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Abstract

We study optimal solutions to an abstract optimization pFobfor measures, which
is a generalization of classical variational problems fioimation theory and statistical
physics. In the classical problems, information and reéagintropy are defined using
the Kullback-Leibler divergence, and for this reason optimeasures belong to a one-
parameter exponential family. Measures within such a fahdle the property of mutual
absolute continuity. Here we show that this property chiarates other families of opti-
mal positive measures if a functional representing infdiomehas a strictly convex dual.
Mutual absolute continuity of optimal probability meassiedlows us to strictly separate
deterministic and non-deterministic Markov transitiomreds, which play an important
role in theories of decisions, estimation, control, comioation and computation. We
show that deterministic transitions are strictly sub-myati, unless information resource
with a strictly convex dual is unconstrained. For illustat we construct an example
where, unlike non-deterministic, any deterministic kémither has negatively infinite
expected utility (unbounded expected error) or commuagdfinite information.

1 Introduction

This work was motivated by the fact that probability measushin an exponential family,
which are solutions to variational problems of informatibeory and statistical physics, are
mutually absolutely continuous. Thus, we begin by clanifyand discussing this property in
the simplest setting. L& be a finite set, and let: Q — R be a real function. Consider the
family {ys }x of real functionsyz : Q — R, indexed byg > 0:

yp(w) = @ yp(w), yo(w) >0 (1)

The elements ofy; }x represent one-parameter exponential measgy@s) = 3 ,,ce Yp (W)

on Q, and normalized elemen®;(w) = yg(w)/yp(Q2) are the corresponding exponential
probability measures. Of course, exponential measuredeatefined on an infinite set, for
example, as elements of the Banach space .#(Q,R, || -||1) of real Radon measures on
a locally compact spac@ [11]. In this casex ande* are elements of the normed algebra
X :=C¢(Q,R,] - |l») of continuous functions with compact supportin As will be clarified
later,Y can be considered not only as the duakobut also as a module over algebtawhich
explains the definition of an exponential family (1) as nplitiation ofyp € Y by elements
of X. Furthermore, for somgy, exponential measures are finite even if functiois not
continuous, has non-compact support and unbounded. Assiothstruction can be made in
the case wheiX is a non-commutative-algebra, such as the algebra of compact Hermitian
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operators on a separable Hilbert space used in quantumhbilibbtheory. However, quantum
exponential measures can be defined in different ways, syh:a exp(Bx+Inyp) oryg =

ycl)/2 exp(Bx) y(l)/z, which are not equivalent.

One property that characterizes all these exponential unesss that elements within a
family are mutually absolutely continuous. We remind tha&surey is absolutely continuous
with respect to measu if z(E) = 0 impliesy(E) = O for all E in the g-ring of subsets of
Q. Mutual absolute continuity is the case when the implicatimlds in both directions. It
is easy to see from equatidd (1) that exponential measutbgwvaine family have exactly the
same support and are mutually absolutely continuous. Thjsgpty is particularly important,
when measures are considered on a composite system, sudfirastgroduct of two sets
Q = Ax B. Normalized measures on su@hare joint probability measurd¥ A x B) uniquely
defining conditional probabilitieB(A | B) (i.e. Markov transition kernels). Observe now that
if P(Ax B) andP(A)P(B) (product of marginals) are mutually absolutely continyairen
P(a|b) > 0 for alla< A such thaP(a) > 0. Conditional probability with this property is non-
deterministic, because several elemesA can be in the ‘image’ ob € B. Clearly, all joint
probability measures within an exponential family definersmon-deterministic transition
kernels.

Another, perhaps the most important, property of expoakfdimilies is that they are, in
a certain sense, optimal. It is well-known in mathematitatistics that the lower bound for
the variance of the unbiased estimator of an unknown paeanagfined by the Rao-Cramer
inequality, is attained if and only if the probability digwtion is a member of an exponential
family [13,(31]. In statistical physics, it is known that exgential distributions (i.e. Boltzmann
or Gibbs distributions) maximize entropy of a thermodynaahsystem under a constraint on
energy [[17]. In information theory, exponential trangitikernels are known to maximize a
channel capacity [38, 34, B5], and they are used in some naiged optimization techniques
(e.g. [20]) as well as various machine learning algorithB8.[ A one-parameter exponential
family has been studied in information geometry, and it waswa to be a Banach space
with an Orlicz norm[[30]. Similar constructions have beensidered in quantum probability
[10,[36].

Optimality of exponential families of measures on one hand #heir mutual absolute
continuity on the other is a particularly interesting condtion, because it seems that for the
first time we have an optimality criterion, with respect toig¥hall deterministic transitions
between elements of a composite system are strictly subralptThis appears to have impor-
tance not only for information and communication theoriag, also for theories of computa-
tional and algorithmic complexity, because Markov transikernels can be used to represent
various input-output systems, including computationateyms and algorithms. Thus, under-
standing the relation between mutual absolute continuithivvsome families of measures
and their optimality was the main motivation for this work.

It is well-known, and will be reminded later in this paperatta one-parameter expo-
nential family of probability measures is the solution toaaiational problem of minimizing
Kullback-Leibler (KL) divergence [23] of one probabilityeasure from another subject to a
constraint on the expected value. In fact, the logarithmicfion, which appears in the defini-
tion of the KL-divergence, is precisely the reason why thegomential function appears in the
solutions. However, mutual absolute continuity, whichdomposite systems implies the non-
deterministic property of conditional probabilities, istrexclusive to families of exponential
measures. Indeed, geometrically, this property simplynadhat measures are in the inte-
rior of the same positive cone, defined by their common supfdrus, our method is based
on a generalization of the above mentioned variational Iprotby relaxing the definition of



information and then employing geometric analysis of ilsitsons.

In the next section, we introduce the notation, define thegdized optimization problem
and recall some basic relevant facts. An abstract infoonatesource will be represented by
a closed functionaF : Y — RU {«}, defined on the spacé of measures, and such that its
valuesF (y) can be associated with valugy,yp) of some information distance (e.g. the KL-
divergence). In Sectidn 3 we establish several properfieptimal solutions. In particular,
we prove in Propositionl 3 that the optimal value functionndes isomorphism putting infor-
mation in duality with expected utility of an optimal systerihese results are then used in
Sectiorl 4 to prove a theorem relating mutual absolute coityiof optimal positive measures
to strict convexity of functionaF*, the Legendre-Fenchel dual Bfrepresenting information
resource. We show that strict convexity 6f is necessary to separate different variational
problems by optimal measures, and for this reason it appeds a natural minimal require-
ment on information, generalizing the additivity axiom. daase proof of mutual absolute
continuity does not depend on commutativity of algeKrgre-dual ofy, these results apply
to a general, non-commutative setting used in quantum pitityaand information theories.
In Sectior b, we discuss optimal Markov transition kernetn@litional probabilities) in the
classical (commutative) setting, which is done for sinipliceasons. We shall recall several
facts about transition kernels, information capacity ofmoeyless channels they represent and
the corresponding variational problems. The main resuthisfsection is a theorem separat-
ing deterministic and non-deterministic kernels. We show mutual absolute continuity of
optimal Markov transition kernels implies that optimalrsitions are non-deterministic; de-
terministic transitions are strictly suboptimal if infoation, understood broadly here, is con-
strained. This result will be illustrated by an example, vehany deterministic kernel either
has a negatively infinite expected utility (unbounded etguberror) or communicates infinite
information; a non-deterministic kernel, on the other haraah have both finite expected util-
ity and finite information. In the end of the section we shalhsider applications of this work
to theories of algorithms and computational complexity. $iall discuss how deterministic
and non-deterministic algorithms can be represented bkd#dransition kernels between the
space of inputs and the space of output sequences, and hetwaiots on the expected utility
or complexity of the algorithms are related to variationadlppems studied in this work. The
paper concludes by a summary and discussion of the results.

2 Preliminaries

This work is based on a generalization of classical vamaligroblems of information theory
and statistical physics, which can be formulated as folldves (Q, %) be a measurable set and
let 22(Q) be the set of all Radon probability measure€brWe denote by {x} the expected
value of random variabl& : Q — R with respect top € 22(Q). An information distance is

a functionl : & x & — RU{w} that is closed (lower semicontinuous) in each argument.
An important example is the Kullback-Leibler divergerige(p,q) := Ep{In(p/a)} [23]. We
remind thatf,{x} is linear inp, andlk_(p, q) is convex. The variational problem is formulated
as follows:

maximize (minimize) Ep{x} subjectto Ep{In(p/a)} <A (2)

where optimization is over probability measumes £2. This problem can be considered as
linear programming with an infinite number of linear constts, and it can be formulated as



the following convex programming problem:
minimize Ep{In(p/q)} subjectto Ep{x} >v (Ep{x} < u) (3)

Figurel1 illustrates these variational problems on a 2-&rpf probability measures over a
set of three elements with the uniform distributigfi) = 1/3 as the reference measure.

