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Abstract

In many global optimization problems motivated by enginggrapplications, the number
of function evaluations is severely limited by time or coBb. ensure that each of these
evaluations usefully contributes to the localization obd@andidates for the role of global
minimizer, a stochastic model of the function can be buittdoduct a sequential choice of
evaluation points. Based on Gaussian processes and Krigm@uthors have recently in-
troduced the informational approach to global optimiza{illAGO) which provides a one-
step optimal choice of evaluation points in terms of redurctf uncertainty on the location
of the minimizers. To do so, the probability density of thenimizers is approximated us-
ing conditional simulations of the Gaussian process moeleirol Kriging. In this paper, an
empirical comparison between the underlying samplingeigah called conditional mini-
mizer entropy (CME) and the standard expected improvernenpbng criterion (El) is
presented. Classical tests functions are used as well gdespaths of the Gaussian model
and an actual industrial application. They show the inteséthe CME sampling criterion
in terms of evaluation savings.

Key words: expected improvement, Gaussian process, global optiimizd{riging

1 Introduction

To minimize an expensive-to-evaluate functibna common approach is to use a cheap
approximation of this function, which can lead to significaavings over traditional
methods. In this context, global optimization techniquasda on Gaussian processes
and Kriging (see, e.g.,Chilés and Delfiner [1999]) are ofteferred, for this provides an



appealing probabilistic framework to account for the utaiaty on the function approxi-
mation. Expensive-to-evaluate functions are often enad in industrial optimization
problems, where the function value may be the output of cernpbmputer simulations,
or the result of costly measurements on prototypes.

Most Kriging-based strategies proposed in the past fewsyésee, e.g., Jones [2001]
and the references thereimplicitly seek a likely value for a global minimizer, and then
assume it to be a suitable location for the next evaluatioh. ofet, making full use of
Kriging, it is possible taexplicitly account for the uncertainty on the global minimizers.
The most likely location of a global optimizer is actuallytmecessarily a good evaluation
point to improve the accumulated knowledge on the globalmizers.

Based on these considerations, the Informational ApprtaGiobal Optimization (IAGO)
strategy recently proposed in Villemonteix et al. [20064lexatesf where the potential
for the reduction of uncertainty on the location of the miizens is deemed to be the high-
est. The entropy of the conditional distribution of the glbminimizers is taken as the
uncertainty measure, and is approximated using condlt®malations of the Gaussian
process modeling. This approach has two main advantages over classicali§rigased
global optimization methods, such as the Efficient Globai®@ization (EGO) algorithm
(see Jones et al. [1998)). First, it should lead to signitisamings on the number of eval-
uations off. Second, results under the form of probability distribnsi@re particularly
attractive. The purpose of this paper is to evidence theuatiah savings that can be
obtained via the use of IAGO.

EGO and IAGO differ only by the sampling criterion used foboking the next evalua-
tion point. These two criteria, namedxpected improvemetil) for EGO andconditional
minimizer entropfCME) for IAGO, undergo a series of numerical experimentse first
experiments are conducted on four classical test functioater on, empirical conver-
gence rates are estimated using sample paths of a Gauss@sgrA final comparison
is performed on a real-case application to the design okénteorts in the automotive
industry, for which a single evaluation of the function todmimized requires about ten
hours of computer time.

The Kriging framework is briefly recalled in Section 2, as heal the definitions of the El
and CME criteria. A brief description of computational asfgeof the IAGO approach is
also presented. Section 3 reports the empirical compaattrese two criteria. Finally,
Section 4 presents conclusions and offers perspectivéstioe work.

2 Kriging-based global optimization

LetX, the factor space, be a compact subs@&béndf : X — Rbe the function to be min-
imized. The objective is to fing* a global minimizer off overX when the evaluation of

is expensive. To do so, a cheap modef ¢élso known as surrogate approximation) based
on previous evaluations will be used. Even if deterministiedels have been discussed



(as in the response surface methodology, see, e.g., Mydrslantgomery [2002]), it is
stochastic models that will retain our attention, and moeeigely the Bayesian approach
to global optimization (see, e.g., Mockus [1989]). In thigrhework, f is viewed as a
realisation (or sample path) of a stochastic pro€es can also be viewed as a Bayesian
prior on f). The distribution ofF conditionally to past evaluation results foiis used to
design asampling criterionto be optimized to choose an additional evaluation point for
f.

