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Abstract

This paper considers the Omega function, proposed by Cag@ating & Shadwick as
a performance measure for comparing financial assets. Wasdighe use of Omega as
a basis for portfolio selection. We show that the problemhafasing portfolio weights
in order to maximize Omega typically has many local solui@amd we describe some
preliminary computational experience of finding the globatimum using a NAG library
implementation of the Huyer & Neumaier MCS method.

1 Introduction

The Omega function was introduced in [5, 11] as a measuredorparing the
performance of financial assets. A brief description is deWis. Suppose we
have anm-day history of returnst, for an asset and that the observed returns lie
in arangemin <r <rmax The cumulative distribution of returns will have a form
like the one shown in Figure 1 in which the horizontal axigespnts the observed
returns and the vertical scale shoWs) = P[asset returrc r].
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Figure 1: Typical cumulative distribution of returns on aset



In Figure 1, the poinA represents some threshold value for retyrrhe Omega
function associated with is defined as
Jim(1—f(r))dr  AreaBCU

t

Q) = " f(rdr  ArealAB

I'min

(1)

If ry is close tormin then aredBCU is much larger than ard2AB and soQ is large.
ConverselyQ — 0 asr; — rmax. (Cascon et. al. [5] show th& = 1 whenr is the
mean return for the distribution.) Hence the sizelofs a measure of the extent
to which the historical performance of an asset has excetdethreshold return
ri. In particular, Keating and Shadwick in [11] describe the &g function as a
probability adjusted ratio of gains to losses and say thlatafgiven threshold;,
the simple rule of preferring more to less implies that aeawéth a high value of
Omega is a better investment than one with a lower value.

Figure 2 shows how typically varies withr;.
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Figure 2:Q(r¢) for 0.0% < r; < 0.65%

Q curves like the one in Figure 2 can be used to compare sess@tsa Figure 3
plots Q for three assets (referred to as A,B and C) whenin the range 0.4% to
0.8%. Using the argument of Keating and Shadwick [11], wesagnthat Figure 3
shows that asset A is always to be preferred to asset B beitasealue is higher
for all values of threshold return. Moreover, if the thrdsheeturn is less than
about 06% then asset A is also better than asset C. However thigisituzhanges
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Figure 3:Q(r¢) plots for assets A,B and C

as the threshold is increased and asset C becomes the heestrient when target
return is between 0.6% and 0.8%.

2 UsingQ for portfolio optimization

In this paper we regar@ as more than a means of comparing individual assets and
use it as a basis for portfolio selection. Consider a padfivivolving n assets in
whichyi, yo,...,y, denote the invested fractions (or weights) which specifiatwh
proportion of the investment is assigned to each asset.dSa@iso that we have an
m-day history of asset returmg, j =1,...,n, i = 1,...,m. Then, for any values of
they; we can use this historical data to determine how the correipg portfolio
would have performed over the previomsdays. Specifically, the portfolio return
on dayi would have been

Ri(y):eriyj for i=1..m )
=1

From these values d& we can construct a cumulative return distribution similar
to that in Figure 1; and then for any threshold retariwe can evaluat€(r;).
This Q value obviously depends o, ...,y, and so a possible way of optimizing



the portfolio would be to choose the invested fractionsmaximizeQ(r). For
practical reasons the invested fractions must of coursef\s#tte constraint

=}

yj=1 €))
1

i
(We might also want to impose other conditions such as boandkey;.

Maximizing Q represents a significantly different portfolio selectiorategy from
the more familiar Markowitz approach [12] which involvesocising the invested
fractions tominimizea measure of portfolio risk. Specifically, iif denotes the

mean of the values;;, i = 1,...,mand if Q is the variance-covariance matrix for
the historical data;i, j =1,...,n, i = 1,...,mthen the expected portfolio return is
R(Y) =E(R(y) =y'T (4)
and portfolio risk can be defined as
V(y) =y'Qy. (5)

Hence an extremely risk-averse investor could choose &porsimply by min-
imizing V (y) subject to the constraint (3). This strategy ignores realtwgether
and, more realistically, a portfolio with low risk and higeturn could be obtained
by minimizing a composite function such as