Figure 1: 2-Simplex? of probability measures over s@t= {wy, w,, w3} with level sets of
expected utilityE,{x} = v and the Kullback-Leibler divergendey{In(p/q)} = A. Proba-
bility measurepg is the solution to variational problems] (2) and (3). The fgnfips }x of

solutions, shown by dashed curve, belongs to the interig?of

In optimization and information theorie&,{x} represents expected utility to be maxi-
mized or expected cost to be minimized. In physics, it regtsinternal energy. Information
distancdky (p,q) is also called relative entropy, and the inequaligy(p,q) < A represents an
information constraint Depending on the domain of definition of the probability s@as,
the information constraint may have different meaningshsas a lower bound on entropy (i.e.
irreducible uncertainty), partial observability of a rana variable, a constraint on the amount
of statistical information (i.e. a number of independestgequestions or bits of information),
on communication capacity of a channel, on memory of a coatjmuntal device and so on [B5].
These variational problems can also be formulated in quaptoysics, where is an element
of a non-commutative algebra of observables, prglare quantum probabilities (states).

As is well-known, solutions to problemis] (2) and (3) are eleta®f an exponential family
of probability distributions. Before we define an approferigeneralization of these problems,
we remind some axiomatic principles underpinning the ahoicfunctionals.

2.1 Axioms behind the choice of functionals

The choice of linear objective function&{x} has axiomatic foundation in game thedry![27],
whereQ is equipped with total pre-ordet, called thepreference relationand functionx :
Q — Ris itsutility representation w; < wy if and only if X(a ) < x(wy). Because the quotient



setQ/ ~ of a pre-ordered set with a utility function is isomorphicatgsubset of the real line,
it is separable and metrizable Im([a], [b]) = |x(a) — x(b)|, and therefore every probability
measure on the completion@f/ ~ is Radon (e.g. by Ulam’s theorem for probability measures
on Polish spaces).

The setZ(Q) of all classical probability measures @nis a simplex with Dirac measures
d, comprising the set ex#? of its extreme points [29]. The question that has been dészlis
extensively is: How to extend pre-ordsy, which was defined o = ext<?, to the whole
2? It was shown in[[27] that linear (or affine) functioriah{x} is the only functional that
makes the extended pre-orde?”, <) compatible with the vector space structureYob &
and Archimedian. We remind that for the corresponding pden(Y, <) D (£, ) this is
defined by the axioms:

1. g< pimpliesq+r < p+randag< apforallr €Y anda > 0.
2. nq< pforallne Nimpliesq < 0.

In this paper we shall follow this formalism assuming tha tbjective functional is linear.
We note that non-linearity may arise in certain dynamicateys, whera may change with
time, but this will not be considered in this work, becausefoaus is on optimization prob-
lems with respect to some fixed preference relagpar utility x on Q. A non-commutative
(quantum) analogue of a utility function was givenl[in [7] bidarmitian operatok on a sepa-
rable Hilbert space (an observable) with its real spectrepnasenting a total pre-order on its
eigen states. The principal difference with the classitabty is the existence of incompatible
(non-commutative) utility operators.

As mentioned earlier, information constraints may be eeldb different phenomena (e.g.
uncertainty, observability, statistical data, commutizacapacity, memory, etc). However,
in information theory they often have been represented bhgtionals, such as relative entropy
or Shannon information, which are defined using the Kullblaglbler divergencdg,. Its
choice is also based on a number of axioms[14, 19, 33], suadisvity: k. (p1p2,q102) =
Ik (P1,01) + Ik (P2, a2). In fact, this axiom is precisely the reason why the logamifanction
appears in its definition (i.e. as homomorphism betweenipticktive and additive groups of
R). There is, however, an abundance of other informatioradegts and metrics, such as the
Hellinger distance, total variation and the Fisher metriédthough they often fail to have
a proper statistical interpretation [12], there has beeang@wed interest in using different
information distances and contrast functions in applicetito compare distributions (e.g. see
[4,16,26]).

For reasons outlined above, we shall generalize problejnan@ [3) by considering an
abstract information distance or resource, which will beduto define a subset of feasible
solutions. In addition, we shall not restrict the problemaarmalized measures, which makes
the exposition a lot simpler. Normalization can be perfatrata later stage. We now define
an appropriate algebraic structure.

2.2 Dual algebraic structures
Let X andY be complex linear spaces put in duality via bilinear fofm) : X xY — C:
(xy)=0,VxeX =y=0, (xy)=0,vyeY =x=0

We denote byX? the algebraic dual ok, by X’ the continuous dual of a locally convex space
X and by X* the complete normed dual space (4, || - ||). The same notation applies to



dual spaces of. The results will be derived using only the facts thaandY are ordered
linear spaces in duality. These spaces, however, can fadnar algebraic structures, which we
briefly outline here.

SpaceX is closed under an associative, but generally non-comiweithinary operation
-1 X x X — X (e.g. pointwise multiplication or matrix multiplicatiomnd involution as a self-
inverse, antilinear map : X — X reversing the multiplication orderx*z)* = z'x. Thus,X
is ax-algebra. The set of all Hermitian elements- x* is a real subspace &, and if every
X*x has positive real spectrum, th&nis called atotal «-algebra, in which the spectrum of all
Hermitian elements is real. In this case, Hermitian elesgi form a pointed convex cone
X4, generatingk = X, — X,.

The dual spac¥ is closed under the transposed involutionY — Y, defined by(x,y*) =
(x*,y)*. Itis ordered by a positive cong, := {y: (xX*x,y) > 0, Vx € X}, dual ofX;, and
it has order unityy € Y, (also called a reference measure), which is a strictly pesiinear
functional: (x*x,yo) > O for all x # 0. If the pairing(-,-) has the property that for eace
X there exists a transposed elemént Y such that(zxy) = (x,Zy), thenY D X is a left
(right) module overX with respect to the transposed left (right) actiprs Zy (y — yz/*)
of X onY such that(xz) = ZX and (x,yz"*) = (x*,z2y*)* = (zZ'x*,y*)* = (xzy) (see [9],
Appendix). In many practical cases, the pairing) is central (or tracial), so that the left and
right transpositions act identically gi: z"'yp = yoZ* for all z€ X. In this case, the element
Z"yo = YoZ* €Y can be identified with a complex conjugationzaf X.

Two primary examples of a totatalgebraX, which are important in this work, are the
commutative algebr@.(Q,C, || - ||») of continuous functions with compact support in a locally
compact topological spad® and the non-commutative algeb@a(.7",C, || - ||) of compact
Hermitian operators on a separable Hilbert spa€e The corresponding examples of dual
spaceY = X* are the Banach spac# (Q,C, || - ||1) of complex signed Radon measures®n
and its non-commutative generalizatioff (.77, C, || - ||1). Note that these examples of algebra
X are generally incomplete and contain only an approximagetity. However, byX we shall
understand here an extended algebra that contains addiisgements. In particulaX will
contain the unit element & X such that(1,y) = |ly||1 if y> 0 (i.e. 1€ X coincides orY,
with the norm|| - |1, which is additive orY,). Furthermore, because constraints in variational
problems[(R) or(3), or their generalizations, define a prepbset of spacg, we can consider
random variables represented by elemergsy? that are outside of the Banach spacee.g.
unbounded functions or operators).

Below are three main examples of pairiKgandY by a sum, an integral or trace:

ey =IOy, )i [ X@dy@), ) =tie) @
Q

Although the linear functionalg(y) = (x,y) are generally complex-valued, we shall assume,
without further mentioning, that,-) is evaluated on Hermitian elements- x* andy = y* so
that(x,y) € R. In particular, the expected vallig{x} = (X, p) € R, wherexis Hermitian and
pis positive. Thus, the expressions ‘maximize (minimiz@) = (x,y)’ should be understood
accordingly as maximization or minimization of a real fuaogl.

