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Abstract

In this paper we consider a global optimization method for space tra-
jectory design problems. The method, which actually aims at finding not
only the global minimizer but a whole set of low-lying local minimizers
(corresponding to a set of different design options), is based on a domain
decomposition technique where each subdomain is evaluated through a
procedure based on the evolution of a population of agents. The method
is applied to two space trajectory design problems and compared with
existing deterministic and stochastic global optimization methods.
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1 Introduction

Methods and tools for preliminary trajectory design have recently become an
important topic within the space community. Space mission design is subdi-
vided into different phases. The first one is a mission feasibility study, which
has to analyze, in a reasonably short time, a large number of different mission
options. Each mission option requires the design of one or more optimal tra-
jectories. All this can be reformulated as a global optimization problem or,
more precisely, a global search for multiple low-lying local minimizers. Space
trajectory design problems have been tackled with some global optimization
methods for more than ten years already but a systematic comparison of differ-
ent approaches was performed only recently [6, 15]. Often genetic algorithms
have been the preferred option. In particular, Gage et al. have shown the ef-
fectiveness of genetic algorithms with niching technique compared to a simple
grid search for the optimization of bi-impulsive transfers [8], Coverstone et al.
used genetic algorithms for low-thrust trajectory design [10, 18], Gurfil et al.
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used niching genetic algorithms for the characterization of geocentric orbits [9],
Vasile proposed a hybridization of Evolutionary Algorithms with SQP methods
for the design of low energy transfers to the Moon [23], Rogata et al. proposed
an implementation of GAs for the design of multiple gravity assist trajectories
[19], and Dachwald combined neurocontrollers with Evolutionary Algorithms for
the design of low-thrust trajectories [2]. However, it has been recently shown
that Differential Evolution outperforms GAs on some trajectory design prob-
lems [6, 15]. Moreover, it was demonstrated that a hybridization between these
global optimization techniques, generally applicable to black-box problems, with
ad hoc branch-and-prune methods and exploiting the properties of the problem
(e.g., continuity and differentiability, periodicity, symmetry, modularity) can
greatly improve convergence [15].

Evolutionary-based approaches usually mimic behaviors observed in nature.
From the very basic evolutionary paradigms to the more complex behaviors
of ant colonies or bird flocks, each one of these heuristics can be interpreted
as basic behaviors (like reproduction, feeding or trail following) associated to
individual agents. This paper presents a generalization of this concept: a pop-
ulation of agents is endowed with a set of individualistic and social behaviors,
in order to explore a virtual environment made up of the solution space. This
particular meta-heuristic is inspired by the control of multiple robotic agents.
The combination of individualistic and social behaviors aims at balancing local
and global search (or exploitation and exploration), which is the key issue for
any heuristic for global optimization problems.

We remark that during the preliminary design phase there is a need for
multiple mission options. Therefore, as already pointed out before, instead of
looking for the global minimizer, the proposed approach will store a set of low-
lying local minimizers, which (hopefully) contains the global one. The proposed
meta-heuristic was also hybridized with a domain decomposition technique in
order to increase the exploration phase.

The paper is organized as follows. In Section 2 we give a short description of
two space trajectory design problems which will be used as test problems for the
proposed method. In Section 3 we describe the domain decomposition technique.
In Section 4 we describe the MultiAgent Collaborative Search (MACS) which
is employed to evaluate each subdomain and is based on the evolution of a
population of agents. In Section 5 the proposed approach is compared with some
well-known stochastic and deterministic methods, paying particular attention to
optimally tuning the typical parameters of each method (e.g., population size,
mutation probability in GAs).

2 Description of two space trajectory design prob-
lems

In this section we consider two different mathematical models for the design
of an interplanetary transfers trajectory. In both these models the objective
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will be to minimize the variation of the velocity of the spacecraft due to a pro-
pelled manoeuvre, or ∆v in the following. Minimizing the ∆v means minimizing
the propellant mass required to perform the manoeuvre, since propellant mass
increases exponentially with ∆v.

2.1 Bi-impulsive orbital transfers

A simple, but already significant, application is to find the best launch date and
time of flight to transfer a spacecraft from one celestial body (say the Earth) to
another one (say Mars or an asteroid). This can be briefly sketched as follows:
A spacecraft initially moves around the Sun along the orbit of the departure
celestial body. It is assumed that the celestial body is just a point in space
with no mass, therefore the position of the spacecraft coincides with that of the
celestial body. The spacecraft is injected into an elliptical orbit through a change
in its heliocentric velocity. This elliptical orbit, or transfer orbit, is designed to
intersect the orbit of the destination celestial body. At the destination a second
change in velocity would inject the spacecraft into the orbit of the target celestial
body. Even the the arrival celestial body, as the departure one, is assumed to
be a point in space with no mass. Each change in the heliocentric velocity is
called a ∆v.
In this problem we only have two control variables.

• t0, the departure date of the spacecraft;

• T1, the flight time from the first celestial body to the second one;

Given t0, the departure date from the first celestial body, and t0 + T1, the
arrival date at the second one, the position and velocity of the two bodies at t0
and t0 + T1 respectively, can be computed through analytical ephemeris (i.e.,
analytical formulas giving the position and the velocity vectors of a celestial
body as a function of time). Then, given the flight time T1 from the first to the
second body, the transfer orbit can be computed solving a Lambert’s problem
[1]. We are interested only in direct flights with zero revolutions around the
Sun, therefore apart from the special cases in which the transfer is at 180 or 360
degrees, the solution of the Lambert’s problem is unique. The solution of the
Lambert’s problem provides the heliocentric velocities at the beginning v1 and
at the end v2 of the transfer arc. Since the spacecraft initially moves along the
orbit of the first body with the same velocity vp1, the initial ∆v is

∆v1 = v1 − vp1,

and the second one in order to move from the transfer orbit to the final one is

∆v2 = v2 − vp2,

Their norms ∆v1 = ‖v1−vp1‖ and ∆v2 = ‖v2−vp2‖ are the two contributions
to the total ∆v = ∆v1 + ∆v2. In general in order to transfer a spacecraft
from celestial body one to celestial body two, the sum of both ∆v’s should
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be minimized. However in the following we analyze the case of a spacecraft
ramming into an asteroid, therefore the objective function for this first problem
is simply the first change in velocity:

∆v1 (1)

The reason for this choice is that for the proposed test case, the difficulty of the
search for a minima increases. Our problem will be to minimize (1) subject to
simple bounds over t0 and T1.

