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1 Introduction

Let X be a Banach space and C a nonempty subset of X. A bifunction F :
C × C → R is called monotone if

∀x, y ∈ C, F (x, y) + F (y, x) ≤ 0. (1)

Obviously, a monotone bifunction satisfies F (x, x) ≤ 0 for all x ∈ C. In
most papers on monotone bifunctions one always assumes that

F (x, x) = 0, ∀x ∈ C. (2)

In view of the results to follow, we will only assume that (2) holds in specific
cases.

Monotone bifunctions were mainly studied in conjunction with the so-called
equilibrium problem: find x0 ∈ C such that

∀y ∈ C, F (x0, y) ≥ 0.

Equilibrium problems were studied in many papers (see [1, 2, 4, 7, 9, 10,
11, 12, 14] and the references therein) after Blum and Oettli showed in their
highly influencing paper [5] that equilibrium problems include variational in-
equalities, fixed point problems, saddle point problems etc. In some of these
papers [2, 3, 14] monotone bifunctions were related to monotone operators (see
the next section for details) and maximal monotonicity of bifunctions was de-
fined and studied. In [8] some results on maximal monotonicity of bifunctions
were deduced assuming that the bifunction is locally bounded, i.e. its values
are bounded from above for all x, y in a suitable neighborhood of each point of
C or intC.

The aim of this paper is to study local boundedness of monotone bifunctions
in relation with the corresponding property of monotone operators. After some
preliminary definitions and properties presented in Section 2, we will show in
Section 3 that under very weak assumptions, local boundedness of monotone
bifunctions is automatic at every point of intC. In this way one can obtain an
easy proof of the corresponding property of monotone operators. In addition,
we will show in Section 4 that monotone bifunctions are in some ways better
behaved that the underlying monotone operators, since they can be locally
bounded even at the boundary of their domain of definition. In contrast to
this, it is known that maximal monotone operators T whose domain D(T ) has
nonempty interior are never locally bounded at the boundary of D(T ). In fact,
we will show that in Rn and for locally polyhedral domains C, an automatic local
boundedness of bifunctions holds. We also show that each monotone operator is
“inward locally bounded” at every point of the closure of its domain, a property
which collapses to ordinary local boundedness at interior points of the domain.

In what follows, given a set C ⊆ X we will denote its interior and its closure
by intC and C, respectively. Also, we denote by NC(x) the normal cone at
x ∈ C:

NC(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ C}.
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A bifunction F : C × C → R is called cyclically monotone [8] if

∀x1, x2, ..., xn ∈ C, F (x1, x2) + F (x2, x3) + ...+ F (xn, xn+1) ≤ 0

where xn+1 := x1.
Given a multivalued operator T : X → 2X

∗
, we will denote by D(T ) its

domain and by grT its graph. For two multivalued operators T and S we write
T ⊆ S if S is an extension of T .

2 Monotone bifunctions and monotone opera-
tors

Given any bifunction F : C × C → R, one defines the operator AF : X → 2X
∗

by

AF (x) =

{
{x∗ ∈ X∗ : ∀y ∈ C,F (x, y) ≥ 〈x∗, y − x〉} if x ∈ C,
∅ if x /∈ C (3)

(cf. [2]). It is easy to see that if F is monotone, then AF is a monotone operator.
Note that whenever x ∈ D(AF ), (3) and (1) imply that F (x, x) = 0.

A monotone bifunction F will be called maximal monotone if AF is maximal
monotone [8].

We recall that a monotone bifunction F : C ×C → R is called BO-maximal
monotone [5], if for every (x, x∗) ∈ C ×X∗ the following implication holds:

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ C =⇒ 〈x∗, y − x〉 ≤ F (x, y), ∀y ∈ C. (4)

Proposition 1 If F : C×C → R is maximal monotone, then it is BO-maximal
monotone.

Proof. Assume that

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ C. (5)

Then for every y ∈ C and y∗ ∈ AF (y),

〈x∗, x− y〉 ≥ F (y, x) ≥ 〈y∗, x− y〉 .

Thus, 〈x∗ − y∗, x− y〉 ≥ 0 holds for each (y, y∗) ∈ grAF . Since AF is
maximal monotone, x∗ ∈ AF (x). Consequently,

F (x, y) ≥ 〈x∗, y − x〉 , ∀y ∈ C.