2.3 Generalized variational problems for measures

Normalized non-negative measures (i.e. probability meare elements of the set:

P = {yGYYZO, <17y> :1}



This is a weakly compact convex set, and thereféte- clcoext? by the Krein-Milman the-
orem. In the commutative cas€? is a simplex, because eaphe & is uniguely represented
by extreme point® € ext#? [29]. In information geometry?? is referred to astatistical
manifold and its topological properties have been studied by defidifferent information
distances : # x & — R, U{o} [3,[12,[30]. We can generalize this by considering informa-
tion resource as a functional, defined for all positive orrhiian elements.

A
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Figure 2: Optimal value functions = X(A) andu = x(A). The valuep = inf F corresponds
to U € [Ugy, Up]. Special values\, A of the constraind > F(y) correspond respectively to
optimal value andu.

LetF :Y — RU{} be a closed functional, so thitis finite at somey € Y, and sublevel
sets{y: F(y) <A} are closed in the weak topology(Y, X) for eachA. Because- is not
included in the definition of closeH, it is also lower-semicontinuous_[32]. We shall assume
without further mentioning that the effective domain dem= {y: F(y) < e} has non-empty
algebraic interior. In addition, I¥ is defined over the field of complex numbers, we shall also
assume that doin contains only Hermitian elemenys=y* (e.g. dont CY,).

Variational problems(2) and](3) are generalized by comsideall, not necessarily posi-
tive or normalized measures, and by using any closed fumadti® to define an information
resource. The optimal values achieved by solutions to thestems are defined by the fol-
lowing optimal value functions

X(A) = sup{{xy):F(y) <A} 5)
X(A) = inf{(xy):F(y) <A} (6)
X Hu) = inf{F(y): (xy) > v} ©)
XHu) = inf{F(y):(xy) <v} (8)

We definexX(A) := —oo, if A <infF, andX(ew) :=1limX(A) asA — «. Observe thak(A) =
—(—x)(A) andx1(v) = (—x)_l(—u). Thus, it is sufficient to study only the properties of
X(A). Figure[2 depicts schematically the optimal value functi®f ) andx(A). It is clear
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from the definition thaik(A) is a non-decreasing extended real function, &fx) is non-
increasing. It will be shown also in the next section th@t) is concave, and(A) is convex
(PropositioriB). Because s€tp: F(y) < A} may be unbalanced and unbounded, the functions
may not be reflections of each other in the sensexttiat— vy # g — X(A ) for all up, and one
or both functions can be empty. The definition of the optinedlie functions[(5)£(8) in terms
of functionalF (y) of one variable, unlike information distantgy, yo), allows for considering
the case when ifif is not achieved atamy € Y.

In addition toAq := inf F, we define two special valuésandA of functionalF as follows:

X(A) = sup{(x,y) : y € domF}, X(A) :=inf{(x,y) :y € domF} 9)

Thus, problems of maximization or minimizationxgfy) = (x,y) subject to constraints (y) <
A or F(y) < A respectively are equivalent to unconstrained problemsamnFd The corre-
sponding optimal values are denofad= X(A) andu = x(A), as shown on Figurél 2. The
reason for defining these values is that generallg o, A < 0 andA # A (see Figurél2).
Solutions to unconstrained problems may correspond te |gmossibly infinite values or A,
and therefore they can be considered unfeasible. Substdasilble solutions will be defined
by constraintd (y) <A <A orF(y) <A <A.
In addition, we define the following special values:

Uo:= lim sup((xy):F(y) <A},  ugi= lim inf{(xy):F(y) <A}  (10)
If there exists a se#F*(0) C domF such that infF = F(yp) for all yo € dF*(0), thentg =
sup{(x,Yo) : Yo € dF*(0)} andugy = inf{(X,yo) : Yo € dF*(0)}. If yo is unique, thervg = vy,
otherwiseup > v, (see Figurél2). Elementg € dF*(0) represent trivial solutions, because
they correspond to constraihg := inf F in functionsx(A ) andx(A ). Constraintgx,y) > v >
Up and(x,y) < U < Ug in the inverse functiong 1(v) andx~1(v) ensure thaE (y) > Ao, and
the solutions are non-trivial.

2.4 Some facts about subdifferentials of dual convex funains

In the next section, we show that solutions to the genehiiaeiational problems with optimal
values((b)£(B), if exist, are elements of a subdifferemfdlinctionalF*, dual ofF. We remind
thatF*: X — RU{} is the Legendre-Fenchel transformFof

F*(x) :=sup{{xy) —F(y)}

and it is aways closed and convex (e.g. $eél[3R, 38]). Camditi* = F impliesF is closed
and convex. Otherwise, the epigraphFof is a convex closure of the epigraphin Y x R.
Closed and convex functionals are continuous on the (adg®binterior of their effective
domains (e.g. see [25] or [32], Theorem 8), and they have ribyaepty

XedF(y) <= OJF'(x)>y (11)

where sedF(y) := {x: (x,z—y) < F(z2) —F(y), Vze Y} is subdifferentialof F aty, and
its elements are callesubgradients In particular, Oc JF (yo) implies F(yo) < F(y) for all

y (i.e. infF = F(yp)). We point out that the notions of subgradient and subdiffeal make
sense even i is not convex or finite ag, but non-emptyF (y) impliesF (y) < co andF (y) =

F**(y), dF (y) = dF**(y) ([32], Theorem Mﬂ FunctionalF* is strictly convex if and only if
JF*(x) > yis injective, so that the inverse mappid§ (y) = {x} is single-valued.

Litis possible, however, thét(y) < oo, butdF (y) = @ (e.g. see€[38], Chapter 1, Section 2.4, Example 6d).
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Recall also that subdifferentidlF* : X — 2" of a convex function is an example of mono-

tone operator [18]:
(X1 —X2,y1—Y2) >0, Vyi€dF (%) (12)

The inequality is strict for alk; # Xo if and only if JF*(x) > y is injective (i.e.0F* is strictly
monotone).

We remind also thaitl : Y — RU {—} is concaveif F(y) = —H(y) is convex. The dual
of H in concave sense id*(x) :=inf{(x,y) —H(y)}. By analogy, one definesupgradient
andsupdifferentialof a concave function [32].

3 General properties of optimal solutions and the optimal véue
functions

In this section, we apply the standard method of Lagrangeipliats to derive solutiongp
achieving the optimal valug(A) = (x,yg). Then we shall study existence of solutions and
monotonic properties of the optimal value functionis (5)—(8

3.1 Optimality conditions

Proposition 1 (Necessary and sufficient optimality conditionglement y € Y maximizes
linear functional Xy) = (x,y) on sublevel sefy: F(y) <A} of a closed functional FY —
R U {e} if and only if the following conditions hold

Yp € OF*(BX), F(yg) =A
where parametef~! > Ois related toA via B! € 9x(A).

Proof. If yg maximizes(x,y) on sublevel seC(A) :={y: F(y) <A}, then it belongs to the
boundary oC(A) (becausg€x, -) is linear andC(A ) is closed). Moreovesz belongs also to the
boundary of a convex closure 6{A), because it is the intersection of all closed half-spaces
{y: {(x)y) < (x,yg)} containingC(A). Observe also that

cleo{y:F(y) <A} ={y:F"(y) <A}

and therefore solutions satisfy conditibriyz) = F**(yg) anddF (yg) = dF**(yg) (€.9. see
[32], Theorem 12). Thus, the Lagrange function for the cohmial extremum in[{(5) can be
written in terms of=** as follows

K(y,B™) = (xy)+B A —F™(y)],

wheref~1 is the Lagrange multiplier for the constraiht> F**(y). This Lagrange function is
concave fo3~1 > 0, and therefore conditioﬁK(yB,Bfl) 5 0 is both necessary and sufficient
foryg andB ! to define its least upper bound, which gives

YK (yp,B 1) =x—B 19F " (yp) 2
51K (yg. B ) =A —F"(yp) =

Note that if F # F**, then generallyF**(y) < F
replaced by a stronger conditiéi{yg) = A.
Noting thatX(A ) = (X,ys) + B~*[A —F(yp)], the Lagrange multiplier is defined B%(A ) >
B~ Note thatdx(A) > 0, becaus&x(A) is non-decreasing, and=* = 0 if and only if
F(y) > A. O

0, = yp € OF*(BX)
0, = F™(yg) =A
(y), and conditionF**(yg) = A must be



Remarkl. The inverse optimal value*(v), defined by equatio{7), is achieved by solutions
yg given by similar conditions. Indeed, the correspondingraage function is

K(y,B) =F™(y)+B[v— (xy)]

and the necessary and sufficient conditions are

yg € OF*(Bx), (X,yp) =U

whereB > 0 is related ta via 8 € dx1(v). We note also that conditions for optimal values
X(A) = —(—x)(A) andx 1(v) = (—x)fl(—u), defined by equation§l(6) arid (8), are identical
to those in Proposition] 1 and above with the exceptions@hat< 0 andg < 0.

