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With rapid technological innovation and strong competition in hi-tech industries such as computer 

and communication organizations, the upstream component price and the downstream product cost 

usually decline significantly with time. As a result, an effective pricing supply chain model is very 

important. This paper first establishes two bi-level pricing models for pricing problems with the 

buyer and the vendor in a supply chain designated as the leader and the follower, respectively. A 

particle swarm optimization (PSO) based algorithm is developed to solve problems defined by 

these bi-level pricing models. Experiments illustrate that this PSO based algorithm can achieve a 

profit increase for buyers or vendors if they are treated as the leaders under some situations, 

compared with the existing methods. 

Key words: two-stage supply chain, bi-level programming, hierarchical decision-

making, optimization, particle swarm optimization. 

1. Introduction 

Hi-tech products have the following characters: they have a shorter product life 

cycle time, a quicker response time, and an increasing need for globalization and 

massive customization. Moreover, the material purchase cost and product market 

price are decreasing at a continuous and sustained rate. The lead-time from order 

to delivery is usually suppressed from 955 (delivery of 95% of order within 5 

days) to 1002 (delivery of 100% of order within 2 days) [1]. In some hi-tech 

industries, eg. computer and communication consumer products, some component 
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costs and product prices are declining at about 1% per week [2]. This implies that 

purchasing or selling one-week earlier or later will result in about a 1% profit loss. 

 

Many researchers, such as Lev and Weiss [3], Goyal [4], and Gascon [5] have 

studied the ordering policy in the classic economic order quantity (EOQ) model 

for finite and infinite horizons. Buzacott [6] and Erel [7] considered a continuous 

price increase due to inflation. Buzacott [6] assumed compound increasing price 

and setup costs were due to inflation in a finite horizon. Erel [7] considered a 

compound-increasing price EOQ model with the inflation rate. Yang and Wee [8] 

addressed a quick response production strategy with continuous demand and price 

declining in a finite horizon. Khouja and Park [9] derived an optimal lot size 

model for a decreasing rate of purchase cost in a finite horizon. All this research 

with cost/price change was based on a single rank. Most of these traditional EOQ 

models consider only a buyer’s profit. Recently, Yang el al. [1] developed a 

collaborative pricing and replenishment policy which took into consideration the 

perspectives of a vendor and a buyer, simultaneously. However, in reality, the 

buyer and the vendor in a supply chain would have a competitive relationship by 

nature. It would be difficult for them to share interests and set prices 

collaboratively. They need to make decisions based on their own interests, whilst 

still considering the choice of the other, as the other’s decisions will have an 

influence on their own interests. 

 

Bi-level programming techniques aim to solve decision problems where each 

decision entity independently optimizes its own objective, but is affected by the 

actions from the other entity under a hierarchy [10]. In a bi-level decision 

problem, a decision entity at the upper level is known as the leader, and at the 

lower level, the follower [11]. The investigation of bi-level problems is strongly 

motivated by real world applications, and bi-level programming techniques have 

been applied with remarkable success in different domains such as mechanics 

[12], decentralized resource planning [13], electric power markets [14], logistics 

[15], civil engineering [16], and road network management [17, 18]. Much 

research has been conducted on the optimality conditions and solution algorithms 

for bi-level decision problems [19]. A large part of the research on bi-level 

decision problems has been centered on their linear version, the linear bi-level 



 

3 

problems [20], for which nearly two dozen algorithms have been developed [21]. 

The well known ones include the Kuhn-Tucker approach [22], the Kth-best 

algorithm [23], the Branch-and-Bound algorithm [22], and genetic algorithm 

based approaches [24]. Current research on bi-level programming techniques 

mainly focus on non-linear bi-level decision problems [25], multi-leader bi-level 

decision problems [25], multi-follower decision bi-level problems [11][26], multi-

objective bi-level decision problems [27], and fuzzy bi-level decision problems 

[15].  

 

To solve the pricing problem in a supply chain more practically, this paper uses 

bi-level programming techniques to develop two bi-level pricing models. One bi-

level pricing model considers a buyer as the leader who has the privilege of 

deciding first, and the vendor as the follower who makes decisions after the buyer, 

whilst the other pricing model takes a vendor’s profit as priority and makes the 

vendor the leader and the buyer the follower. These two pricing models allow a 

buyer and a vendor to make decisions sequentially, fully considering the mutual 

influences of each other. Both the buyer and the vendor aim to maximize their 

profits in a supply chain system, but their decisions are related to each other in a 

hierarchical way. 

