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Abstract

Iu this paper, we present a new approach to solve a class of optimal discrete-valued control prob-
lems, This type of problem is first transformed into an equivalent two-level optimization problem
involving a combination of a discrete optimization problem and a standard optimal control prob-
lem. The standard optimal control problem can be solved by existing optimal control software
paclages such as MISER 3.2, For the discrete optimization problem, a diserete filled funetion
method is developed to solve it A mumerical example is solved to illustrate the efficiency of our
method.
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1 Introduction

Optimal control problems arise in a variety of fields, such as engineering, economics, and biomedicine.
However, in many practical applications, the control can only take values from a diserete set, such

as switched amplifier designs [3]. optimal driving strategies for traims [11] and the management of

batteries in a submarine [13]. For these optimal control problems, we need to find switching points

and the corresponding control values from a diserete set. Sincee the control evolves in a discrete set

and the switching points are contimous variables, these optimal control problems are mixed integer

optimization problems. So far, there are no efficient algorithms with polynomial-time complexity

for solving these problems. They are in fact, NP hard.

In [6]. a method is developed for solving this elass of optimal diserete-valued control problems,
A time sealing transformation is nsed to transform the optimal diserete-valued control problem into
an optimal paraumeter selection problem which is solwable by existing optimal control techniques.
However, if the maximmun number of switchings is pre-fixed, the solution obtained by the method
in [6] may not give a feasible solution to the original problem, as the transformed problem in
[6] is not equivalent to the original under this condition. In this paper, we propose a two-level
optimization approach to solve this optimal discrete-valued control problem. In the first level, the
time scaling transformation used in [4] and [6]. is introduced to transform the switching points
for a given switching sequence into pre-fixed koots in a new time horizon. The resulting problem
is a standard optimal parameter selection problem and henee solvable by existing optimal control
methods such as MISER [10]. In the second level, a discrete filled function method developed in
[12]. [14] 1= used to obtain a method for finding the optimal switching sequence,

The rest of the paper is organized as follows. In Section 2, we formulate the problem to be
solved. In Section 3, we reformulate our problem as a two-level optimization problem. The first
level is a standard optimal control problem, and a gradient-based method is ntroduced and henee
the optimal control software package MISER can be used to solve it. The second level is a discrete
optimization problem. In Section 4, we introduce a diserete filled function method to solve the
diserete optimization problem. In Section 5. a munerical example is solved using owr method. In
Section 6, we give some concluding remarks.

'This paper is partially supported by a research grant from the Australian Hesearch Council and a research grant
from Chongging Normmal University.



2 Problem Formulation
Consider a process deseribed by the following differential equations defined on (0,T] :

%= f(xut), (1)
with the mitial condition

x(0) = xp. (2}

where x € B™ and ue B™ are, respectively, the state and control vectors. T is the terminal time.
The funetion £ is assumed to be continnously differentiable with respect to all its arguments.

Let U be defined by U ={uy.us.-- - cug}. A function u is said to be an admissible control if
uft) =hi, t € [m,m41],i =0,1,--- N —1, (3)
where by € U, and 7. 7o, -+ 7y are the switching points of u satisfving:

D=m<n<n< <y <y=T.

Let i be the class of all such admissible controls. We assume that N — 1 15 the maximmun possible
number of switching points for any w £ . For each u € I, we integrate equation (1) successively
over each interval [ri, 7] i = (L1 -+ N — 1. The obtained x () is continmons and piecewise
differentiable on (0, 7). It i called the state of the system (1)-(2) corresponding to u £ . We
assume that the function £ also satisfies the following condition: There exists a constant M, such
that

I (e wt)|| < M (1+ ||x]]) (4)

for all (x.ut) € B" xifx [0 T|. where ||-|| denotes the usual norm of BE". Now, we formally state
our optimal control problem as follows:
Given the dynamical system (1), (2), find a w € &f such that the cost funetional

i
Jolw) = o (x (7)) + [ Lo(xu) i (5)
I

is minimized subject to the following constraints.
hy (x(t)) >0, Yt€[0,T], i=1,---,L. (6)

where &y, Cp, hy, i = 1.+, L, are contimmously differentiable funetions in their respective argu-
ments. Let this problem be referred to as Problem (P).

