
Outer Approximation Algorithms for Canonical DC Problems

Giancarlo Bigi 1 Antonio Frangioni Qinghua Zhang

Dipartimento di Informatica, Università di Pisa,

Largo B.Pontecorvo 3, 56127 Pisa, Italia

1 Corresponding author: tel: +39 050 2213124; fax: +39 050 2212726. e-mail address: gian-
carlo.bigi@di.unipi.it.

Journal of Global Optimization manuscript No.

(will be inserted by the editor)

Outer Approximation Algorithms for Canonical DC

Problems

Giancarlo Bigi · Antonio Frangioni ·

Qinghua Zhang

Received: 26 March 2008 / Accepted: date

Abstract The paper discusses a general framework for outer approximation type al-

gorithms for the canonical DC optimization problem. The algorithms rely on a polar

reformulation of the problem and exploit an approximated oracle in order to check

global optimality. Consequently, approximate optimality conditions are introduced and

bounds on the quality of the approximate global optimal solution are obtained. A thor-

ough analysis of properties which guarantee convergence is carried out; two families of

conditions are introduced which lead to design six implementable algorithms, whose

convergence can be proved within a unified framework.

Keywords DC problems · polar set · approximate optimality conditions · cutting

plane algorithms

1 Introduction

Nonconvex optimization problems often arise from applications in engineering, eco-

nomics and other fields (see, for instance, [6,9]). Often, these problems either have

a natural formulation or can be reformulated as DC optimization problems, that is

nonconvex problems where the objective function is the difference of two convex func-

tions and the constraint can be expressed as the set difference of two convex sets. In

turn, every DC optimization problem can be reduced to the so-called canonical DC

(shortly CDC) problem through standard transformations [16]. Several algorithms to

solve it have been proposed [15,12,7,13,8,4]; many of them are modifications of the

first cutting plane algorithm proposed by Tuy in [15].

Giancarlo Bigi · Antonio Frangioni · Qinghua Zhang
Dipartimento di Informatica, Università di Pisa, Largo B.Pontecorvo, 3, 56127 Pisa, Italia

Giancarlo Bigi
E-mail: giancarlo.bigi@di.unipi.it

Antonio Frangioni
E-mail: frangio@di.unipi.it

Qinghua Zhang
E-mail: zhang@di.unipi.it

2

In this paper, we consider the canonical DC problem relying on an alternative

equivalent formulation based on a polar characterization of the constraint. We define

a unified algorithmic framework for outer approximation type algorithms, which are

based on an “oracle” for checking the global optimality conditions, and we study dif-

ferent sets of conditions which guarantee its convergence to an (approximated) optimal

solution. As the oracle is the most computationally demanding part of the approach, we

allow working with an approximated oracle which solves the related (nonconvex) opti-

mization problem only approximately. Because of this, we provide an extensive analysis

of approximate optimality conditions, which allow us to derive bounds on the quality

of the obtained solution. Our analysis identifies two main classes of approaches, which

give rise to six different implementable algorithms, four of which can’t be reduced to

the original cutting plane algorithm by Tuy and its modifications.

The paper is organized as follows. In Section 2 the polar based reformulation of

the canonical DC problem is introduced, and the well-known optimality conditions are

recalled. In Section 3 we propose a notion of approximate oracle and we define cor-

responding approximate optimality conditions, investigating the relationships between

the exact optimal value and the approximate optimal values. In Section 4 a thorough

convergence analysis is carried out for the “abstract” unified algorithmic framework,

and then six different implementable algorithms are proposed which fit within the

framework. Finally, in the last section the connections of these results with the exist-

ing algorithms in the literature are outlined.

2 The Canonical DC Problem

Throughout all the paper we focus on the canonical DC minimization problem

(CDC) min{ dx | x ∈ Ω \ int C }

where Ω ⊆ Rn and C ⊆ Rn are full-dimensional closed convex sets, d ∈ Rn and dx

denotes the scalar product between d and the vector of variables x ∈ Rn.

The assumption on the dimension of the constraining sets is not restrictive. In fact,

if Ω is not full-dimensional, the problem can be easily reformulated in the (affine) space

generated by Ω. If C is not full-dimensional, then we have int C = ∅ and the problem

is actually a convex minimization problem.

In order to avoid that (CDC) could be reduced to a convex minimization problem,

we also suppose that the set C provides an essential constraint, i.e.

min{ dx | x ∈ Ω } < min{ dx | x ∈ Ω \ intC }.

Relying on an appropriate translation, this assumption can be equivalently stated

through the following two conditions

0 ∈ int Ω ∩ int C, (1)

dx > 0 ∀x ∈ Ω \ int C. (2)

Therefore, we assume that (1) and (2) hold. Notice that these assumptions guarantee

that any feasible solution x ∈ Ω \ C provides a better feasible solution taking the

unique intersection between the segment with 0 and x as end points and the boundary

3

of C, i.e. x′ ∈ bd (C) ∩ (0, x) satisfies dx′ < dx where bd (C) denotes the boundary of

C. As a consequence, all optimal solutions to (CDC) belong to the boundary of C.

In order to guarantee the existence of optimal solutions, we may assume the bound-

edness of the level sets

D(γ) := { x ∈ Ω | dx ≤ γ }
for the feasible values γ, i.e. those values γ = dx ≥ γ∗ for some x ∈ Ω \ intC, where

γ∗ := min{ dx | x ∈ Ω \ int C }.

Actually, such an assumption on the level sets is strictly related to the compactness of

the reverse constraining set C as the following result shows.

Lemma 1 Let γ be a feasible value.

(i) If C is compact, then so is D(γ).

(ii) If D(γ) is compact, then

γ∗ = min{ dx | x ∈ Ω \ int Ĉ }

where Ĉ = C ∩ B for any given compact set B such that D(γ) ⊆ intB.

Proof (i) Assume by contradiction, suppose there exists a sequence {xk} ⊆ D(γ) such

that ‖xk‖ → +∞. Possibly taking a suitable subsequence, let u = limk→∞ xk‖xk‖−1:

clearly du ≤ 0 and u belongs to the recession cone of Ω [10, Theorem 8.2]. Since 0 ∈ Ω

and C is bounded, there exists λ > 0 such that x0 = 0 + λu ∈ Ω \ C. As dx0 ≤ 0,

assumption (2) is contradicted.

(ii) Let γ̄ := min{ dx | x ∈ Ω \ int Ĉ }. Since Ĉ ⊆ C, then γ∗ ≥ γ̄. Furthermore,

γ ≥ γ∗ and the compactness of D(γ) guarantee the existence of x̄ ∈ Ω \ int Ĉ such that

γ̄ = dx̄. As int Ĉ = intC ∩ int B and x̄ ∈ D(γ), then x̄ /∈ intC: x̄ is feasible to (CDC)

and therefore γ∗ ≤ γ̄. 2

Therefore, we assume that C is compact throughout all the paper. Moreover, this

compactness assumption ensures existence of an optimal solution x∗, and therefore due

to (2) we have γ∗ = dx∗ > 0, a property that will turn out to be very useful.

The level sets introduced above are also helpful to check whether a feasible value is

optimal or not. In fact, it is straightforward that γ = γ∗ implies the following inclusion:

D(γ) ⊆ C. (3)

Furthermore, it has been shown (see [23, Proposition 10]) that the necessary optimality

condition (3) is also sufficient when problem (CDC) is regular, i.e.

min{ dx | x ∈ Ω \ intC } = inf{ dx | x ∈ Ω \ C }. (4)

The above regularity condition is strongly related to the existence of optimal solutions

to (CDC) with additional properties (see the Lemma below). Furthermore, regularity

will be exploited to prove that stopping criteria with finite tolerance yield approximate

optimal solutions.

Lemma 2 The regularity condition (4) holds if and only if (CDC) has an optimal

solution x∗ ∈ bd (Ω \ C).

4

Proof Given any optimal solution x∗ ∈ bd (Ω \ C), there exists a sequence {xk} such

that xk ∈ Ω \ C and xk → x∗; hence

inf{ dx | x ∈ Ω \ C } ≤ lim
k→∞

dxk = dx∗ = min{ dx | x ∈ Ω \ intC }.

As the reverse inequality always holds, the regularity condition (4) follows.

Vice versa, suppose the regularity condition (4) holds. Therefore, there exists a

sequence {xk} ⊆ Ω \ C such that dxk ↓ γ∗. By Lemma 1 the compactness of C

guarantees that D(γ) is compact for γ = dx1. Therefore, the sequence {xk} admits at

least one cluster point x∗ ∈ cl (Ω \ C). Since Ω is closed and xk /∈ C for all k, we have

x∗ ∈ Ω and x∗ /∈ int C. This implies that x∗ is feasible and hence optimal as dx∗ = γ∗.

Since all optimal solutions belong to the boundary of C, then x∗ /∈ Ω \C and therefore

x∗ ∈ bd (Ω \ C). 2

The constraint x /∈ int C is the source of nonconvexity in problem (CDC) and it

is given just as a set relation. However, relying on the polarity between convex sets,

we can express this nonconvex constraint in a different fashion. Let us recall that

C∗ = { w ∈ Rn | wx ≤ 1, ∀x ∈ C }

is the polar set of C and it is a closed convex set. Exploiting bipolarity relations (see,

for instance, [10]), it is easy to check that the assumption 0 ∈ int C ensures that

x /∈ int C if and only if wx ≥ 1 for some w ∈ C∗. Therefore, problem (CDC) can be

equivalently formulated as

min{ dx | x ∈ Ω, w ∈ C∗, wx ≥ 1 } (5)

where polar variables w have been introduced and the nonconvexity is given by the

inequality constraint, which asks for some sort of reverse polar condition. Also, the as-

sumption 0 ∈ int C ensures the compactness of C∗. The exploitation of polar variables

will be an important tool to devise novel algorithms for (CDC) through its reformula-

tion (5).