 

This paper is organized as follows. Following the Section 1 introduction, Section 

2 briefly introduces bi-level programming and provides a mathematic bi-level 

decision model. Section 3 establishes two bi-level pricing models for the buyer 

and the vendor in a supply chain by designating the buyer and the vendor as the 

leader, respectively. To solve problems defined by these two bi-level pricing 

models, a PSO based algorithm is developed in Section 4. Section 5 employs an 

example to carry out the experiments. Finally, conclusions and further studies are 

outlined in Section 6. 

2. Preliminaries 

Bi-level programming typically models bi-level decision problems, in which the 

objectives and the constraints of both the upper and the lower level decision 

entities (leader and follower) are expressed by linear or nonlinear functions, as 

follows [18]: 
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For ,nRXx ⊂∈ ,mRYy ⊂∈  ,: 1RYXF →× and 1: RYXf →× , 
),(min yxF

Xx∈
  

subject to 0),( ≤yxG  
),(min yxf

Yy∈   

subject to 0),( ≤yxg  

where the variables x, y are called the leader’s and the follower’s decision 

variables respectively, F(x, y) and f(x, y) are the leader’s and the follower’s 

objective functions. 

 

This model aims to find a solution to the upper level problem 

),(min yxFXx∈ subject to its constraint 0),( ≤yxG . For each value of the leader’s 

variable x, y is the solution of the lower level problem ),(min yxfYy∈ under its 

constraint 0),( ≤yxg . 

3. Two Bi-level Pricing Models in a Supply Chain 

In this section, by switching the leader and follower roles, respectively, between a 

buyer and a vendor, we develop two bi-level pricing models in a supply chain. 

 

The formulation for the pricing problem in a supply chain in this paper is 

developed from the assumptions of Yang et al. [1]: 

(1) A vendor and a buyer’s replenishment rates are instantaneous. 

(2) The component purchase cost and the product price to an end consumer 

decline at a continuous rate per unit time. 

(3) The finite planning horizon and the constant demand rate are considered. 

(4) Each replenishment time interval is the same. 

(5) No shortage is allowed. 

(6) The purchase lead-time is constant. 

 

Based on the above assumptions, the buyer’s net profit in a buyer-vendor system 

can be calculated by [1]: 



 

5 

b

mn
H

b

H
bbb

mn
H

b

H
b

b
rH

m

m
b

mnC

r

r
mn

QHPF

r

r
QPe

r
DP

NP m

−

−−

−−
−

−−

−−
−−

−
= −

)1(1

)1(1
2

)1(1

)1(1
]1[

)1ln(

0

0
)1ln(0

                            (1) 

A vendor’s net profit can be calculated by [1]: 
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In (1), a buyer controls m, the number of the buyer’s lot size deliveries per 

vendor’s lot size; and rm, the weekly decline-rate of market price to an end-

consumer. In (2), a vendor controls n, the number of orders that the vendor places 

for the item from a supplier in the planning horizon; rb, the weekly decline-rate of 

the buyer’s purchase cost; and rv, the weekly decline-rate of the vendor’s purchase 

cost. All other parameters defined in the problem are constants, which may 

change if other specific problems are introduced. The explanations of symbols 

used in the above two formulas are listed in Table 1. 

Table 1. Explanations on symbols used in (1) and (2) 

n 
number of orders that a vendor places for the item from a 

supplier in the planning horizon 

m number of buyer’s lot size deliveries per vendor’s lot size 

Q buyer’s lot size 

rb weekly decline-rate of the buyer’s purchase cost  

D weekly demand rate  

rv weekly decline-rate of the vendor’s purchase cost  

rm weekly decline-rate of market price to the end-consumer  

H weekly length of the planning horizon  

Fv vendor’s holding cost per dollar per week 

Fb buyer’s holding cost per dollar per week 

Cv vendor’s ordering cost per order 

Cb buyer’s ordering cost per order 

Pv0 vendor’s unit purchase cost at the initial time 

Pb0 buyer’s unit purchase cost at the initial time 
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Pm0 market price to the end consumer at the initial time 

Pv(t) vendor’s unit purchase cost in week t 

Pb(t) buyer’s unit purchase cost in week t 

Pm(t) market price to the end consumer in week t 

NPv vendor’s net profit in the planning horizon 

NPb buyer’s net profit in the planning horizon 

NP 
joint net profit of both the vendor and the buyer in the 

planning horizon 

 

When making the pricing strategy, if we take the buyer’s point of view to make 

his or her profit a priority over a vendor, we can designate a buyer as the leader 

and a vendor as the follower. By combining Formulas (1) and (2), we establish a 

bi-level pricing model in a supply chain as follows: 
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subject to 0>m                                                   (3) 
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subject to 0n >  

         0.0001 0.5br≤ ≤  

         0.0001 0.5vr≤ ≤  

 

In this model, both the buyer and the vendor adjust their own controlling variables 

respectively, wishing to maximize their own profits, under specific constraints. 