—AY' T+ (1-A)y'Qy

whereA is a parameter between 0 and 1 which controls the balancesbetweturn
and risk. Alternatively, a portfolio could be chosen to nmaizie theSharpe ratio
S
yr—n
S= . (6)
y'Qy
Clearly the maximum o6 can be expected to yield a portfolio which gives low
risk together with an expected return which significantlgeeds the threshold.
Finally, if we want to set a target value for portfolio retusme could minimize
V(y) subject to (3) and an additional constraint such as

n
Z rjyj = Rp = a specified expected portfolio return 7
=1

The use of Omega in portfolio selection has been proposechiyrder of authors
— see for instance [1], [6], [8] and [14] — and the theoretjmalperties of Omega
have been quite widely discussed. It is argued in [5] that Gawéffers in an im-
portant way from other statistical estimators in that it édcalated directly from
the historical data and hence it can be seen as equivaleme tactual returns dis-
tribution. This is in contrast to risk measures based onlthemmean and variance
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which may not capture all the features of the data. Avouy¥Da al [1] agree
with this observation and, in particular, they compare OCaneidh the Sharpe ra-
tio, remarking that the use of expression (5) for risk in @pased on the prior
assumption that the asset data is normally distributed.udb assumption is made
in the definition of Omega and hence it should give a betteresgmtation of data
with a non-normal distribution — e.g., asymmetric data —oliléan frequently be
encountered. When dealing with non-normal distributidesating and Shadwick
[11] say that the simplicity of the calculation ©f gives it an advantage over more
sophisticated statistical measures involving estimatiomgher order moments.

Another advantage d® pointed out by Avouyi-Dovi et al [1] is that the way
contributes to the definition (1) means that the choice aéshold value can be

a useful way of taking into account an investor's prefersredgout loss and gain.
Mausser et al [14] agree with this general remark about the abr¢; but they
also observe that there may be situations in which it is netoats how to select

a specific threshold value. They suggest that it may somstimeeadvantageous
to maximizeQ for arangeof thresholds in order to combine the results in a more
sophisticated higher-level portfolio selection process.

In later sections we shall consider the optimization meshaskd and results ob-
tained by other authors when maximizing Omega. First howeweedescribe our
own approach to this problem.

3 Max-Q portfolio selection — a simple example

Figure 4 shows some artificial 50-day return histories foe¢hassets and Figure 5
shows their cumulative distributions.
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Figure 4: Return histories for assets 1,2 and 3 (left to yight

In order to construct a maximum-portfolio from these assets we can use the fact
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Figure 5: Cumulative distribution of returns for assetsdnd 3 (left to right)

thaty; + Y, +y3 = 1 and calculate returns (2) as functionsgypfindy, only, i.e.,
Ri(Y) = Yari +Yara+ (1 —y1—y2)rai, i=1,2,..,50

We can obtair)(r;) from a cumulative distribution oRy, .., Rsp. We wish to ex-
clude solutions which involve short-selling and so we wantrtaximize Q(r)
subject to the constraints

y1>0, y»>0, 1-y;—Yy>,>0. (8)

In order to solve this inequality constrained problem we eaply anuncon-
strainedminimization algorithm to a penalty function

1 . , .

F(y1,Y2) = a0 +p{|min(0,y1)[ +[min(0,y2)| +[min(0,1—y1 —y2)[} (9)
wherep is a positive weighting parameter. It is well-known (seeif@mtance [3])
that the minimum of the exact penalty function (9) coincidéth the solution of
the original inequality constrained problem provige chosen sufficiently large.

For this demonstration example we take the threshold 0 and sefp = 1 The
contours of (9) are then as shown in Figure 6. The jagged mafthese contours
is due to the fact that the cumulative distribution funcéion Figure 5 are non-
smooth and hence the numerical integral involved in comgud does not change
smoothly as the invested fractions change. In the uppempéne figure the third
constraint penalty term in (9) becomes active and thereusthadr discontinuity of
slope along the ling; + vy, = 1.

The contour lines in Figure 6 suggest that there are a hunfh@rssible minima
some of which are in the regions indicated by arrows. We cak gelocate these
minima precisely by minimizing (9) using the Nelder and M&achplex algorithm
[15] as implemented in the MATLAB procedutBminsearch [13]. This direct
search technique is a suitable method since the objectivetifun F(y) is non-
differentiable. Results from the simplex method are cdestswith Figure 6 in
that different local minima are found when the search istetiafrom different



Local solutions of three—asset example
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Figure 6: Contours of (9) when = 0.0

initial guesses. The best solution is found wjth~ 0.57, y, ~ 0.43 giving Q ~
5.49. However the other apparent minima are not artefactseofdimtour-plotting
process and alternative solutions inclyde= 0.41, y, ~ 0.59 (withQ ~ 5.37) and
y1 ~ 0.44, y, ~ 0.56 (with Q =~ 5.27).