Relying on bipolarity relations, the optimality condition (3) can be equivalently

stated in a polar fashion as

D(γ) × C∗ ⊆ { (x,w) ∈ Rn × Rn | wx ≤ 1 } (6)

while the regularity condition (4) reads

min{ dx | x ∈ Ω, w ∈ C∗, wx ≥ 1 } = inf{ dx | x ∈ Ω, w ∈ C∗, wx > 1 }. (7)

As an immediate consequence of (6), any optimal solution (x∗, w∗) to (5) satisfies both

x∗ ∈ bd (C) and w∗x∗ = 1.

3 Approximate Optimality Conditions

Given a feasible value γ, the optimality condition (3) or (6) should be checked in order

to recognize whether or not γ is the optimal value. Unfortunately, there is no known

efficient way to check the inclusion between two sets. Yet, any exact algorithm for

(CDC) or (5) must eventually cope with this problem.

5

3.1 Optimality Conditions and (Approximate) Oracles

In order to make (3), or equivalently (6), more readily approachable, we consider the

following “optimization version” of the optimality conditions:

max{ vz − 1 | z ∈ D(γ) , v ∈ C∗ }. (8)

Obviously, (6) holds if and only if the optimal value v(OCγ) of (8) is less or equal to 0.

Thus the above problem provides a way for checking optimality of a given value γ. Since

the objective function of (8) is not concave, there are no known efficient approaches for

this problem as well. However, checking (6) through the optimization problem (8) has

the advantage of making it easy to define a proper notion of approximate optimality

conditions.

A first way of approximating problem (8) is to replace D(γ) and C∗ with two

convex sets S and Q, respectively, satisfying

C∗ ⊆ Q, (9)

D(γ) ⊆ S. (10)

This is a standard step in cutting plane (outer approximation) approaches, where S

and Q are chosen to be “easier” than the original sets (e.g. polyhedra with possibly few

vertices or facets) and iteratively refined to become better and better approximations

of D(γ) and C∗ as needed. Hence, one considers the following relaxation of (8):

max{ vz − 1 | z ∈ S, v ∈ Q }, (11)

whose optimal value v(OCγ) provides an upper bound on v(OCγ); thus, the inequality

v(OCγ) ≤ 0 provides a convenient sufficient optimality condition for (5). If it does not

hold, then either γ is not the optimal value, or S and Q are not “good” approximations

of D(γ) and C∗, respectively. All the cutting plane algorithms presented in this work

follow the same basic scheme: (11) is solved and its solution is used to improve S, or Q,

or γ, in such a way to guarantee convergence of γ to the optimal value. The focus of the

research is on devising a number of different ways to achieve a convergent algorithm

for (5) out of an “oracle” for (11). However, it is likely that in any such approach the

solution of (11) is going to be the computational bottleneck; therefore, it makes sense

to consider solving (11) only approximately.

Solving (11) approximately may actually mean two different things:

1. computing a “large enough” lower bound on v(OCγ), i.e. finding a feasible solution

(z̄, v̄) of (11) “sufficiently close” to the optimal solution;

2. computing a “small enough” upper bound l ≥ v(OCγ).

Algorithmically, the two notions correspond to two entirely different classes of ap-

proaches: lower bounds are produced by heuristics computing feasible solutions, while

upper bounds are produced by solving suitable relaxations of (11), e.g. replacing the

non-concave objective function vz with a suitable concave upper approximation. Exact

algorithms combining the two can then be used to push the lower bound and the upper

bound arbitrarily close together. However, for the sake of our approaches only one of

the two bounds is needed at any given time. In fact, v(OCγ) is either positive or non-

positive. To establish that the first case holds amounts to finding a feasible solution

6

(z̄, v̄) to (11) such that z̄v̄−1 > 0, while for the second case one needs an upper bound

l ≤ 0.

This is the rationale behind our definition of an approximate oracle for (11). In our

development we will assume availability of a procedure Θ which, given S, Q, γ, and

two positive tolerances ε and ε′

– either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (12)

– or produces a pair

(z̄, v̄) ∈ S × Q such that v̄z̄ − 1 ≥ εv(OCγ) > ε′. (13)

Clearly, (13) corresponds to a pretty weak requirement about the way in which (11)

is solved: a solution, which is optimal only with fixed but arbitrary relative tolerance

ε > 0 and absolute tolerance ε′, is required. Condition (12) allows the upper bound to

be “small enough” but positive, rather than non-negative; this is taken as the stopping

condition of the approach, and we will show that the positive tolerance allows for finite

termination of the algorithms even when γ is optimal. The drawback is that a feasible

value γ needn’t be optimal when (12) holds: the next subsection is devoted to the study

of the relationships between the “quality” of γ and the tolerances ε and ε′.

3.2 Approximate Optimality Conditions

The stopping criterion (12) implies v(OCγ) ≤ ε′/ε: the tolerances provide the upper

bound δ = ε′/ε for the optimal value of (8). The values γ for which this upper bound

holds are strictly related to the following approximated problem

min{ dx | x ∈ Ω, w ∈ C∗, wx ≥ 1 + δ }, (14)

which is obtained by perturbing the right-hand side of the nonconvex constraint in (5).

Our analysis does not require any regularity assumption on (14) and it is based on the

following quantity

φ(δ) := inf{ dx | x ∈ Ω, w ∈ C∗, wx > 1 + δ }.

Obviously, φ(δ) may be greater than the optimal value of (14). Anyway, the value

function φ provides the right tool to disclose the connections between γ, (12) and (14).

Proposition 1 Let δ ≥ 0. Then, the following statements are equivalent:

(i) v(OCγ) ≤ δ;

(ii) D(γ) × C∗ ⊆ { (x, w) ∈ Rn × Rn | wx ≤ 1 + δ };
(iii) γ ≤ φ(δ).

Proof The equivalence between (i) and (ii) follows immediately from the definition of

v(OCγ). Analogously, (ii) implies (iii) by the definition of φ(δ).

Suppose (ii) does not hold: there exist x ∈ D(γ) and w ∈ C∗ such that wx > 1+ δ.

Take any t ∈ (0, 1) large enough to have w(tx) > 1 + δ. Since 0 ∈ Ω, the convexity of

Ω implies tx ∈ Ω; obviously d(tx) < dx ≤ γ. Therefore, (tx,w) guarantees φ(δ) < γ

contradicting (iii). 2

7

Considering the optimal value of (14) as γ in Proposition 1, we get that (ii) is

a necessary optimality condition for (14). Furthermore, if the problem is regular (i.e.

φ(δ) is actually the optimal value), it is also sufficient. Choosing δ = 0, the known

optimality conditions for (5) follow too. Therefore, inclusion (ii) can be considered as

an approximate optimality condition for (5). It is easy to check that (ii) is equivalent

to the inclusion D(γ) ⊆ (1 + δ)C: perturbing the right-hand side of the nonconvex

constraint in (5) corresponds to perturbing the reverse constraining set C in (CDC).

As an immediate consequence of the proposition, we also have

φ(δ) = sup{ γ | D(γ) × C∗ ⊆ { (x, w) ∈ Rn × Rn | wx ≤ 1 + δ } }.

The stopping criterion (i) guarantees approximate optimality and condition (iii)

provides the adequate tool to evaluate the quality of the approximation. In fact, sup-

posing (5) to be regular, i.e. γ∗ = φ(0), we have that

0 ≤ γ − γ∗ ≤ φ(δ) − φ(0)

holds for any feasible value γ which satisfies (i). The following result guarantees that

the approximation approaches the optimal value as δ goes to 0.

Proposition 2 The value function φ is right-continuous at 0, i.e.

lim
δ↓0

φ(δ) = φ(0).

Proof Clearly φ is nondecreasing, that is φ(δ1) ≥ φ(δ2) whenever δ1 ≥ δ2 ≥ 0. As it is

also bounded below by φ(0), there exist γ̄ = limδ↓0 φ(δ) and γ̄ ≥ φ(0). Since γ̄ ≤ φ(δ)

for any δ > 0, Proposition 1 implies v(OCγ̄) ≤ δ for any δ > 0. Since v(OCγ̄) does not

depend upon δ, we get v(OCγ̄) ≤ 0. Therefore, Proposition 1 guarantees γ̄ ≤ φ(0). 2

Although the approximation always converges to the optimal value, the rate of

convergence may be less than linear as the following example shows.

Example 1 Consider (14) with n = 2, d = (−1, 2), Ω = {x ∈ R2 | −2 ≤ x1 ≤
0.1, x1 + 2x2 + 2 ≥ 0}, and C = { x ∈ R2 | x2

1 + x2
2 ≤ 4 }. It is easy to check that

(14) is regular for any δ ≥ 0 and that

(x∗(δ), w∗(δ)) =
`

(−2, 2
q

(1 + δ)2 − 1), (
−1

2(1 + δ)
,
1

2

s

1 − 1

(1 + δ)2
)
´

is an optimal solution to (14) for δ small enough. Therefore, we have φ(δ) = 4
p

(1 + δ)2 − 1+

2 and

lim
δ↓0

[φ(δ) − φ(0)]/δ = lim
δ↓0

4
p

1 + 2/δ = +∞.

Thus, regularity is not enough to achieve a linear rate of convergence. Additional

assumptions on the problem are needed: the existence of an optimal solution with some

particular properties guarantees the Lipschitz behavior of φ.