2.2 Multi Gravity Assist Trajectories

A common problem in space mission analysis is the optimal design of transfer
trajectories exploiting one or more gravity assist manoeuvres (MGA) to change
the orbital parameters of a spacecraft. Each gravity manoeuvre occurs at a
planet and exploits the gravity action of the planet to produce a ∆v. Since ∆v’s
are normally produced by propelled manoeuvres, optimal sequences of gravity
assist manoeuvres minimize the total propelled ∆v required to reach a given
target. A general gravity assist manoeuvre in the solar system can be modeled
assuming the planet to be a point mass and the manoeuvre to be instantaneous.
In this simplified model, the gravity action produces a simple rotation of the
incoming velocity vector, relative to the planet, in the plane identified by the
incoming and the outgoing velocity vectors. This rotation is normally a function
of the modulus of the incoming velocity and of the minimum distance of the
spacecraft relative to the planet [14]. Due to this functional dependency, caused
by physical reasons, not all the desired rotations can be achieved. Therefore, an
additional propelled manoeuvre is generally necessary to correct the outgoing
velocity vector. The total cost of a MGA transfer can be defined as the sum of
all the corrective ∆vc

i manoeuvres for all the Np planetary encounters plus the
initial ∆v0 at launch from Earth,

f = ∆v0 +
Np∑

i=1

∆vc
i (2)

The conic arc connecting two subsequent planets i and i + 1 at positions Ri

and Ri+1 is computed as a Lambert’s [1] solution. The two position vectors are
functions of the encounter dates ti and ti+1. Therefore, the solution vector x
is defined by the launch date t0 and by all the times of flight (TOF) from one
planet to the subsequent one Ti = ti+1 − ti:

x = [t0, T1, . . . , TNp−1] (3)

In the computational experiments presented in Section 5 the sequence of planets
is equal to that of the Cassini mission to Saturn, i.e., Earth-Venus-Venus-Earth-
Jupiter-Saturn, and is fixed. We also point out that the constraints on the
minimum distance from the center of each each planet, i.e., the pericentre radius
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γi, were directly included in the objective function through appropriate penalty
terms. Therefore, objective function (2) was modified as follows (see [15])

f = ∆v0 +
4∑

i=1

∆vc
i + w1 max{0, 6351.8− γ1}+ w2 max{0, 6351.8− γ2}

+w3 max{0, 6778.1− γ3}+ w4 max{0, 671492.0− γ4}, (4)

where w1, . . . , w4 are given penalty parameter values fixed in [15] as follows

w1 = w2 = w3 = 0.01 w4 = 0.001.

Although in the computational experiments we will concentrate on the problem
described above, we point out that such problems can be generalized in a num-
ber of ways. For instance, deep space maneuvers, i.e., variations of the velocity
which can be introduced when the spacecraft is in the deep space (far from
the planets) can be added. The starting time and the time intervals between
subsequent velocity variations will always be variables of the problems. In more
complicated models the sequence of planets is not fixed in advance so that we
need to introduce further (discrete) variables corresponding to the choice of this
sequence.

As already remarked in the Introduction, we underline again that, whatever
problem we try to solve, we are usually interested not only in the global min-
imizer but also in the identification of low-lying local minimizers which offer a
set of possible choices.

3 A solution method combining branching and
an agent-based search

The problems will be tackled with a combination of two different techniques:
a deterministic and a stochastic one. The deterministic method proposed in
this paper is based on branching, i.e., subdivision of the feasible region into
smaller and smaller subdomains. Since the test problems considered in this
paper can be reformulated as box-constrained ones, the feasible region of each
problem, denoted by D, is a hyperrectangle and the subdomains into which it is
subdivided are also hyperrectangles. The stochastic algorithm is a multiagent-
based one and searches on the subdomains in order to evaluate them. In this
section we will give the details of the deterministic method, while the multiagent
approach will be described in the following section.

3.1 The branching procedure

Below we give the description of a generic branching procedure for GO problems.

BRANCHING PROCEDURE
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Step 0. Initialization Let F = {D}.
Step 1. Node selection Let θ be a function which associates a value to each

node H ∈ F . Then, select a node H ∈ F such that

H ∈ arg min
H∈F

θ(H), (5)

Step 2. Evaluation Evaluate the selected node H through some procedure.

Step 3. Node branching Subdivide H into η nodes Hi, i = 1, . . . , η, for
some integer η ≥ 2, and update F as follows:

F = (F \ {H}) ∪ {H1, . . . , Hη}.

Step 4. Node deletion Delete nodes from F according to some rule.

Step 5. Stopping rule If F = ∅, then STOP. Otherwise, go back to Step 1.

Note that in the scheme above each node corresponds to a subdomain, and in
what follows the two terms will be used as synonymous. Such scheme is quite
typical for branch-and-bound methods. For these methods θ delivers a lower
bound for each subdomain; each node is evaluated by evaluating feasible points
within the corresponding subdomain (if any) and possibly updating the upper
bound; node branching can be performed in several ways; node deletion is done
through standard fathoming rules. However, what is missing in our context is an
easy way to obtain bounds. Therefore, while we retain the branching structure,
we need some other ways to define a function θ and to evaluate, branch and
delete nodes. All this will be specified in the following subsections.