When F is Gaussian (we make this assumption in the rest ofaperp the conditional
distribution of F at an untried point is also Gaussian with mean and variaretectm
be obtained analytically using Kriging (prediction based@aussian processes has been
known for more than 50 years as Kriging in geostatistics ardshall keep to this ter-
minology). Gaussian models and Kriging have been introducehe field of Bayesian
optimization in Jones et al. [1998], through the Efficienokal Optimization (EGO) al-
gorithm. Since then (see Mockus [1989] for an overview ofvjanes work in the field),
Gaussian processes and Kriging have been the object of mbBtations in the field
of Bayesian global optimization, with improvements of th&@& algorithm (see, e.g.,
Williams et al. [2000] or Huang et al. [2006]) and comparatstudies (see, e.g. Jones
[2001] or Sasena et al. [2002]). Our contribution to the fisldlso based on Kriging.

2.1 Linear prediction

In this section, we recall some well-known facts about Krggon which the rest of the pa-
per is based (for more details, see (Chilés and Delfiner 1988 monteix et al. [2006])
and the references therein).

Let k(.,.) be the covariance function &f, andx be a point inX whereF is to be pre-
dicted. The mean d¥ (x) is assumed to be a finite linear combination of known funation
pi of X, m(X) = BTp(x), wheref is a vector of fixed coefficients to be computed, and
p(X) = [p1(X),..., p(x)]T. Usually the functiongp; are monomials of low degree in the
components oX (in practice, their degrees do not exceed two).

Given the vectof, = [f(x1),..., f(x,)]T of past evaluations at points$a = {X1, ..., Xn} €
X" (a sample value df, = [F(x1), ...,F(xn)]T), the Kriging predictof (x) of F (x) is the
minimum-variance unbiased linear predictor in the vecparce spafF (x1),...,F(Xn)}.
It can be written as

F(x)=A(X)"Fn, 1)

with Fp = [F(x1),...,F(xn)]T, andA(x) the vector of Kriging coefficients for the predic-
tion atx.



The vector of coefficientX(x) is solution of the linear system of equations

K P A(X) _ K(x) )
PT0 ) \ ux) p(x) |

with 0 a matrix of zerosiK = (K(x;, x; ))1<i i<n the covariance matrix d¥ at all evaluation

points inSy, k(x) = [k(x1,X), ...,K(xn,X)] T, the vector of covariances betweE(x) and
Fn, and

p(x1)T
b .

p(xn)"
The Kriging coefficients ax can thus be computed without evaluatifigc), along with
the variance of the prediction error

6(x) = k(x,%) = A(x) k(%) = p(x) TH(x), 3)

as these quantities only depend on the covarianée @ncef has been evaluated at all
Xj in Sp, the prediction off (x) is the conditional mean d¥, given by

f(x) = E[F (x)|#n] = A(x) "Fn,

with 7, = {Fn = fn} the evaluation results. Whehis evaluated exactly, Kriging is an
interpolation ¢ x; € Sp, If(xi) = F(xj)). Although noise on the evaluation results could
easily be taken into account in the prediction, in what felipthe evaluations are assumed
to be noise-free (see Villemonteix et al. [2006] for the yaiase).

As advocated in Stein [1999], the covariance-ois chosen within the Matérn class of
covariance functions (cf. Villemonteix et al. [2006] anck treference therein for more
details on the choice of a covariance), and the covarian@eneiers are either set a priori
or estimated from the data using the maximum-likelihoodhoet

After the evaluations i8Sy, f(x) is viewed as a sample pathefthat interpolates the data
fn. Such sample paths, known esnditional sample pathsre realizations ofF condi-
tionally to 7, and are essential to the IAGO approach. They representeabbeéhaviors
that are deemed possible fbgiven the results of evaluations$y. Figure 1(a) illustrates
the relationships betweeh f, 6 and the conditional sample paths.