Proposition 3 If there exists an optimal solution (x∗, w∗) to (5) such that

{ x∗ + λu | λ > 0 } ∩ Ω 6= ∅ and w∗u > 0 (15)

for some direction u ∈ Rn, then the value function φ is locally Lipschitz at 0, i.e. there

exist L > 0 and δ̄ > 0 such that

φ(δ) − φ(0) ≤ Lδ ∀ δ ∈ [0, δ̄].

8

Proof Let λ̄ > 0 be such that x∗+λ̄u ∈ Ω; the convexity of Ω implies x(λ) := x∗+λu ∈
Ω for any λ ∈ [0, λ̄]; furthermore, w∗(x∗+λu) = 1+λw∗u > 1 if λ > 0 since optimality

implies w∗x∗ = 1. Thus, the sequence (x(λ), w∗) shows that the regularity condition

(7) holds. Therefore, we have φ(0) = dx∗.

Chosen δ̄ := (w∗u/2)λ̄, let us consider y(δ) := x(2δ/w∗u) for any δ ∈ (0, δ̄]: we

have y(δ) ∈ Ω and

w∗y(δ) = w∗x∗ + (2δ/w∗u)w∗u = 1 + 2δ > 1 + δ,

where the last equality holds. Therefore, (y(δ), w∗) provides an upper bound for φ(δ),

i.e. φ(δ) ≤ dy(δ). Finally, we get

φ(δ) − φ(0) ≤ dy(δ) − dx∗ = (2du/w∗u)δ. 2

Though regularity has not been explicitly required for (5), the assumption on the

optimal solution implies it. A geometric view of this assumption can be achieved relying

on the (Bouligand) tangent cone of C at x∗, namely the set

T (C,x) := { u ∈ Rn | ∃tn ↓ 0, un → u s.t. x + tnun ∈ C },
and its following characterization.

Lemma 3 Let x∗ ∈ bd (C). Then, the following statements are equivalent:

(i) u ∈ T (C,x∗);

(ii) wu ≤ 0 for all w ∈ C∗ such that wx∗ = 1.

Proof Take any u ∈ T (C, x∗): there exist tn ↓ 0 and un → u such that x∗ + tnun ∈ C.

Therefore, we have w(x∗ + tnun) ≤ 1 for any w ∈ C∗. If wx∗ = 1, we get wun ≤ 0 and

taking the limit wu ≤ 0.

Vice versa, suppose u satisfies (ii) but u /∈ T (C, x∗). Since the tangent cone is a

closed set, there exists ε > 0 such that û = u − εx∗ /∈ T (C,x∗). Consider any tn ↓ 0

and un → û such that x∗ + tnun /∈ C. Therefore, there exist wn ∈ C∗ such that

wn(x∗ + tnun) > 1. Assumption (1) implies that C∗ is compact (see, for instance,

[10, Corollary 14.5.1]). Thus, we can suppose wn → w̄ for some w̄ ∈ C∗. Taking

the limit in the above inequality, we get w̄x∗ ≥ 1 and therefore w̄x∗ = 1. Since

tnwnun > 1 − wnx∗ ≥ 0, we also get w̄û ≥ 0. The assumption on u guarantees also

w̄u ≤ 0. Therefore, we get the contradiction 0 ≤ w̄û = w̄(u − εx∗) ≤ −ε. 2

The following characterization allows to formulate the assumption of Proposition

3 in a geometric fashion.

Proposition 4 Let x∗ ∈ bd (C). Then, the following statements are equivalent:

(i) there exist w∗ ∈ C∗ and u ∈ Rn such that w∗x∗ = 1 and (15) holds;

(ii) T (Ω,x∗) * T (C,x∗).

Proof Suppose (ii) does not hold and take any w∗ ∈ C∗ and u ∈ Rn such that w∗x∗ = 1

and x∗ + λ̄u ∈ Ω for some λ̄ > 0. The convexity of Ω implies Ω ⊆ x∗ + T (Ω,x∗) and

therefore λ̄u ∈ T (Ω, x∗) ⊆ T (C,x∗). By Lemma 3 we get w∗u ≤ 0: hence (i) does not

hold.

Vice versa, take any u ∈ T (Ω,x∗) \ T (C, x∗). Lemma 3 implies that there exists

w∗ ∈ C∗ such that w∗x∗ = 1 and w∗u > 0. As u ∈ T (Ω,x∗), there exist tn ↓ 0 and

un → u such that x∗ + tnun ∈ Ω; if n is large enough, we also have w∗un > 0. Thus,

w∗ and un satisfy (15). 2

9

It is worth to note that (ii) depends upon x∗ only. Indeed, the original formulation

of the canonical DC problem does not have polar variables. Anyway, x∗ is an optimal

solution to (CDC) if and only if (x∗, w∗) is an optimal solution to (5) for any w∗ ∈ C∗

such that w∗x∗ = 1. As a consequence, Propositions 3 and 4 lead to the main result

of the section.

Theorem 1 If there exists an optimal solution (x∗, w∗) to (5) such that T (Ω,x∗) *
T (C,x∗), then φ is locally Lipschitz at 0.

The assumption on the tangent cones can be considered as a strong regularity

condition. In fact, it implies regularity but they are not equivalent, as the problem

of Example 1 shows for δ = 0. Anyway, when C is a polyhedron, strong regularity

collapses to regularity.

Theorem 2 Suppose C is a polyhedron. Then, (5) is regular if and only if there exists

an optimal solution (x∗, w∗) to (5) such that T (Ω, x∗) * T (C,x∗).

Proof Suppose (5) is regular: Lemma 2 implies the existence of an optimal solution

(x∗, w∗) to (5) such that x∗ ∈ bd (Ω \ C). Suppose T (Ω,x∗) ⊆ T (C,x∗). Since C is a

polyhedron, there exists ε > 0 such that

[x∗ + T (C, x∗)] ∩ B(x∗, ε) = C ∩ B(x∗, ε).

Since the convexity of Ω implies Ω ⊆ x∗ + T (Ω,x∗), we have

Ω ∩ B(x∗, ε) ⊆ C ∩ B(x∗, ε)

in contradiction with x∗ ∈ bd (Ω \ C).

The if part follows from Proposition 4 and the proof of Proposition 3. 2

Corollary 1 Suppose C is a polyhedron. If (5) is regular, then φ is locally Lipschitz

at 0.

4 Conditions and Algorithms

In this section we present several algorithms which (approximately) solve (CDC)

through its reformulation (5) if an approximated oracle Θ is available. We first es-

tablish a hierarchy of abstract conditions ensuring convergence; then, for each set of

conditions we propose actual implementable procedures which realize it.

4.1 General Convergence Conditions

All the algorithms will follow the generic cutting plane scheme sketched in the previous

section. More in details, a non increasing sequence of feasible values {γk} is produced,

and the oracle Θ is called for each γk, thereby producing either a value lk such that

condition (12) holds, or points zk and vk such that (13) are satisfied. By repeatedly

calling the oracle, we can construct a procedure which either proves that γk satisfies

condition (12) or produces a better feasible value γk+1 < γk. In the latter case, γk+1

is associated to (produced by) points xk and wk such that

xk ∈ C, wk ∈ C∗, wkxk = 1, (16)

10

which implies also (xk, wk) ∈ bd (C) × bd (C∗). In fact, if xk ∈ int C(analogous to

wk ∈ int C∗), then wkxk < max{wkx | x ∈ C} ≤ 1 (see [10, Theorem 13.1]). The

rationale for (16) is that any optimal solution must satisfy these conditions.

It must be stressed that the above conditions do not require x ∈ Ω and there-

fore (xk, wk) may be infeasible for the polar reformulation (5). Anyway, (5) can be

equivalently stated as

min{ ζ(w) | w ∈ C∗ } (17)

where

ζ(w) = min{ θ(x) | wx ≥ 1 }
and

θ(x) =



dx if x ∈ Ω

+∞ otherwise.

Therefore, the polar variable wk is always feasible for (17), though it may be θ(xk) =

+∞. Since ζ(w) ≤ θ(x) for all pairs (x,w) satisfying (16), we can choose γk+1 = ζ(wk)

whenever xk /∈ Ω. As ζ(wk) is the optimal value of a convex problem, it can be assumed

to be efficiently computable. Moreover, if γk+1 turns out to be optimal, then wk is the

“polar part” of an optimal solution: in fact any

x̄ ∈ argmin { dx | x ∈ Ω, wkx ≥ 1 }

provides the complementary x part of the optimal solution.

Thus, a given pair (xk, wk) can provide two (potentially) different feasible values:

θ(xk) which is essentially costless to compute but may be infinite, and ζ(wk) whose

computation requires the solution of a convex program. In general one may want to

avoid the computation of ζ(wk) unless it is strictly necessary; to allow a general treat-

ment we will in the following indicate with γ(x,w) a function taking a pair (x, w)

satisfying (16) and producing a feasible value. Which of the two possible implemen-

tations (θ and ζ) is required will be discussed in the context of each implementable

algorithm.

With the above notation, we can introduce the prototype of our algorithms.

Algorithm 1 Prototype Algorithm

0. γ1 = +∞; k = 1;
1. If the optimality condition (3) holds, then γk is the optimal value: stop;
2. Select (xk, wk) satisfying (16) such that γk+1 = γ(xk , wk) < γk;

set k = k + 1; goto 1.

Clearly, if at Step 0 (initialization) some feasible pair (x0, w0) is known, one can

alternatively set γ1 = γ(x0, w0). An important feature of Algorithm 1 is that {γk} is

a decreasing sequence bounded below:

0 ≤ lim
k→∞

γk = γ∞ < · · · < γk+1 < γk < · · · < γ1.

Therefore, {D(γk)} is a “non-increasing” sequence of sets, i.e.

D(γ∞) ⊆ · · · ⊆ D(γk+1) ⊆ D(γk) ⊆ · · · ⊆ D(γ1).