3.1.1 Node evaluation

The evaluation of a subdomain H is done by running a MultiAgent Collaborative
Search (MACS) algorithm within H. As will be explained in details in Section
4, the MACS algorithm explores the subdomain H and stores in an archive X all
the promising points in H. After Nf function evaluations, the final population
Pfin of agents, used to explore H, is added to X and the points in Ev(H) =
X ∩H represent the evaluation of the subdomain.

3.1.2 Node branching

First we recall that each subdomain is a hyperrectangle. Branching is done
through the standard bisection method: the (relative) largest edge of the domain
to be subdivided is selected and two new subdomains (i.e, η = 2) are obtained
by splitting with respect to its midpoint. More formally, let

H = [a1, b1]× · · · × [an, bn]
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be the domain to be subdivided. Let

j ∈ arg max
i=1,...,n

bi − ai

Di − di
,

where di and Di denote respectively the lower and upper bounds for variable xi

in the original domain D. Let

x̃j =
aj + bj

2

be the midpoint of edge [aj , bj ]. Then, we define the two new subdomains

H1 = [a1, b1]× · · · × [aj , x̃j ]× · · · × [an, bn],

H2 = [a1, b1]× · · · × [x̃j , bj ]× · · · × [an, bn].

3.1.3 The function θ

Before defining the function θ we need to introduce two other functions ω and
ϕ. Let H be a given subdomain and H̃ be its father. Function ω is defined as
follows for H:

ω(H) =
max{N(H), 1}

N

`(D)
`(H)

(6)

where `(·) denotes the geometric mean of the edge lengths of an n-dimensional
hyperrectangle, N is the number of points in Ev(H̃), obtained through the
evaluation of the father node H̃ by the MACS algorithm, and N(H) is equal to
the number of points in Ev(H̃) which also belong to H, i.e., N(H) =| Ev(H̃) ∩
H | (for the root node D we simply set N(D) = N). We also remark that in
(6) the ratio between geometric means of the edge lengths can also be viewed
as the nth root of a ratio between volumes:

`(D)
`(H)

=
(

V ol(D)
V ol(H)

) 1
n

.

Then, small values for ω are obtained for subdomains with small N(H) and large
volume, i.e., for subdomains with a low density of observed points. Function ϕ
is defined as follows:

ϕ(H) =

{
fH

best−fbest

fworst−fbest
if N(H) > 0

1 otherwise
(7)

where fbest and fworst are respectively the best (lowest) and worst (highest)
function values observed up to now by the algorithm within the feasible region,
and fH

best denotes the best observed function value in H ∩ Ev(H̃) (if any). For
N(H) > 0, ϕ returns a value between 0 and 1, while for N(H) = 0 the ϕ value
is simply set to 1.
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Now we are ready to define function θ. This is a convex combination of the
two above functions, i.e.,

θ(H) = σω(H) + (1− σ)ϕ(H), (8)

where σ ∈ [0, 1] is a parameter which controls the relative weights of ω and ϕ.
Note that the choice of σ allows us to balance global and local exploration of
the algorithm. If σ is close to 0 in (8), ϕ has a higher weight and nodes where
good function values have been observed are favoured (local exploration), while
when σ is close to 1, ω has the higher weight in (8) and nodes with high volume
and few observed points of their father node are favoured (global exploration,
i.e., exploration of regions with a low density of observed points). The presence
of a parameter balancing local and global exploration is quite typical for GO
methods (see, e.g., [13]).

3.1.4 Node deletion

We employed a very simple rule to delete nodes: all nodes are deleted at the same
time when the number of explored subdomains reaches a predefined number τ .
This deletion rule is clearly of heuristic nature, although other rules are possible.
For instance, we could fix a maximum level τ of the branching tree: a node H
is deleted if it is the result of τ previous subdivisions. Or, alternatively, a
node could be deleted if it is the result of τ consecutive subdivisions where no
improvement has been observed. However, the current simple rule turned out
to be already appropriate.

3.2 Convergence of the branching algorithm

Convergence of a GO method to a global minimiser is, admittedly, often not
very interesting from the practical point of view, because such convergence can
only be guaranteed after unacceptably long computation times. However, for
the sake of completeness we prove in this section the convergence of the above
described branching procedure, independently of the algorithm employed to
evaluate the nodes of the tree, when we remove the node deletion step and,
consequently, run the algorithm for an infinite amount of time. As remarked,
e.g., in [20, 22], in all cases where no global information about the objective
function, such as the value of its Lipschitz constant, is available, the only way
to ensure that a GO method is convergent is that the set of points at which
the function is observed is dense within the feasible region. In the branching
procedure described above this can be guaranteed if the branching mechanism
is exhaustive, i.e., each nested sequence of subdomains in F converges to a
single point if the algorithm is never stopped (see, e.g., [11]). In order to prove
exhaustiveness, we need two lemmas. The branching process generates a tree.
For a given subdomain H, the level in the tree of the node corresponding to H
is equal to the number of subdivisions which lead from the original domain D
to subdomain H. The first lemma states that, given an infinite nested sequence
of subdomains {Hk}, where H0 = D and k denotes the level of the subdomain,
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as k increases to infinity, the sequence converges to a single point. The proof
is omitted because is a trivial consequence of the simple rule (bisection of the
longest edge) employed.

Lemma 1 Let {Hk} be an infinite nested sequence of subdomains. Then:

∩∞k=1Hk = {x},
for some x ∈ D.

The next lemma proves that no finite nested sequence of nodes can be generated
by the branching procedure.

Lemma 2 If σ > 0 in (8), all the nested sequences generated by an infinite run
of the algorithm are infinite ones.