Hence, implication (4) holds.
The converse is not true in general [8], but it is true if C is convex, F (x, ·) is

lower semicontinuous (lsc) and convex for all x ∈ C, and property (2) holds [2].
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Given an operator T : X → 2X
∗
, one can define the bifunction GT : D(T )×

D (T )→ R by
GT (x, y) = sup

x∗∈T (x)

〈x∗, y − x〉.

Then GT satisfies (2), and is monotone whenever T is monotone [8].
Thus, to each monotone operator T corresponds a monotone bifunction GT ,

and to each monotone bifunction F corresponds a monotone operator AF . It is
obvious that T ⊆ AGT for each monotone operator T . In general equality does
not hold; however if T is maximal monotone, then T = AGT so GT is maximal
monotone. More generally, one has:

Proposition 2 Let T : X → 2X
∗

be monotone with closed convex values, and
such that D(T ) is convex. For any x ∈ D(T ), set K(x) = ND(T )(x). If T (x) +
K(x) ⊆ T (x) for all x ∈ D(T ), then AGT = T .

Proof. We have only to prove that AGT (x) ⊆ T (x) for all x ∈ X. Let x ∈ X
and z∗ ∈ AGT (x). Then

sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉 , ∀y ∈ D(T ). (6)

Assume that z∗ /∈ T (x). Since T (x) is closed and convex, there exists v ∈ X
such that

sup
x∗∈T (x)

〈x∗, v〉 < 〈z∗, v〉 . (7)

For every y∗ ∈ K(x) and every x∗ ∈ T (x) one has by assumption x∗+ ty∗ ∈
T (x) for all t ≥ 0. Hence (7) implies

∀t ≥ 0, 〈x∗, v〉+ t 〈y∗, v〉 < 〈z∗, v〉 . (8)

It follows that 〈y∗, v〉 ≤ 0. Therefore v is in the polar cone of K(x), which
is equal to the tangent cone TD(T )(x) of D(T ) at x. Hence v can be written as
a limit

v = lim
n→∞

yn − x
λn

where yn ∈ D(T ) and λn ↘ 0. It also follows from (8) that 〈x∗, v〉 < 〈z∗, v〉.
Thus for n sufficiently large,

〈x∗, yn − x〉 < 〈z∗, yn − x〉 .

But this contradicts (6). Hence z∗ ∈ T (x).
We remark that whenever T is maximal, its values are closed and convex

and T (x) + K(x) ⊆ T (x) for all x ∈ D(T ). If in addition X is reflexive, then
D(T ) is convex so all assumptions of Proposition 2 hold. Another case where
the assumptions obviously hold is provided by the following:

Corollary 3 Let T : X → 2X
∗

be monotone with closed, convex values and
such that D(T ) = X. Then AGT = T .
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Given a monotone operator T , one may define another monotone bifunction
ĜT by the following procedure which is taken from [13] and is reproduced here
for the convenience of the reader. First, define GT : D(T )×coD(T )→ R∪{∞}
as usual:

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 , x ∈ D(T ), y ∈ coD(T ). (9)

Then define ĜT : coD(T ) × coD(T ) → R ∪ {∞} as the concave hull of
GT (·, y) for each y ∈ coD(T ), i.e.,

ĜT (x, y) = sup{
k∑
i=1

αiGT (xi, y) : x =

k∑
i=1

αixi, xi ∈ D(T ),

k∑
i=1

αi = 1, αi ≥ 0}.

(10)
Note that ĜT is well-defined, its values cannot be −∞, and ĜT (x, ·) is lsc

and convex as supremum of lsc and convex functions.

Proposition 4 ĜT is real-valued, monotone, and such that GT (x, y) ≤ ĜT (x, y)
for all (x, y) ∈ D(T )× coD(T ).