11

Obviously, Algorithm 1 is too general to deduce any meaningful property; some-

thing more has to be said:

1. how exactly the optimality condition (3) is checked,

2. how (xk, wk) such that γ(xk, wk) < γk is selected once one knows that (3) is not

fulfilled.

The two points are strictly interwoven: finding (xk, wk) such that γ(xk, wk) < γk

immediately proves that γk is not optimal; vice versa, assume that we have any con-

structive procedure that produces a point zk ∈ D(γk)\C when γk is not optimal: there

exists wk ∈ C∗ such that wkzk > 1 and xk = (wkzk)−1zk satisfies both xk ∈ D(γk)

and γ(xk, wk) ≤ dxk < dzk ≤ γk.

Then, a first question is if such a method provides a convergent algorithm; not surpris-

ingly, without further qualification the answer is negative.

Example 2 Consider (5) with n = 2, d = (0, 1) and the sets

Ω = { x ∈ R2 | −1.8 ≤ x1 ≤ 1.96, x2 ≥ −0.1 }, C = { x ∈ R2 | x2
1 + x2

2 ≤ 4 };

therefore, we have

C∗ = { w ∈ R2 | 4(w2
1 + w2

2) ≤ 1 }.

Starting from any value γ1 > 0.87 and applying the above procedure, we can find the

sequences zk = (−1.8, γk−1), xk = 2zk/||zk || and wk = zk/2||zk ||, which lead to a

non-optimal solution (x∞, w∞) ≈ ((−1.8, 0.87), (−1.8, 0.87)/4), whereas the optimal

solution is (x∗, w∗) ≈ ((1.96, 0.4), (1.96, 0.4)/4).

Thus, some care is needed in choosing the sequence wk in Algorithm 1, as well

as the accompanying sequences zk and xk if the mechanism illustrated above is to be

used. Actually, our “more implementable” approximate optimality condition based on

(8) indicates that a fourth sequence vk, which “is to wk what zk is to xk”, should be

taken into account as well. In fact, we propose the following general assumptions under

which convergence can be proved:

vkzk − 1 ≥ ε max{ vz − 1 | (z, v) ∈ D(γk) × C∗ } (18)

lim inf
k→∞

vkzk ≤ 1 (19)

where ε ∈ (0, 1). Condition (18) basically says that vk and zk must be produced by

some process attempting to solve the nonconvex problem (8) for γ = γk, although

the process may be “terminated early” due to the optimality tolerance ε. Condition

(19) rather requires the two sequences to be asymptotically jointly feasible, and, as we

will see, there are several different implementable ways for ensuring that this holds.

Anyway, as far as abstract conditions go, (18) and (19) are sufficient to guarantee

convergence to the optimal value.

Proposition 5 If conditions (18) and (19) hold, then the sequence of feasible values

{γk} in Algorithm 1 converges to the optimal value γ∗.

12

Proof Since each γk is a feasible value, we have γ∗ ≤ γ∞, i.e. γ∞ is a feasible value,

too. Hence, (18) implies that

vkzk − 1 ≥ ε max{ vz − 1 | (z, v) ∈ D(γ∞) × C∗ }

for all k. Taking the limit, (19) implies

max{ vz − 1 | (z, v) ∈ D(γ∞) × C∗ } ≤ 0,

and therefore γ∞ is the optimal value. 2

When developing a “concrete” algorithm for (CDC), the abstract condition (19)

shouldn’t be directly imposed on the sequences {zk} and {vk}. In fact, these are the

results of a “complex” optimization process, i.e. approximately solving (8), upon which

we want to impose as few conditions as possible, in order to leave as much freedom as

possible to different implementations of this critical task. Therefore, we seek alternative

ways for obtaining condition (19). One possibility is to rely on sequences of points xk

and wk, which satisfy one of these pairs of conditions:
8

>

>

>

<

>

>

>

:

lim sup
k→∞

vk(zk − xk) ≤ 0 (a)

lim sup
k→∞

vkxk ≤ 1 (b),

(20)

8

>

>

>

<

>

>

>

:

lim sup
k→∞

(vk − wk)zk ≤ 0 (a)

lim sup
k→∞

wkzk ≤ 1 (b).

(21)

Both pairs of conditions clearly imply (19).

Lemma 4 If either (20) or (21) hold, then (19) holds.

Therefore, we can define the two sets of conditions which, separately, guarantee

convergence of Algorithm 1:

B1 ≡ (18) ∧ (20) B2 ≡ (18) ∧ (21).

Though they look highly symmetric to each other, we will show that B1 and B2 are

by no means equivalent. In fact, we will propose several different sets of conditions

(in particular, four for B1 and two for B2) which imply one of them, and develop

implementable subprocedures that attain these conditions, thereby defining six different

implementable algorithms.

4.2 The Outer Approximation Machinery

As addressed in Section 3, one way to make (8) more tractable is to replace D(γ) and

C∗ with two “simpler” convex sets Q and S such that C∗ ⊆ Q and D(γ) ⊆ S. Of course,

this requires some appropriate machinery to update S and Q in order to make them

“good enough” approximations of Ω and C∗. Convexity of both sets allows to rely on

cutting procedures based on standard separation tools. In fact, the result below follows

readily from the general Basic Outer Approximation Theorem [5, Theorem II.1].

13

Theorem 3 Let r be a convex function such that R = { x ∈ Rn | r(x) ≤ 0 } satisfies

0 ∈ int R. Let {Rk} be a sequence of convex sets and {xk} be a sequence of points which

satisfy the following conditions:

1. xk ∈ Rk\R
2. Rk+1 = Rk ∩ { x ∈ Rn | pk(x − yk) + r(yk) ≤ 0 } where pk ∈ ∂r(yk) for some

yk ∈ [0, xk) \ int R.

Then, any cluster point x̄ of the sequence {xk} belongs to bd (R).

Theorem 3 suggests the standard cutting-plane procedure described in Subproce-

dure 1: it takes a “simple” representation S, typically a polyhedron, of the convex set

R and a point x which proves the two are different; it “improves” S to a representa-

tion of R which does not contain x, and still is a polyhedron if S is, by intersecting S

with a separating hyperplane which cuts off x but no point in R. Due to Theorem 3,

iterating this process leads, in the limit, to a point in R; in other words, S becomes an

“arbitrarily close” representation of R near a cluster point.

Subprocedure 1 Cutting-Plane subprocedure

Input: a closed convex set R = { x ∈ R
n | r(x) ≤ 0 } such that 0 ∈ int R,

a closed convex set S such that R ⊆ S and a point x ∈ S\R.
1. Select a point y ∈ (0, x) ∩ bd (R) and a sub-gradient p ∈ ∂r(y).
2. Set S = S ∩ { x | p(x − y) + r(y) ≤ 0 }.

Output: S.

It is worth remarking that condition 0 ∈ intR is required to ensure that y 6= x,

and therefore that the hyperplane actually separates R and x strictly. In our setting,

the condition is satisfied for D(γ): this is due to (1) and to the fact that γ ≥ γ∗ > 0,

itself a consequence of the boundedness of C as discussed in Section 2. Boundedness of

C is also equivalent to 0 ∈ int C∗; therefore, the condition is a fortiori true for S and

Q, the sets Subprocedure 1 will be called upon, due to (10) and (9), respectively.

4.3 A Generic Outer Approximation Subprocedure

We can now define a generic outer approximation procedure which, only provided with

an approximate oracle Θ, allows implementations of Algorithm 1 which attain the

convergence conditions introduced in Subsection 4.1. We call this a “generic” outer

approximation procedure because it depends on two parameters: a selection rule Ψ for

the x and w variables, and a stopping criterion Υ . In this subsection we will describe

the properties of the subprocedure which are independent of the choices of Ψ and Υ ;

later on, we will show several different possible choices for these, leading to different

implementable algorithms.

Conditions (10) and (9) guarantee that D(γ) and C∗ are included in Si and Qi,

respectively, for i = 1. The cutting-plane Subprocedure 1 ensures this is still true for

any i and therefore we get the following “non-increasing” sequences of sets:

D(γ) ⊆ · · · ⊆ Si+1 ⊆ Si ⊆ · · · ⊆ S1,

C∗ ⊆ · · · ⊆ Qi+1 ⊆ Qi ⊆ · · · ⊆ Q1.

14

Subprocedure 2 Outer Approximation subprocedure

Input: Q and S, closed convex sets satisfying (9) and (10), a feasible value γ.
0. S1 = S; Q1 = Q; i = 1;
1. Call the oracle Θ for Si, Qi, γ. If the oracle produces an upper bound

li satisfying condition (12), then stop.
2. Otherwise, Θ produces (zi, vi) satisfying (13);

Select (xi, wi) satisfying (16) and condition Ψ ;
3. If zi /∈ D(γ) then use Subprocedure 1 with D(γ), Si and zi to get Si+1;

else Si+1 = Si;
4. If vi /∈ C∗ then use Subprocedure 1 with C∗, Qi and vi to get Qi+1;

else Qi+1 = Qi;
5. If stopping criterion Υ holds then stop.

else i = i + 1; goto 1.
Output: Qi and Si; either li, or xi, wi, zi, vi.

We can now prove the basic properties of Subprocedure 2, which are independent

of the choice of Ψ and Υ .

Lemma 5 If Subprocedure 2 never ends, then all the cluster points of {zi} and {vi}
belong to D(γ) and C∗, respectively.