3.2 Existence of solutions

The existence of optimal solutions in Propositidn 1 is eglaiut to finiteness af(A ), which
depends on the properties of sublevel@gt) := {y: F(y) < A} and linear functionak(y) =
(x,y). Clearly, the existence of solutions is guarantee@(ik) is bounded in(Y,| - ||) and

X € Y*. This setting, however, appears to be too restrictive t e restriction ok to Banach
spaceY* is not desirable in many applications. Indeed, measuresfeer considered as ele-
ments of a Banach space with nofirj|; of absolute convergence, and therefétés complete
with respect to the Chebyshev (supremum) ndri... Many objective functions, however,
such as utility or cost functions, are expressed using umibed forms, such as polynomials,
logarithms and exponentials. Second, the sublevelGgts are generally unbalanced (i.e. if
I(¥,Yo) # 1 (Yo,y) or F(Yo+ [y —Yo]) # F (Yo — [y — Yol)), which means that(A) # (—x)(A),

and therefor&(A ) € R does not imply(—x)(A) € R. In addition, set€(A ) can be unbounded

in (Y, |- ) if we allow for measures that are not necessarily normalikethis case, finiteness
of X(A) is no longer guaranteed, everxi€ Y*. These considerations motivate us to define the
most general class of linear functionals Y* (elements of algebraic dual) that admit optimal
solutions to the generalized variational problems for mess and achieving finite optimal
values for all constraints.

Definition 1 (F-bounded linear functional)An elementx € Y* is bounded above (below)
relative to a closed function& : Y — RU {c} or F-bounded abovébelow) if it is bounded
above (below) on set§y : F(y) < A} for eachA € (Ag,A) (A € (Ag,A)). We callx € Y*
F-boundedf itis F-bounded above and below.

Thus, bounded linear functionailsc Y* are || - ||-bounded. IfF(y) = 1(y,Yo) is under-
stood as information, then we speak of information-bounfiledtionals. Although we do
not address topological questions in this paper, we pointimat the valuex(A) coincide
with the values of support functiog)(x) := sup{(x,y) :y € C(A)} of setC(A), and it gen-
eralizes a seminorm ovf’. In fact, a seminorm can be defined férbounded elements as
sup{—x(A),X(A)} = sup{sc(r)(—X),Sc(r)(X)}, which means they form a topological vector
space. There are, however, elementsY? that are only-bounded above or below, as will
be illustrated in the next example.

Example 1. Let Q = N and letX, Y be the spaces of real sequenég&)} and{y(n)} with
pairing (-,-) defined by the suni{4). Ldt(y) = (Iny—1,y) for y > 0, so that the gradient
OF (y) = Iny, andF is minimized at the counting measwgn) = 1. The optimal solutions
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have the formys = €%, and the values of functiongA) andx(A) = —(—x)(A) are respec-
tively

(xyp) = 3 xme™ and (xyp) =Y xme ™ pgiso0

n=1 n=1

In particular, forx(n) = —n, the first series converges tee® (e — 1)~2, but the second di-
verges for any3~1 > 0. Thus,x(n) = —nis F-bounded above, but not below. Observe also
thatx(n) = —nis unbounded, becaud®||. := sup{|(x,y)| : [|yll1 < 1} is infinite. On the other
hand, any constant sequend®) = a € R is bounded |(x|| = |a|), but it is notF-bounded
above or below.

The criterion for element € Y* to beF-bounded above follows from the optimality con-
ditions, obtained in Propositidn 1.

Proposition 2 (Existence of solutions)Solutions ¥ € Y maximizing &) = (x,y) on sets

{y:F(y) <A} exist for all valuesA € (Ag,A) of a closed functional FY — RU{}, if there
exists at least one numbgr > 0 such that subdifferentia? F *(3x) is non-empty.

Proof. The elemenyg € dF*(Bx) maximizesx(y) = (x,y) on{y: F(y) <A} by Proposition L,

and if 31 > 0 andx # 0, thenF (yz) = A € (Ag,A). The optimal valu&(A) € R is equal to

(x.yg) =B [F*(BX)+F(yp)]

Note also thaF*(Bx) € (infF*,supF*). Because set§y: F(y) < A} are closed for alh (F
is closed), the existence of a solution for onamplies the existence of solutions for al] and
they areyg € dF*(Bx) enumerated by different valugs® > 0. O

Thus, elemenx € Y* is F-bounded above #F *(Bx) is non-empty at least for org—* >
0. Geometrically, this means thatan be absorbed into the convex@etA *) := {w: F*(w) <
A*} for someA* € (inf F*,supF*). If x€ Y* is alsoF -bounded below, therx can be absorbed
into C*(A*). Therefore, ifx € Y* is F-bounded only above or below, then the origin of a
one-dimensional subspa@x := {Bx: B € R} is not on the interior of dorR*. In fact, it
is well-known that if sets€C(A) := {y: F(y) < A} are bounded, then @ Int(domF*) (see
[5,125]).

3.3 Monotonic properties

Proposition 3 (Monotonicity) Optimal value function®(A), x(A), X 1(v) and x1(v), de-
fined by equationd]5)[(6)1(7) andl (8) for a closed ¥ —+ R U {«} and x# 0, have the
following properties:

1. The mappingA — B! € d%(A) is non-increasing, and) — B € dx *(v) is non-
decreasing.

2. If in addition F* is strictly convex, then these mappings are differentiabl¢hat ! =
dx(A)/dA andB = dx1(v)/du.

. X(A) is concave and strictly increasing fare [Ag,A].

AW

. X(A) is convex and strictly decreasing fare [Ap,A].

5. x1(uv) is convex and strictly increasing far € [0o, U]
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6. x 1(v) is convex and strictly decreasing fore [u, U).
where), A are defined by equations](9), aing, v, by equations{10).

Proof. 1. Letyp, ys, be maximizers of linear functional(y) = (x,y) on sublevel sets
{y:F(y) <A} with constraints\1, A, respectively, and lat; = (X,yp, ) anduz = (X,yg,)
denote the corresponding optimal values. Cleddy A, impliesu, < v by the inclu-
sion{y:F(y) <A1} C{y:F(y) <Az}, so that the optimal value functiotiA ) = (X, yg)
is non-decreasing. Using conditig € dF*(Bx) of Propositior ]l and monotonicity
condition [12) for conveX¥*, we have

(BoX— B1x,Yp, = Yp,) = (B2 — B1) (X%, Yp, — Yp,) = 0

Therefore,u; < v, implies By < B». This proves thad — B~ is non-increasing, and
U — B is non-decreasing.

2. Optimality conditionys € dF*(Bx) is equivalent tofx € dF (yg) by property [(11),
and together with conditiof (yg) = A or (x,yg) = v it implies that different3; < 3,
can correspond to the sameor v if and only if JF (yg) includes bothB;x and Box.
This implies thatF* is not strictly convex onfix, B2x] € dF (yg). Dually, if F* is
strictly convex, ther3; # B, implies A1 # A, anduy # Uy, so that{ 3!} = dx(A) and
{B} = dx1(v). In this case, monotone functior&A ) andx1(uv) are differentiable.

3. Functiork(A) is strictly increasing ol € [Ao,A], becaus@x(A) > B~ >0andB =
Oifand only ifA > A (PropositioriIL). The mapping— B~ € dx(A) is non-increasing,
and therefor&(A ) is concave.

4. By the same reasoning as above, functier)(A ) is concave and strictly increasing for
A € [Ag,A]. Thus,x(A) = —(—X)(A) is convex and strictly decreasing.

5. Functionx~1(v) is strictly increasing for alu € [Up, 0], becausedx 1(v) > B > 0,
andB =0 if and only if u = (X,yo) < Ug for anyyp € dF*(0) (Ao :=infF = F(yp)).
Moreover, the mapping — B € 0x 1(uv) is non-decreasing, and therefore! (v) is
convex.

6. Functionx1(v) is the inverse of convex and strictly decreasing functi¢h). Thus,
x~1(v) is also convex and strictly decreasing foe [u,U,).
O

We now use the facts that is ordered by a pointed convex coie, generatingX =
X — X4, and thaty is ordered by the dual con& :={y €Y :(xy) >0, ¥x>0}. For
example, this is the case whehis a function space with the pointwise order, okifis the
space of operators on a Hilbert space witkh € X, .