Proof. The inequality GT (x, y) ≤ ĜT (x, y) for (x, y) ∈ D(T ) × coD(T ) is
obvious from the definition of ĜT . Since for (x, y) ∈ D(T ) × D(T ) one has
GT (x, y) ≤ −GT (y, x) and −GT (y, ·) is concave, it follows that

∀(x, y) ∈ coD(T )×D(T ), ĜT (x, y) ≤ −GT (y, x). (11)

Now take the convex hull with respect to y of both sides of (11). ĜT (x, y)
remains unchanged since ĜT (x, ·) is convex, and −GT (y, x) becomes −ĜT (y, x).
It follows that

ĜT (y, x) + ĜT (x, y) ≤ 0,∀(x, y) ∈ coD(T )× coD(T ). (12)

Thus, ĜT is monotone. Also, it follows from (12) that ĜT is real-valued
since ĜT does not take the value −∞.

Note that ĜT (x, x) ≤ 0 for all x ∈ coD(T ), while for x ∈ D(T ) one
has ĜT (x, x) = 0 since ĜT (x, x) ≥ GT (x, x). It is not true in general that
ĜT (x, x) = 0 for all x ∈ coD(T ).

We note in passing the relation of the functions GT and ĜT with the Fitz-
patrick function [6] and the Krauss saddle function [13]. Given a monotone op-
erator T , the Fitzpatrick function FT is the closed convex function on X ×X∗
defined by

FT (x, x∗) = sup{〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : (y, y∗) ∈ grT}.

Now extend the bifunctions GT and ĜT as functions from X × X to R ∪
{−∞,∞} by using the same formulas (9) and (10), respectively, but with
(x, y) ∈ X × X. Then GT (x, y) = −∞ if and only if x /∈ D(T ), while
ĜT (x, y) = −∞ if and only if x /∈ coD(T ).
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A simple calculation shows that for all (x, x∗) ∈ X ×X∗,

FT (x, x∗) = sup
y∈D(T )

(〈x∗, y〉+ sup
y∗∈T (y)

〈y∗, x− y〉)

= sup
y∈D(T )

(〈x∗, y〉+GT (y, x)) = (−GT (·, x))
∗

(x∗)

i.e., FT is the convex conjugate of −GT with respect to the first variable. Thus,
for (x, y) ∈ X ×X,

(−GT (·, x))
∗∗

(y) = sup{〈x∗, y〉 − FT (x, x∗) : x∗ ∈ X∗}.

Now (−GT (·, x))
∗∗

is the closure (in the sense of Rockafellar [16]) of the
convex hull of −GT (·, x), i.e., the closure of −Ĝ(·, x). On the other hand, for
(x, y) ∈ coD(T ) × coD(T ), ĜT (x, y) = KT (x, y) where KT is the function
defined by Krauss (Definition 6 in [13]).

From now on, we will consider the restrictions of GT and ĜT to D(T )×D(T )
and coD(T )× coD(T ), respectively. Thus GT and ĜT will be real-valued and
monotone.

3 Local boundedness of monotone bifunctions

We reproduce the following definition from [8].

Definition 5 A bifunction F is called locally bounded at x0 ∈ X if there exist
ε > 0 and k ∈ R such that F (x, y) ≤ k for all x and y in C ∩B (x0, ε). We call
F locally bounded on a set K ⊆ X if it is locally bounded at every x ∈ K.

We recall that an operator T : X → 2X
∗

is called locally bounded at x0 ∈ X
if there exist ε > 0 and k > 0 such that ‖x∗‖ ≤ k for all x∗ ∈ T (x), x ∈ B(x0, ε).

Remark 6 a) If a bifunction (not necessarily monotone) F : C × C → R is
locally bounded at x0 ∈ intC, then AF is locally bounded at x0. Indeed,
assume that ε > 0 and k ∈ R are such that B(x0, ε) ⊆ C and F (x, y) ≤ k for
all x, y ∈ B(x0, ε). Then for every x ∈ B(x0,

ε
2 ), x∗ ∈ AF (x) and v ∈ B(0, 1),

one has x+ ε
2v ∈ B(x0, ε) and

k ≥ F (x, x+
ε

2
v) ≥ ε

2
〈x∗, v〉 .

Thus ‖x∗‖ ≤ 2k
ε and AF is locally bounded at x0. The converse is not

true in general (see Example 20 at the end of this section and the subsequent
discussion).

b) Likewise, given an operator T , if GT is locally bounded at x0 ∈ intD(T ),
then T is locally bounded at x0. Indeed, AGT is locally bounded at x0 by the
above argument, so T is also locally bounded since T ⊆ AGT .