Proof Subprocedure 2 generates two sequences of points {zi} and {vi} such that zi ∈
Si, vi ∈ Qi, and the hypotheses of Theorem 3 are satisfied; hence, all the cluster points

of {zi} and {vi} belong to D(γ) and C∗, respectively. 2

It will be crucial to ensure that the sequences {zi} and {vi} do indeed have cluster

points. As both D(γ) and C∗ are assumed to be compact, it is very natural to suppose

also that

{zi} and {vi} are bounded. (22)

In fact, this condition holds, for instance, if S1 and Q1 are compact, which is not a

restrictive assumption as D(γ) and C∗ are compact too. Therefore, from now onwards

we suppose that (22) always holds. Note that the sequences {xi} and {wi} are always

bounded as due to (16) they belong to bounded sets C and C∗, respectively.

Corollary 2 If ε′ > 0, and Subprocedure 2 never ends, then no cluster point of {zi}
belongs to C.

Proof By Lemma 5 all cluster points of {vi} belong to C∗ and (22) guarantees that

at least one exists. If there were a cluster point of {zi} in C, one would have that

lim inf i→∞ vizi ≤ 1 in contradiction with vizi − 1 > ε′, which is guaranteed by the

oracle for any i (c.f. (13)). 2

Proposition 6 If ε′ > 0 and D(γ) ⊆ C, then Subprocedure 2 stops after a finite

number of iterations.

Proof Suppose Subprocedure 2 never ends; due to (22), the sequence {(zi, vi)} has at

least a cluster point which belongs to D(γ) × C∗ by Lemma 5. Since D(γ) ⊆ C, then

all the cluster points actually belong to C×C∗: therefore, we have lim infi→∞ vizi ≤ 1

which yields a contradiction as in Corollary 2. 2

15

The above proofs show the need of requiring ε′ > 0, since for ε′ = 0 the subproce-

dure may never stop. In other words, Subprocedure 2 can not finitely prove that the

optimal value is optimal; this is why it is relevant to clarify the relationship between

approximated optimal values and the optimal value.

Finally, it is useful to remark that while condition (19) is characteristic of optimizing

sequences, it holds for every fixed γ by substituting xi to zi, even if ε′ = 0.

Lemma 6 If Subprocedure 2 never ends, then lim supi→∞ vixi ≤ 1.

Proof Lemma 5 guarantees that all the cluster points of {vi} belong to C∗. Since

xi ∈ C for all i, the thesis follows immediately 2

The subprocedure can then be used to define implementable versions of the Proto-

type Algorithm 1.

Algorithm 2 Implementable Outer Approximation Algorithm

0. γ1 = +∞; Select S1 ⊇ D(γ1), Q1 ⊇ C∗; k = 1;
1. Call Subprocedure 2 with Sk, Qk, and γk;
2. If Subprocedure 2 stops at Step 1, then stop.
3. Set xk, wk, zk and vk as the output of Subprocedure 2;
4. Set Qk+1 and Sk+1, possibly using the output of Subprocedure 2;
5. Set γk+1 = γ(xk , wk); set k = k + 1; goto 1.

Some remarks on Algorithm 2 are in order:

– Since D(γk) ⊆ Sk and C∗ ⊆ Qk, (13) guarantees that condition (18) is always

satisfied by all possible variants of the algorithm, i.e. irrespective of the concrete

choices for Ψ and Υ ;

– at Step 4, the obvious possibility for Qk+1 and Sk+1 is to set them as the Qi and

Si produced by Subprocedure 2; since this leads to accumulation in Qk and Sk of

all cutting planes generated along the iterates, and therefore possibly to “large”

descriptions of Qk and Sk;

– which implementation of γ(xk, wk) has to be chosen depends on the properties of

the points xk and wk (see Table 1 in Subsection 4.6) and therefore ultimately on

Ψ .

The following subsections are devoted to the study of which conditions Ψ and Υ result

in a convergent Algorithm 2.

4.4 Algorithms Exploiting the Set of Conditions B1

While the oracle in Subprocedure 2 guarantees (18), condition (20) has to be achieved

through additional properties. The algorithms of this subsection will require (20b) more

or less directly and will obtain (20a) by imposing (21b) and one extra condition, which

simply requires xk and zk to be collinear:

zk = µk
1xk for some µk

1 > 0. (23)

Lemma 7 If (23) holds for all k, then (21b) implies (20a).

16

Proof Due to (23) and wkxk = 1, (21b) reads lim sup
k→∞

µk
1 ≤ 1, thus we have

lim sup
k→∞

vk(zk − xk) = lim sup
k→∞

(µk
1 − 1)vkxk ≤ 0

where the inequality is due to boundedness of the sequences {vk} and {xk}. 2

All algorithms in this subsection will exploit condition (23). Together with (16),

this forces to choose xk ∈ {αzk | α ≥ 0 } ∩ bd (C), thereby basically making the

choice of xk automatic once zk is known. Note that the intersection is nonempty due

to boundedness of C, and therefore xk is always well defined.

The easiest way to guarantee that the sequences generated by Algorithm 2 satisfy

(23) is to impose that zi and xi are always collinear in Subprocedure 2. Furthermore,

this allows to prove that Subprocedure 2 either attains a decrease of the objective

function or detects approximate optimality in a finite number of steps, provided that

dzi ≤ γ.

Lemma 8 Suppose S1 ⊆ { z ∈ Rn | dz ≤ γ } and set

Ψ ≡ [zi = µi
1xi with µi

1 > 0].

If ε′ > 0 and Subprocedure 2 never ends, then it produces iterates satisfying xi ∈
(0, zi) ∩ Ω, zi /∈ C and γ(xi, wi) < γ for sufficiently large i.

Proof Lemma 5 guarantees that all the cluster points of {zi} and {vi} belong to D(γ)

and C∗, and Corollary 2 guarantees that each cluster point z̄ of {zi} does not belong

to C, therefore z̄ ∈ Ω\C. Thus, there exists x̄ ∈ (0, z̄) such that x̄ is a cluster point of

{xi}. By eventually taking the appropriate subsequences, suppose zi → z̄ and xi → x̄.

All the above implies that xi ∈ (0, zi) and zi /∈ C for all sufficiently large i. Since

0 ∈ int Ω and z̄ ∈ Ω, we have also x̄ ∈ int Ω and therefore, xi ∈ Ω for all sufficiently

large i. Hence, we have γ(xi, wi) ≤ dxi < dzi ≤ γ as zi ∈ Si ⊆ S1. 2

The assumption on S1 is actually a mild assumption on how Sk is updated in

Algorithm 2: it is enough to keep the “objective cut” dz ≤ γk among the inequalities

which define Sk and update it at each iteration to the current value of γk. Furthermore,

this assumption implies that the membership test in Step 3 of Subprocedure 2 can be

reduced to zi /∈ Ω.

Some of the properties guaranteed by the above Lemma can be exploited in the

stopping criterion Υ . Anyway, in order to guarantee that the decrease guaranteed by

Subprocedure 2 under (23) is “sufficient”, one has to prove also that the set of conditions

B1 is satisfied: this requires (20), which will be achieved through (20b) and (21b). In

the next subsections we develop four different ways in which this can be done.

4.4.1 Algorithm C1

The first possibility, directly inspired by the algorithms already proposed in the liter-

ature (see, for instance, [23]), is to resort to the following conditions:

dzk ≤ γk, (24)

xk ∈ (0, zk) ∩ Ω ∩ bd (C). (25)

17

Condition (25) implies (23) with µk
1 > 1. Actually, the two conditions are equivalent

if zk /∈ C and xk ∈ Ω (since we always have xk ∈ bd (C)); anyway we don’t ask for

these two conditions. As (25) guarantees that the sequence of points {xk} is feasible,

we can set γ(xk, wk) = dxk.

Lemma 9 If γ∗ > 0 and (24), (25) hold for all k, then (21b) holds.

Proof Since xh is feasible, we have

dx0 −
h
X

k=1

(dxk−1 − dxk) = dxh ≥ γ∗

and therefore

dx0 − γ∗ ≥
h
X

k=1

(dxk−1 − dxk) ≥
h
X

k=1

(dzk − dxk)

where the last inequality holds since (24) reads dzk ≤ γk = dxk−1. Taking the limit,

we get

lim
h→+∞

h
X

k=1

(dzk − dxk) ≤ dx0 − γ∗ < +∞.

Since µk
1 > 1, (25) implies dzk−dxk > 0 and therefore we get dzk−dxk = (µk

1−1)dxk →
0, which implies that limk→∞ µk

1 = 1 since the feasibility of xk gives dxk ≥ γ∗ > 0.

Therefore, we have

lim sup
k→∞

wkzk = lim sup
k→∞

µk
1wkxk = lim sup

k→∞

µk
1 ≤ 1

since (16) guarantees wkxk = 1. 2

Therefore, we can define the following set of conditions

C1 ≡ (18) ∧ (20b) ∧ (24) ∧ (25)

which implies B1 and thus guarantees convergence for Algorithm 2. The proper choice

of Ψ and Υ ensures that these conditions are finitely attained within Subprocedure

2 except (20b), which requires the knowledge of the entire sequences generated by

Algorithm 2. Therefore, we consider a positive sequence σk → 0 and ask for the sub-

procedure to provide points vi and xi such that

vixi ≤ 1 + σk.

This condition can be considered an appropriate formulation of (20b) within Subpro-

cedure 2 as in this way Algorithm 2 will surely satisfy (20b).

Proposition 7 Suppose S1 ⊆ { z ∈ Rn | dz ≤ γ } and set

Ψ ≡ [zi = µi
1xi with µi

1 > 0], Υ ≡ [xi ∈ Ω] ∧ [vixi ≤ 1 + σk].

If ε′ > σk > 0, then Subprocedure 2 ends in a finite number of steps; if it stops at Step

5, it reports points xi, wi, zi and vi satisfying the set of conditions C1.