Proposition 4 (Zero solution) Let X be ordered by a generating pointed cong, 4nd let
{yg}x be the family of all elements maximizing linear function@f)x= (x,y) on sets{y :
F(y) <A} for all valuesA of a closed functional EY — RU {co}. If all yg € {yg}x are
non-negative andgy= 0 for someA, then

x=0 or F(0)=Ay or F(O)=A

where)q := infF, andA is such thak(A) = sup{(x,y) : y € domF}
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Proof. Assume the oppositec= 0 andAo < F(0) < A. Then functiork(A) = (x,y) is strictly
increasing (Proposition 3), and sdts: F(y) < F(0)} and{y: F(0) < F(y)} are non-empty
(F is closed). Thus, there exist solutiopsandy, such that

F(y1) <F(0) <F(y2) and (xy1) <0< (XY2)

Using decompositiox = x; —X_, X4, X_ € X, andys, ¥» € Y, we conclude that

(Xp—=Xo,y1) <0< (Xp =X, Y2) = X >x. and Xy <X

This impliesx = 0, which is a contradiction. O

4 Optimal measures

Our interest is in the support set of optimal positive measumaximizing linear functional
X(y) = (x,y) on closed setgy: F(y) < A}. First, we shall prove the main theorem about
mutual absolute continuity within families of optimal maess. Then we shall discuss the
underlying property of an information functional. In thedeof this section, we formulate a
corollary stating that support of a utility function or opéor is contained in the support of
optimal measures.

4.1 Mutual absolute continuity of optimal measures

Let X be ax-algebra with a unit elementd X. Recall thaiX can be associated with the algebra
Z#(Q) of subsets of2 in the classical (commutative) setting, or with the algelsta/#’) of
operators on a Hilbert spac# in the non-classical (non-commutative) setting. A sublaige

2 (E) of subseE C Q or subspac& C 7 corresponds in each case to a subalgébra X,

and we shall use notatioy{M) = 0 to denote measures that are zero on subset or subspace
E. The dual of subalgebrisl C X is the factor spac¥ /M~ of equivalence classéy := {z <

Y :y—ze Mt} generated by the annihilatdd := {y € Y : (x,y) = 0, Vx € M}. Thus, the
elements off /M~ correspond to measures that are equivalenipandM+ = [0] € Y/M*

is the subspace of measugg®) = 0.

We shall define the restriction of functions or operatote subset or subspaéeas their
localization My x, wherely, : X — M is a positive ‘super’ operator (i.e. a linear operator
acting on the algebra of functions or operators) suchfhatX) = M andMy (x*x) > 0. Note
that whenX is a commutative algebra, one can always deflgewith the projection property
M2, = My, leavingM invariant. In the non-commutative case, a projectioX @ntoM exists
if and only if M is invariant under the action of a modular automorphism gr@ee [37] for
details). More specifically, the positive operalty, satisfies in this case conditidmy (wx) =
wly (x) for allwe M and allx € X. Ifin additionly (1) = 1, thenly is the non-commutative
generalization of conditional expectation (e.g. see [2&)early, only subalgebral C X
with projections have statistical or physical meaning. éNibtat one can always construct a
completely positive linear operatdiy, which becomes a projection onM, if M has the
above mentioned property of modular automorphism invagad]. We shall refer to such
My aslocalizationonto subalgebr. The restriction oF* : X — RU {e} to M is given by
F*(Mux), and the dual oF * (MyX) is defined oY /M+ asF**([y]) := inf{F**(y) :y € [y]}.

Theorem 1 (Mutual absolute continuity)Let X be ordered by a generating pointed cone X
and let{yg }x be the family of all elements maximizing linear functiongl)x= (x,y) on sets
{y:F(y) <A} forall valuesA of a closed functional EY — RU {e}. If all yg € {yg}x are
non-negative and Hx) := sup{(x,y) — F(y)} is strictly convex, then:
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1. Thereis a subfamil\]yE}X C {yp }x containing y, for eachA € (Ao,A), and yj corre-
spond to mutually absolutely continuous positive measures

2. If there exists elemeng yresp. &) in {yg }x such thatinf F = F(yo) (resp. sup{(x,y) :
y € domF} = (x,&)), then y (resp. &) is absolutely continuous w.r.t. aIEy

3. Ifin addition F* is strictly convex, thety, }x = {ys }x \ {Yo, }-

Proof. Letyg be a solution for som@ € (A, A). Thenys € dF*(Bx), 0< B~ < o (Propo-
sition[d). LetMy : X — M be a localization operator onto subalgebac X (i.e. a com-
pletely positive linear operator that acts as a projectioto some subalgebras|[1]). Then
lyg] € dF*(BMux) C Y/M*. Assume that the corresponding measygéM) = 0. Then
yp € [0] €Y/M*, where[0] = M+, and becausfys] > 0 (yz > 0 andy is positive),lys] = [0]
implies by Propositiofil4

Mux=0 or F*([0]))=Ac or F*([0])=Am

where g ;= infF, andAy < A is such thaffTyx(Aym) = sup{(Mux, [y]) : [y] € domF*}.
Observe that non-emptyF**([0]) is a singleton set, because (and henceF*(Myx)) is
strictly convex. Therefore, the last two cases above asefdlecause otherwigd**([0])
would contain the interval®, BMyX] or [BMyX, ), 0 < B < c. Thus,Myx = 0 is the only
true case. But thefilyx = 0 for all 3, and therefore

0] € OF*(BMyx), VBER

In other words, for each € (Ao,A), there is a solutioryz € [0], such that the corresponding
measure/g(M) = 0.
These measures are not mutually absolutely continuousifathigre exists solutiovyf3 for

someA € (Ao,A) such that the corresponding measyeN) = 0 on some larger subalge-
braN > M. The subfamily{y;;}X C {yg}x corresponding to mutually absolutely continuous

measures for alk € (Ao, A) is constructed by taking

M =sup{N C X: 3y € {yg}x, Yg(N) =0}

where supremum is with respect to ordering by inclusion.

If Adg:=infF (resp.U :=sup{(x,y) :y € domF}) is attained at somg (resp.d), then they
correspond to elements é§p }x with 3 =0 (resp.~1 = 0). The corresponding measurgs
(resp.dy) are absolutely continuous with respect to/%LI becausélyx=0impliesBMyx=0
for all S3.

If F** is strictly convex, therdF*(Bx) contains a unique eIemeyn; for eachB—1 > 0,

and{yj}x = {¥p }x\ {Yo, &} -

Remark2. The key condition in the proof of Theordm 1 is that the non-gnspbdifferentials
0F(yg) are singleton sets, which follows immediately from injeityi of JF* or strict convex-

ity of F*. If yg € Int(domF**), thenF** is continuous ay; (€.9. se€[25] of[32], Theorem 8),
anddF**(yg) is a singleton if and only iF** is Gateaux differentiable 3% (e.g. seel[38],
Chapter 2, Section 4.1). Injectivity @fF* can also be based on its algebraic properties. In
particular, if dF* is a group homomorphism, then it is injective if and only & Kernel is a
singleton set. This will be discussed in the end of Exambke? @lso [8]).
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Optimal probability measures are obtained by normalipafig := yg/||yg||1 of optimal
positive measuregs. This corresponds to additional equalityl|1 = (1,y) = 1 and inequality
y > 0 constraints in the optimal value functiohs$ (£)—(8) or dirtp a restriction of functional
F to the statistical manifold” := {y:y > 0, (1,y) = 1}, which is the base of positive cone
Y, . Optimal probability measures are solutions to generliziational problemsg{2) of{3)
with constraints on information distant¢ép,q) or resourcer (p). All mutually absolutely
continuous measurg% € {yg }x belong to the same subspade C Y, and the corresponding

probability measures% belong to the interior of the bas# N M-~ of subconeM: C Y,. In

the classical (commutative) cas€’ is a simplex, and? N M= is its facet, which is itself a
simplex.

Remark3. If the effective domain dorfi C Y of functionalF : Y — RU {} is the positive
coneY,, then propertyyg(M) = 0 on subalgebrd C X implies yg is on the boundary of
Y, =domF. In this case, mutual absolute continuity of measyges JF*(3x) can be proved
using the fact that the image of injective subdifferenti@ppingdF* : X — 2" is interior of

domF (e.g. seel[2], Lemma 4). Therefore, such subgradignts dF *(8x) cannot be on the
boundary ofY, = domF.

