAL-ESP1 cdc20-ts inviable – – separated 3 0
77. tem1∆ inviable – – separated 3 0
78. GAL-TEM1 viable – – – – –
79. tem1-ts GAL-CDC15 viable – – – – –
80. tem1∆ net1-ts viable – – – – –
81. tem1-ts multicopy CDC14 viable – – – – –
82. cdc15∆ inviable – – separated 3 0
83. Multicopy CDC15 viable – – – – –
84. cdc15-ts multicopy TEM1 inviable – – – – –
85. cdc15∆ net1-ts viable – – – – –
86. cdc15-ts multicopy CDC14 viable – – – – –
87. net1-ts viable 50 – – – –
88. GAL-NET1 inviable – – separated 3 0
89. cdc14-ts inviable – – separated 3 0
90. GAL-CDC14 inviable – – licensed 5 0
91. GAL-NET1 GAL-CDC14 viable – – – – –
92. net1∆ cdc20-ts inviable – – aligned 1 –
93. cdc14-ts GAL-SIC1 viable – – – – –
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94. TAB6-1 viable – – – – –
95. TAB6-1 cdc15∆ viable – – – – –
96. TAB6-1 clb5∆ clb6∆ inviable – – licensed 5 0
97. TAB6-1 CLB1 clb2∆ viable – – – – –
98. mad2∆ viable 35 1 – – –
99. bub2∆ viable 35 1 – – –

100. mad2∆ bub2∆ viable – – – – –
101. APC-A viable 20 1.5 – – –
102. APC-A cdh1∆ inviable – – separated 3 –
103. APC-A cdh1∆ in galactose viable – – – – –
104. APC-A cdh1∆ multicopy SIC1 viable – – – – –
105. APC-A cdh1∆ GAL-SIC1 viable – – – – –
106. APC-A cdh1∆ multicopy CDC6 viable – – – – –
107. APC-A cdh1∆ GAL-CDC6 viable – – – – –
108. APC-A cdh1∆ multicopy CDC20 viable – – – – –
109. swi5∆ viable 20 – – – –
110. sic1∆ cdc6∆2-49 cdh1∆ inviable – – fired 3 1
111. sic1∆ cdc6∆2-49 cdh1∆ GALL-CDC20 viable – – – – –
112. APC-A cdh1∆ clb5∆ inviable – – – – –
113. APC-A cdh1∆ pds1∆ inviable – – – – –
114. APC-A sic1∆ viable – – – – –
115. APC-A GAL-CLB2 inviable – – separated 3 –
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Figure 1. The five stages of the cell cycle, delineated by the events described in the first rule of
viability. The four biological phases of the cell are above the stages, and two of the phases within
M phase are shown below their corresponding stages.

Figure 2. These graphs show the function evaluations that DIRECT performed after zero, one,
five, and eleven iterations. Comparing the first and second graphs shows how DIRECT divides
a two-dimensional box. The second and third graphs include the rectangles that DIRECT had
created. After five iterations, DIRECT has found the global minimum at (−1.8,−1.1). After the
fifth iteration DIRECT has explored the domain, subdividing most of the larger boxes. After eleven
iterations, DIRECT has evaluated the function at points near the local minimum.

Figure 3. These three graphs show how a MADS algorithm can refine the mesh, choose different
poll directions, and contract the search area. In Figure 3(a), the intersections of the dotted lines
indicate points that met the criteria for frame points in the first iteration. From these possibilities,
the algorithm chose the four points indicated by the large circles; these four points constitute P1.
At all of these points, the function is higher than at x0, so the algorithm refined the mesh by setting
∆m

2 = ∆m
1 /4. The intersections of the solid lines in the same graph indicate possible frame points

for the second iteration. The algorithm evaluated the function at only two points in P2 because
the function is lower at the second point than at x0. Figure 3(b) shows how the mesh allows a
MADS algorithm to choose different poll directions at each iteration. Figure 3(c) highlights three
consecutive iterations of the algorithm. In the first two iterations, the algorithm is unable to find
an improved mesh point, therefore it restricts the search area to be closer to xk . This can be seen
by looking at the points evaluated in the three iterations; the circles are the furthest away from
xk, the squares are closer, and the triangle is the closest. There is only one triangle because the
function value at that point is lower than f(xk), so the algorithm stopped the poll step and went
on to the next iteration.

Figure 4. The objective function value at the best point found versus the number of evaluations
for MADS and DIRECT. (The computations on which Figures 4 and 5 are based used a standard
set of initial conditions for every simulation, not the more accurate updating of initial conditions
described in Section 2.2.)

Figure 5. The performance of NOMAD when started from the best point at pVTDirect’s 54th,
157th, and 239th iterations. The plots are shown as if the NOMAD runs started as soon as the
respective pVTDirect iterations completed.

Figure 6. The objective function value at the best point found so far versus the number of evalua-
tions for MADS, DIRECT with ε = 0, and DIRECT with ε = 0.1.

Figure 7. The distribution of points that evaluated to less than 480 when MADS ran.

Figure 8. The distribution of points that evaluated to less than 480 when DIRECT ran with ε = 0.

Figure 9. The distribution of points that evaluated to less than 480 when DIRECT ran with ε = 0.1.

Figure 10. The best DIRECT/MADS parameter vector and the parameter vector from Chen et
al. [5] were randomly perturbed by up to ±0.5% in all dimensions, and the objective function was
evaluated at each of the perturbed vectors. This figure shows the percentage of vectors that scored
in [x, x+ 100), for x = 200, 300, . . . , 700.
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