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Abstract
This paper considers the Omega function, proposed by Cascon, Keating & Shadwick as
a performance measure for comparing financial assets. We discuss the use of Omega as
a basis for portfolio selection. We show that the problem of choosing portfolio weights
in order to maximize Omega typically has many local solutions and we describe some
preliminary computational experience of finding the globaloptimum using a NAG library
implementation of the Huyer & Neumaier MCS method.

1 Introduction

The Omega function was introduced in [5, 11] as a measure for comparing the
performance of financial assets. A brief description is as follows. Suppose we
have anm-day history of returns,r, for an asset and that the observed returns lie
in a rangermin� r � rmax. The cumulative distribution of returns will have a form
like the one shown in Figure 1 in which the horizontal axis represents the observed
returns and the vertical scale showsf (r) = P[asset return< r℄.
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Figure 1: Typical cumulative distribution of returns on an asset
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In Figure 1, the pointA represents some threshold value for returnrt . The Omega
function associated withrt is defined as

Ω(rt) = R rmax
rt

(1� f (r))drR rt
rmin

f (r)dr
= AreaBCU

AreaLAB
: (1)

If rt is close tormin then areaBCU is much larger than areaLAB and soΩ is large.
Conversely,Ω! 0 asrt ! rmax. (Cascon et. al. [5] show thatΩ = 1 whenrt is the
mean return for the distribution.) Hence the size ofΩ is a measure of the extent
to which the historical performance of an asset has exceededthe threshold return
rt . In particular, Keating and Shadwick in [11] describe the Omega function as a
probability adjusted ratio of gains to losses and say that, for a given thresholdrt ,
the simple rule of preferring more to less implies that an asset with a high value of
Omega is a better investment than one with a lower value.

Figure 2 shows howΩ typically varies withrt .
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Figure 2:Ω(rt) for 0:0%� rt � 0:65%

Ω curves like the one in Figure 2 can be used to compare several assets. Figure 3
plots Ω for three assets (referred to as A,B and C) whent is in the range 0.4% to
0.8%. Using the argument of Keating and Shadwick [11], we cansay that Figure 3
shows that asset A is always to be preferred to asset B becauseits Ω value is higher
for all values of threshold return. Moreover, if the threshold return is less than
about 0:6% then asset A is also better than asset C. However this situation changes
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Figure 3:Ω(rt) plots for assets A,B and C

as the threshold is increased and asset C becomes the best investment when target
return is between 0.6% and 0.8%.

2 UsingΩ for portfolio optimization

In this paper we regardΩ as more than a means of comparing individual assets and
use it as a basis for portfolio selection. Consider a portfolio involving n assets in
which y1; y2; :::;yn denote the invested fractions (or weights) which specify what
proportion of the investment is assigned to each asset. Suppose also that we have an
m-day history of asset returnsr ji ; j = 1; :::;n; i = 1; :::;m. Then, for any values of
they j we can use this historical data to determine how the corresponding portfolio
would have performed over the previousm days. Specifically, the portfolio return
on dayi would have been

Ri(y) = n

∑
j=1

r ji y j for i = 1; :::;m: (2)

From these values ofRi we can construct a cumulative return distribution similar
to that in Figure 1; and then for any threshold returnrt we can evaluateΩ(rt).
This Ω value obviously depends ony1; :::;yn and so a possible way of optimizing
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the portfolio would be to choose the invested fractions tomaximizeΩ(rt). For
practical reasons the invested fractions must of course satisfy the constraint

n

∑
j=1

y j = 1: (3)

(We might also want to impose other conditions such as boundson they j .

Maximizing Ω represents a significantly different portfolio selection strategy from
the more familiar Markowitz approach [12] which involves choosing the invested
fractions tominimizea measure of portfolio risk. Specifically, if ¯r j denotes the
mean of the valuesr ji ; i = 1; :::;m and if Q is the variance-covariance matrix for
the historical datar ji ; j = 1; :::;n; i = 1; :::;m then the expected portfolio return is

R̄(y) = E(Ri(y)) = yT r̄ (4)

and portfolio risk can be defined as

V(y) = yTQy: (5)

Hence an extremely risk-averse investor could choose a portfolio simply by min-
imizing V(y) subject to the constraint (3). This strategy ignores returnaltogether
and, more realistically, a portfolio with low risk and high return could be obtained
by minimizing a composite function such as�λyT r̄ +(1�λ)yTQy

whereλ is a parameter between 0 and 1 which controls the balance between return
and risk. Alternatively, a portfolio could be chosen to maximize theSharpe ratio