18

Proof Lemma 8 and Lemma 6 guarantee that the stopping criterion Υ will be satisfied

for i large enough, independently from the choice of σk. Therefore, Subprocedure 2 ends

in a finite number of steps. Suppose it ends at Step 5. The stopping criterion Υ directly

guarantees (20b); (18) holds as all iterates satisfy (13); (24) follows immediately from

the assumption on S1 as Si ⊆ S1. Finally, the stopping criterion Υ and (13) allow to

get

0 < vixi ≤ 1 + σk < 1 + ε′ ≤ vizi = µi
1vixi

which implies µi
1 > 1 and thus we have zi /∈ C. Therefore, xi ∈ (0, zi) ∩ bd (C) and

hence (25) holds since the stopping criterion Υ provides xi ∈ Ω. 2

For this algorithm to work, the sequence {σk} has to be defined explicitly, either a-

priori or dynamically as it is used to stop Subprocedure 2. Unlike most algorithms in the

literature, it is not needed to require µi
1 > 1 at every iteration within the subprocedure,

thus leaving a wider freedom of choice.

4.4.2 Algorithm C2

An alternative way to obtain (20b) is to require

vkxh ≤ 1 for all h < k. (26)

Lemma 10 If (26) holds for all k, then (20b) holds.

Proof Assume by contradiction, suppose vkxk > 1 + δ for infinitely many k and a

given δ > 0. Since {vk} and {xk} are bounded, we can suppose vk → v̄ and xk → x̄

(eventually taking the appropriate subsequences). Condition (26) implies that v̄xh ≤ 1

for all h and therefore v̄x̄ ≤ 1, a contradiction. 2

Therefore, we can define the set of conditions

C2 ≡ (18) ∧ (24) ∧ (25) ∧ (26)

which implies C1 and therefore B1, thus ensuring convergence for Algorithm 2.

Clearly, condition (26) is guaranteed if

Qk ⊆
\

h<k

{ v ∈ Rn | vxh ≤ 1 }. (27)

This can be easily achieved updating Qk+1 in Step 4 of Algorithm 2 as follows:

Qk+1 = Qi ∩ { v ∈ Rn | vxi ≤ 1 }, (28)

where Qi and xi are those produced at the end Subprocedure 2.

Lemma 11 If (28) holds, then C∗ ⊆ Qk+1.

Proof Subprocedure 2 guarantees C∗ ⊆ Qi. If we consider the support function of C,

namely

σC(v) := max{ vx | x ∈ C },
then we have

C∗ = { v ∈ Rn | σC(v) − 1 ≤ 0 }.
Since (16) guarantees xi ∈ C, any v ∈ C∗ satisfies vxi ≤ σC(v) ≤ 1. 2

19

In this way all the inequalities produced by the Subprocedure 2 are kept: the

“quality” of Qk+1 may improve, reducing the number of iterations required to stop the

subprocedure, but it is likely to increase the cost of each iteration; the practical impact

of this trade-off could be gauged only experimentally. In any case, in (28) it is always

possible to replace Qi with Qk or any intermediate Qj produced by the subprocedure

since they both contain C∗.

Again, an implementable version of the Algorithm 2 can be obtained by choosing

Ψ and Υ properly.

Proposition 8 Set

Ψ ≡ [zi = µi
1xi with µi

1 > 0], Υ ≡ [xi ∈ Ω] ∧ [zi /∈ C].

If ε′ > 0 and (27) holds, then Subprocedure 2 ends in a finite number of steps; if it

stops at Step 5, it reports points xi, wi, zi and vi satisfying the set of conditions C2.

Proof Analogous to that of Proposition 7, considering that (26) follows from (27) and

that xi ∈ Ω and zi /∈ C imply (25). 2

4.4.3 Algorithm C3

Lemma 10 states that condition (20b) is implied by condition (26) under our bound-

edness assumptions. Symmetrically, we can prove the following result in the same way.

Lemma 12 If

zkwh ≤ 1 for all h < k (29)

hold for all k, then (21b) holds.

Therefore, we can define the set of conditions

C3 ≡ (18) ∧ (20b) ∧ (23) ∧ (29)

which implies B1 (and thus guarantees convergence for Algorithm 2) as (23) and (29)

imply (20a) by combining Lemmas 12 and 7.

Clearly, (29) is guaranteed if

Sk ⊆
\

h<k

{ z ∈ Rn | whz ≤ 1 }. (30)

This is easily obtained, for instance, by implementing Step 4 of Algorithm 2 as

Sk+1 = Si ∩ { z ∈ Rn | wiz ≤ 1 } (31)

where Si and wi are those produced at the end Subprocedure 2, but it is always possible

to replace Si with Sk or any intermediate Sj produced by the subprocedure. Anyway,

the current value has to be updated through ζ in order to guarantee that Sk+1 outer

approximates D(γk+1).

Lemma 13 Suppose γ(x, w) = ζ(w). If (31) is used in Algorithm 2, then D(γk) ⊆ Sk

for all k.

20

Proof The proof is by induction on the iterate index k. If k = 1, the thesis is guaranteed

by the choice of the input data. Suppose the thesis holds for a given k and there exists

x̄ ∈ D(γk+1) such that x̄ /∈ Sk+1: we have

x̄ ∈ D(γk+1) ⊆ D(γk) ⊆ Si

where the last inclusion is guaranteed by the way Subprocedure 2 updates Sk. There-

fore, (31) implies wix̄ > 1. Since x̄ ∈ Ω, then x̂ := (wix̄)−1x̄ ∈ Ω (as wix̄ > 1 and

0 ∈ Ω). Moreover, wix̂ = 1 and therefore γk+1 ≤ dx̂ < dx̄ providing the contradiction

x̄ /∈ D(γk+1). 2

Again, an implementable version of Algorithm 2 can be obtained by choosing Ψ and

Υ properly. Note that the correctness of this version requires γ(x, w) = ζ(w); besides,

there is no guarantee that xk is feasible.

Proposition 9 Set

Ψ ≡ [zi = µi
1xi with µi

1 > 0], Υ ≡ [ζ(wi) < γ] ∧ [vixi ≤ 1 + σk],

If ε′, σk > 0 and (30) holds, then Subprocedure 2 ends in a finite number of steps; if it

stops at Step 5, it reports points xi, wi, zi and vi satisfying the set of conditions C3.

Proof Analogous to that of Proposition 7, considering that (23) comes by Ψ and that

(29) is implied by (30). 2

Like Algorithm C1, one has to use a sequence σk converging to zero explicitly; in

this case, however, it is not required σk < ε′, at least initially.

4.4.4 Algorithm C4

The sets of conditions C2 and C3 are two independent modifications of C1; the specific

update (28) for Qk+1 is exploited for the former, while the “symmetric” update (31)

for Sk+1 is exploited for the latter. The two modifications can be combined: the set of

conditions

C4 ≡ (18) ∧ (26) ∧ (23) ∧ (29)

implies B1 thanks to Lemmas 10, 12 and 7, thus ensuring convergence for Algorithm

2. The following result provides an implementable version of the algorithm.

Proposition 10 Set

Ψ ≡ [zi = µi
1xi with µi

1 > 0], Υ ≡ [ζ(wi) < γ].

If ε′ > 0, (27) and (30) hold, then Subprocedure 2 ends in a finite number of steps; if

it stops at Step 5, it reports points xi, wi, zi and vi satisfying the set of conditions C4.

21

4.5 Algorithms Exploiting the Set of Conditions B2

The algorithms of this subsection need (21) instead of (20). As (21b) has been exploited

to achieve (20a), symmetrically (21a) can be obtained through (20b), relying on the

“polar counterpart” of (23), namely

vk = µk
2wk for some µk

2 > 0. (32)

Together with (16), this forces to choose wk ∈ { αvk | α ≥ 0 } ∩ bd (C∗), thereby

basically fixing wk once vk is known. Note that this intersection is always nonempty

since C∗ is compact.

Lemma 14 If (32) holds for all k, then (20b) implies (21a).

Proof Due to (32) and wkxk = 1, (20b) reads lim sup
k→∞

µk
2 ≤ 1, thus we have

lim sup
k→∞

(vk − wk)zk = lim sup
k→∞

(µk
2 − 1)wkzk ≤ 0

where the inequality is due to the boundedness of {zk} and {wk}. 2

The algorithms of this subsection will exploit (32). The easiest way to guarantee

that the sequences generated by Algorithm 2 satisfy it is to impose that wi and vi are

always collinear in Subprocedure 2.

Lemma 15 Suppose S1 ⊆ { z ∈ Rn | dz ≤ γ } and set

Ψ ≡ [vi = µi
2wi with µi

2 > 0].

If ε′ > 0 and Subprocedure 2 never ends, then it produces iterates satisfying ζ(wi) < γ

for sufficiently large i.