The buyer is the leader, who makes a decision first; and the vendor is the 

follower, who makes a decision after the buyer. 
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If we take the point of view of a vendor to make his or her profit a priority over a 

buyer, we can designate the vendor as the leader and the buyer as the follower. By 

combining Formulas (1) and (2), we establish another bi-level pricing model in a 

supply chain as follows: 
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subject to 0>n                                                    (4) 
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          subject to 0>m          

                   0.0001 0.5mr≤ ≤                                            

 

In this model, both a buyer and a vendor adjust their own controlling variables 

respectively, wishing to maximize their own profits, under specific constraints. 

The vendor is the leader, who makes the first decision; and the buyer is the 

follower, who makes a decision after the buyer. 

 

The above two bi-level pricing models describe non-linear bi-level decision 

problems, for which there is no solution in the classical method. To reach 

solutions for problems defined by these bi-level decision models, we will develop 

a PSO-based algorithm in next section. 

4. A Particle Swarm Optimization Based Algorithm 

In this section, we use the strategy adopted in the PSO method [28] to develop a 

PSO-based algorithm to reach solutions for problems defined by Formulas (3) and 

(4). 
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Figure 1 outlines the structure and process of this algorithm. We first sample the 

leader-controlled variables to find some candidates for a leader. We then use the 

PSO method, together with the Stretching technology [29], to obtain the 

follower’s response for every leader’s choice. Thus, a pool of candidate solutions 

for both the leader and the follower is formed. By pushing every solution pair 

towards the current best ones, the solution pool is updated. Once a solution is 

reached for the leader, the Stretching technology [29] is used to avoid local 

optimization. We repeat this procedure by a pre-defined count and reach a final 

solution. 

X-particlesSampling the leader-
controlled variables

Updating the best 
particle pairs

X-particles

Generating the follower’s 
responses by PSO and 

Stretching technique

Y-particles

Outputing the 
final solution

A local solution?

N

Y

Stretching 
current solutionThe local solution

 

Figure 1 The outline of the PSO based algorithm 

 

The details of this algorithm are specified below: 

Algorithm 1: A PSO based algorithm for bi-level pricing problems 

Step 1: Sample lN  particles of xi, and the corresponding velocities 
ixv ; 

Step 2: Initiate the leader’s loop counter lk = 0; 

Step 3: For the k-th particle, k =1,…, lN , generate the response from the 

follower; 

Step 3.1 : Sample fN  candidates iy  and the corresponding velocities 
iyv , i = 

1,…, fN ; 

Step 3.2 : Initiate the follower's loop counter fk =0; 

Step 3.3 : Record the best particles 
iyp  and *y  from 

iyp , i = 1,…, fN ; 

Step 3.4 : Update the follower’s velocities and positions using 
1 *

1 2

+1 1
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Step 3.5 : fk  = fk  + 1; 
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Step 3.6 : If fk ≥ fMaxK  or the solution changes for several consecutive 

generations are small enough, then we use Stretching technology to obtain the 

global solution and go to Step 3.7. Otherwise go to Step 3.4; 

Step 3.7 : Output *y  as the response from the follower. 

Step 4: Record 
ixp , *

ix ,  i = 1,…, lN  for each xi, i = 1,…, lN  ; 

Step 5: Update velocities and positions using 

11

*
21

1 )()(
++

+

+=

−+−+=
k
x

K
i

K
i

K
i

K
i

K
ll

K
ix

K
ll

K
xl

k
x

i

iii

vxx

xxrcxprcvwv
 

Step 6: lk  = lk  + 1; 

Step 7: If lk ≥ lMaxK , we use Stretching technology for the current leaders' 

solutions to obtain the global solution. 

 [end] 

Notations used in Algorithm 1 are detailed in Table 2. 

Table 2. Explanation of some notations used in the PSO-based algorithm 

lN  the number of candidate solutions (particles) for a leader 

fN  the number of candidate solutions (particles) for the follower 

xi the i-th candidate solution for the leader 

ixp  the best previously visited position of xi 

*
ix  current best one for particle xi 

ixv  the velocity of xi 

lk  current iteration number for the upper-level problem 

iy  
the i-th candidate solution for the controlling variables from the 

follower 

iyp  the best previously visited position of yi 

*y  current best one for particle y 

iyv  the velocity of yi 

fk  current iteration number for the lower-level problem 

lMaxK  the predefined max iteration number for kl 

fMaxK  the predefined max iteration number for kf 

,l fw w  
inertia weights for the leader and the follower respectively (co-

efficients for PSO) 
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,l fc c  
acceleration constants for the leader and the follower respectively (co-

efficients for PSO) 

r1l, r2l 
random numbers uniformly distributed in [0, 1] for the leader and the 

follower (co-efficients for PSO) 