S= yT r̄� rt

yTQy
: (6)

Clearly the maximum ofS can be expected to yield a portfolio which gives low
risk together with an expected return which significantly exceeds the thresholdrt .
Finally, if we want to set a target value for portfolio return, we could minimize
V(y) subject to (3) and an additional constraint such as

n

∑
j=1

r̄ jy j = Rp = a specified expected portfolio return: (7)

The use of Omega in portfolio selection has been proposed by anumber of authors
– see for instance [1], [6], [8] and [14] – and the theoreticalproperties of Omega
have been quite widely discussed. It is argued in [5] that Omega differs in an im-
portant way from other statistical estimators in that it is calculated directly from
the historical data and hence it can be seen as equivalent to the actual returns dis-
tribution. This is in contrast to risk measures based only onthe mean and variance
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which may not capture all the features of the data. Avouyi-Dovi et al [1] agree
with this observation and, in particular, they compare Omega with the Sharpe ra-
tio, remarking that the use of expression (5) for risk in (6) is based on the prior
assumption that the asset data is normally distributed. No such assumption is made
in the definition of Omega and hence it should give a better representation of data
with a non-normal distribution – e.g., asymmetric data – which can frequently be
encountered. When dealing with non-normal distributions,Keating and Shadwick
[11] say that the simplicity of the calculation ofΩ gives it an advantage over more
sophisticated statistical measures involving estimationof higher order moments.

Another advantage ofΩ pointed out by Avouyi-Dovi et al [1] is that the wayrt

contributes to the definition (1) means that the choice of threshold value can be
a useful way of taking into account an investor’s preferences about loss and gain.
Mausser et al [14] agree with this general remark about the role of rt ; but they
also observe that there may be situations in which it is not obvious how to select
a specific threshold value. They suggest that it may sometimes be advantageous
to maximizeΩ for a rangeof thresholds in order to combine the results in a more
sophisticated higher-level portfolio selection process.

In later sections we shall consider the optimization methods used and results ob-
tained by other authors when maximizing Omega. First however we describe our
own approach to this problem.

3 Max-Ω portfolio selection – a simple example

Figure 4 shows some artificial 50-day return histories for three assets and Figure 5
shows their cumulative distributions.
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Figure 4: Return histories for assets 1,2 and 3 (left to right)

In order to construct a maximum-Ω portfolio from these assets we can use the fact
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Figure 5: Cumulative distribution of returns for assets 1,2and 3 (left to right)

thaty1+y2+y3 = 1 and calculate returns (2) as functions ofy1 andy2 only, i.e.,

Ri(y) = y1r1i +y2r2i +(1�y1�y2)r3i ; i = 1;2; ::;50:
We can obtainΩ(rt) from a cumulative distribution ofR1; ::;R50. We wish to ex-
clude solutions which involve short-selling and so we want to maximizeΩ(rt)
subject to the constraints

y1 � 0; y2 � 0; 1�y1�y2 � 0: (8)

In order to solve this inequality constrained problem we canapply anuncon-
strainedminimization algorithm to a penalty function

F(y1;y2) = 1
Ω(rt) +ρfjmin(0;y1)j+ jmin(0;y2)j+ jmin(0;1�y1�y2)jg (9)

whereρ is a positive weighting parameter. It is well-known (see forinstance [3])
that the minimum of the exact penalty function (9) coincideswith the solution of
the original inequality constrained problem providedρ is chosen sufficiently large.

For this demonstration example we take the thresholdrt = 0 and setρ = 1 The
contours of (9) are then as shown in Figure 6. The jagged nature of these contours
is due to the fact that the cumulative distribution functions in Figure 5 are non-
smooth and hence the numerical integral involved in computing Ω does not change
smoothly as the invested fractions change. In the upper partof the figure the third
constraint penalty term in (9) becomes active and there is a further discontinuity of
slope along the liney1+y2 = 1.