2.2 Kriging-based sampling criteria

Among the many sampling criterion available in the literafwe feel that expected im-
provement (El), which has been the object of most publicatia the field for the last ten
years, is the most suited for a comparison with the one wegsegbin Villemonteix et al.
[2006].



2.2.1 Expected improvement

This sampling criterion corresponds to a one-step optirtratesyy given the Gaussian
prior F on the unknown functiori. Let f* = minycx f(x) be the global minimum of,
Sn be a set oh evaluation points irX, and consideM,, = minycs, F (xi) an estimator for
f*. For the loss function

L(Sn,F) =M, — 7,
the risk, or expected loss for a candidate paifdr the evaluation off, given the evalua-
tion resultsty, is given by

E(L(SnU{c},F)[#n) = E(min{Mn,F(c)}|#n) — f*. (4)
One can show that minimizing (4) is equivalent to maximizihg EIl criterion as pre-
sented for example in Jones [2001], i.e.,

El(c) = E[l(c)| #n], ()

with

. 0 if F(c) > Mo

Mn—F(c) otherwise
One can easily rewrite (5) as

El(c) = 6(c) [u®(u) + ¥’ (u)], (6)

with ~
m— f(c)
6(c)
My = E[Mp| #n] = miny s, f(X;) the current estimation of the minimum, aédhe normal
cumulative distribution. The new evaluation point is thémwgen as a global maximizer

of El(c).

2.2.2 Conditional minimizer entropy

The IAGO approach is based on two complementary principles, set it apart from
previous work in Bayesian global optimization. First, a tep optimal sampling crite-
rion for the reduction of the uncertainty on the minimizé3second, the use of Kriging
to evaluate this sampling criterion by approximating th&tribution of the minimizers
conditionally to past evaluations. We now briefly presemtsampling criterion, and refer
to Villemonteix et al. [2006] for computational details.

In Villemonteix et al. [2006], conditional entropy has beatroduced to measure the
information gained on the minimizers by an additional eatibn of f. This Stepwise
Uncertainty Reductio(SUR) strategy Geman and Jedynak [1995], chooses the paint t
potentially brings the largest reduction in entropy (se®a aneasure of uncertainty).



More formally, given our Gaussian priéron the functionf to be minimized, the uncer-
tainty on the minimizex* can be measured by the entropy of the global minimizers

H(X") = - % Px: (X)log(px+(X)),

with X* a random vector uniformly distributed in the set of the glab@imizers of F
over a discrete approximatidh of X, andpx- the point mass density of*.

Now, given a vectorf, of evaluation results, the uncertainty left ghis the entropy of
px+ (| #n) the point mass density of* conditionally to the evaluation results, (or in
shortconditional minimizer densijy

H(X"[7n) = — % Px (X[ #n)log(px-(X| #n))-

The idea of the IAGO strategy is iteratively to ensure a aeg-sptimal reduction of the
entropy of this distribution.

The risk associated with a candidate evaluation@fX is then chosen as the differential
entropy of the global minimizers conditionally to the pdtahresult of an evaluation at
(in short CME forconditional minimizer entropy

Hn(c) = H(X"|#n,F(c)),
and the evaluation is performed at

Xn4+1 = argminHy(c).
cexX

From the definition of conditional entropy (Cover and Thorfi#91]), we can write

Ho(©) = | Pricv170) (= 3 P (70, F (6] =y)logipx: (X7 F(0) =) ) d. ()

xeG

with pg ) (-|#n) the distribution ofF(c) and px-(-|#n, F(c) =y) the distribution ofxX*
conditionally toF, and{F(c) = y}. The CMEH,(c), as written in (7), can be viewed as
an expected loss, the loss function being the entropxef: | 7n, F (¢) = y) the conditional
minimizer density aften-+ 1 evaluations.