A control u € I is said to be a feasible control if it satisfies (6). Let F be the set of all such
feasible controls. We assume that F is not empty.
Remark 2.1: In solving Problem (P), we need to determine the switching sequence by, i =
0.1, N — 1, and the switching points w. & = 1.+« . N — 1. However, the gradients of the
cost functional (5) with respect to switching points 7 are not continuous (see Theorem 5.3.1 of
[8]). To overcome this difficulty, we will adopt an existing time scaling transformation to map the
switching points mto fixed points i a new time horizon. For dealing with the functional inequality
constraints (6). we employ the constraint transeription technique developed in Chapter 8 of [8].
For determining the optimal switching sequence, a discrete filled function method is developed in
Section 4.



3 Problem Transformation

Consider Problem (P). For each i = 1,2, -+ | K, introduce a transformation
K
Yi= Z w;vg ; [?}
=1
with the following constraints imposed on v
ti=0o0rl j=12.: Ki=1-.- N, (8}
K
Zf.',-__,-=1,£=l.---,_-\'. (9)
=

Let (3) be written as:
u{t) =yi, t € [m 1], i=0,1,: , N—1L (10)
Also, we ntroduce the following time scaling transformation

dt

Is =wu(s), (11)

with initial condition

E{0) =10, (12)
where
N
v(g) =3 dixp-14(s); (13)
i=1
and
N
ZJ{=T, G =0, i=1,--+ N (14)
i=l
Let w= ['flf d 'rl;c:r]T and v = ['I'Jf.j: DTSRRI 'f.g-_;.-]'_ Ji=1,--- N,
Define
1= {v e BYH v satisfies (8) and [H}} ; (15)
and
N
A= {a= By, 82, <+ 18n] " € RV, S H=T 820 i=1,- '\} (16)
i=1

Furthermore, we construct

h. ifh < —om;
ge (B) ={ —(w—h)/dw, —w<h<mw (17)
(. ith = w@.

Let the following problem be referred to as Problem (TR, &) :



Subject to the dynamical system

L A - (18)

ds

find a (4, v) € A = [T such that

N L N
J(8,v) = By (x (V) + A £o (x(s),u(s))ds +7 3 f g (Ri (¢ (5))) ds (19)

i=1 (1]

is minimized, where v =0 and @ = 0 are adjusted parameters, while
N
ufs) = wyixp_14(s). (20)
i=1

and y; are defined by (7).
Define

Q={deA hi(r(s))=0,i=1,- L, forall s [0,N]},
and
Q={6ecA:hi(x(s)) >0, i=1,.- L, forall s€[0,N]}.

We assume that the following condition is satisfied:
Assumption 3.1: For any 4 € 0, there exists a 4 € {2, such that

ad+ (1 —a)d € £ for all a £ (0, 1]. (21)

This condition, which was first introduced in [8], is a standard assumption made in many papers
on semi-infinite optimization problems. See, for example, [9]. According to (4) and Assumption
3.1, we have the following theorem:

Theorem 3.1 For any @ > 0, there erists a v () > 0. such that for all v, v = v(w=), if
(T v*T) € A x Il is an optimal solution of Problem (TP, =) then the solution, denofed by
o (| FT vt Y) of systern (18) satisfies by (o (8@ 5T = 008 s € [ON] i =1, L. Let
such a v be denoted as 5 (). Then, as @ — 0, the sequence of the optimal solutions of Problems
(T Py ey, ) converges to the optimal selution af Problem [P).

Proof. The proof is similar to that given for Theorem 3.2 in 2], =

From Theorem 3.1, we see that the solution of Problem (P) can be obtained via solving a
sequence of Problems (TR, o) by decreasing the value of o while appropriately increasing the
value of . Clearly, each Problem (TP &} i a mixed-integer programming problem. We propose
to decompose it into a two-level optimization problem as follows:

where
.f[v}=£1_éiﬁif((5,v}. (23)

Let the first level problem be referred to as Problem (T'F, ), while the second level problem be
referred to as Problem (TP, =),.



For every fixed v, we need to solve Problem (TP, & ),. We note that Problem (TP, & ),. for
each given @ amd 4, s a standand optimal parameter selection problem. It is to be solved as
detailed in the following algorithm.

Algorithm 3.1: For each given v € IL

Step 1. Initialize v, o and the tolerance =, Set & = 1.