The contour lines in Figure 6 suggest that there are a number of possible minima
some of which are in the regions indicated by arrows. We can seek to locate these
minima precisely by minimizing (9) using the Nelder and MeadSimplex algorithm
[15] as implemented in the MATLAB procedurefminsear
h [13]. This direct
search technique is a suitable method since the objective function F(y) is non-
differentiable. Results from the simplex method are consistent with Figure 6 in
that different local minima are found when the search is started from different
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Figure 6: Contours of (9) whenrt = 0:0
initial guesses. The best solution is found withy1 � 0:57; y2 � 0:43 giving Ω �
5:49. However the other apparent minima are not artefacts of the contour-plotting
process and alternative solutions includey1� 0:41; y2� 0:59 (withΩ� 5:37) and
y1 � 0:44; y2 � 0:56 (with Ω� 5:27).

It is interesting to note that all these solutions are feasible points with respect to
the constraints (8). The fact thaty3 is always set to zero is easily explained when
we consider the value ofΩ(0:0) for the three assets individually. For asset one
Ω(0:0) � 3:6; for asset twoΩ(0:0) � 4:2 and for asset threeΩ(0:0) � 2:2. Hence
it is not surprising that asset three does not contribute to aportfolio designed to
maximizeΩ.

The observation that (9) has many local minima immediately makes portfolio se-
lection by maximizingΩ a more challenging problem. The non-convexity and non-
smoothness ofΩ has also been noted in [1], [8] and [14]. Hence the calculation of
a Max-Ω portfolio is more difficult than the Markowitz approaches. Minimizing
(5) subject to constraints (3) and (7) is a convex quadratic programming problem
while minimizing the Sharpe ratio (6) subject to (3) is a nonconvex problem but
the function and constraint are both differentiable.

If we wish to find a maximum-Ω portfolio by minimizing a penalty function like
(9) then the simplex method is not really suitable since it isonly a local optimiza-
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tion procedure. We might seek a global optimum ofF by using amultistart tech-
nique which would essentially involve runningfminsear
h from a large number
of randomly distributed starting guesses. This seems unlikely to be an efficient
process for a portfolio involving a large number of assets. Other approaches to
the global optimization problem that have been proposed canbe divided into two
types: stochastic and deterministic.Stochasticapproaches involve some element of
random sampling of the space of the variables together with rules for accepting or
rejecting new trial points. Examples are Simulated Annealing, Genetic Algorithms
and Tabu Search.Deterministicalgorithms make a more systematic exploration
based on information accumulated about the objective function on previous iter-
ations and among methods of this type we mention DIRECT [10] and the MCS
algorithm [9] which is described in the next section.

Avouyi-Dovi et al [1, 2] use a non-smooth penalty function like (9) to solve the
maximum-Ω problem and they employ a technique called Threshold Acceptance
which they characterize as a deterministic version of Simulated Annealing. This
method is described by Gilli et al [7] and is also used by them for Omega-based
portfolio optimization in [8]. Mausser et al [14] prefer to consider the maximum-Ω
problem in its constrained form, rather than reducing it to apenalty function mini-
mization. They propose avoiding the difficulties of dealingwith multiple solutions
of this nonconvex problem by transforming it into a much simpler linear program-
ming calculation. This only yields a solution to the original problem under certain
circumstances which are fully discussed in [14].

We have a preference for deterministic rather than stochastic methods for global
optimization. This preference is largely based on a study [4] in which DIRECT [10]
was found to perform much better than two tabu search methodson a route-finding
problem. DIRECT works by repeated splitting of the region ofsearch into smaller
hyperboxes, using the accumulated record of function values at points sampled
so far to decide which of the current hyperboxes seem most promising candidates
for further subdivision. The Multi-level Co-ordinate Splitting (MCS) method [9]
works in a broadly similar manner and was our choice for seeking global solutions
to the Max-Ω problem because of the ready availability of a beta test implementa-
tion [16] from the NAG MATLAB toolbox [17]. An outline of the MCS method is
given in the next section.

4 Using the MCS algorithm for maximum-Ω problems

We consider problems involving an-asset portfolio based on anm-day performance
history. As before, we use the relation∑ j y j = 1 and express daily portfolio returns
in terms of invested fractions as

Ri = n�1

∑
j=1

r ji y j + r jn(1� n�1

∑
k=1

yk); for i = 1; :::;m:
8



From the cumulative distribution function for theseRi we can evaluateΩ(rt) for a
specified threshold returnrt . We calculate Max-Ω portfolios (in which short-selling
is not permitted) by findingy1; :::;yn�1 to minimize the exact penalty function

F(y) = 1
Ω(rt) +ρfn�1

∑
i=1

jmin(0;yi)jg+ρjmin(0;1� n�1

∑
i=1

yi)j: (10)

In order to find a global optimum of (10) we use the MCS algorithm [9] imple-
mented as the NAG proceduree05jb [16].