It is interesting to note that all these solutions are fdagilwints with respect to
the constraints (8). The fact thgt is always set to zero is easily explained when
we consider the value d2(0.0) for the three assets individually. For asset one
Q(0.0) =~ 3.6; for asset twd2(0.0) ~ 4.2 and for asset thre®(0.0) ~ 2.2. Hence

it is not surprising that asset three does not contribute gortfolio designed to
maximizeQ.

The observation that (9) has many local minima immediatedkes portfolio se-
lection by maximizingQ a more challenging problem. The non-convexity and non-
smoothness aR has also been noted in [1], [8] and [14]. Hence the calcuiadio

a MaxQ portfolio is more difficult than the Markowitz approaches.inihizing

(5) subject to constraints (3) and (7) is a convex quadratigamming problem
while minimizing the Sharpe ratio (6) subject to (3) is a mum@x problem but
the function and constraint are both differentiable.

If we wish to find a maximun® portfolio by minimizing a penalty function like
(9) then the simplex method is not really suitable since dtrily a local optimiza-



tion procedure. We might seek a global optimunfoby using amultistarttech-
nique which would essentially involve runnifginsearch from a large number
of randomly distributed starting guesses. This seems elglito be an efficient
process for a portfolio involving a large number of assetsheDapproaches to
the global optimization problem that have been proposedeadivided into two
types: stochastic and determinist®tochasti@pproaches involve some element of
random sampling of the space of the variables together wiés ifor accepting or
rejecting new trial points. Examples are Simulated AnmgglGenetic Algorithms
and Tabu SearchDeterministicalgorithms make a more systematic exploration
based on information accumulated about the objective iimmain previous iter-
ations and among methods of this type we mention DIRECT [bd] the MCS
algorithm [9] which is described in the next section.

Avouyi-Dovi et al [1, 2] use a non-smooth penalty functiokeli(9) to solve the
maximum€ problem and they employ a technique called Threshold Aeceeat
which they characterize as a deterministic version of Siteal Annealing. This
method is described by Gilli et al [7] and is also used by themdmega-based
portfolio optimization in [8]. Mausser et al [14] prefer tortsider the maximung
problem in its constrained form, rather than reducing it peaalty function mini-
mization. They propose avoiding the difficulties of dealimigh multiple solutions
of this nonconvex problem by transforming it into a much denfinear program-
ming calculation. This only yields a solution to the oridipaoblem under certain
circumstances which are fully discussed in [14].

We have a preference for deterministic rather than stochamtthods for global
optimization. This preference is largely based on a stufiy@hich DIRECT [10]
was found to perform much better than two tabu search meihrodsoute-finding
problem. DIRECT works by repeated splitting of the regios@érch into smaller
hyperboxes, using the accumulated record of function gahiepoints sampled
so far to decide which of the current hyperboxes seem mostipitag candidates
for further subdivision. The Multi-level Co-ordinate 3titig (MCS) method [9]
works in a broadly similar manner and was our choice for segglobal solutions
to the MaxQ problem because of the ready availability of a beta testemphta-
tion [16] from the NAG MATLAB toolbox [17]. An outline of the NS method is
given in the next section.

4 Using the MCS algorithm for maximum-Q problems

We consider problems involvingreasset portfolio based on amday performance
history. As before, we use the relatigny; = 1 and express daily portfolio returns
in terms of invested fractions as

n—1 n—1

R = Z riiyj+rijn(1— Z k), fori=1..m
=1 k=1
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From the cumulative distribution function for theRewe can evaluat€(r;) for a
specified threshold retum. We calculate MaxQ portfolios (in which short-selling
is not permitted) by findings, ..., yn—1 to minimize the exact penalty function

n—-1 n-1
FO) = g PLE, M@l plmin0.1- 5yl (10

In order to find a global optimum of (10) we use the MCS algonitf®] imple-
mented as the NAG procedus@5jb [16].