Step 2. Use a gradient-based algorithm method (such as Algorithm 5.2.1, Algorithin 5.2.2 and
Algorithm 5.2.3 in [8]) to solve Problem (TF, ), and obtain its optimal solution 85% and the
corresponding cost {5:,';". V).

Step 3. If the solution, i (-] {5:"‘. v)] ., ofthe (18) corresponding to {Jz"". v) satisfies by (o (3] {5:"[". Vi) =
0.%Wse [0LN].i=1---.L, gotoStep 4 and set k = k+ 1. Otherwise, set v = 107 and goto Step
2,

Step 4. If |J (H:I‘v]l - {5:';‘_]. v}| < £, go to Step 5. Otherwise, set v = 1 and @ = =/10,
goto Step 2.

Step 5. &5 is an approximate optimal solution of Problem (P) for the fixed v € IL

Remark 3.1: From Theorem 3.1, we see that the inerement of v as detailed in the lnop between
Step 2 and Step 3 is a finite process. However, it should be stressed that the validity of Theorem
3.1 is based on the assumption that the optimal solution, 47F, of Problem (TP ) is a global
optimal solution. This does pose a problem, as any gradient based method produces, at best, a
local minimizer. Thus, the filled function method proposed in (2] will be used. More specifically,
onee a loeal minimizer is obtained, a filled function as described in 2] will be construeted. Then,
by minimizing the filled function, its local minimizer will lead to a feasible solution of Problem
(TP, &) from which a better local minimizer of Problem (TP, o) will be obtained. This process
is repeated until there exists no local minimizer of the corresponding flled function. For details,
see Algorithm 5.1 and Algorithm 5.2 in [2].

In the next section, we will derive an algorithm to solve Problem (T-P-r-wbl

4 Discrete Filled Function Method

Let & ; be an element of BEY™ with the i—th component 1 and the remaining components (0, &

be an element of BN™ with the j—th component —1 and the remaining components (.

Define
D= {E,‘__f.é{‘_f.'i._j =1+, Nmi #J‘} i
Definition 4.1: For any v € I1, the neighborhood of the integer point v is defined as N [v) =
{v+d:deD}nIL

Definition 4.2: A point v* € I1 is said to be a diserete local minimizer of Problem (T'F, =), if
J(v*) < 0 (v) for any v € N (v* )1 IL Farthermore, if J(v*) < J(v) for any v € N (v* )N 1L
then +* iz said to be a strict diserete local minimizer.

Definition 4.3: A point v*& IT is said to be a diserete global minimizer if J (v*) < .J (v) holds
for any v £ IL

Definition 4.4: A sequence {v"}f;l is called a discrete path in IT between v *e M and v3 e 11
if the following conditions are satisfied:

1. Forany i=1,--- .k, vie IT;
2, For any i # . v' £ v,

2 K, ., 2,
3ovl=v* v =" and

s

it — || =2, i =1,-++ ,E—1.



We note that IT is a discrete path connected set. That is. for every two different points v, v2,

we can find a path from v! to v? in IL Clearly, IT is bounded.
Algorithm 4.1: [Local search)

1. Choose a vpe IT:

2, If vy is a loeal minimizer, then stop. Otherwise, we search the neighborhood of vy and obtain
awv £ N vy} such that Jiv) < J(vg).

4 Let vy = v, go to Step 2.

After obtaining a local minimizer, we will use a filled function to escape from it. We introduce
the following flled function [14]:

R 2
FPlv.r.p)= T'-F-IT\"}HXP (— = V ) : (24)

ot

The funetion P (v, r, p) has the ollowing properties:

Theorem 4.1 Suppose that v +.J (v'*) = 0 and that v'** is a local minimal solution of J(v).

Then v'** is a strict local marimal solution of P (v, r, p) over N (v!+*) . That is, for anyv € N (v!**),

Plv.r.p) < P(vl".r'. o).

Proof. Since v** is a local minimal solition of J () . it follows that forany d € D, ifvi*+d € N (v Lx),
then

J {\r]'*+d} >J (v L*} !
and hence
rJ (V) = e+ T (vE) = 0

Thus.