4.1 The MCS algorithm and itse05jb implementation

The MCS algorithm seeks a global minimum of ann-variable functionF(x) in a
hyperbox defined byl � x� u. (In what follows we shall simply use the termbox
when strictly we mean ann-dimensional hyperbox.)

MCS searches for a global minimizer using branching recursively in order to di-
vide the search space in a nonuniform manner. It divides, orsplits, the root box[l ; u℄ into smaller sub-boxes. Each sub-box contains a basepoint at which the ob-
jective function is sampled. The splitting procedure biases the search in favour of
sub-boxes where low function values are expected. The global part of the algo-
rithm explores sub-boxes that enclose large unexplored territory, while the local
part splits sub-boxes that have good function values.

A balance between the global and local parts of the method is achieved using a
multilevel approach, where every sub-box is assigned a level s2 f0;1; : : : ;smaxg.
The value ofsmax can be specified by a user. A sub-box with level 0 has already
been split; a sub-box with levelsmaxwill be split no further. Whenever a sub-box of
intermediate level 0< s< smax is split a descendant will be given the levels+1 or
min(s+2;smax). The child with the better function value is given the largerfraction
of the splitting interval because then it is likely to be split again more quickly.

An initialization procedure generates a preliminary set ofsub-boxes, using points
input by the user or derived using a default generation procedure. The method
ranks each coordinate based on an estimated variability of the objective function,
computed by generating quadratic interpolants through thepoints used in the ini-
tialization. Then the algorithm begins sweeping through levels.

Each sweep starts with the sub-boxes at the lowest level, this process being the
global part of the algorithm. At each level the sub-box with the best function value
is selected for splitting; this forms the local part of the algorithm. A box is split
either byrank (when it reaches a sufficiently high level; in particular, assmax! ∞
this ensures each coordinate is split arbitrarily often) orby expected gain(along a
coordinate where a maximal gain in function value is expected, again computed by
fitting quadratics).

9



The splitting procedure as a whole is a variant of the standard coordinate search
method: MCS splits along a single coordinate at a time, at adaptively chosen
points. In most cases one new function evaluation is needed to split a sub-box into
two or even three children. Each child is given a basepoint chosen to differ from
the basepoint of the parent in at most one coordinate, and safeguards are present
to ensure a degree of symmetry in the splits. In the NAG implementatione05jb
an optional parameterLo
al Sear
hes can be set to ‘OFF’ and this causes MCS
to put the basepoints and function values of sub-boxes of maximum levelsmax into
a ‘shopping basket’ of candidate minima. TurningLo
al Sear
hes ‘ON’ will
enable local searches to be started from these basepoints before they go into the
shopping basket.

Local searches go ahead providing the basepoint is not likely to be in the basin of
attraction of a previously-found local minimum. The searchitself uses linesearches
along directions that are determined by minimizing quadratic models, subject to
bound constraints. In particular, triples of vectors are computed using coordinate
searches based on linesearches. These triples are used intriple searchprocedures
to build local quadratic models for the objective, which arethen minimized using
a trust-region-type approach. The quadratic model need notbe positive definite, so
it is minimized using a general nonlinear optimizer.

4.2 Calculating maximumΩ portfolios with e05jb
We now consider a ten-asset portfolio based on a 100-day history. We can sum-
marise the properties of the ten assets by showing their meanreturns and displaying
plots of theirΩ functions. The mean returns are

r̄1 = 0:078%; r̄2 =�0:066%; r̄3 = 0:01%; r̄4 = 0:048%; r̄5 =�0:07%

r̄6 = 0:044%; r̄7 = 0:003%; r̄8 = 0:02%; r̄9 = 0:040%; r̄10 =�0:045%:
For clarity we giveΩ-plots in groups of four assets at a time. Figure 7 shows the
four highestΩ curves. Asset 1 has the bestΩ value for threshold returns in the
range 0� rt � 0:1. Assets 9, 6 and 4 are the next best performers in terms ofΩ and
they remain consistently ranked in this order although the curves for assets 6 and 4
touch nearrt = 0:04% and the curves for assets 6 and 9 touch nearrt = 0:03%.

Figure 8 showsΩ plots for Assets 4,7,3 and 8. There are some changes of ranking
between these assets asrt increases: asset 8 is the worst performer whenrt is
near-zero but almost matches asset 7 in being the best performer of this group as
rt ! 0:1%.