2.2.3 Practical aspects

The distributionp ) (+| #n) is Gaussian, with mean and variance simply obtained by Krig-
ing. There is, however, no result in the literature that we use to describe analytically
any useful property of the conditional minimizer density.cbmpute (7), we resort to an
approximation that is conducted via Monte-Carlo simulagiofF conditionally to avail-
able evaluation resultg, and to a potential evaluation resylat c (this approximation



Algorithm

Input: Initial design of evaluation points and corresponding galof f

Output: Additional evaluations

1. while the evaluation budget is not exhausted or some other camveggcondition is not

satisfied
2 do Estimate the parameters of the covariance
3. Compute the Kriging model
4 Optimize the sampling criterion (EI or CME here)
5 Evaluatef
Table 1

Efficient global optimization (EGO) framework

as well as recommendations for the choicéGoare described in details in Villemonteix
et al. [2006]). This approximation leads to a complexityQfN) for the computation
of Hp(c), with N the size of the discrete approximation Xf Note that in IAGO the
conditional minimizer density is thus available at eaclp sted provides (at least for low-
dimensional problems) a clear view of the progress achievétk optimization process
(cf. Figure 1(b)).

In the Bayesian optimization framework, the expensivexaluate function is replaced
by a cheap criterion, updated after each evaluation, whashtd be optimized for a new
evaluation point to be chosen. Up to now, we have focused@ntthice of criterion, but
no attention has been paid to the entire procedure for glob@nization, including for
example an update process for the Kriging prediction. Tpkbes paper focused on a
comparison between sampling criteria, we shall only mene classical framework of
the Efficient Global Optimization (EGO) presented in Tahle 1

EGO (see, e.g. Jones et al. [1998]) starts with a small irdggign used to get a first
estimate of the parameters of the covariance and to compiugt Kriging model. Based
on this model, an additional point is selected in the desjgats to be the location of
the next evaluation of in order to maximize the EIl criterion. The parameters of the
covariance are then re-estimated, the Kriging model isoreputed, and the process of
choosing new points continues until the improvement exggefrom sampling additional
points has become sufficiently small. The CME criterion casilg be inserted in a similar
algorithm in place of El to transform EGO into IAGO.

3 Empirical comparison between EI and CME

As presented in the previous section, EI and CME are bothitgipased sampling cri-
teria and both one-step optimal in some sense. CME shoutbtéeaster convergence
rates, and this for three major reasons.

First, El aims at estimating theinimum while CME concentrates on thminimizers
The search is therefore likely to be more global when basethenatter. Second, El
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Fig. 1. @: Conditional sample paths &f, and corresponding Kriging prediction. The squares
represent available values bfthe bold line is the conditional mednas computed by the Kriging
predictor, the dotted lines provide 95% confidence intasrf@l the prediction fi 1.966) and the
thin lines are conditional sample pathk): (Estimated conditional minimizer densitpy:(:| 1))
associated with the Kriging prediction.

aims at improving the estimation of the minimum by samplirtteve its appearance is
most probable. It seems more reasonable to try diminishieguncertainty associated
with its position. For example, it might be excessively bosi refine the estimation in a
small neighborhood of potentialminimum, which may only be local, while evaluations
usingH, could show that a large part of the search space has a veryrtavalpility of
containing the global minimum (this idea will be confirmedSection 3.3). Third, the
computation of CME involves the statistical propertiesttd sample paths d¥, while,
by contrast the computation &l involves only the conditional mean and variancd-of
atc. A more thorough use of the available information on the fiomcis indeed appealing
in this context of expensive, and therefore sparse, evahst



To substantiate these intuitions, a comparison of EI and GMikorder.
3.1 Experimental conditions

To make this comparison fair, we propose to study the beraabElI and CME inde-
pendently from the choice (or estimation) of the covariaf8tep 2 in Table 1) and from
the optimization method to be used to optimize the samplifigra (Step 4 in Table 1).
These aspects are quite complex, and ad-hoc strategiebbeneroposed in the litera-
ture (see Jones [2001] for an example of optimization metbhothe sampling criteria).
However, our first objective here is to motivate the choica eémpling criterion.

Therefore, we conducted our experiments using the sameriMat&ariance with the
same values, fixed a priori, for the covariance parametérs s€tG of potential evalua-
tion points was identical for both criteria, and the choi€éhe next evaluation point was
carried out via an exhaustive computation of the relevamipdiag criterion over this set.
The question to be addressed in what follows then boils dovihd following interroga-
tion: Given the same prior information on the function, whgampling criterion chooses
the best point (in a sense to be discussed later) amongsteas@tiof possible evaluations
points?