1 e [ ALZ) 1
P d{viegd) T\ R 4 J (vi)’
la,.
P{vl'*+d.r, P < P{\rl".r. @)

]
Let J*F be an upper bound for the function wvalue of J{v) over [I. We have the following
theorem,

Theorem 4.2 Suppose that the porameters v, p are chosen such that
r+ 0 (vir) =0 (25)

r+ _}'up

et el = (26)

A ln

where JU is an upper bound of J(v) in 1. Furthermore, for any v',v2 £ 11, suppose .J {VJ} =
J {vl "}I i {‘,2)‘] >J {vl") and ”\'l - vl"”:’ = ||'mr2 — oyl ||2 . Then,

P(vl.r.p) {P{:vz.'r', p). (27)



Proof. Since

vl — 2 2
r+.J(v3) r4 Jw [lal — e le#]] 7 — |2 — g 17|
< <@ 1/ & <8 : L
r+J(v) T ortd (vl e (1/07) < e I

it follows that [27) is satisfied. W
Let the parameters r, p be chosen to satisfy the conditions (25), (26). IF.J (v) 8 not a constant
with respect to v € I1, we choose a sufficiently small b which satisfies

D<h<|J(v)—F(+*)]. (28)
for any vl v? € IT such that J (v!) £ J (v?)
Theorem 4.3 Suppose that

0<r+J(v) <h (29)
Then, P (v! +d,r,p) < 0 if and only if J (v! +d) < J(v'*).

Proof. Suppose P {VJ +d.rp) < Then, it follows from (24) that r+.J {\'l + d) . Now, by (29),
r+J(vh*) > 0. Thus, J{v! +d) < J(v'*).

To prove the "only if’ statement, we assume that J (v! +d) < J(v"*) . Then, by (28), we see
that J(v'*) — J (v' +d) = h. Thus,

r+.J {\rJ — rf) =r+ J(vl”} —h<.
Therefore, P {vl +drp)<0. ®

Theorem 4.4 Lel r.p satisfy the condifions (29), (26). Then, any discrete looal minimal solulion
af the filled function Piv.r.p) over Il is in the set {v € IL:P(v.r.p) < 0}.

*

Proof. Suppose the conclusion was false. Then, P (v*,r. p) = 0, where v* iz a minimal solution

of Piv.r, p). Thus,
T(v*) = J (vi*) (300
by Theorem 4.3. We claim that there exists a d* £ D such that

[ +d* —v]'*” = ||v* - v]'*” ; (41}

n
=
1%

= 0and vi—v;" < 0 (ll}VL_"A =0or vk—vj_ =0

; 4
. . " z "
To establish this elaim. we note that ”v‘ — il ” =S (\'? - v!'*) There are two cases. (i)

2 oo 1%
there exists some i, j such that v} —v;

. 2 1% 1%
for all 1 < k< n. For this case, let { = max) cpe, [vE — vy | and § = ming«pey (v — vy | Now,
k< K [ i k< K 3 4

+

by choosing d* = d; ;. we establish the claim. To proceed further, sinee v* is a minimal solution

of Piv.r,p), P(v* +d%,r.p) = P(v*, 7, p) = (0. Thus,
Jv*+d*) =0 (v') (32)

bw Theorem 4.3, By virtue of (30), (31) and (32). it follows from Theorem 4.2 that P (v* +d*. r. g} <
Pv*. r.p). This is a contradiction as v* 1s a minimal solution of P (v, r, g} . Thus, the conclusion
of the theorem must be satisfied. ™

From Theorem 4.3, we know that

{vEHP[vrp{[l}—{\'EHf JJ}}



On this basis, we can construct an algorithm which is based on the following idea. Choose an
initial point v'<€ IT and use Algorithm 4.1 to find a local minimal v'*. Then, we construct a filled
function to find its local solution. If we can find a point v* such that P {\r?. r.p) < 0, then we use
v? as a new initial point and repeat the above process, Otherwise, we consider v as a minimizer
of J(v) over IL

Algorithm 4.2: [Discrete flled function method)

1. Take an initial point v! € IT and let T' = {\rl} :

2, From v', use Algorithm 4.1 to find a local minimizer v'** of J (v} over IL If it has been

computed i a local search, we add it to the set T

3. Construet a filled funetion

Plv,rp)=

exp

(=

1
r—+.J(v)

where r, p satisfy the conditions (29) and (26). Use Algorithm 4.1 to find its local minimizer,
For each v £ I, if it has been computed in a loeal search, we add it to the set I If we find
a v? € II such that P(vz,r. ,r:} < 0. let v' = v* and go to Step 2. In the local search, if
we find a v? € T, then go back to the father point v and choose another direction d €D to
find a beal minimizer. If we cammot find any v2 € M such that P (v . p) < 0 or there is no
feasible direction to search in, then v'* is an optimal solution of J (v) over I1.