The existence of optimal and mutually absolutely contirsuprobability measures for all
constraintd=(y) < A on an information resource is used in the next section to/stptimality
of deterministic and non-deterministic Markov transitkernels. Theoreri] 1 shows that this
is related to strict convexity df* (or injectivity of dF*), and therefore we now discuss this
property with some examples.

4.2 Information and separation of variational problems for measures

If F* is not strictly convex (00F* is not injective), therdF (yz) may contain different ele-
mentsx, w € Y?. Recall that linear functionals € Y* are understood in classical optimization
theory as objective (e.g. utility) functions: Q — R representing a preference relatignon

Q = extZ. Thus,yg may maximize bottx(y) = (x,y) andw(y) = (w,y) on{y:F(y) <A},
which means thay solves different optimization problems. Indeed, value- F(yg) cor-
responds to equal optimal values!(v) = w1(v), and valuev = (x,yg) = (w,ys) to equal
optimal valuei(A) =W(A ). Therefore, ifF* is not strictly convex, then elementg € Y may
not separate some optimization problems. Let us consideeramples.

Example 2 (Relative information) Let us defindk, : Y xY — RU {0} as follows

<|nylo’y>—<1’)’—yo> if y>0andy, >0
kL(y:¥0) = { (Ly0) if y=0andyo >0 (13)
*© otherwise

This functional is an extension of the Kullback-Leibler eligenceE ,{In(p/q)} to the whole
spaceY, becausél,y—yp) = O for positive measureg yp with equal normg| - ||1. The term
(1,y — yo) makeslk. (y,Yo) > 0 for all elementsy andyp not necessarily with equal norms.
If X is a commutative algebra, and the pairiag) is defined by the sum or the integral (4),
then [13) reduces to the classical KL-divergence. In theammmutative case, such s
being an algebra of compact Hermitian operators and the pating [4), functionall[(13) is
a generalization of some types of quantum information [$jiclv depend on the wayyygl is

defined, such as edimy — Inyp) or yal/zyyal/z-
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The functionalFk () := IkL(Y,Yo) is closed, strictly convex and Gateaux differentiable on
Int(domFk, ), and its gradient has the following convenient form:

DFKL(y):Iny—{) — yé/zexyé/Z:DFgL(x)

One can define the dual functiorfgf; : X — RU {e} as follows

FaL(¥) = (Lyg 2€yg )

Clearly,F¢, is also closed, strictly convex and Gateaux differenédbl allx € X, where it is
finite. Optimal measures maximizindy) = (x,y) on sets{y : Fx.(y) < A} belong to a one-

parameter exponential familyg := y(l)/zeﬂxy(l)/z, which are mutually absolutely continuous.

Such maximizing measures exist for all valles (A, A), if x € Y? is Fx -bounded above,
and by Proposition]2 it is sufficient to show théf;, (Bx) # @ for someB~1 > 0. We point
out that this property depends on the choice of elemgrt OF;, (0), minimizing Fg. .

Recall also thalt can be considered as a module over algebra¥Y (Section 2.2). The
exponential mapping expX — X C Y is the unique (up to the base constant) homomor-
phism between the additive and multiplicative groups okhtg X, and it is injective, be-
cause it has a singleton kerngt : exp(x) = yy* = 1} = {0}. The property0Fg (y) =
In(yys ) = (exp)~1(yyp*) ensures that information distante_ (Y, Yo) = Fx.(y) is additive:

Ik (P1P2,0102) = IkL(P1,01) + IkL (P2, Gp) for all pip2, G102 € 2.

Ip—all1

Figure 3: 2-Simplex?? of probability measures over s@t= {wi, wp, w3} with level sets of
expected utilitieEp{x} =Ep{w} = v and the total variation metrigp—q||1 = A. Probability
measurepg maximizes botht,{x} andEp{w} subject to constrairitp—q||1 < A. The family
{pg }x of solutions, shown by dashed line, contains elements obdbadary of.

Example 3(Total variation) An example of information distance that does not have atlstric
convex dual is the total variation metric:

lv (Y, Yo) := [ly —Yol|1
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FunctionalRy (y) := lv(Y,Yo) is not Gateaux differentiable gt= yo, as well asy such that
y—Yo € [0] € Y/M*, if subalgebraM c X boundsX, (e.g. if M contains an extreme ray of
X, ). Optimal solutions/g maximizingx(y) = (x,y) on setsC(A) :={y: [ly—yol1 <A} are
extreme points of(A ), and they maximize different, not necessarily proportidinear func-
tionals. Figuré R illustrates the variational problems dsimplex of probability measures
over a set of three elements with the uniform distributipw) = 1/3 as the reference measure
(compare with Figurgl1). Distributiopg maximizes botht,{x} = (x, p) andEp{w} = (w, p)
onC(A) :={p:llp—dls<A}.

The dual offy is functionalRj (X) = Xcza)(X) — (X,Yo), Wherexcg(x)(X) is the indicator
function of setC§(A) = {BX: ||BX|| < 1}, the polar of seCq(A) =C(A) —yo. Clearly,R;(x)
is not strictly convex. ThereforedF,(yg) may include multiple elements, and the family
{yg }x may contain measures that are not mutually absolutely montis. Figuré€l3 shows that
the family { pg }x of optimal solutions contains elements on the boundary sififhlex &.

In the commutative case, elementsafy (yg) C X are understood as utility functions,
representing preference relatiogson Q = ext#. If dR,(yg) includes functionsc andw,
then they attain their suprema syp) = x(T) = ||X|| and supv(w) = w(T) = ||w|| On the
set of the same elementse Q. However, the utility functiong(w) andw(w) may represent
different preference relations on Q. Note also that the supremr&r) orw(T) of utilities may
never be achieved or observed in problems with constramtaformation, even ik or w are
bounded functions. The values of utilities on elementg T are important for maximization
of the expected utility.

As was discussed in Sectign .1, information is often reglio satisfy the additivity
axiom, which is why information-theoretic definitions oftepy and mutual information are
based on the KL-divergenck (y,Yo), and it has a strictly convex dual. Strict convexity
of the dual functional is a weaker condition than the adidjtiaxiom, but it ensures that
each probability measunge &7 is an optimal solution to a unique variational problem with
an abstract information resourée generalizing problemg](2) orl(3). Note also that strict
convexity of F* ensures that information resourEehas directional derivative at eaghe
Int(domF) (e.g. p € Int(£?)), which facilitates convergence of measures in problenb wi
dynamic information. Thus, strict convexity of the dual ¢tional appears to be a natural
requirement on the functional representing information.

4.3 Support of utility functions and operators

We now conclude this section by the following corollary abitwe support of utility functions

or operators. We remind that the support of functionQ — R is the set supfx) = {w:
X(w) # 0}. The support of an operatoron a Hilbert space is defined as a projection onto
the orthogonal complement of its kernel (e.p.1[15], App&ndi). When x is considered as
an element of algebrX, its restriction to a subsdf C Q (subspacee C .77°) is given by
localizationlMyx of x onto subalgebrd c X corresponding t&. Thus, the support of can

be identified with the complement of the largest subalg®bra X such thaflyx = 0.

Corollary 1 (Support) Under the assumptions of Theorem 1, the support of elemeiX is

a subset of the support of optimal measurggoy all A € (Ag,A).

Proof. During the proof of Theorernl 1, we established under its aptions, that if solution

yg(M) = 0for someA € (Ap,A) andM C X, then the localizatiofyx = 0. Dually, if Myx# 0
for someM C X, thenyg(M) # O for all suchyg. O
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Because random variables or observables are consideredesjiect to normalized pos-
itive measures (i.e. probability measures), they can laedenot as elements of algebta
dual of Y, but as elements of the factor spaX¢R1, generated by subspadd = {1 :

B € R, 1 X} of scalar vectors. Indeed, statistical manifall is a subset of the affine set
{y: (1,y) =1} = {1}, + g, where{1}, is the annihilator of element & X, andq € 2.
Thus, every probability measugge & is equivalently represented by elememts {1},
asp=y+4g. The dual of subspacgl}, is the factor spac&/R1, and random variables
are affine set$§x] = R1+ x corresponding to equivalence clas$ds= {w: x—w € R1} and
(x—w,p—q) =0 for anyp, g € &. Observe now thaR1 is the zero element iX/R1, and
therefore the fact that localizatidfiyx ¢ R1 implies ps(M) > 0 for all optimal probability
measures (Corollafyl 1). Duallypg(M) = 0 implies thatfyx € R1. In the language of clas-
sical probability this can be stated as follows:x{tu) # X(wy) for somecw,, w, € E C Q,
thenpg(E) > 0 for all probability measures maximizirigp{x} on sets{p: F(p) <A} for all

A € (Ao,A). Dually, pg(E) = 0 implies thatx(w) = const for allw < E.