Local boundedness of bifunctions is a useful property. We reproduce here
two of the results in [8].
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Proposition 7 Assume that X is reflexive, C is convex, and F is maximal
monotone, locally bounded on C, and such that F (x, x) = 0 for all x ∈ C. Then

C ⊆ D(AF ).

Proposition 8 Let F be maximal monotone, locally bounded on intC and such
that F (x, x) = 0 for all x ∈ C. If C ⊆ D(AF ), then intC = intD(AF ).

Note that in [8] all results are stated for reflexive spaces, but in fact the
proof of Proposition 8 does not use reflexivity.

We will show that, under mild assumptions, any monotone bifunction is
locally bounded in the interior of its domain. We will need the following lemma,
which generalizes to quasiconvex functions a well-known property of convex
functions.

Lemma 9 Let X be a Banach space and f : X → R ∪ {∞} be lsc and quasi-
convex. If x0 ∈ int dom(f), then f is bounded from above in a neighborhood of
x0.

Proof. Let ε > 0 be such that B(x0, ε) ⊆ dom(f). Set Sn = {x ∈ B(x0, ε) :
f(x) ≤ n}. Then Sn are convex and closed and

⋃
n∈N

Sn = B(x0, ε). By Baire’s

theorem, there exists n ∈ N such that intSn 6= ∅. Take any x1 ∈ intSn and
any x2 6= x0 such that x2 ∈ B(x0, ε) and x0 ∈ co{x1, x2}. Choose n1 >
max{n, f(x2)}. Then x1 ∈ intSn1

, x2 ∈ Sn1
hence x0 ∈ intSn1

so f is bounded
by n1 at a neighborhood of x0.

Note that, if in the above lemma f is lsc and convex, then the result is
obvious since f is continuous at every interior point of dom(f).

Theorem 10 Let X be a Banach space, C ⊆ X a set, and F : C × C → R a
monotone bifunction such that for every x ∈ C, F (x, ·) is lsc and quasiconvex.
Assume that for some x0 ∈ intC there exists a neighborhood B(x0, ε) ⊆ C such
that for each x ∈ B(x0, ε), F (x, ·) is bounded from below3 on B(x0, ε). Then F
is locally bounded at x0.

Proof. Let ε > 0 be as in the assumption and define g : B(x0, ε) → R ∪ {∞}
by

g(y) = sup{F (x, y) : x ∈ B(x0, ε)}.

We show that g is real-valued. Given y ∈ B(x0, ε), for each x ∈ B(x0, ε),

F (x, y) ≤ −F (y, x).

By assumption, there exists My such that F (y, x) ≥My for all x ∈ B(x0, ε).
Hence g(y) ≤ −My <∞, i.e., g is real-valued.

Now g is lsc and quasiconvex, and x0 ∈ int dom(g). By Lemma 9, we can find
ε1 < ε and M ∈ R such that g(y) ≤M for all y ∈ B(x0, ε1). Then F (x, y) ≤M
for all x, y ∈ B(x0, ε1) so F is locally bounded at x0.

3This bound may depend on x.
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Corollary 11 Let X be reflexive and F : C × C → R be monotone and such
that for every x ∈ C, F (x, ·) is lsc and quasiconvex. Then F is locally bounded
on intC.

Proof. Given x0 ∈ intC choose ε > 0 such that B(x0, ε) ⊆ C. Since X is
reflexive, B(x0, ε) is weakly compact, hence for each y ∈ C, F (y, ·) has a min-
imum on B(x0, ε). Consequently, all assumptions of Theorem 10 are satisfied.

When F (x, ·) is lsc and convex, reflexivity of X is not necessary:

Corollary 12 Let F : C ×C → R be monotone and such that for every x ∈ C,
F (x, ·) is lsc and convex. Then F is locally bounded on intC.

Proof. Let x0 ∈ intC. Choose ε > 0 be such that B(x0, ε) ⊆ C. For every
x ∈ B(x0, ε), the subdifferential of ∂F (x, ·) is nonempty at x. For every x∗ ∈
∂F (x, ·)(x) and y ∈ B(x0, ε) one has

F (x, y)− F (x, x) ≥ 〈x∗, y − x〉 ≥ −‖x∗‖ ‖x− y‖ ≥ −2ε ‖x∗‖ .