Finally, Figure 9 shows that assets 2,10 and 5 haveΩ-values which are well below
asset 8. Assets 2 and 10 change places once or twice over the range ofrt but asset
5 is uniformly the worst choice.
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Figure 7:Ω plots for example assets 1,9,6 and 4
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Figure 8:Ω plots for example assets 4,7,3 and 8

We now consider the global minimization of the function (10)formed using data
from our sample set of 10-assets and with various values for threshold returnrt .
Table 1 shows Max-Ω portfolios obtained by applyinge05jb in the search box
defined by 0� yi � 1 for i = 1; :::9. In the column for invested fractions we show
only those which are non-zero. For the smaller values ofrt the solutions generally
favour assets 1,4,6 and 9 which is consistent with theΩ curves in the graphs in
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Figure 9:Ω plots for example assets 8,2,10 and 5

Figures 7 - 9. Forrt = 0:075% andrt = 0:1% the portfolios are strongly dominated
by asset 1.

rt% Invested fractions Ωmax

0 y1 = 0:147; y2 = 0:040; y3 = 0:213; y4 = 0:208 7.08
y6 = 0:286; y7 = 0:007; y9 = 0:099

0:025 y1 = 0:118; y2 = 0:036; y4 = 0:225; y6 = 0:361 5.16
y7 = 0:003; y9 = 0:219

0:05 y1 = 0:235; y4 = 0:099; y6 = 0:357; y7 = 0:051 4.11
y9 = 0:21; y10 = 0:046

0:075 y1 = 0:884; y5 = 0:035; y7 = 0:039; y9 = 0:043 3.48
0:1 y1 = 0:977; y5 = 0:014; y8 = 0:009 2.97

Table 1: Max-Ω portfolios for varyingrt

Table 2 gives more information about the Max-Ω solutions in terms of their port-
folio expected returnRp and riskV. Note that the optimized portfolio expected
returnsRp are not the same as the threshold valuesrt used in definingΩ.

We now consider how the portfolios in Table 1 compare with those obtained by
minimizing the risk associated with the target returnsRp in Table 2.
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rt% Rp% V
0 0:038 0.058

0:025 0:040 0.064
0:05 0:045 0.061
0:075 0:068 0.211
0:1 0:075 0.261

Table 2: Expected return and risk for Max-Ω portfolios

4.3 Comparing maximumΩ and minimum-risk portfolios

We can compare Max-Ω portfolios with more conventional minimum-risk ones
(denoted by Min-V). We calculate the Min-V portfolio by minimizing (5) subject
to constraints (3) and (7) using theRp achieved by the Max-Ω solutions in Ta-
ble 2. We also include positivity constraints on the invested fractions to prevent
short-selling. Results are shown in Table 3. Clearly the invested fractionsyi are
substantially different from those in Table 1. The Min-V solutions tend to use non-
zero contributions from more of the assets; and almost the only point of similarity
is the growing dominance of asset 1 asRp increases. Comparing the valuesVmin

with the values ofV in Table 2 we can see that, for a given level of portfolio return,
the Max-Ω portfolios are appreciably more risky than Min-V ones with the ratio

risk of a Max-Ω portfolio
risk of a Min-V portfolio

lying between 1.4 and 1.7.

Rp% Invested fractions Vmin

0:038 y1 = 0:201; y3 = 0:069; y4 = 0:115; y6 = 0:171 0.035
y7 = 0:122; y8 = 0:09; y9 = 0:191; y10 = 0:039

0:040 y1 = 0:214; y3 = 0:065; y4 = 0:118; y6 = 0:173 0.037
y7 = 0:116; y8 = 0:095; y9 = 0:192; y10 = 0:025

0:045 y1 = 0:260; y3 = 0:049; y4 = 0:133; y6 = 0:174 0.043
y7 = 0:101; y8 = 0:091; y9 = 0:193

0:068 y1 = 0:740; y3 = 0:015; y4 = 0:08; y6 = 0:085 0.156
y8 = 0:035; y9 = 0:046

0:075 y1 = 0:817; y4 = 0:027; y6 = 0:085 0.184
y7 = 0:029; y8 = 0:044; y9 = 0:083

Table 3: Min-V portfolios giving same expected return as Max-Ω portfolios

It is interesting to compare the cumulative distributions of returns for Max-Ω and
Min-V portfolios. Figure 10 shows the two curves for the case whenRp = 0:038%.
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(Figures for other values ofRp are generally similar to this one.) Both curves are
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Figure 10: Comparing Max-Ω and Min-V for Rp = 0:038%

quite similar in the central part but the dotted curve for theMin-V portfolio has a
shorter tail towards the upper end of the range of observed returns. This simply
reflects the fact that the Max-Ω solution seeks to adjust the areas above and/or
below the curve defined by (1) in order to maximize the ratioΩ.