4.1 The MCS algorithm and itse05jb implementation

The MCS algorithm seeks a global minimum of mwariable functionF (x) in a
hyperbox defined bl < x < u. (In what follows we shall simply use the tedmox
when strictly we mean anrdimensional hyperbox.)

MCS searches for a global minimizer using branching recelgiin order to di-
vide the search space in a nonuniform manner. It dividespbis the root box
[I, u] into smaller sub-boxes. Each sub-box contains a basepoivtiieh the ob-
jective function is sampled. The splitting procedure tsatbe search in favour of
sub-boxes where low function values are expected. The bjmdra of the algo-
rithm explores sub-boxes that enclose large unexploredorgty while the local
part splits sub-boxes that have good function values.

A balance between the global and local parts of the methodhigeed using a
multilevel approach, where every sub-box is assigned d kwe(0,1,. .. ,Snax}-

The value ofsyax can be specified by a user. A sub-box with level 0 has already
been split; a sub-box with levehaxWill be split no further. Whenever a sub-box of
intermediate level & s < snaxis split a descendant will be given the leget 1 or
min(s+2,Snax). The child with the better function value is given the larfyaction

of the splitting interval because then it is likely to be spljain more quickly.

An initialization procedure generates a preliminary sesudf-boxes, using points
input by the user or derived using a default generation phage The method
ranks each coordinate based on an estimated variabilityeobbjective function,

computed by generating quadratic interpolants througtpthets used in the ini-

tialization. Then the algorithm begins sweeping througiele

Each sweep starts with the sub-boxes at the lowest levsl ptlaicess being the
global part of the algorithm. At each level the sub-box with best function value
is selected for splitting; this forms the local part of thgalthm. A box is split
either byrank (when it reaches a sufficiently high level; in particularsag: — o
this ensures each coordinate is split arbitrarily oftenpyexpected gairfalong a
coordinate where a maximal gain in function value is expkagain computed by
fitting quadratics).



The splitting procedure as a whole is a variant of the stahdaordinate search
method: MCS splits along a single coordinate at a time, aptagdy chosen
points. In most cases one new function evaluation is neesplit a sub-box into
two or even three children. Each child is given a basepoinseh to differ from
the basepoint of the parent in at most one coordinate, ardjsafds are present
to ensure a degree of symmetry in the splits. In the NAG impletatione05 jb
an optional parametérocal Searches can be set to ‘OFF’ and this causes MCS
to put the basepoints and function values of sub-boxes ofrmam levelsyaxinto

a ‘shopping basket’ of candidate minima. Turnihgcal Searches ‘ON’ will
enable local searches to be started from these basepofote lieey go into the
shopping basket.

Local searches go ahead providing the basepoint is noy ltkdbe in the basin of

attraction of a previously-found local minimum. The sedtsélf uses linesearches
along directions that are determined by minimizing quadnatodels, subject to

bound constraints. In particular, triples of vectors armpoted using coordinate
searches based on linesearches. These triples are usgdeirsearchprocedures

to build local quadratic models for the objective, which #iren minimized using

a trust-region-type approach. The quadratic model neetdapositive definite, so
it is minimized using a general nonlinear optimizer.

4.2 Calculating maximumQ portfolios with e05jb

We now consider a ten-asset portfolio based on a 100-dagrpistVe can sum-
marise the properties of the ten assets by showing their ne¢ams and displaying
plots of theirQ functions. The mean returns are

1 =0.078% i = —0.066% 3= 0.01% fz = 0.048% 5 = —0.07%

Fe = 0.044% 17 = 0.003% fg = 0.02% Fg = 0.040% f19= —0.045%

For clarity we giveQ-plots in groups of four assets at a time. Figure 7 shows the
four highestQ curves. Asset 1 has the be3tvalue for threshold returns in the
range < r; <0.1. Assets 9, 6 and 4 are the next best performers in terfisaoid
they remain consistently ranked in this order although tivees for assets 6 and 4
touch near; = 0.04% and the curves for assets 6 and 9 touch near0.03%.

Figure 8 shows2 plots for Assets 4,7,3 and 8. There are some changes of tankin
between these assets msncreases: asset 8 is the worst performer wheis
near-zero but almost matches asset 7 in being the best merfaf this group as

r — 0.1%.