5 Optimal Markov transition kernels

In this section, we consider a composite system, such aesa giroduct) = A x B of two sets,
and the problem of optimization of transitions between tleenents ofA andB. Such prob-
lems appear in theories of decisions, control, communinaind computation, where compo-
nents of a system (represented by #t8, etc) may have different meanings, but the main
objective is to find transitions between the elementé ahdB that are optimal with respect
to a utility functionx : Ax B — R. In some cases, optimal transitions are deterministiceeorr
sponding to some functiorss= f (b) orb € f~1(a). More generally, non-deterministic transi-
tions are represented by conditional probabilities or Martkansition kernels. For simplicity,
our exposition will be in the classical setting of commuw@talgebraX := C:(Q,R, || - || ) Of
functions onQ = A x B. This is because joint and conditional probabilities ardl-defined
and understood in this setting. In the non-classical caseamnalogue of a conditional proba-
bility operator can also be defined (e.g.[[1} 28, 37]), anddiselts of this section can then be
transferred to this setting. However, this leads to unresggscomplications, which we shall
avoid.

5.1 Markov transition kernels and information constraints
Let us remind the following definition (e.g. see [12], Sest@ and 5).

Definition 2 (Markov transition kernel) Given two measurable set#, <) and (B, %), a
Markov transition kernels a conditional probability measuf&A; | b) € Z(A) on (A, &),
which is #-measurable for eadk € <.

Markov transition kernel defines linear transformation &7(B) — #2(A) between statis-
tical manifoldsZ?(A) and #(B) as follows:
P(A) = MP(B;) ::/B P(A | b)dP(b)
]

Elementsp € &2(A x B) are joint probability measurd¥ A x Bj) = P(A; | Bj) P(B;), and for
P(B;) > 0, the conditional probability is defined by the Bayes foranul

P |B) = o
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Eventa € Ais statistically independent @fc B if and only if P(A; | b) = P(A;) for eachb € B
and allA; € 7. In this caseP(A x Bj) = P(A))P(Bj). On the other hand, a functian= f (b)
defines deterministic dependencyabn b, and it corresponds to a deterministic transition
kernel

1 if f(b)eA

P(A | b) = Ot () (AY) = { 0 otherwise

One can see that each joint probability meaguee #2(A x B) defines a pair of marginal
and conditional probability measur&$B) andP(A | B) or P(A) andP(B | A). Thus, points
of Z(A x B) define all possible transition kernels, including all pbesimeasurable functions
betweerA andB. Hence the following classification.

Definition 3 (Deterministic composite statef joint probability measurep € &2(A x B) is
deterministic if and only if it defines a deterministic transition kerdg|y, (Aj) for some mea-
surable functiorf : B— Aor f~1: A— B. Otherwise p is non-deterministic

Transition kernels are often understood as communicatiamreels giving a more tradi-
tional meaning to the notion of information related to thegarss of sending messages between
A andB. The amount of information communicated ByA; | b) is measured by the Shannon
mutual information[[33]:

Pna%g%%%ﬁ}dm@byzlﬁPm)A{de§;P}de!m (14)

gmmy:/
AxB
One can see th&g{a, b} is defined as information distante_(p,q) := Ep{In(p/q)} of joint
measurep := P(A; x Bj) from the product of marginals:= P(A;) P(Bj), or as the expectation
of the information distanck_ of the conditional probability?(A; | b) from the marginaP(A;),
taken with respect to a fixed margira(B;).

Variational problemd(2) and](3) for composite systems amétraints on mutual informa-
tion have been studied in information theory (ela. [33/3}).3Note that when problemEl(2)
and [3) are considered on any measurableQsehey are referred to in information theory
as problems of the first kind_[85]. For a composite syst@m- A x B, one distinguishes
between problems of the second and third kind. Observe lieaatount of mutual infor-
mation [14) communicated depends B(B;), which we refer to as an the input or source
distribution, and transition probabilitig¥A; | b). In fact, Is{a,b} = H{b} —H{b| a}, where
H{b} := Ep{—InP(b)} is the entropy oP(B), andH{b | a} is the conditional entropy. Opti-
mization problems over input distributio®¥B) and with a fixed channd®(A; | b) are prob-
lems of the second kind. Problems of the third kind are coregbmith finding an optimal
channel for a fixed set of input distributions. The resultpravious sections allow us to con-
sider a generalization of these problems when mutual irdtion is defined by some other
information distance (p,q) between two joint statep, q € (A x B) or an information re-
sourceF (p). Note that problems of the third kind play important role anty in information
theory, but also in other areas including optimal statidtadecisions, estimation, control and
even in the theory of algorithms, as will be illustrated irc&an[5.6.

5.2 Strict sub-optimality of deterministic kernels

Observe thalPs (A x Bj) = J¢ () (Ai) P(Bj) = 0 for all f(b) ¢ Ai. Thus, deterministic transition
kernels can be defined only by joint states that are on thedaoyrof 22(A x B); interior
points of (A x B) can define only non-deterministic transition kernels. Tpgliaation of
Theoreni_1 to the ca€® = A x B yields the following result.
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Theorem 2(Separation of deterministic and non-deterministic kisine et { pg }x C Z2(Ax
B) be a family of joint probability measures maximizing expdctalueEp{x} = (x,p) of
function x: Ax B — R on sets{p: F(p) < A} for all valuesA of a closed functional F
P — RU{oe}. If F*(x) :=sup{(x,p) —F(p)} is strictly convex and F is minimized ag g
JF*(0) C Int(Z(Ax B)), then

1. {pg}x contains deterministic {if and only if it is a solution to an unconstrained prob-
lem: A > A or (x,ps) =U:=X(A) =sup{(x,p): pe Z(AxB)}.

2. The inequality
<X7 pf> < <X7 pB>

holds for all deterministic pc &?(A x B) such that Kps) = F(pg) € (Ao, A).

3. Similarly, the inequality
F(pr) > F(pp)
holds for all deterministic pe (A x B) such that(x, ps) = (X, pg) € (Uo, D).

Proof. 1. (=) Assume there exists; € {pg}x for A < A (and(x, pf) < U), and such that
the corresponding transition kernel is determinisie(A; | Bj) = 1 if A = f(B;) and
Pr(A\ A | Bj) = 0. In this casep; := P;(A x B) is not in the interior of2?(A x B),
becausePs ((A\ f(Bj)) x Bj) =0, and in particulaps does not minimizeé=, because
dF*(0) C Int(Z2(Ax B)) by our assumption. Thus;(ps) = A € (Ag,A). But then
Pr((A\ f(Bj)) x Bj) = 0 implies that there exisp; € {pg}x for all A € [Ao, ] such
that p; == P3((A\ f(Bj)) x Bj) =0 by TheoreniIl. In particular, there exigt§ €
JF*(0) such thatPs((A\ f(Bj)) x Bj) = 0, and thereforgy is also not in the interior
of Z(AxB). Thus, by contradiction we have proven ¢ {pg}x or A > A (and hence
<X7 pf> = U)

(<) If A > A, then there exists solutiod € extZ (A x B) such that(x,d) =0 :=
sup{(x,p) : p€ £} (by linearity of (x,-) and Krein-Milman theorem for?), and &
corresponds to some functidiib) = a.