A Min-V portfolio based on the risk definition (5) is calculated to minimize de-
viations both above and below expected portfolio returnRp. A Max-Ω solution,
on the other hand, is concerned with seeking a portfolio to obtain more thanthe
threshold returnrt . Hence a Max-Ω portfolio might be expected to have more in
common with one which is designed to minimizedownsiderisk – that is the risk of
obtaining less than target return. IfRi(y) is the portfolio return given by (2) then
downside risk can be calculated as

DV = 1
m

m

∑
i=1

[min(0;Ri(y)�Rp)℄ (11)

(see [3] for instance). Table 4 shows the portfolios obtained by minimizing down-
side riskDV for the values ofRp in Tables 2 and 3. It also quotes the valueDVΩ of
downside risk at the corresponding Max-Ω solution.

In most of the rows of Table 4, the invested fraction distribution in the Min-DV
portfolios bears more resemblance to that of the Min-V ones than to that of the
Max-Ω solutions. The only evidence of a relationship between Min-DV and Max-
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Rp% Invested fractions DVmin DVΩ
0:038 y1 = 0:193; y2 = 017; y3 = 0:062; y4 = 0:150; y6 = 0:172

y7 = 0:119; y8 = 0:083; y9 = 0:18; y10 = 0:023 0.017 0.027
0:040 y1 = 0:204; y2 = 0:006; y3 = 0:065; y4 = 0:155; y6 = 0:172

y7 = 0:118; y8 = 0:083; y9 = 0:18; y10 = 0:017 0.018 0.029
0:045 y1 = 0:253; y3 = 0:064; y4 = 0:165; y6 = 0:17

y7 = 0:096; y8 = 0:073; y9 = 0:178 0.021 0.031
0:068 y1 = 0:782; y4 = 0:148; y6 = 0:008

y8 = 0:015; y9 = 0:021; y10 = 0:026 0.09 0.11
0:075 y1 = 0:932; y2 = 0:001; y4 = 0:017; y6 = 0:048 0.13 0.14

Table 4: Min-DV portfolios giving same expected return as Max-Ω portfolios

Ω portfolios is confined to the larger values ofRp, for which the Max-Ω portfolios
have a downside risk that is not very much inferior toDVmin.

4.4 Comments on the performance ofe05jb
The global optimization algorithm implemented ine05jb has performed quite
successfully on the problems considered above. It has certainly been more ef-
ficient than a rather crude multistart approach in which the simplex method infminsear
hwas applied from 50-100 random starting points. This procedure was
reasonably useful for the demonstration three-variable example in the previous sec-
tion; but for the ten-variable case it was very time-consuming and seldom yielded
as good an estimate of the global solution ase05jb.

Notwithstanding these positive comments, however, it mustbe noted that in order
to obtain satisfactory results we have had to do some trial-and-error tuning of user-
specified parameters ofe05jb. These are listed below.� Selection of initial points. These are used by the algorithmin deciding where-
abouts along the coordinate axes to split the original box. These points may be
user-defined; but there are a number of default options for selecting them automat-
ically. We had most success with the default approach in which initial splitting
points are selected on the basis of local searches along eachcoordinate axis.� Balance between global and local searching. The user can specify how many iter-
ations of a local minimization method are to be used to refine each point identified
by the splitting procedure as a candidate global solution. These local searches use
a trust-region approach based on quadratic interpolation.While this is often likely
to be a good approach, it may not be very suitable for our application since the
objective function (10) is nonsmooth. Consequently we havechosen to use rather
few local search iterations compared with the suggested default. We have sought
to compensate for this by increasing the rigour of the globalsearch and making the
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number of splitting points per variable about twice the suggested default value.� Setting termination conditions. The main tests for successful termination ofe05jb are based either on the search reaching a pre-specified target function value
or on there being no decrease in the best function value for a pre-specified number
of sweeps (thestatic limit). Furthermoree05jb may terminate unsuccessfully –
i.e. with a non-zero error flag – if a specified number of function evaluations or
box splits is exceeded. We found that the suggested value forthe static limit (3n
sweeps) was often too small and sometimes led to the method stopping well short
of the global solution. We had to increase this to at least 5n to obtain acceptable
solutions consistently. Basing successful termination onreaching a target func-
tion value is a more reliable way of ensuring that a satisfactory stopping point is
reached: but often it is not possible to know in advance what the global minimum
function is likely to be. We were largely able to avoid unsuccessful terminations
by taking the maximum number of splits as being 120 and the maximum number
of function calls as 15000.