In Algorithm 4.2, we use the set I' to avoid inding a point which may have been computed
repeatedly in the search for a local minimizer of the diserete filled funetion sinee any two points in
[T are path-connected.

5 Numerical Example

In this section, wewill apply the algorithins developed in Section 3 and Section 4 to a test problem.
Example 5.1: In this example, we will study the optimal train control problem, which was first
presented in [11] and re-considered in [6]. The dynamical system is

r{ = Ia
i@ () uy + Gouz + p (1)

.'j'Q
where @y is the distance along the track, ws is the speed of the train, g is the fuel setting and wg
models the deceleration applied to the train by the brakes. The function

CJ Ju'r.JTQ. P 2 Iz > '-Cii T "-_._4-
(o) = OfG+mlre—(G—)) +mloe—(G—-3G)) . G- <z <G+,
C1fa. x2 < {3 — (.

where

c { 1 1 } 3 1
Th =1 P T T o :
G+6 GG W (G+G)

anid

oL



represents the tractive effort of the locomotive, The funetion g is the resistive acceleration doe to
friction, given by

plan) = (s + Cpirs + L:T.'J'.'g.
Cio i=1,--- .7, are constants with given values §; = 15, (o= 1. {3 = 14, { = (0.1, {5 = —0.015,
g o= —0.00003 and ¢ = —0.000006. The initial state is x(0) = (0.0)" and the discrete-valued
control satisfies u = [uy,us] € U=1{(1.0) (0.0} (0, —I}T . Our aim s to find a switching

sequence of diserete-valued control, such that o) (1500) = 18000, @ (1500) = 0, and the switching
times such that the fuel cost

1500
Jo(u) = f iy edt
0

is minimized. In this problem, we assume that the maximmon munber of switchings is 7. Since
oo (1) is the speed, @ (#) =0, for all £ £ [[J. le'JnE][J] :

For this optimal control problem, it was solved via a time scaling transform in [6]. In this
paper, we will use the discrete filled function method to ind the optimal switching sequence and
the optimal control software MISER 3.3 to solve Problem (TF, .), .

We choose

h

r o= ;—J[f-l-*}. h=0.01, Jur = 3000,
1 Jup _ F(wl*) + b2

== 1+1In { Jih :
I hy2

In the local search of the switching sequence of a discrete control, if the integration of a state svstem
or costate system exceeds a given constant, we will assign a large value to the cost corresponding
to this sequence, We use MISER as a sub-program to solve this optimal control problem. The
cost obtained is 202.4759, which is slightly less than 202.6704 obtained in [6]. The duration of the
time nsed by the control (0,—1) is 247197, which is also slightly less than that obtained in [6],
which is more than 2.5, All obtained results are depicted in Figure 1 to Figure 5. Figure 1 depicts
the time sealing transformation of #(s) against 5. Figure 2 and Figure 3 depict the optimal state
oy (1) and g (f) against the time ¢ Figure 4 and Figure 5 depict the optimal control wy (t) and
uz (1) against the time f.

For the method reported in [6]. it is basically a local method. Thus, a good initial guess is needed
in the optimization process so as to obtain a good local optimal solution. Also, it cannot be ensured
that the assumption on the maximum munber of switchings is satisfied. For the method presented
in this paper. we can solve the problem from any initial point as a discrete filled funetion has been
incorporated in the algorithm. For our algorithm, onee a loeal minimal solution is obtained, we
will search for a local minimal solution of the corresponding filled funetion. Using this as an initial
guess for the next optimization, we will obtain a better local optimal solution. This process s
repeated until there exists no local optimal solution of the corresponding diserete filled funetion.
Furthermore, we can be assured that the solution obtained will satisfy the assmmption on the
maximuim munber of switchings,

6 Conclusion

In thiz paper, we developed a new computational method to solve a discrete-valued optimal con-
trol problem with the maximum number of switchings being prefixed as a two-level optimization
problem. In the first level, we use MISER 3.3 to solve it. In the second level, a discrete filled
funetion method is constructed and then used to solve it. To illustrate the method, a numerical
example is solved.
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Figure 2: The profile of optimal state oy (£).
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