Thus F (x, ·) is bounded from below on B(x0, ε). According to the theorem, F
is locally bounded at x0.

If T : X → 2X
∗

is monotone, then GT is monotone while GT (x, ·) is lsc and
convex. According to the Corollary 12 and Remark 6, we immediately obtain:

Corollary 13 Let X be a Banach space and T : X → 2X
∗

be monotone. Then
T is locally bounded at every point of intD(T ).

We see that the well-known local boundedness of monotone operators can
be shown very easily through Corollary 12 on local boundedness of bifunctions.
In fact, whenever property (2) holds, one can also easily show the converse, i.e.,
provide a proof of Corollary 12 assuming that Corollary 13 is known:

Proposition 14 Assume that F is monotone, satisfies (2) and F (x, ·) is lsc
and convex for each x ∈ C. Then F is locally bounded on intC.

Proof. Under our assumptions, AF (x) is actually the subdifferential ∂F (x, ·) (x)
of the lsc and convex function F (x, ·) at x. It is known that this is nonempty
for all x ∈ intC. Hence, the monotone operator AF is locally bounded on intC.

For each x0 ∈ intC choose ε > 0 and k ∈ R such that B (x0, ε) ⊆ C and
||y∗|| ≤ k for every y∗ ∈ AF (y), y ∈ B (x0, ε). Then for each x, y ∈ B (x0, ε)
and y∗ ∈ AF (y),

F (x, y) ≤ −F (y, x) ≤ −〈y∗, x− y〉 ≤ ‖y∗‖ ‖x− y‖ ≤ 2εk.

Thus F is locally bounded on intC.
In fact, with the same proof as in the above proposition, we obtain the

slightly more general result, which is a kind of converse of Proposition 8:
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Proposition 15 Assume that F is a monotone bifunction and intC = intD
(
AF
)
.

Then F is locally bounded on intC.

The above proposition induces the following result, which does not assume
lower semicontinuity or quasiconvexity.

Proposition 16 Suppose that intC 6= ∅ and F : C × C → R is maximal
monotone, cyclically monotone and satisfies F (x, x) = 0 for all x ∈ C. Then F
is locally bounded on intC.

Proof. Since F is maximal monotone and cyclically monotone, by Proposition
5.2 (1) of [8] we have

intC = intD
(
AF
)

.

Now, Proposition 15 implies that F is locally bounded on intC.
One can also obtain a well-known generalization of Corollary 13 by using

bifunctions. We start with a simple remark:

Lemma 17 Suppose that X is a Banach space and T : X → 2X
∗

is monotone.
Then

(i) T ⊆ AGT ⊆ AĜT ;

(ii) T = AGT = AĜT , if T is maximal monotone.

Proof. (i) T ⊆ AGT is obvious. Since GT (x, y) ≤ ĜT (x, y) for all (x, y) ∈
C × coC, we deduce that AGT ⊆ AĜT .

(ii) Obvious consequence of (i).

Proposition 18 Suppose that X is a Banach space and T : X → 2X
∗

is mono-
tone and int(coD(T )) 6= ∅. Then T is locally bounded on int(coD(T )).

Proof. We know that ĜT is monotone and ĜT (x, ·) is lsc and convex for all
x ∈ coD(T ). Thus by Corollary 12, ĜT is locally bounded on int(coD(T )).

It follows from Remark 6 that AĜT is locally bounded on int(coD(T )). Now
Lemma 17 implies that T is locally bounded on int(coD(T )).

When the assumptions of lower semicontinuity and quasiconvexity do not
hold, then local boundedness may fail, as shown by the following examples.

Example 19 Let x∗ be a noncontinuous linear functional onX and set F (x, y) =
x∗ (y − x). Then F is a monotone bifunction, which is affine but obviously is
not locally bounded at any x ∈ X.