Proof The proof is by contradiction. Assume that a finite nested sequence
exists. Let K be the last level of the sequence and HK the last subdomain of
the sequence. The value θ for HK is bounded from above by a constant θ > 0.
Since each time we move down one level an edge is halved, ω and, consequently,
also the θ value increase to infinity as the levels increase to infinity. Therefore,
there exists some level K ′ > K such that each node at a level k ≥ K ′ has a
value θ greater than θ. Then, according to the selection rule (5), only nodes at
a level lower than K ′ can be selected. But these are in finite number and after
a finite number of iterations we will have to select HK to be subdivided, which
is a contradiction.

Now the proof of convergence immediately follows from the above lemmas. In-
deed, since all nested sequences are infinite ones, and all infinite nested sequences
converge to a point in D, then exhaustiveness is proved and the following the-
orem immediately follows.

Theorem 1 Assume σ > 0 in (8). Then, if the branching procedure is never
stopped and no node is deleted, the best feasible point observed while running the
procedure converges to the global minimiser of the problem.

4 MultiAgent Collaborative Search

Some stochastic approaches implement biologically or physically inspired heuris-
tics to drive the search toward potentially interesting portions of the solution
space (e.g., evolutionary algorithms, particle swarm optimization, ant colony
optimization, simulated annealing). Other stochastic approaches consider a
combination of random sampling with local optimization (variable neighbor-
hood search, basin hopping, multistart). Each one of these methods has a set of
operators that are devoted to the local exploration of the solution space (e.g.,
the local optimizer for VNS) and other operators that are in charge of the global
exploration. In general each operator is conceived to allow an automatic deci-
sion on how to proceed with the search. Therefore, all the above mentioned
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stochastic methods can be generally considered to implement a decision-making
process which yields sets of actions and exploits the information that those ac-
tions give in return.

In this paper the general framework described above will be implemented through
a multiagent approach. In order to explore each subdomain

H = [a1, b1]× · · · × [an, bn]

obtained as a result of the branching process, we consider a population of agents
(i.e., points within H). Given an agent x ∈ H, a hyperrectangle

Sx = Sx
1 × · · ·Sx

n

is associated to it, where each Sx
i is an interval centered at the corresponding

component x[i] of the agent. The size of Sx is specified by the value ρ(x): the
i-th edge of Sx has length

2ρ(x)max{bi − x[i],x[i]− ai).

As we will see, the ρ value associated to an agent is updated at each iteration
according to some rule (see Section 4.6). The intersection Sx ∩ H basically
represents the local region around agent x which we want to explore. We also
associate to each agent x an effort value s(x), which specifies the amount of
computational effort we want to dedicate to the exploration of Sx and is also
updated at each iteration (see, again, Section 4.6).

Then, the subdomain H is locally explored by acquiring information about the
landscape within each region Sx and globally explored by evolving a population
of agents which are also allowed to collaborate with each other. Moreover, an
archive X of solutions over the whole domain D is maintained during the search.
The archive is maintained in order to have a set of low-lying local solutions for
the problem at hand (see the discussion in the Introduction). The proposed
approach, called Multiagent Collaborative Search, is outlined in what follows,
while its details will be specified in the following subsections.

Multiagent Collaborative Search

Step 0. Initialization Generate an initial population of agents P0 within H
through a Latin Hypercube (i.e., a non-collapsing design where points/agents
are evenly spread even when projected along a single parameter axis; for
a more detailed description and a justification of the use of Latin Hyper-
cubes we refer, e.g., to [3]). A hyperrectangle Sx0

j is associated to the j-th
agent x0

j ∈ P0. The initial size ρ(x0
j ) of each region Sx0

j is fixed to 1 (i.e.,
the initial local region of each agent corresponds to the whole set H). The
effort s(x0

j ) dedicated to agent x0
j ∈ P0 is fixed to the same value smax

(equal to n in the computations) for all agents in P0. Set k = 0.
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Step 1. Collaboration Agents collaborate with each other. The collabora-
tions give rise to a set of new solutions denoted by Qk+1. See Section
4.1.

Step 2. Selection A subset of members of the set Pk ∪Qk+1 will be selected
to give rise to the new updated population Pk+1. See Section 4.2.

Step 3. Filtering A filter partitions population Pk+1 into two subsets P in
k+1,

the population within the filter, and P out
k+1, the population outside the

filter. See Section 4.3.

Step 4. Repulsion The population is possibly further updated through a re-
pulsion mechanism. See Section 4.4.

Step 5. Local actions A set of actions, specified by a behavior, are applied
to each agent x ∈ Pk+1. These allow local exploration (within Sx) of
the region around the agent. They are repeatedly applied until either
an improvement is observed or the number s(x) of actions is reached. If
an agent x generates an improvement, population Pk+1 is updated by
replacing x with its improvement. See Section 4.5.

Step 6. Hyperrectangle update The size parameter ρ and the effort param-
eter s associated to each agent within the filter are updated according to
some rule. See Section 4.6.

Step 7. Archive update Apply filtering and update archive X (see Section
4.7).

Step 8. Stopping rule A stopping rule is checked (see Section 4.8). If it is
not satisfied, then set k = k + 1 and go back to Step 1. If it is satisfied,
then update the archive X by adding the current population, i.e., set
X = X ∪ Pk+1.

Note that in order to compare different solutions we need to define a selection
criterion or a property qualifying each solution (fitness function). For the test
problems considered in this paper, which can be reformulated as box-constrained
ones, this property is simply the objective function. However, different defini-
tions for problems with nonlinear constraints and multiple objectives have been
proposed, e.g., in [5].