3.2 Tests on classical benchmarks

The four test functions used in this section are taken frorartguet al. [2006], where a
comparison was conducted between El and classical glotiatiaation schemes such as
DIRECT (see, e.g., Perttunen [1991]). The problem dimearsiange from two to five,
and all functions present several local minimizers (sederabn Appendix 2). The co-
variance parameters are estimated beforehand on thesre@@0 evaluations randomly
chosen in search space (using a latin hyper cube samplérjhanwo criteria are opti-
mized over a latin hyper cube design containing 1000 poartdamly re-sampled after
every evaluation.

A single pointxiis randomly chosen in search space as a common startingfpolth
criteria, and 50 runs are conducted for each function tocedbe dependency on the
starting point. After the-th evaluation off, the efficiency of each criteria is measured by

f(x1) —m

Gi= f(xy) — *’

with my = minyc(x, . x1 f(X) the current estimate of the global minimu@. (a modified
version of the quality measure used in Barton [1984]) thiscdees the reduction, after
i iterations of the optimization process, of the initial estion error for the global mini-
mum f(x1) — f*. Table 2 presents, for each criterion, the averaged effigiafter 20, 50
and 100 evaluations. El beats CME for the Ackley function mihe 40, but for the other



Gi when points are chosen using El

G; when points are chosen using CME

i=20 i =50 i =100 i=20 i =50 i =100
Six-Hump Camel Back|| 0.65 1 1 0.76 1 1
Tilted Branin 0.83 0.92 0.98 0.89 0.95 0.97
Hartman 3 0.64 0.98 1 0.82 0.99 1
Ackley 5 0.36 0.75 0.73 0.34 0.59 0.72

“For each criterion, the convergence meashres averaged over 50 runs (the estimated standard

error for the estimation of these figures is always smallan {h.01).
Table 2

Comparison of El and CME on four test functions taken from ihtpat al. [2006].

three test functions CME converges faster towards the aptithan El, and significantly
so for the Hartman 3 function.

3.3 Tests on Gaussian processes simulations

Even if a comparison on classical test functions gives soangpectives on the qualities
of each of the criteria, the variability of the results fromedest problem to the next may
be significant, so one can hardly use them to decide befodelihith sampling criterion
to use on a specific problem. It therefore would be best tvdsdme analytical conver-
gence rates for both criteria under reasonable hypothestedunction to be optimized.
In our context of expensive-to-evaluate functions, theswergence rates would have to
be non-asymptotic, and we do not know of any such resultserlitbrature. However,
the probabilistic framework considered here makes it jpbs$0 estimate empirical con-
vergence rates. Since the function to be optimized is asdumbe a sample path of a
Gaussian process, we can estimate the convergence ratdsoitcriteria when optimiz-
ing sample paths of a Gaussian process whose covariancesanie as that chosen for
the optimization algorithm.

For the sake of brevity, we shall limit our presentation t@ t&aussian processes, one
with very smooth sample paths, and the other with irregudar@e paths.

Two sets of 1000 sample paths were generated over a regidafdi500 points iff0, 1)2.
15 evaluations are then performed on each sample paths lisihgriteria. After each
new evaluation, and for each criterion, estimation errcescamputed for the global min-
imum and the minimizer, as well as the entropy of the condéioninimizer density. Two
estimators of the global minimum are considered here, namek mine(y, . x.3 f(X),
the best evaluation result obtained so far, and

My = f(argmaxpx- (x| 7n)),
xeG
the predicted value associated with the point where theitiondl minimizer density is
the highest. The average convergence rates for irregutaplsgpaths are presented on
Figure 2(a) in terms of the entropy of the conditional mirgeridensity, on Figure 2(b)
in terms of the estimation error fom,, and on Figure 2(c) in terms of the estimation error

10



for My.