Proof Taking the appropriate subsequences, we can suppose wi → w̄, vi → v̄ and

zi → z̄. The collinearly assumption Ψ implies that v̄ = µ̄w̄ for some µ̄ ≥ 0 and

condition (13) guarantees µ̄ 6= 0. Lemma 5 guarantees v̄ ∈ C∗; since wi ∈ bd (C∗), we

have w̄ ∈ bd (C∗) and thus µ̄ ∈ (0, 1]. Therefore, we have

lim
i→∞

wizi = w̄z̄ = µ̄−1v̄z̄ ≥ lim
i→∞

vizi ≥ 1 + ε′.

where the last inequality is due to (13). Therefore, wizi ≥ 1 + ε′/2 holds for all

sufficiently large i. By Lemma 5 we have z̄ ∈ Ω; since 0 ∈ intΩ, we get z̄i := (1 +

ε′/2)−1zi ∈ Ω for all sufficiently large i. Hence, we have ζ(wi) ≤ dz̄i < dzi ≤ γ as

wiz̄i ≥ 1 and zi ∈ Si ⊆ S1. 2

Using the above results, we can develop versions of Algorithm 2, which are “sym-

metric” to those that rely on the set of conditions B1. However, the polar reformulation

(5) is asymmetric in the sense that only the “original”variables x appear in the ob-

jective function. Therefore, only two of those four algorithms can be mirrored in this

case. Specifically, we will develop sets of conditions D1 and D2 corresponding to C3

and C4, respectively. No algorithms corresponding to C1 and C2 can be devised since

they should exploit the condition

wk ∈ (0, vk) ∩ C∗ ∩ bd (Ω∗),

which is “symmetric” to (25). However, it would imply the existence of an optimal

solution (x∗, w∗) such that w∗ ∈ C∗ ∩ bd (Ω∗), which is not necessarily true: if you

consider (5) with n = 1, d = 1 and Ω = C∗ = [−1/2, 4], the unique optimal point is

(x∗, w∗) = (1/4, 4) while C∗ ∩ bd (Ω∗) = 1/4.

22

4.5.1 Algorithm D1

We can define the set of conditions

D1 ≡ (18) ∧ (20b) ∧ (29) ∧ (32)

in a “symmetric” way with respect to C3. Due to Lemmas 12 and 14, D1 implies B2

and therefore it ensures convergence for Algorithm 2. An implementable version can

be obtained by choosing Ψ and Υ as follows.

Proposition 11 Set

Ψ ≡ [vi = µi
2wi with µi

2 > 0], Υ ≡ [ζ(wi) < γ] ∧ [vixi ≤ 1 + σk],

If ε′, σk > 0 and (30) holds, then Subprocedure 2 ends in a finite number of steps; if it

stops at Step 5, it reports points xi, wi, zi and vi satisfying the set of conditions D1.

4.5.2 Algorithm D2

We can define the set of conditions

D2 ≡ (18) ∧ (26) ∧ (29) ∧ (32)

in a “symmetric” way with respect to C4. Due to Lemmas 10, 12 and 14, D2 implies

B2 and therefore it ensures convergence for Algorithm 2. An implementable version

can be obtained by choosing Ψ and Υ as follows.

Proposition 12 Set

Ψ ≡ [vi = µi
2wi with µi

2 > 0], Υ ≡ [ζ(wi) < γ].

If ε′ > 0, (27) and (30) hold, then Subprocedure 2 ends in a finite number of steps; if it

stops at Step 5, it reports points xi, wi, zi and vi satisfying the set of conditions D2.

4.6 Summary

We have developed six different implementable versions of Algorithm 2: while they are

all based on Subprocedure 2, they differ for the stopping criterion Ψ , the condition Υ

on the iterations, how the evaluation function γ is implemented and how Sk and Qk

are updated. All the considered variants are summarized in Table 1.

Ψ Υ γ Qk Sk

C1 zi = µi

1
xi, µi

1
> 0 xi ∈ Ω ∧ vixi ≤ 1 + σk θ

C2 zi = µi

1xi, µi

1 > 0 xi ∈ Ω ∧ zi /∈ C θ (28)

C3 zi = µi

1
xi, µi

1
> 0 ζ(wi) < γk ∧ vixi ≤ 1 + σk ζ (31)

C4 zi = µi

1xi, µi

1 > 0 ζ(wi) < γk ζ (28) (31)

D1 vi = µi

2
wi, µi

2
> 0 ζ(wi) < γk ∧ vixi ≤ 1 + σk ζ (31)

D2 vi = µi

2
wi, µi

2
> 0 ζ(wi) < γk ζ (28) (31)

Table 1 Summary of implementable versions of Algorithm 2

23

Now, we want to show that all these algorithms are indeed different, in the sense

that they can produce different optimizing sequences even if the same instance and

the same starting conditions are given. To this aim, we consider problem (CDC) with

n = 2, d = (0, 1) and

Ω = { x ∈ R2 | −1 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 5, 3x1 − x2 ≤ 4 },

C = { x ∈ R2 | x2
1 + x2

2 ≤ 4 }.

Notice that Ω is a bounded polyhedron, whose vertices provide the alternative descrip-

tion

Ω = conv
“

˘

(1,−1), (−1,−1), (−1, 5), (2, 5), (2, 2)
¯

”

.

It is easy to check that the unique optimal solution is the intersection between the

segment [(1,−1), (2, 2)] (the boundary of the constraint 3x1−x2 ≤ 4) and the boundary

of C, namely the point x∗ = (6 +
√

6, 3
√

6 − 2)/5 ∈ Ω \ int C. Therefore, the optimal

value is γ∗ = (3
√

6 − 2)/5 ≈ 1.0697. Note that all standard assumptions are satisfied:

(1) and (2) hold, C is compact while regularity follows from Lemma 2. Furthermore,

the value function φ is locally Lipschitz at 0, as (0, δ) ∈ T (Ω, x∗) and (0, δ) /∈ T (C,x∗)

for any δ > 0 (see Theorem 1).

Considering the polar reformulation (5), we have

C∗ = { w ∈ R2 | 4(w2
1 + w2

2) ≤ 1 }.

Since any optimal solution of (5) must satisfy w∗x∗ = 1 and w∗ ∈ bd (C∗), we have

that w∗ = (6 +
√

6, 3
√

6 − 2)/20 provides the only possibility for the polar part of the

optimal solution.

In the following, we assume the oracle Θ to always choose the same (z, v) when S,

Q and γ are the same; furthermore, we set ε = 1 so that the pairs (z, v) satisfying (13)

must actually be optimal for (11). In this way, we eliminate the nondeterminism due

to the fact that the oracle may return different ε−optimal solutions of (11), which may

be “many” especially if ε << 1; nonetheless, the six algorithms all construct different

optimizing sequences for this instance.

Consider the following starting situation:

σ1 = 0.1, γ1 = +∞, Q1 = [−1/2, 1/2] × [−1/2, 1/2],

S1 = { x ∈ R2 | −1 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 10, 3x1 − x2 ≤ 4 }

= conv
“

˘

(1,−1), (−1,−1), (−1, 10), (2, 10), (2, 2)
¯

”

.

All algorithms start call Subprocedure 2 with S1, Q1 and γ1 as input data. The oracle

provides an optimal solution of the certificate problem

max { vz − 1 | (z, v) ∈ S1 × Q1 },

which can be easily obtained comparing the value v̄z̄ for all pairs where z̄ is an extreme

point of S1 and v̄ is an extreme point of Q1. In this case, the unique optimal solution

turns out to be (z1, v1) = ((2, 10), (1/2, 1/2)) with optimal value v(OCγ1) = 5; thus,

according to our assumptions, this is the pair the oracle Θ returns for all algorithms.

24

Algorithms implementing the set of conditions B1. The four algorithms C1, C2, C3,

and C4 ask for xiand zi to be collinear. Due to (16) the only possible choice is x1 =

(2, 10)/
√

26; since we have both z1 /∈ C and x1 ∈ Ω, then the point satisfies also the

more restrictive condition (25). Due to (16) the only choice for the corresponding polar

point is w1 = (1, 5)/
√

104.

The subprocedure stops at this first iteration for algorithms C2 and C4, since we

have x1 ∈ Ω, z1 /∈ C and ζ(w1) ≤ dx1 < γ1. On the contrary, it does not stop for

algorithms C1 and C3 since

v1x1 = 6/
√

26 ≈ 1.1767 > 1 + σ1.

In algorithm C2 the subprocedure provides the new current value γ2 = θ(x1) = dx1 =

10/
√

26 ≈ 1.9612 while in algorithm C4 it provides γ2 as

ζ(w1) = min{ dx | x ∈ Ω, x1 + 5x2 ≥
√

104 }.

The optimal solution of the above linear program is x̄1 = (10 +
√

26, 3
√

26 − 2)/8 and

therefore the current value will be updated to

γ2 = ζ(w1) = dx̄1 = (3
√

26 − 2)/8 ≈ 1.6621 < 10/
√

26.

As for algorithms C1 and C3, the subprocedure performs one more iteration after the

sets S1 and Q1 have been updated through subprocedure 1 (since z1 /∈ Ω and v1 /∈ C∗):

S2 = S1 ∩ { (x ∈ R2 | x2 ≤ 5 } = Ω,

Q2 = Q1 ∩ { w ∈ R2 |
√

2(w1 + w2) ≤ 1 }.

At the second iteration of the subprocedure the oracle returns the (unique) optimal

solution of the certificate problem

max { vz − 1 | (z, v) ∈ S2 × Q2 },

which is (z2, v2) = ((2, 5), (
√

2 − 1, 1)/2). Therefore, the collinearity condition Ψ and

(16) imply x2 = (4, 10)/
√

29 and w2 = (2, 5)/2
√

29. Since x2 ∈ Ω, ζ(w2) ≤ dx2 < γ1

and

v2x2 = (3 + 2
√

2)/
√

29 ≈ 1.0823 ≤ 1 + σ1,

the subprocedure stops: algorithm C1 selects γ2 = θ(x2) = dx2 = 10/
√

29 ≈ 1.6569

while algorithm C3 solves the linear program

ζ(w2) = min{ dx | x ∈ Ω, 2x1 + 5x2 ≥ 2
√

29 }

in order to get the point x̄2 = (20 + 2
√

29, 6
√

29− 8)/17) and set γ2 = ζ(w2) = dx̄2 =

(6
√

29 − 8)/17 ≈ 1.4301.

The four algorithms have all provided different values for γ2 and therefore they are

different from each other.