4.1 Collaboration

Collaboration defines operations through which information is exchanged be-
tween pairs of agents. Given a pair of agents x1 and x2, with x1 having better
fitness value, three different operations are defined. Two of them are defined by
adding to x1 a step ∆ defined as follows

∆ = α2r
t(x2 − x1) + α1(x2 − x1),
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and correspond to: extrapolation on the side of x1 (α1 = 0, α2 = −1, t = 1), with
the further constraint that the result must belong to the domain H (i.e., if the
step ∆ leads out of H, its size is reduced until we get back to H); interpolation
(α1 = 0, α2 = 1), where a random point between x1 and x2 is sampled. In the
latter case, the shape parameter t is defined as follows:

t = 0.75
s(x1)− s(x2)

smax
+ 1.25

The rationale behind this definition is that we are favoring moves which are
closer to the agent with higher fitness value if the two agents have the same s
value, while in the case where the agent with highest fitness value has a s value
much lower than that of the other agent, we try to move away from it because
a small s value indicates that improvements close to the agent are difficult to
detect.
The third operation is the recombination operator, a single-point crossover,
where, given the two agents: we randomly select a component i; split the two
agents into two parts, one from component 1 to component i and the other from
component i + 1 to component n; and then we combine the two parts of each
of the agents in order to generate two new solutions.

Note that three operations give rise to four new solutions denoted by y1, y2,
y3, y4, called children (x1 and x2 are called parents).

The first of the two parents is selected at random in the worst half (from the
point of view of the fitness) of the current population, while the second parent
is selected at random in the whole population. We also tested the selection of
the first parent from the best half but this reduced diversity of the population
and caused premature convergence.

4.2 Selection

When collaboration holds between agents, we need to specify how the population
evolves. As specified in Section 4.1, each pair of parents x1 and x2 generates
four children y1, y2, y3 and y4. Then, a tournament, based on fitness values, is
started between the worst of the two parents and the best of the four children.
The winner of the tournament will be selected to enter the new population
together with the best of the two parents. If the winner is one of the children,
it will inherit the ρ and s values of the defeated parent.

4.3 Filtering

Given a population Pk a filter simply subdivides the population into two parts
P in

k and P out
k . P in

k contains the best members of the population Pk, i.e., those
with the best fitness values, while P out

k contains all the other individuals in
Pk. The main difference between agents inside and outside the filter is that on
agents outside the filter only mutation actions (see equation (12) below) over the
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whole subdomain H are performed (for each agent outside the filter the number
of these mutation actions is a random one between 1 and the size of P out

k ), while
also other actions, allowing a deeper local exploration, are performed on agents
inside the filter (see the following Section 4.5). Moreover, values ρ and s are
only updated for agents in P in

k (see the following Section 4.6). In case an agent
outside the filter at iteration k enters the filter at iteration k + 1, its ρ and s
values are initialized as specified in Step 0.

4.4 Repulsion

When the distance between two agents gets below a given threshold, a repulsion
action is applied to the one with worse fitness value. More precisely, consider
agent xj and let

Mj = {i : Sxj ∩ Sxi 6= ∅}
be the set of agents whose box has a nonempty intersection with the one of xj .
Let nc(j) denote the cardinality of Mj . Then, for each i ∈ Mj we check the
following condition

wcnc(j)ρ(xj) > ρij ,

where ρij denotes the normalized distance1 between xi and xj and wc is a small
positive parameter called crowding factor. If the condition is satisfied, then
the worse between agents xi and xj is repelled (note that wc = 0 corresponds
to no repulsion). Repulsion is basically an interpolation between the agent
to be repelled and one vertex of the current domain chosen at random. The
idea behind repulsion is to avoid convergence of different agents to the same
subregion with a consequent waste of computational effort.

4.5 Behavior

At every generation, a sequence of actions is performed by each agent, according
to a behavior β. In particular, given agent j at generation k, denoted by xk

j , a
behavior is a collection of displacement vectors ∆ξ generated by some function
zβ :

β = {∆ξ | xk
j + ∆ξ ∈ H and ∆ξ = zβ(xk

j ,xk−1
j ,w, r, Pk)} (9)

where zβ is a function of the current and past state xk
j and xk−1

j of agent j, of
a set of weights w, of a set of random numbers r and of the current population
Pk. Every point xk

j +∆ξ is called a child of agent j. In what follows we describe
the different kinds of actions employed in this paper.

Inertia This action is performed at most once at each generation. If agent
j has improved from generation k − 1 to generation k, then we follow
the direction of the improvement (possibly until we reach the border of

1By normalized distance we mean the distance between the two agents once H has been
transformed into the unit hypercube through the appropriate affine transformation
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the hyperrectangle associated to the agent), i.e., we perform the following
step:

∆ξ = λ̄(xk
j − xk−1

j ) (10)

where
λ̄ = min{1,max{λ : xk

j + λ(xk
j − xk−1

j ) ∈ Sxj}}.

Follow-the-trail This step is inspired by Differential Evolution (see, e.g., [17,
21]). It is defined as follows: let xk

i1
,xk

i2
,xk

i3
be three randomly selected

agents; then
∆ξ = xk

j − (xk
i1 + (xk

i3 − xk
i2)) (11)

(if the step leads out of Sxj , then its length is reduced until we reach the
border of Sxj ).

Random-Step (or Mutation) Given the agent x and its associated hyper-
rectangle Sx, four different kinds of mutation actions are performed all
arising from the following displacement of a component i of the agent:

∆ξi = w1r
t(`i − xi) + (1− w1)rt(ui − xi) (12)

where `i and ui are respectively the lower and upper limits of xi within
Sx∩H, r is a uniform random number in [0, 1], w1 = 1 with some probabil-
ity pi and w1 = 0 with probability 1− pi, and t ≥ 0 is a shape parameter
(t = 1 corresponds to uniform sampling, while t > 1 favors more local
moves). The four mutation actions are the following:

• all components i are perturbed according to (12) with t = 1 and
pi = 0.5;

• a component i is selected at random and perturbed according to (12)
with t = 1 and pi = 0.5;

• a component i is selected at random and perturbed according to (12)
with t = 0.5 and pi = 0.5;

• a component i is selected at random and randomly fixed either at its
lower limit or its upper limit in the region Sx ∩ H, i.e., t = 0 and
pi = 0.5.