Finally, Figure 9 shows that assets 2,10 and 5 H2walues which are well below
asset 8. Assets 2 and 10 change places once or twice oventie ofr; but asset
5 is uniformly the worst choice.
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Figure 7:Q plots for example assets 1,9,6 and 4
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Figure 8:Q plots for example assets 4,7,3 and 8

We now consider the global minimization of the function (I®med using data
from our sample set of 10-assets and with various valueshfeshold returmn;.
Table 1 shows MaX2 portfolios obtained by applying053jb in the search box
defined by 0K y; <1 fori=1,...9. In the column for invested fractions we show
only those which are non-zero. For the smaller values tife solutions generally
favour assets 1,4,6 and 9 which is consistent with®heurves in the graphs in

11



3.2 T

Asset 8
Asset 2
Asset 10 H
Asset 5

+ O X «

12
0

I I I I I I I I I
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
threshold return

Figure 9:Q plots for example assets 8,2,10 and 5

Figures 7 - 9. For; = 0.075% and = 0.1% the portfolios are strongly dominated
by asset 1.

r1% Invested fractions Qmax

0 y1 = 0.147, y, = 0.040 y3=0.213 y,=0.208 | 7.08
ys = 0.286, y7 = 0.007, yg = 0.099
0.025 | y1 =0.118 y, = 0.036, y5 = 0.225 y =0.361 | 5.16
y7 =0.003 yg =0.219
0.05 | yy =0.235 y;,=0.099 ys =0.357, y; =0.051 | 4.11
Yo = 0.21, y;0 = 0.046
0.075 | y1 =0.884, y5 = 0.035 y7; =0.039 yg =0.043 | 3.48

0.1 y1 =0.977, y5 = 0.014, yg = 0.009 2.97

Table 1: Max€ portfolios for varyingr;

Table 2 gives more information about the M@xsolutions in terms of their port-
folio expected returrR,, and riskV. Note that the optimized portfolio expected
returnsR, are not the same as the threshold valyesed in defining.

We now consider how the portfolios in Table 1 compare wittsthobtained by
minimizing the risk associated with the target retuRysn Table 2.
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n% | R% | V
0 | 0.038] 0.058
0.025 | 0.040 | 0.064
0.05 | 0.045| 0.061
0.075 | 0.068 | 0.211
0.1 | 0.075] 0.261

Table 2: Expected return and risk for M&portfolios

4.3 Comparing maximumQ and minimume-risk portfolios

We can compare Mag portfolios with more conventional minimum-risk ones
(denoted by Minv). We calculate the Mi portfolio by minimizing (5) subject
to constraints (3) and (7) using ti&, achieved by the Maf2 solutions in Ta-
ble 2. We also include positivity constraints on the inveédiactions to prevent
short-selling. Results are shown in Table 3. Clearly thested fractiony; are
substantially different from those in Table 1. The Mirsolutions tend to use non-
zero contributions from more of the assets; and almost thepmint of similarity

is the growing dominance of asset 1Rsincreases. Comparing the valiésin
with the values of/ in Table 2 we can see that, for a given level of portfolio refur
the Max< portfolios are appreciably more risky than Mienes with the ratio

risk of a MaxQ portfolio
risk of a MinV portfolio

lying between 1.4 and 1.7.

Rp% Invested fractions Vimin

0.038 | y1 =0.201 y3 =0.069, y;=0.115 ys=0.171 | 0.035
y7 =0.122 yg = 0.09, yg = 0.191, y;0 = 0.039
0.040 | y; =0.214 y3=0.065 y,=0.118 y=0.173 | 0.037
y7 =0.116, yg = 0.095 yg =0.192 y;0=0.025
0.045 | y1 =0.260 y3 =0.049, y4=0.133 ys=0.174 | 0.043
y7 =0.101 yg =0.091, yg = 0.193
0.068| y1=0.740 y3=0.015 y,=0.08, ys =0.085 | 0.156
yg = 0.035 yg = 0.046
0.075 y1 = 0.817, y4 =0.027, yg = 0.085 0.184
y7 = 0.029, yg = 0.044, yg = 0.083