Example 20 Define F on R × R by F (x, y) = 1
|y| −

1
|x| for x 6= 0 and y 6= 0,

and F (x, 0) = x = −F (0, x) , x ∈ R. Then F is monotone, F (x, ·) is lsc for
every x ∈ R, but F is not locally bounded at 0. In addition, this bifunction is
a counterexample to the converse of Proposition 1 and of Remark 6: one can
readily show that F is BO-maximal monotone and that D(AF ) = {0}, with
AF (0) = {−1}. It follows that F is not maximal monotone and also AF is
locally bounded at {0} while F is not.
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In contrast to the previous example, if a monotone operator T is locally
bounded at x0 ∈ X, then GT is not only locally bounded but also locally
bounded by an arbitrarily small positive number at x0. Indeed, if ‖x∗‖ ≤ k for
all x ∈ B(x0, ε), x

∗ ∈ T (x), then for all x, y ∈ D(T ) ∩ B(x0, ε) and y∗ ∈ T (y)
we find

GT (x, y) ≤ −GT (y, x) ≤ −〈y∗, x− y〉 ≤ 2εk.

4 Local boundedness at arbitrary points

In Proposition 7 one asks for the bifunction to be maximal monotone and locally
bounded on C. This assumption seems to be in contradiction with the theory
of maximal monotone operators. In fact, if T : X → 2X

∗
is a maximal mono-

tone operator and intD(T ) 6= ∅, then T is never locally bounded on elements
of the boundary of D(T ); indeed, we know that T (x) + K(x) ⊆ T (x) where
K(x) := ND(T )(x) is a cone which is not equal to {0}, for x belonging to the
boundary of D(T ). However, this does not imply that the maximal monotone
bifunction GT is also unbounded at x0. In fact, in Rn we have a result of local
boundedness at arbitrary points and in particular at boundary points, for more
general bifunctions.

Let us denote by ||x||∞ the sup norm of x = (x1, x2, ..., xn) ∈ Rn,

||x||∞ = max{|x1|, |x2|, ..., |xn|},

and by B∞(x, ε) the closed ε−ball around x with respect to ‖·‖∞. We call a
subset C of Rn locally polyhedral at x0 ∈ C if there exists ε > 0 such that
B∞(x, ε) ∩ C is a polytope.

In the following proposition we do not assume that F is monotone.

Proposition 21 Let C ⊂ Rn be locally polyhedral at x0 ∈ C and F : C × C
→ R be a bifunction. If F (x, ·) is quasiconvex for each x ∈ C, and F (·, y) is
upper semicontinuous (usc) for all y ∈ C, then F is locally bounded at x0.

Proof. Choose ε > 0 such that B∞(x0, ε) ∩ C is a polytope. Then there exist
x1, x2, ..., xk such that

B∞(x0, ε) ∩ C = co{x1, x2, ..., xk}.

Since F (x, ·) is quasiconvex, for all x and y in B∞(x0, ε) ∩ C we have

F (x, y) ≤ max{F (x, x1), F (x, x2), ..., F (x, xk)}.

On the other hand F (·, xi) is usc and B∞(x0, ε) ∩ C is a compact set, thus
F (·, xi) attains its maximum on B∞(x0, ε) ∩ C; that is, there exists Mi such
that

F (x, xi) ≤Mi for i = 1, 2, ..., k and x ∈ B∞(x0, ε) ∩ C.
Set M = max{M1,M2, ...,Mk}. Then

F (x, y) ≤M for all x, y ∈ B∞(x0, ε) ∩ C.
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This means that F is locally bounded at x0.
Note that if x0 ∈ intC then C is locally polyhedral at x0. Hence bifunctions

satisfying the assumptions of Proposition 21 are in particular locally bounded
in the interior of C.

Proposition 22 Let C ⊂ Rn be locally polyhedral at x0 and F : C ×C → R be
a monotone bifunction. If F (x, .) is quasiconvex and lsc for all x ∈ C, then F
is locally bounded at x0.