As expected, since the entropy of the conditional minimigehe loss function behind
CME, CME performs significantly better than EI in terms of #n&ropy of the condi-
tional minimizer density and, in average, the uncertaintytloe positions of the global
minimizers diminishes faster if points are chosen using QRfEFigure 2(a)). This fact
was guaranteed for the first evaluation since CME is onegpimal for this loss func-
tion, but it had to be checked for several evaluations.

Similarly, if the convergence is measured by the estimagiworm, — f*, El is bound to
perform better if we consider only the first evaluation, sitlte convergence measure is
the loss function behind EI. However, it appears that afiegvialuations, the performance
of El and CME are similar (cf. Figure 2(b)), suggesting thagreif El is one-step optimal,
in the long run, CME will bring the largest reduction foy, — f* (this is confirmed by
computations, not presented here, with a larger numberadfiations).

El would thus seem to be a better criterion in a context wherg few evaluations are
allowed. Howeverm, is estimator actually a rather poor estimator of the globedim
mum, and it appears that when a faster-to-converge estinsaised instead afy,, CME
performs significantly better than EI (Figure 2(c)), angthght form the start. This esti-
mator ism, , whose interest is apparent for the three search strategpidered here, for
whichm, — f* is significantly bigger tham,— f*, and more than three times so after the
first evaluation (Figure 2(b) and Figure 2(c)). CME shouldréfore be preferred to El
when one is confronted with irregular sample paths, sinabdtvs a better estimation of
.

If we look at what happens on a typical sample path (see Figurthe drawbacks of
El are clearly evidenced. As intuitively stated at the bagig of the section, El stalls
on a local optimum because with (4) as a loss function, it isebéo ensure a small
improvement near a minimum already found than to check thataffectively a global
minimum. In the case of irregular sample paths this mightigelir dangerous, and IAGO
performs better simply because it first addresses the guestiwhether a minimizer is
global before improving the precision on its exact positdfhen the sample paths are
more regular, this advantage diminishes (cf. Figure 3)hasdcal optima are scarcer.

A significant problem is left aside here, namely what hapjpepsactice if the parameters
of the covariance are poorly estimated? Does the optinoizatrategy still perform well?
Robustnesw® a poor choice of covariance parameters is of course a fisajog but it is not
considered here.The ElI and CME criteria should have simolawstness properties and
may both be deceived by a poor choice of covariance as deratetsin Jones [2001]. We
feel that this problem should be tackled from a Bayesiantpafiiew, with some prior
on the covariance parameters. This will be done in futurekywohere we shall compare
an extended version of IAGO to the methods in Jones [200i¢ded to be robust to a
poor choice of covariance.

11
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Fig. 2. Convergence rates using El (dotted line) and IAGQd(boe), when convergence is mea-
sured byH (X*|#,) (a), by the estimation error for the global minimum with the teslue ob-
tained so farify,) as an estimatorbj, by the estimation error for the global minimum witty, &s
an estimatord). The convergence measures are averaged over 1000 sartieopa Gaussian
process with a Matérn covariance with parametess1, p = 0.3 ando = 1 (see Appendix 5.1).
The dashed line represents, as a reference, the convengagader a random choice of evaluation
points. 12
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Fig. 3. Convergence rates using El (dotted line) and IAGQd(boe), when convergence is mea-
sured byH (X*|#,) (a), and when convergence is measured by the estimation emtind mini-
mum with i, as estimatorkf). The dashed line represents, as reference, the convergaedor a
random choice of evaluation points. The sample paths useddne smoother than those used for
Figure 2 (the parameter for the Matérn covariancevases, p = 0.3 ando = 1).

3.4 Test on an industrial application: intake port design

This section presents an industrial optimization probletme automotive field, also used
for the comparison of CME and ElI.