Linear blending Once a mutation action on agent x has been performed, its
result, denoted by y, is further refined through blending procedures. Lin-
ear blending corresponds to the following displacement:

∆ξ = α2r
t(y− x) + α1(y− x). (13)

where α1, α2 ∈ {−1, 0, 1}, r ∈ [0, 1] is a random number, and t a shaping
parameter which controls the magnitude of the displacement. Here we
use the parameter values α1 = 0, α2 = −1, t = 1, which corresponds
to extrapolation on the side of x, and α1 = α2 = 1, t = 1, which corre-
sponds to extrapolation on the side of y. If the displacement defined by
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an extrapolation action is too large, i.e., the resulting point is outside the
hyperrectangle associated with the current agent, then it is reduced until
the resulting point is within the hyperrectangle.

Quadratic blending The outcome of the linear blending can be used to con-
struct a second order local model of the fitness function. We can define
a second order blending operator that generates a displacement using the
agent x, the perturbation y obtained by mutation, and the new point z
generated by the linear blending operator. A second order one-dimensional
model of the fitness function along the line with direction x−z is obtained
by fitting the fitness values in the three points x, y and z. Then, the new
point is the minimum of the second-order model along the intersection of
the line with the hyperrectangle associated with the agent.

As already pointed out, the inertia action is performed at most once. All the
other actions are cyclically performed until either an improvement is observed
or the number s(xk

j ) of actions is reached. Note that in each cycle only one of
the four mutation actions is performed in turn.

4.6 Size and effort update

Given an agent xk
j ∈ P in

k , its size parameter ρ(xk
j ), defining the hyperrectangle

Sxk
j centered at xk

j , and its effort parameter s(xk
j ), giving the maximum number

of actions applied to it, are updated at each generation. Both are reduced or
enlarged depending on whether an improvement has been observed or not in
the previous generation.

If xk+1
j 6= xk

j , i.e., an improvement has been observed for agent j at iteration
k, then the effort is updated according to the following formula:

s(xk+1
j ) = max{s(xk

j ) + 1, smax},

i.e., it is increased by 1, unless the maximum allowed number of actions has
been already reached (recall that in the computations smax has been fixed to
the dimension n of the problem). Basically, we are increasing the effort if the
agent is able to improve. In the same case the size is increased by the following
formula:

ρ(xk+1
j ) = max{ρ(xk

j ) ln(e + rank(xk+1
j )), 1}

where rank(xk+1
j ) is the ranking of the agent xk+1

j within the population Pk+1

(the best individual has rank equal to 1, the second best equal to 2, and so
on). Basically, the worse the ranking of an individual, the greater the possible
increase of the radius will be. The increase is limited from above by 1 (when
ρ = 1 the local region around the agent to be explored is equal to the whole
domain H). The idea is that for low ranked individuals it makes sense to look
for larger improvements and then to try to find a better point in larger regions
making the search more global.
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If no improvement is observed, then the effort is updated according to the
following formula:

s(xk+1
j ) = max{s(xk

j )− 1, 1},
i.e., it is decreased by 1, unless the minimum allowed number of actions has
been already reached.

In the same case the size is reduced according to the following rule. Let
ρmin(xk

j ) be the smallest possible reduction of the size parameter such that the
child y∗ of xk

j with best fitness value is still contained in the hyperrectangle.
Then:

ρ(xk+1
j ) =

{
ρmin(xk

j ) if ρmin(xk
j ) ≥ 0.5ρ(xk

j )
0.5ρ(xk

j ) otherwise

i.e., the size parameter is reduced to ρmin(xk
j ) unless this is smaller than 0.5ρ(xk

j ),
in which case we only halve the size parameter.

4.7 Archive update

Let ρtol be a small threshold value. Let xi be an agent whose size parameter is
below the threshold value, i.e., ρ(xi) < ρtol. Let Li be the set of agents whose
normalized distance from xi is below the threshold ρtol (including xi itself). If
agent xi is the best one (from the point of view of fitness) in Li, then all agents
in Li are randomly regenerated within the current domain H and xi is inserted
in archive X, while if it is not, only agent xi is randomly regenerated within
H. At termination of the MACS algorithm we insert the whole final population
into the archive.

4.8 Stopping rule

The stopping rule is, at the moment, quite simple: we stop the search within a
subdomain when a prefixed number Nf of function evaluations is reached.

5 Computational results

The approach proposed in this paper was compared against a number of different
approaches on two test cases: a minimum bi-impulsive transfer from the Earth
to Apophis (see Subsection 2.1) and a minimum ∆v transfer from the Earth to
Saturn (see Subsection 2.2).

5.1 Earth-Apophis Transfer

The launch date from the Earth has been taken in the interval [3653 10958]
(number of elapsed days since January 1st, 2000), while the time of flight has
been taken in the interval [50 900] days. A standard Lambert solver [1] coded
in Matlab has been used to compute the transfer arc. Table 1 collects the result
of all the tests performed.
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A number of stochastic and deterministic based methods were applied to
the search for the optimal launch date and transfer time. Each optimizer was
run for an increasing number of function evaluations in the range from 1000 to
3000. The first and basic method is grid search: from the best point on the grid
a local search was started. In Table 1 the grid search is called GRID and the
values for each column correspond to the best solution found at the end of the
local search. The naive grid search was then compared to two other well known
deterministic solvers: DIRECT [16] (DIvided RECTangles) which implements a
branch and prune technique and MCS [12] (Multilevel Coordinate Search) which
implements a more sophisticated branch and prune algorithm with local search.
DIRECT outperforms the simple grid search but yields the global optimum
f =0.03669km/s only after 3000 evaluations. On the other hand MCS did not
return any solution better than the GRID ones. This is mainly due to the fact
that both DIRECT and MCS are sensitive to the initial sampling of the search
space, which in turns depends on its boundaries.