25

Algorithms implementing the set of conditions B2. The algorithms D1 and D2 require

wi and vi to be collinear. Due to (16) the only possible choice is w1 = (1, 1)/2
√

2

and the corresponding point in the original space can be only x1 = (
√

2,
√

2). The

subprocedure stops at this first iteration for algorithm D2, since we have x1 ∈ Ω and

therefore ζ(w1) ≤ dx1 < γ1. On the contrary, it does not stop for algorithm D1 since

v1x1 =
√

2 ≈ 1.4142 > 1 + σ1.

In algorithm D2 the subprocedure provides the new current value γ2 as

ζ(w1) = min{ dx | x ∈ Ω, x1 + x2 ≥ 2
√

2 } = (3 −
√

2)/
√

2 ≈ 1.1213.

and the corresponding optimal solution x̄1 = (1+
√

2, 3−
√

2)/
√

2 is the best achieved

point. Since this value for γ2 is different from all those seen so far, D2 is yet another

different algorithm.

In algorithm D1 the subprocedure performs a second iteration after the sets S1

and Q1 have been updated exactly in the same way as in algorithms C1 and C3 (since

z1 and v1 are indeed the same). Therefore, the oracle provides the same z2 = (2, 5)

and v2 = (
√

2 − 1, 1)/2. Due to the collinearity condition Ψ and (16), we get w2 =

(
√

2 − 1, 1)/2
p

4 − 2
√

2 and x2 =
p

2 −
√

2(1, 1 +
√

2). Since

v2x2 =

q

4 − 2
√

2 ≈ 1.0824 ≤ 1 + σ1

the subprocedure ends. The value it returns as γ2 is

ζ(w2) = min{ dx | x ∈ Ω, (
√

2 − 1)x1 + x2 ≥ 2

q

4 − 2
√

2 } ≈ 1.4169.

and the corresponding optimal solution

x̄2 =

4 + 2
p

4 − 2
√

2

2 +
√

2
,
4 + 6

p

4 − 2
√

2 − 4
√

2

2 +
√

2

!

is the best achieved point. Once again, this value for γ2 is different from all previous

ones: all the six algorithms are different.

5 Comparisons and Conclusions

The algorithms proposed in this paper are inspired by the seminal works of Tuy [15,16],

in which the canonical DC problem has been introduced, it has been shown how any DC

problem can be reduced to it, and the first cutting plane algorithm has been proposed.

The initial algorithm had less refined convergence properties; by cutting off points

such that dx > γk − α, for a feasible tolerance α ≥ 0, the algorithm may terminate

with only an α-optimal solution. More refined versions of the algorithms, more akin to

those presented in this paper, were presented later. The polyhedral annexation method,

proposed in [21,25] for the special case of (CDC) where Ω is a polyhedron, is the first

where the exact form

vkzk ≥ max{ vz | (z, v) ∈ D(γk) × C∗ }

26

of the approximate optimality conditions (12) (see also Proposition 1) has been intro-

duced; afterwards, [27,23] showed that this algorithm can be extended to any (CDC)

problem. In [22], the non-slackened “objective cut” (24) was introduced, and γ1 = +∞
was first allowed. A further variant was developed in [17] for the “more general” case

where dx is replaced by a convex finite-valued function f(x) although this can also be

recast as a canonical DC program.

Several attempts at generalizing the results in the above papers were not entirely

successful. A variant of [17] has been proposed in [7], where a binary search on the

value of γ is proposed; this, however, is unnecessary. The algorithm proposed in [13], a

modified form of the ones in [15,16], as well as its modified form in [5], were later shown

not to guarantee convergence [22]. Similarly, a counter example disproving convergence

was developed in [3] for the cutting plane algorithms of [2,1]. Finally, the analogous

algorithm of [11], based on a slightly modified form of the classical optimality condition

(3), was also shown not to be always convergent [14]; besides, the modified optimality

condition is not easier to check than (3).

All the converging algorithms in the above papers satisfy the set of conditions

C1 or C2, and are special cases of those presented in this paper. Furthermore, it is

basically given for granted that the“oracle” for checking the optimality conditions is

realized through enumeration of vertices. The contributions of the present paper are

the following:

– The introduction of “approximate oracle” conditions (12)–(13), which are designed

to allow for more sophisticated and efficient solution procedures, with respect to

pure vertex enumeration, to tackle the problem of checking the optimality condi-

tion, arguably the computational bottleneck in this type of approaches.

– A thorough study of the impact of approximations in the optimality conditions

onto the quality of the approximately optimal solutions satisfying them.

– Full exploitation of the “primal-polar” formulation of the optimality conditions

based on (8) in order to derive a very general hierarchy of conditions ensuring

convergence.

– A general algorithmic scheme based on the developed hierarchy which gives rise to

six different implementable algorithms, four of which (C3, C4, D1 and D2) do not

seem to have previously been considered in the literature; each of these algorithms

can generate an approximate optimal value in a finite number of steps, where the

error can be managed and controlled.

It may be worth remarking that the “new” algorithms C3, C4, D1 and D2 all use

γ(x,w) = ζ(w). This has been inspired by the reformulation of (CDC) as the quasi-

concave minimization problem (17) already proposed in [26]. However, in that paper a

“cut and split” method was used, that is entirely different from the outer approximation

algorithms proposed in this paper. Indeed, that method belongs to the main other

family of algorithms for canonical DC problems, that of branch and bound methods

(see, for instance, [18,19,20]). So, this research has shown how concepts developed for

one family of approaches can be useful even for an entirely unrelated one.

While this paper seems to offer a quite comprehensive convergence theory for

“oracle-based” outer approximation algorithms for canonical DC programs, much still

needs to be done before these algorithms become widely used and accepted as those

based on the branch and bound paradigm. In particular, more work is needed to identify

practically efficient ways to implement the oracle, at least on special types of canonical

27

DC programs in which the sets Ω and C have some form of exploitable structure; this

will be the focus of further research.

References

1. Ben Saad, S.: A new cutting plane algorithm for a class of reverse convex 0-1 integer
programs. In: C.A. Floudas, Pardalos, P.M. (eds.): Recent Advances in Global Optimization,
pp. 152–164. Princeton University Press, Princeton (1992)

2. Ben Saad, S., Jacobsen, S.E.: A level set algorithm for a class of reverse convex programs.
Ann. Oper. Res. 25, 19–42 (1990)

3. Ben Saad, S., Jacobsen, S.E.: Comments on a reverse convex programming algorithm. J.
Global Optim. 5, 95–96 (1994)

4. Fulop, J.: A finite cutting plane method for solving linear programs with an additional
reverse constraint. European J. Oper. Res. 44, 395–409 (1990)

5. Horst, R., Tuy, H.: Global Optimization. Springer, Berlin (1990)
6. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Kluwer Academic Pub-

lishers, Dordrecht (1995)
7. Nghia, M.D., Hieu, N.D.: A method for solving reverse convex programming problems. Acta

Math. Vietnam. 11, 241–252 (1986)
8. Pham, D.T., El Bernoussi, S.: Numerical methods for solving a class of global nonconvex

optimization problems. International Series of Numerical Mathematics 87, 97–132 (1989)
9. Pintér, J.D. (ed.): Global Optimization: Scientific and Engineering Case Studies. Springer,

Berlin (2006)
10. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
11. Strekalovsky, A.S., Tsevendorj, I.: Testing the R-strategy for a reverse convex problem. J.

Global Optim. 13, 61–74 (1998)
12. Thach, P.T.: Convex programs with several additional reverse convex constraints. Acta

Math. Vietnam. 10, 35–57 (1985)
13. Thoai, N.V.: A modified version of Tuy’s method for solving d.c. programming problems.

Optimization 19, 665–674 (1988)
14. Tuan, H.D.: Remarks on an algorithm for reverse convex programs. J. Global Optim. 16,

295–297 (2000)
15. Tuy, H.: Global minimization of a difference of two convex functions. Math. Programming

Studies 30, 150–182 (1987)
16. Tuy, H.: A general deterministic approach to global optimization via d.c. programming. In:

Hiriart-Urruty, J.B. (ed.): FERMAT Days 85: Mathematics for Optimization, pp. 273–303.
North-Holland, Amsterdam (1986)

17. Tuy, H.: Convex programs with an additional reverse convex constraint. J. Optim. Theory
Appl. 52, 463–486 (1987)

18. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global
optimization. Application to concave minimization and D.C. optimization problems. Math.
Programming 41, 161-183 (1988)

19. Tuy, H.: Normal conical algorithm for concave minimization over polytopes. Math. Pro-
gramming 51, 229-245 (1991)

20. Tuy, H.: Effect of the subdivision strategy on convergence and efficiency of some global
optimization algorithms. J. Global Optim. 1. 23–36 (1991)

21. Tuy, H.: On nonconvex optimization problems with separated nonconvex variables. J.
Global Optim. 2, 133–144 (1992)

22. Tuy, H.: Canonical DC programming problem: outer approximation methods revisited.
Oper. Res. Lett. 18, 99–106 (1995)

23. Tuy, H.: D.C. optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M.
(eds.): Handbook of Global Optimization, pp. 149–216. Kluwer Academic Publishers, Dor-
drecht (1995)

24. Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dor-
drecht (1998)

25. Tuy, H., Al-Khayyal, F.A.: Global optimization of a nonconvex single facility location
problem by sequential unconstrained convex minimization. J. Global Optim. 2, 61–71 (1992)

26. Tuy, H., Migdalas, A., Varbrand, P.: A quasiconcave minimization method for solving
linear two-level programs. J. Global Optim. 4, 243–263 (1994)

27. Tuy, H., Tam, B.T.: Polyhedral annexation vs outer approximation for the decomposition
of monotonic quasiconcave minimization problems. Acta Math. Vietnam. 20, 99–114 (1995)