3.4.1 Problem description

Intake ports (Figure 5) are engine components that conveixtuma of air and fuel to

the combustion chambers. The importance of this type of corapt lies in the properties
of the flow it induces in the combustion chamber, which hagectlimpact on both the
performance and the emissions of pollutant by the engineomaply with new emission

13
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Fig. 4. Minimization of a sample path from the Gaussian pssecgsed to evaluate the conver-
gence rates of Figure 2. The dots indicate the evaluatiamtgohosen by El. The crosses indicate

the evaluation points chosen by CME. The order in which theuations are carried out is also
indicated for CME.

standards (Euro V and Euro VI), while satisfying the evergasing need for engine per-
formance, the shape of intake ports has to be carefully apgish Two often-conflicting
objectives have to be maximized simultaneously, namelyltherate and a scalar char-
acteristic of the turbulent flow known a&smble(Lumley [1999]). Physics tells us that the
higher the flow rate, the larger the amount of fuel that canuratband consequently the
larger the power delivered by the engine. Similarly, palhis as nitrogen oxides (ND
and carbon monoxide (CO) are, to a large extent, created wieenir/fuel mix is not
homogeneous. Therefore, the larger the turbulence (andléumccounts for the relevant
properties of it), the smaller the pollution.

The specifications for these two objectives are liable tangbaduring conception. There-
fore, it is important to determine not only an optimal geomyébr a given set of prefer-
ences but rather the full Pareto front. However, buildinggtypes for tests is exceedingly
expensive, and each flow simulation by finite-element methakles about ten hours on
powerful servers. The approach advocated in this papeeisfibre particularly attractive
given the general will for reduction of duration and costassted with development.
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Fig. 5. Intake port. The component itself is in the middleldBeis the combustion chamber. The
upper cylinder is a tranquilizing volume necessary for thevergence of finite-element simula-
tions.

3.4.2 Computational issues

To extend our sampling criteria to a multi-objective prabjeve use a standard procedure
and consider several linear combinations of the objectimetions (a.k.a. aggregations),
each accounting for a different zone of the Pareto front.rioudles [2003], this approach
has been used to extend the El criterion to a multi-obje@ieblem by randomly select-
ing a new aggregation after each evaluatior .ofh this paper, we follow the same route,
but use the IAGO framework to compute the entropy of the diorthl density of the
minimizers for the mono-objective optimization problemresponding to each aggrega-
tion in a given set. The search can thus be directed towaedsitist uncertain regions of
the Pareto front.

The resulting multi objective extensions of CME and El haeerbapplied to the opti-
mization of six shape parameters of an intake port (thessnpeters are not detailed here
for confidentiality reasons). To improve the number of siatiohs achievable in a given
time, the geometry and mesh are automatically generateddch finite-element sim-
ulation. The optimization algorithm is then directly irfered with the solver, limiting
human intervention to the initialization of the procedure.

The initial value for the parameters of the Matérn covaraare estimated on simula-
tions that have been collected during the design of previtage ports. It thus becomes
possible to initialize the algorithms with very few randgmahosen points (here with five
points).

One thousand candidate points are ud¢d=(1000) and the parameters of the Matérn
covariance are fixed.
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Fig. 6. Results of 20 evaluations randomly chosen using a@ (dbts), or optimally chosen by
CME (crosses) or by El (squares). For CME and El, only thetBaoptimal points are presented.
For LHC, a larger dot size indicates points that are, withendonsidered set of points, Pareto-opti-
mal. Tumble and flow rate have been rescaled for confidegtigasons. The dashed lines delimit
the set of points that are dominated by the Pareto-optimatgobtained using CME and which
dominate the “worst point”, i.e. the point with worst valwetained for both objectives

3.4.3 Results

For comparison purposes, simulations were conduced onyvirgiake ports whose pa-

rameters were chosen using El, CME, or a Latin Hyper Cube (L&&Ca reference. The
Pareto-optimal points within each of the three sets of etalun results are presented in
Figure 6. Comparison between sets estimates of Parets fimattricky process, which

may involve various quality measures Knowles et al. [206&]re however, the compari-
son is clearly in favor of CME, as

e among all evaluation results, the point closest to an “idealtion (i.e. with best value
yet obtained for both objectives, here0.97,—1.97|T) has been chosen by CME;

¢ all but one point chosen by El are dominated by points chog&ME. In other words,
almost any good solution found by El is bettered by a soluibamd by CME;

¢ the volume of the set of points dominated by the Pareto-adtpoints (cf. Knowles
et al. [2006] for details on this quality measure) is 0.31@ME (this volume is rep-
resented on Figure 6), while it is only 0.26 for El (the refere for the computation is
the point with worst values attained for both objectives@wrdinates).