Stochastic approaches were run 120 times for each number of function eval-
uations. In the design of a real mission, solutions with similar ∆v values are
practically equivalent. On the other hand it is very important to measure the
reliability of a search method in returning a given solution. Therefore, we com-
puted three quantities: the percentage of times the algorithm was returning a
function value lower than 0.037 km/s, the percentage of times the algorithm
was returning a function value lower than the solution provided by MCS for the
same number of function evaluations and the percentage of times the algorithm
was returning a function value lower than the solution provided by DIRECT for
the same number of function evaluations.

Four stochastic methods were considered: a basic best start algorithm (called
BS in the table) that samples uniformly the solution space and then starts a
local search from the best sample, DEVEC [17] an implementation of differen-
tial evolution, GATBX a Matlab implementation of genetic algorithms [4] and
PSO an implementation of Particle Swarm Optimization [7]. Since for each
stochastic method a number of parameters needs to be set (for example number
of generations and size of the population for genetic algorithms), different set-
tings were tested and the best result found over all the tested settings has been
reported. This is a very important point; in fact, it would be erroneous to use,
for example, the same population size for two population-based methods like
GA and DE since they work on different principles. From the results in Table 1
it can be seen how the stochastic methods provide on average a better answer
than deterministic methods for a low number of function evaluations though
they fail at guaranteeing convergence.

Moreover the simple best start approach is beaten by DEVEC on this test
case but it is better than the genetic algorithm. The convergence and explo-
ration strategies in DEVEC implement an action similar to (11), namely they
generate a new individual as follows

xk
i1 + (xk

i3 − xk
i2),

where xk
i2

,xk
i3

are randomly selected individuals, while xk
i1

is the best individual
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for the convergence strategy and a randomly selected one for the exploration
strategy.

As it can be seen in Table 1, the former strategy converges too fast while
the latter requires more function evaluations to converge but provides a better
exploration of the solution space since it preserves diversity longer. MACS was
applied using 10 agents with all of them performing the same actions, i.e., 10
explorers (the explorers are agents within the filter, all the other agents (if any)
are outside the filter). The minimum size of the radius ρ was set to 1e-5 while the
crowding factor ωc was set equal to 1e-6. The table shows that the behavioral
meta-heuristic proposed in this paper outperforms all the stochastic methods.
Moreover, it outperforms also the deterministic methods reaching a very high
probability of yielding the global optimum.

The behavioral approach therefore has improved, in this case, efficiency and
reliability of the search compared to other methods. Finally the behavioral
search was hybridized with the deterministic domain decomposition (EPIC,
Evolutionary Programming and Interval Computation, in the table) and run
for a total of 3000 function evaluations with σ equal to 0 (no run for a lower
number of function evaluations since the hybridization is meant to improve re-
liability and not efficiency). In this case we counted the number of times the
algorithm was able to identify the basin of attraction of the minimum. As can
be seen the rate of success is almost 100. On the other hand if the parameter σ
is put equal to 1 and the number of function evaluations are allowed to be up to
50000 then EPIC provides a characterization of most of the basins of attraction
of the solution space (see Fig. 1).

5.2 MGA Earth-Saturn Transfer

The second test is a multi gravity assist trajectory from the Earth to Saturn
following the sequence Earth-Venus-Venus-Earth-Jupiter-Saturn. Gravity as-
sist maneuvers have been modeled through a linked-conic approximation with
powered maneuvers, i.e., the mismatch in the outgoing velocity is compensated
through a ∆v maneuver at the GA planet. No deep-space maneuvers are possible
and each planet-to-planet transfer is computed as the solution of a Lambert’s
problem. The objective function is given in (4) An optimal solution for this
problem was efficiently solved through the combination of a space pruning tech-
nique combined with differential evolution [15]. In the same work it was proven
that a deterministic algorithm exists that allows an efficient solution in polyno-
mial time with a low exponent. However the algorithm is problem dependent
and cannot be applied to a general black-box problem.

Here we apply all the above mentioned algorithms for an increasing number
of function evaluations in the range from 20000 to 320000. Stochastic algorithms
have been run for 500 independent times.

The best-known solution, found with the MACS algorithm and published
on the ESA/ACT web site (the black-box objective function can be down-
loaded from the ESA/ACT web site http://www.esa.int/gsp/ACT/mission_
analysis/GlobalOptimisationProblems/EVVEJS.htm), is 4.9307 km/s. A num-
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Figure 1: Characterization of the solution space for the Earth-Apophis transfer.
The plot represents the areas in the solution space with low ∆v, dark grey, and
high ∆v,light grey. The ∆v is in km/s. The dots are all the solutions in the
archive X.

ber of local minima exist with a value slightly higher than 5 km/s. Therefore
for stochastic methods we computed the percentage of times the algorithm was
returning a function value lower than 5 km/s. As for the previous case dif-
ferent settings have been tested for each method and each number of function
evaluations.