Table 3: MinV portfolios giving same expected return as Mayportfolios

It is interesting to compare the cumulative distributiofisedurns for Max€) and
Min-V portfolios. Figure 10 shows the two curves for the case WRer 0.038%.
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(Figures for other values @&, are generally similar to this one.) Both curves are
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Figure 10: Comparing Mag and Min¥ for R, = 0.038%

quite similar in the central part but the dotted curve for kia-V portfolio has a
shorter tail towards the upper end of the range of observieting This simply
reflects the fact that the Ma®- solution seeks to adjust the areas above and/or
below the curve defined by (1) in order to maximize the r&tio

A Min-V portfolio based on the risk definition (5) is calculated tonimize de-
viations both above and below expected portfolio retpn A Max-Q solution,
on the other hand, is concerned with seeking a portfolio tainbnore thanthe
threshold returmr;. Hence a Max@ portfolio might be expected to have more in
common with one which is designed to minimidewnsiderisk — that is the risk of
obtaining less than target return. Rf(y) is the portfolio return given by (2) then
downside risk can be calculated as

m

DV = %iz[min(o, R(Y) — Ro)] (11)

(see [3] for instance). Table 4 shows the portfolios obibg minimizing down-
side riskDV for the values oR,, in Tables 2 and 3. It also quotes the valdi, of
downside risk at the corresponding Mg&xsolution.

In most of the rows of Table 4, the invested fraction disttitou in the Min-DV
portfolios bears more resemblance to that of the Miones than to that of the
Max-Q solutions. The only evidence of a relationship between BNhand Max-
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Rp% Invested fractions DVmin | DVo
0.038| y;=0.193 y, =017, y3 = 0.062 y, = 0.15Q0 yg = 0.172
y7 =0.119, yg = 0.083 yg = 0.18, y;0 = 0.023 0.017| 0.027
0.040 | y; = 0.204, y, = 0.006 y3 = 0.065, y; = 0.155 ys = 0.172
y7 =0.118 yg = 0.083 yg = 0.18, y;0=0.017 0.018]| 0.029
0.045 y1 = 0.253 y3 = 0.064, y; = 0.165 ys = 0.17
y7 =0.096, yg = 0.073 y9=0.178 0.021| 0.031
0.068 y1 = 0.782 y, = 0.148 ys = 0.008
yg = 0.015 yg = 0.021, y;0=0.026 0.09 | 0.11
0.075 y1 = 0.932 y, = 0.001, y; = 0.017, ys = 0.048 0.13 | 0.14

Table 4: MinDV portfolios giving same expected return as Maxportfolios

Q portfolios is confined to the larger valuesky, for which the Max€ portfolios
have a downside risk that is not very much inferioD\n.

4.4 Comments on the performance 0é05jb

The global optimization algorithm implemented #05jb has performed quite
successfully on the problems considered above. It hasimgriaeen more ef-
ficient than a rather crude multistart approach in which fingpkex method in
fminsearch was applied from 50-100 random starting points. This praoedvas
reasonably useful for the demonstration three-varialdengte in the previous sec-
tion; but for the ten-variable case it was very time-conswygrand seldom yielded
as good an estimate of the global solutiore@sjb.

Notwithstanding these positive comments, however, it rhastoted that in order
to obtain satisfactory results we have had to do some tiddearor tuning of user-
specified parameters eb5jb. These are listed below.

e Selection of initial points. These are used by the algorithrdeciding where-
abouts along the coordinate axes to split the original bolesE points may be
user-defined; but there are a number of default options fecteg them automat-
ically. We had most success with the default approach in kvhiiial splitting
points are selected on the basis of local searches alongeadtinate axis.

¢ Balance between global and local searching. The user caifyshew many iter-
ations of a local minimization method are to be used to refaoh goint identified
by the splitting procedure as a candidate global solutidres€ local searches use
a trust-region approach based on quadratic interpolatdmile this is often likely
to be a good approach, it may not be very suitable for our egiidin since the
objective function (10) is nonsmooth. Consequently we t@nasen to use rather
few local search iterations compared with the suggesteauttefWe have sought
to compensate for this by increasing the rigour of the glgbarch and making the
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number of splitting points per variable about twice the ssggd default value.

e Setting termination conditions. The main tests for sudoégsrmination of
e053jb are based either on the search reaching a pre-specified fiamgéon value
or on there being no decrease in the best function value fog-agecified number
of sweeps (thestatic limif). Furthermores05jb may terminate unsuccessfully —
i.e. with a non-zero error flag — if a specified number of fumctevaluations or
box splits is exceeded. We found that the suggested valudbdastatic limit (3
sweeps) was often too small and sometimes led to the metbpdisg well short
of the global solution. We had to increase this to at leastioSobtain acceptable
solutions consistently. Basing successful terminatiorreathing a target func-
tion value is a more reliable way of ensuring that a satisfgcstopping point is
reached: but often it is not possible to know in advance wheagtobal minimum
function is likely to be. We were largely able to avoid unsessful terminations
by taking the maximum number of splits as being 120 and theimmax number
of function calls as 15000.