 

5. An Example and Experiments 

In this section, we illustrate the bi-level pricing model and the PSO based 

algorithm developed in this study by the following numerical example where the 

parameters are given as follows: 

 

(1) Demand rate per week, D =400 units 

(2) Vendor’s unit purchase cost at the initial time, Pv0 = $4   

(3) Buyer’s unit purchase cost at the initial time, Pb0 = $5  

(4) Market price to the end consumer from the buyer at the initial time, Pm0 = $6   

(5) Buyer’s ordering cost per order, Cb = $30 

(6) Vendor’s ordering cost per order, Cv = $1,000 

(7) Buyer’s holding cost per dollar per week, Fb = 0.004 

(8) Vendor’s holding cost per dollar per week, Fv = 0.004 

(9) Time horizon considered, H = 52 weeks 

 

Yang et al. [1] deals with this problem by solving a single level optimization 

problem: vb NPNPNP += , where only the net profit of a buyer and a vendor must 

be the same and only m and n are adjustable decision variables. We relax the 

constraint of equal profit, and add rm, rb, and rv as decision variables. By using the 

PSO based algorithm developed in this study to solve problems defined by 

Formulas (3) and (4), we obtain solutions for both the buyer and vendor. To 

evaluate the results of this research, we compare these results with the results 

from the original model by Yang et al [1] under a different negotiation factor α, 

which is defined as α = NPv / NPb. To make the comparison fair and reasonable, 

besides m and n, we add rm, rb, and rv as decision variables to be changeable to 

maximise the profit in Yang et al’s model [1]. Table 3 lists solutions from this 

research and solutions from the model by Yang et al [1]. 
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Table 3. Summary and comparison of running results 

 m rm N rb rv NPb NPv 
Yang et al. [1]  

(α ≥ 2) 

2 0.0001 9 0.0068 0.5 35,008 69,946 

Yang et al. [1] 

(1.5 ≤ α ≤ 2) 

2 0.0001 9 0.01 0.5 41,280 63,710 

Yang et al. [1]  

(1 ≤ α ≤ 1.5) 

2 0.0001 9 0.017 0.5 52,990 52,068 

Yang et al. [1] 

(0.5 ≤ α ≤ 1) 

1 0.0001 9 0.032 0.5 68,548 36,605 

Yang et al. [1]  

(α < 0.5) 

Not applicable  

This study 

(buyer as leader) 

5 0.0071 6 0.0372 0.0753 52,399 16,866 

This study 

(vendor as 

leader) 

3 0.0015 7 0.0026 0.0767 21,359 64,165 

 

From Table 3, we can see that, using the bi-level pricing model (buyer as leader) 

developed in this paper, the buyer’s profit will increase compared with Yang’s 

model when α ≥ 1.5. If the vendor is taken as the leader, he or she can achieve a 

profit increase when α ≤ 2, which is true for most pricing problems in a supply 

chain. As the follower, the vendor or the buyer is bound to lose, despite the range 

of the negotiation factor α. This is understandable, because in a bi-level decision 

situation, we always take the leader’s interest as a priority.  

 

These results reveal that when applying bi-level programming technologies on 

pricing problems in supply chains, some improvements can be achieved for a play 

(a buyer or a vendor) if he or she is the leader.  

 

6. Conclusions and Further Studies 

Based on the pricing and replenishment decision problems proposed by Yang et al 

[1], this paper develops two bi-level pricing models in a supply chain. To solve 

problems defined by these two models, a PSO based algorithm is used. 

Experiment results show that the bi-level pricing models and the PSO based 
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algorithm can achieve profit improvements for both buyers and vendors under 

some situations, as compared with the model by Yang et al [1]. In the two-stage 

vendor-buyer inventory system, our experimental data show that the vendor, as 

leader, outperforms the buyer as leader. This is because a vendor, as the leader, 

improves the actual consumption rates; the vendor making the first decision 

ensures that production matches demand more closely, reduces inventory and 

improves business performance. This is why the VMI (vendor managed 

inventory) has become very popular in recent years. 

 

In the future, our research will focus on the following studies: 

(1) Further research and experiments will be undertaken to explore more complex 

applications of bi-level programming techniques in supply chain management, 

such as fuzzy bi-level pricing problems and multi-leader multi-follower bi-

level pricing problems. 

(2) Arising from real world bi-level decision problems in supply chain 

management, fuzzy bi-level programming techniques and multi-leader multi-

follower bi-level programming techniques will be developed to deal with more 

practical bi-level decision situations. 
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