In particular for DEVEC, PSO and MACS we ran the same case with a
population of 20, 40 and 80 individuals. GATBX implements a multipopulation
strategy for GA, therefore the total number of individuals was increased from
120 to 480 with different numbers of subpopulations: 2, 4 and 8. Table 2 reports
the best results obtained for each number of function evaluations and each
algorithm. No grid search is reported since no good results were obtained even
with a fine initial grid made of 106 points. Up to 160000 function evaluations,
DEVEC, PSO and MACS yielded the best results with a population of size 20,
after that the population of MACS was extended to 40 but with 20 explorers.
The number of particles in PSO was increased to 40 while in the case of DEVEC
an increase of the population yields a significant increase in the percentage of
time DEVEC is better than MCS and DIRECT, up to 87% of the times, but
reduces the convergence to values lower than 5 km/s. Even in this case we
tested two different strategies for DEVEC, the one reported in the table is the
convergence strategy since exploration one does not converge to values lower
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than 5 km/s.
On the other hand for a number of function evaluations lower than 160000

it gives remarkably better results than MCS and DIRECT in 65% of the runs.
Note how both DIRECT and MCS cannot find a solution even close to the
best solution found so far. We also pushed DIRECT up to 8 million function
evaluations obtaining only a value of 5.5879 km/s. On the other hand when
MACS is allowed to perform 320000 function evaluations, 99.75% of the times
it converges to a value which is lower than 5.32 km/s, which is close to a very
strong attractor, while all the other optimizers remain, on average, quite above
this value. Furthermore an increase in the number of function evaluations is not
beneficial for almost each one of the stochastic methods except for MACS that
maintains an adequate level of diversity. It is also remarkable that a simple best
start approach is as effective as DE and how both DE and PSO yield similar
results, in both cases better than GA.

Finally we applied the domain decomposition technique to the MGA case
(EPIC in the table). A population of 20 agents of which 20 explorers was de-
ployed in the search space. The maximum total number of function evaluations
was fixed to 320000 which corresponds to a maximum of 40000 function evalu-
ations for every subdomain and a total of τ = 8 subdomains. The parameter
σ was set at first equal to 1 to have full exploration. The result was a slight
increase, up to 12%, in the percentage of times the algorithm was able to find
the global minimum. A second test was performed with 40 agents of which 20
explorers. The parameter σ was set equal to 0 to have full convergence and
the result is reported in Table 2. For all the MGA tests with both MACS and
EPIC, the minimum size of the radius was set to 1e-5 while the crowding factor
ωc was set equal to 1e-4.

6 Conclusions

In this paper we proposed a global optimization approach for solving optimal
trajectory design problems. The approach is based on domain decomposition
and each subdomain is evaluated through a stochastic multiagent approach
based on behaviorism and on action-selection. The approach has been tested
and compared with other stochastic and deterministic methods on two global
trajectory problems. On the simpler, two-dimensional, problem it has demon-
strated a higher robustness compared to all the other stochastic methods, reach-
ing more than 80% success rate. On the more complex problem it is one order
of magnitude more reliable than the tested stochastic methods and outperforms
the deterministic ones.
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Table 1: Comparison among several search algorithms on the Earth-Apophis
transfer

Fun. Eval. Solver 1000 2000 3000
GRID km/s 1.2239 0.1617 0.1617
DIRECT (km/s) 0.1616 0.0618 0.0367
MCS (km/s) 0.1654 0.1648 0.1644
DEVEC (10 individuals)
< 0.037 km/s 3.00%(c) 36.00%(c) 51.00%(e)
< MCS 42.00%(c) 44.00%(c) 78.00%(e)
< DIRECT 38.00%(c) 40.00%(c) 41.00%(e)
GATBX
< 0.037 km/s 3.33% 5.0% 12.50%
< MCS 28.33% 27.5% 45.00%
< DIRECT 27.50% 18.33% 0.00%
BS
< 0.037 km/s 7.50% 9.17% 12.50%
< MCS 49.17% 58.33% 75.00%
< DIRECT 28.33% 30.83% 5.83%
MACS (10 Agents)
< 0.037 km/s 16.67% 62.50% 82.50%
< MCS 87.50% 90.00% 96.67%
< DIRECT 77.50% 82.50% 80.83%
PSO (10 particles)
< 0.037 km/s 1.00% 19.00% 36.00%
< MCS 35.00% 31.00% 44.00%
< DIRECT 32.00% 28.00% 34.00%
EPIC
< 0.037 km/s / / 98.33%

where (c) Convergence strategy for Differential Evolution, (e) Exploration strat-
egy for Differential Evolution.
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Table 2: Comparison among several search algorithms on the MGA case

Fun. Eval./Solver 20000 40000 80000 160000 320000
DIRECT (km/s) 8.168 8.155 8.08 7.774 7.726
MCS (km/s) 26.64 9.042 9.042 7.377 7.376
DEVEC
<5 1.00% 0.50% 1.00% 1.25% 1.00%
<MCS 100.0% 28.75% 26.75% 25.25% 26.75%
<DIRECT 28.00% 27.75% 26.00% 25.25% 26.75%
GATBX
<5 0.00% 0.00% 0.00% 0.25% 0.00%
<MCS 100.0% 69.70% 73.25% 65.25% 64.00%
<DIRECT 59.50% 65.70% 70.00% 68.50% 65.50%
BS
<5 0.00% 0.25% 0.50% 0.50% 0.25%
<MCS 100.0% 93.50% 99.75% 99.75% 99.75%
<DIRECT 70.25% 90.00% 98.50% 99.75% 100.0%
PSO
<5 0.00% 0.00% 0.60% 0.40% 0.40%
<MCS 84.50% 42.50% 23.20% 19.00% 23.40%
<DIRECT 33.25% 41.50% 21.80% 19.00% 23.40%
MACS
<5 2.25% 7.75% 6.89% 6.00% 10.25%
<MCS 100.0% 64.50% 62.00% 93.00% 99.75%
<DIRECT 47.25% 61.00% 59.25% 93.00% 99.75%
EPIC
<5 / / / / 18.40%
<MCS / / / / 76.00%
<DIRECT / / / / 76.00%

24