This test case confirms that Bayesian global optimizati@agsly applicable to an indus-
trial problem, even with a very small evaluation budget. Triterest of CME is apparent
after only a few evaluations, as predicted by the convergeaites of Section 3.3.
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3.5 Computational burden

The comparison made so far dealt only with convergence.ratessuperiority of CME
over El was demonstrated for sample paths of Gaussian rapomresses, at least for two
very different regularities of the sample paths (cf. Set®o3), while the convergence
rates are generally in favor of CME when applied to some maksgest functions (cf.
Section 3.2) or to an actual industrial problem. Howeveriskgasier to compute since
it only requires the mean and variance of the prediction atdéindidate point, while
the complexity of the computation of IAGO is @(N), with N the size of a discrete
approximation ofX used for the estimation of the conditional density.

In practice, with our implementation of IAGO (cf. Villemagik et al. [2006]) around 40s
are required on an AMD opteron 285 server to choose an addltevaluation point for
the sample paths of Section 3.3 (by extensive computatidd,adver 1500 candidate
points, which is enough in practice since this set is rangiaeisampled after each eval-
uation). By comparison, choosing a point with El takes leéssithalf a second under the
same conditions. To broaden the range of potential apmitsitwe tried to limit the com-
putational expense by testing other approximations focthlitional minimizer density
(since the manipulation of sample paths, necessary forghea&imation proposed here,
is responsible for most of the computational burden). We@sed for example, to esti-
mate the derivatives df by Kriging (as in, e.g., Vazquez and Walter [2005]) and to eom
pute the probability for a given point to be a local optimurd amder a certain threshold.
It was then easy to build a relatively accurate approxinmadicthe conditional minimizer
density, but the approximation had a detrimental effecthrendonvergence rate, so that
El then became more efficient. In fact, the quality of the agpnation of the conditional
minimizer density is important for CME to perform better al.

IAGO therefore remains destined to the optimization of fiores that require a large
amount of computer time (or more generally a significant agpgto be evaluated, which
is after all what it was designed for and is the case in manjicgifons in the industrial
world including the one we presented here.

4 Conclusions and per spectives

In this paper, we have evidenced a clear superiority of CMé& &V, especially when the
function to be optimized is irregular. The comparison hasnbeonducted using classi-
cal test functions and an actual industrial applicatiori,dove all using sample paths
of the model behind Kriging. The use of sample paths indekxvalthe computation
of empirical convergence rates that can also be useful t® atimer components of any
Kriging-based algorithms (e.g., the optimization of thenpling criterion). Now that the
interest of the CME criterion has been demonstrated, ateshould turn to other crucial
aspects of any Kriging-based optimization algorithm. Obese aspects is the improve-
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ment of robustness against a bad choice of covariance f@ahissian process model. We
feel that the Bayesian framework that we have used until fmwmisl also be useful in this
respect.

5 Appendices
5.1 Appendix 1: Matérn covariance

In this paper, we follow Stein (1999) and use of the isotrdgatérn covariance:

2 12\ " 1/2
k<x7y) = k(h) = ZVTF(V) <2Vp h) Ky <2Vp h) V(X,y) < Xz? (8)

with h the Euclidean distance betwerrandy, and x;, the modified Bessel function of
the second kind (Yaglom [1986]). The parameters of this Gauae are easy to interpret,
asv controls regularityo? is the varianceK(0) = ¢2), andp represents theange of
the covariance,e., the characteristic correlation distance. They can elbledixed using
prior knowledge on the system, or be estimated from experaheata. In geostatistics,
estimation is carried out using the adequacy between théieal@and model covariance
(see, e.g., Chiles and Delfiner [1999]). In other areas scvakdation (cf. Wahba [1998])
and maximum likelihood (cf. Stein [1999]) are mostly emm@dyFor simplicity and gen-
erality reasons (cf. Stein [1999]), the maximum-likelibdooethod is preferred here.

5.2 Appendix 2: Test functions
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