In the absence of a computable test faglabal optimum (as opposed to a local
one), algorithms like MCS must terminate on the basis ofisgarules (like those
mentioned in the previous paragraph) which suggest thed thdittle or no further
reduction in function value to be obtained. Depending on hayh the threshold
is set for the number of sweeps without a function decrease;am expect MCS
to terminate within a fairly small box around — but not pretysat — the global op-
timum. MCS is designed to use quadratic local searches tmoemn the sample
points in each box; but these may not be very effective on timsmooth problem
we are considering. As a consequence of these two factassyitlikely that the
best point returned byg05jb will give the global optimum to high precision. We
have confirmed this by running the MATLAB implementation b&tNelder and
Mead simplex methodfminsearch) from the best point found by MCS and ob-
serving that it is usually able to obtain a small further @i in function value.
It is these refined estimates of global solutions that argéeglio Table 1.

5 Conclusions

We have given a preliminary account of an investigation aftfptio selection
methods based on seeking invested fractions which maxitias defined in (1)

[5, 11]. Because maximizin@ leads to a non-convex problem, we have considered
some Max€ portfolios produced using the MCS global optimization aitpon [9]

as implemented in the NAG procedwse5jb [16]. We have compared these port-
folios with ones produced using the well-known Markowitpegach [12] based
on minimizing risk. Our small-scale sample calculatiordiéate that, for a given
set of assets, a Ma®- portfolio can be quite different from portfolios based on
minimizing risk or downside risk. The occurrence of suctiedénces is consistent
with the original motivation [11] for considering the Omergio. Keating and
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Shadwick argue thd®(r;) is a better measure of performance than the Markowitz
mean and variance measures because it does not rest on anagsumptions
(such as normality) about the distribution of asset returfisese arguments are
quite persuasive: but we have not investigated whether Rawrtfolios are better
than minimum-risk ones in any practical sense. To do this weldvneed to use
back-testing based on real-life asset data which wouldvalls to compare sub-
sequent performance of rival portfolios. Some M&xresults with real-life data
are reported and discussed in [1], [8] and [14]. In particudevouyi-Dovi et al

[1] compare a MaxR portfolio with one obtained by maximizing the Sharpe ratio
(6). They comment that the Sharpe portfolio over-investarimasset displaying
negative asymmetry whereas the Omega portfolio avoidsutidgsirable feature.

Maximizing Q has been found to lead to a non-convex and nonsmaooth optiariza
problem. Applying the MCS algorithm [9] (using the NAG impientatione05 jb)
to an exact penalty function has proved quite successfateliur main aim in this
paper has been to show that the problem of portfolio selediiomaximizingQ

is one that can be solved with off-the-shelf software, it mgaraging that we
have been able to use the automatic procedure%ijb for generating initial
points. However this means that we have not obtained angrsgdic information
about how the algorithm’s behaviour can be affected by pboices of starting
guess. This question could be part of a more exhaustive ncathé@mvestigation
of MCS/e05jb which has not yet been carried out. Such an investigationdyou
of course, also need to explore the practicality of solvimg MaxQ problem for
much larger numbers of assets.

In view of the non-smoothness &f, one might also consider alternatives to MCS
(which uses quadratic interpolation and hence assumesraitiability). Within
the scope of the present work we have not attempted any csopdretween MCS
and other global optimization techniques. However it isttvonentioning that the
DIRECT method [10] is a box-splitting approach which does m&e quadratic
models and hence might be more suitable for our nonsmoothigeo This re-
mains an interesting topic for further work.

As a final remark, we mention that the issue of nonsmoothrfeQsnaay be allevi-
ated if we deal with assets for which a long performance hisgavailable. This
may make the cumulative density functions appear rathserjdeged.
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