In the absence of a computable test for aglobal optimum (as opposed to a local
one), algorithms like MCS must terminate on the basis of heuristic rules (like those
mentioned in the previous paragraph) which suggest that there is little or no further
reduction in function value to be obtained. Depending on howhigh the threshold
is set for the number of sweeps without a function decrease, we can expect MCS
to terminate within a fairly small box around – but not precisely at – the global op-
timum. MCS is designed to use quadratic local searches to improve on the sample
points in each box; but these may not be very effective on the nonsmooth problem
we are considering. As a consequence of these two factors, itis unlikely that the
best point returned bye05jb will give the global optimum to high precision. We
have confirmed this by running the MATLAB implementation of the Nelder and
Mead simplex method (fminsear
h) from the best point found by MCS and ob-
serving that it is usually able to obtain a small further reduction in function value.
It is these refined estimates of global solutions that are quoted in Table 1.

5 Conclusions

We have given a preliminary account of an investigation of portfolio selection
methods based on seeking invested fractions which maximizeΩ as defined in (1)
[5, 11]. Because maximizingΩ leads to a non-convex problem, we have considered
some Max-Ω portfolios produced using the MCS global optimization algorithm [9]
as implemented in the NAG proceduree05jb [16]. We have compared these port-
folios with ones produced using the well-known Markowitz approach [12] based
on minimizing risk. Our small-scale sample calculations indicate that, for a given
set of assets, a Max-Ω portfolio can be quite different from portfolios based on
minimizing risk or downside risk. The occurrence of such differences is consistent
with the original motivation [11] for considering the Omegaratio. Keating and
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Shadwick argue thatΩ(rt) is a better measure of performance than the Markowitz
mean and variance measures because it does not rest on any prior assumptions
(such as normality) about the distribution of asset returns. These arguments are
quite persuasive: but we have not investigated whether Max-Ω portfolios are better
than minimum-risk ones in any practical sense. To do this we would need to use
back-testing based on real-life asset data which would allow us to compare sub-
sequent performance of rival portfolios. Some Max -Ω results with real-life data
are reported and discussed in [1], [8] and [14]. In particular, Avouyi-Dovi et al
[1] compare a Max-Ω portfolio with one obtained by maximizing the Sharpe ratio
(6). They comment that the Sharpe portfolio over-invests inan asset displaying
negative asymmetry whereas the Omega portfolio avoids thisundesirable feature.

MaximizingΩ has been found to lead to a non-convex and nonsmooth optimization
problem. Applying the MCS algorithm [9] (using the NAG implementatione05jb)
to an exact penalty function has proved quite successful. Since our main aim in this
paper has been to show that the problem of portfolio selection by maximizingΩ
is one that can be solved with off-the-shelf software, it is encouraging that we
have been able to use the automatic procedures ine05jb for generating initial
points. However this means that we have not obtained any systematic information
about how the algorithm’s behaviour can be affected by poor choices of starting
guess. This question could be part of a more exhaustive numerical investigation
of MCS/e05jb which has not yet been carried out. Such an investigation would,
of course, also need to explore the practicality of solving the Max-Ω problem for
much larger numbers of assets.

In view of the non-smoothness ofΩ, one might also consider alternatives to MCS
(which uses quadratic interpolation and hence assumes differentiability). Within
the scope of the present work we have not attempted any comparison between MCS
and other global optimization techniques. However it is worth mentioning that the
DIRECT method [10] is a box-splitting approach which does not use quadratic
models and hence might be more suitable for our nonsmooth problem. This re-
mains an interesting topic for further work.

As a final remark, we mention that the issue of nonsmoothness of Ω may be allevi-
ated if we deal with assets for which a long performance history is available. This
may make the cumulative density functions appear rather less jagged.
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