Proof. Choose ε > 0 such that B∞(x0, ε) ∩ C is a polytope. Since F (x, ·) is
quasiconvex, as the proof of the previous proposition there exist x1, x2, ..., xk ∈
B∞(x0, ε) ∩ C such that for all x, y ∈ B∞(x0, ε) ∩ C we have

F (x, y) ≤ max{F (x, x1), F (x, x2), ..., F (x, xk)}. (13)

Since F (x, y) is monotone,

F (x, xi) ≤ −F (xi, x) for i = 1, 2, ..., k. (14)

For each i, −F (xi, ·) is usc. Therefore, −F (xi, ·) has a maximum Mi on
B∞(x0, ε) ∩ C. Set M = max{M1,M2, ...,Mk}. Then (13) and (14) entail

F (x, y) ≤M for all x, y ∈ B∞(x0, ε) ∩ C,

i.e., F is locally bounded at x0.
Thus, if C is a polyhedral set and F satisfies the assumptions of Proposition

21 or 22, then it is locally bounded on C, not only on intC. However, the fol-
lowing example shows that this property may fail if C is not locally polyhedral.

Example 23 Set C = {(α, β) ∈ R2 : α ≥ β4}. Define the function f on R2 by

f(α, β) =


β2

2α , if α ≥ β4, α > 0
0, if α = β = 0
∞, otherwise.

This function is lsc and convex (it is the restriction to C of the function in
[16, p. 83]).

Now define the bifunction F : C×C → R by F (x, y) = f(y)−f(x), x, y ∈ C.
This bifunction F has very nice properties: it is cyclically monotone, F (x, ·) is
convex and lsc, F (·, y) is concave and usc, it is defined on a closed convex
set thus it is maximal monotone (see Proposition 3.1 in [8]). Nevertheless, it
is not locally bounded at 0. Indeed, consider the sequences xn = (0, 0) and
yn = ( 1

n4 ,
1
n ). Then F (xn, yn) → ∞, hence every neighborhood of 0 contains

pairs x, y with F (x, y) as large as we wish.

Since monotone bifunctions can be locally bounded at the boundary of their
domain, it is interesting to investigate an analogous property for monotone
operators. Given a subset C ⊆ X, let us denote by inwC(x0) :=

⋃
λ>0

1
λ (intC−x0)
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the set of inward directions of C at x0. Note that if v ∈ inwC(x0) then v is
also an inward direction at all x sufficiently close to x0. Indeed, it is sufficient
to take x ∈ B(x0, ε) where ε > 0 is such that B(x0 + λv, ε) ⊆ C.

Definition 24 An operator T : X → 2X
∗

is called inward locally bounded at
x0 ∈ D(T ) if for each v ∈ inwC(x0) there exist k > 0 and ε > 0 such that for
all x ∈ B(x0, ε) ∩ C and x∗ ∈ T (x), one has 〈x∗, v〉 ≤ k.

We remark that if T is inward locally bounded at an interior point x0 of
D(T ), then by the uniform boundedness principle it is locally bounded at x0,
since inwD(T )(x0) = X.

Proposition 25 A monotone operator T is inward locally bounded at every
point of D(T ).

Proof. Let x0 ∈ D(T ) and v ∈ inwD(T )(x0) be given. Choose λ > 0 such that
x0 + λv ∈ intD(T ). Since T is locally bounded at x0 + λv, there exist ε > 0
and k > 0 such that B(x0 + λv, ε) ⊆ D(T ) and ‖y∗‖ ≤ k for all y∗ ∈ T (y),
y ∈ B(x0+λv, ε). For every x ∈ B(x0, ε)∩D(T ), one has x+λv ∈ B(x0+λv, ε).
Thus for every x∗ ∈ T (x) and y∗ ∈ T (x+ λv),

〈x∗, v〉 =
1

λ
〈x∗, x+ λv − x〉 ≤ 1

λ
〈y∗, x+ λv − x〉 ≤ k ‖v‖ .

Thus T is inward locally bounded at x0.
Comparing this last result with Propositions 21 and 22, we should remark

that these propositions imply a somewhat stronger local boundedness than in-
ward local boundedness. Indeed, if T is monotone and D(T ) is locally polyhe-
dral, then by Proposition 22 the bifunction GT is locally bounded everywhere;
thus, 〈x∗, y − x〉 is bounded from above for all x∗ ∈ T (x) where x, y are near a
point x0 of the boundary, even if y − x is “outward” rather than inward. This
is because whenever y − x is outward, its norm is small, so that 〈x∗, y − x〉 is
bounded even if the norm of x∗ is large.
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