2. For allx € X andy €Y, the Young-Fenchel inequality holdgx,y) < F*(x) + F(y).
Moreover, it holds with equality if and only ¥ € dF*(x) (e.g. seel[38], Chapter 2,
Section 4.1, Lemma 3). Assunpg € dF*(Bx). Then(x, pg) = B~ *[F*(BxX) + F(pg)].
On the other hand, ips is deterministic andF (ps) < A < A, thenps ¢ dF*(Bx) and
therefore

(X, pr) < B HF*(BX)+F(pr)] = B HF*(BX) +F(pg)] = (X, pg)

3. By definition of the Legendre-Fenchel transfoffi; (y) > (x,y) — F*(x), and the equal-
ity holds if and only ifx € dF**(y). AssumeBx € dF**(pg). ThenF**(pg) =F(pg) =
B(x,pg) — F*(Bx). On the other hand, ips is deterministic andx, pf) < U, then
Bx ¢ oF**(p¢), and therefore

F(pr) > F™(pr) > B(X, pr) —F"(BX) = B(X, pg) — F"(Bx) =F(pp)

Note thatB > 0 andF (pg) = A > Ao, if (X, pg) = U > To.
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The assumptions of Theordm 2 are quite general. The relafistrict convexity ofF*
to separating property of information of variational prels for measures was discussed in
Sectio4.2. The assumptigw < Int(Z?(A x B)) is very natural. Indeed, each facet of the
simplex (A x B) is also a simplex of some subsetAf B. Therefore, the elemen is
always in the interior of some simpleX (A; x B;), unlesspy = 6 € extZ?(A x B). In all prac-
tical cases, information is minimized p§ ¢ extZ?(A x B). In particular, one often chooses
po := P(A)P(B;), so thata andb are independent, and supports of marginal probabilities
P(A)) andP(B;) include more than one element.

To understand better the result of Theoifdm 2, we now recalesfacts about mutual in-
formation for deterministic kernels and then for exporedrikernels, which are an important
example of non-deterministic kernels. These facts will beduin a qualitative example, pre-
sented later.

5.3 Deterministic transition kernels

Probability measur®(A) = M¢P(B;) defined by a linear transformation with deterministic
transition kerneld ) (A;) is sometimes denoteBl f1(A) := P{b: f(b) € A} (e.g. [12],
Section 2). Iff : B— Ais injective, therP f~1(A)) = P(B;) for eachA = f(B;).

Definition 4 (Measurable isomorphism)An injective and measurable functidn: B — A is
called ameasurable monomorphisaf B. If f is also surjective and ~1(a) is measurable,
then f is ameasurable isomorphism

We point out the following known result.

Proposition 5 (Invertible transformation)A linear transformatiorfl : &2(B) — Z(A) of sta-
tistical manifolds is invertible if and only if its Markovansition kernel iy, (Ai), where f
is a measurable isomorphism.

Proof. (=) Assume that the transition kernel Bf is not defined by any function. Thus,
Mo, = p ¢ extFZ(A) for somed, € extZ(B). Without loss of generality, we can assume that
p=(1—1)d, +1tds, for somet € (0,1), 8s,, 8a, € EXLZ(A) Such thabd,, # ds,. Then

M ip=N"11-1)6, +t8,])=1-t)N 15, +tN 15, = &

Because, € extZ?(B) is not a convex combination of any points@f(B), itimpliesN 15, =
M~—18,, = &. But then 1 is not injective, becausd, # J,,, and thereforél is not surjective.
Thus, the transition kernel of an invertible must bedy y,) (Aj) for some measurable function
f: B — A. Clearly, suchrl is invertible only if the mappingdf : ext?(B) — extZ(A) is
injective, surjective, and bothand f ~1 are measurable.

(«) Obvious. O

Let us consider information communicated by a determmistinsition kerneby ) (A).
The maximum (or supremum) amount of information can be comeated if f is an injec-
tive function, because preimade!(a) uniquely determineb. If a function is not injective,
thenb ¢ f~1(a) is determined up to the probability/[if ~*(a)|. Indeed, for countabl& and
constanP(b)E this can be shown as follows:

P (b | a) _ Ps (a, b) _ 5f(b)(a) P(b) _ 1-P(b) _ 1
f Pi@ Y80 (@P(bO)  Speriml Pb) [-1a)

2The conditionP(b) = const was omitted in the final version.
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We can express the average amount of information commuaidat functionf by the fol-
lowing injectivity indexof f:

()= o

TE(T @) -

Note that ifB is finite, then we can compute the injectivity index &6) = | f(B)|/|B|. Indeed,
Yact(e) | T 1(a)| = |B|, and so the average value [df *(a)| is |B|/|f(B)|. Thus,I(f)=1
for an |nject|ve function, and inf f) = O corresponding to an empty function. For constant
functions,| (f) = 1/|B|, and they communicate the least amount of information anmamg
empty functions. IfB is finite, thenl(f) < 1 implies|f(B)| < |B|. This is not the case,
however, for functions defined on an infinite set (el¢f) = 1/2 for f : Z — N defined as
f(b) = |b|, but|f(B)| = |B| = Og). Let us show that if the image of a function is infinite, then
one can always construct an input distribut®{B) such that the output distributidaf—1(A)
has infinite entropy.

Proposition 6 (Maximizing input distribution) Let (A, <) and (B, %) be infinite measurable
sets, and le{ f,} be a sequence of measurable functionsB — A with finite images. There
exists a sequence of probability measurge% such that

lim {Hn{a} = — fz( )In[Pnfnl(a)] P fnl(a)} =0

[fn(B)|—o0

Proof. Itis sufficient to take?, on B that induce under the mappinds: B — A constant (i.e.
uniform) probability distributions on the imagédg(B). For example, assuming without loss
of generality thaB is countable, define the following function &

1 1
[fa(B)] [fa Lo fa(b)|
It is a probability measure, because it is positive, adeliémdP,(B) = 1. Indeed
1 5 1 <1 [fa @] _ [fn(B))]
[fa(B)l vg; |fn to (D) ~ [Ta(B)l sefe,) ITn M (@) [fa(B)]

Pa(b) =

Pa(Bj) =

where equality holds if and only B; = f, 1o fy(B;). Then

_ 1 1 1 |fiia@) 1
P.f-1(a) = = n =
S B, 2 T o ) )] o) ()
The entropy oP, fn‘l(a) is Hy{a} = In|f,(B)|, and it grows infinitely with f,(B)|. O

It follows from Propositior b that if the amount of informati communicated by a de-
terministic transition kerneds , (A) is finite for any input distributiorP(B;), then the image
of f must be finite. Note that this argument is not based on anyifgpaotion of mutual
information. For Shannon information, one can show thafahewing inequality holds for a
deterministic kernedy y, (A):

o
e = ZR0 [nartig) ot
- bEBP(b) [Inpf - f(b)] <In[f(B)| (15)



This inequality is obtained by maximizinig{a, b} for a fixed deterministic kerned; p, (A)
over all input distributiond(b). The supremum ofs{a,b} is achieved aP(b) inducing a
constant distributiod? f~%(a) on A, such as the maximizing distribution in Propositidn 6.

5.4 Exponential kernels

If the functionf : B— Alis not injective, then there exist input distributidd@) with non-zero
entropy such tha f~1(a) = 1 for somea € A. In this case, the output entropy{a} is zero,
and the transition kernel communicates no information. édwer, if f : B — A has infinite
domain and finite image, then its injectivity index is zerim_,. |f(B)[/[B] = 0. This
means that such a function can potentially ‘loose’ an irdigitnount of information. Non-
deterministic transition kernels, on the other hand, aitedlifferent in this sense, because
there exist kernels that always communicate some infoomatiAn important example are
exponential transition kernels.

LetQ = Ax Bandx: Ax B— R be a utility function. Consider variational problera$ (2)
and [3) withlk_(p,q) :=Ep{In[p/q]} defining Shannon mutual informatidn_{14). The unique
solutions to these problems are joint probability measyes <?(A x B) that belong to a
one-parameter exponential family:

dPs(a,b) = £ X@D+*B N gp(a) dP(b),

where®(B~1) is determined from the normalization condition

e PPBY = [ fX@b gp(a)dP(b)
AxB

The corresponding exponential transition kernels are
dPs(a| b) = fX@OTCEDIgPE)  dRy(b|a) = & XEPTP(E Al gp(b)

where®(B~1,b) and®(B-1,a) now depend o anda, as they are computed using partial
integrals:

efﬁq)(ﬁilvb) :/eﬁx(avb)dp(a)7 e BCD /eﬁ ab dP )
A

If the producte? ®(B~") dP(b) does not depend dn, ande®®® @ dP(a) does not de-
pend omg, then exponential kernels do not depend on the margmalun‘m!sP( a) anddP(b)
respectively. Indeed, becaud®(a) = [;dP(a,b) anddP(b) = [,dP(a,b), we have the fol-
lowing equations

/ fX@b)+e(B10)] gp(p) = 1, / Pixab+e(Ba)l gp(a) = 1
B
Then, using the facts thaf ®# "5 dP(b) ande? ®(B" ]dP( a) are constants, we obtain:
g BB D) :[dp(b)/db]/eﬁx(a@db, e PB ) _ [dP(a /da]/eﬁ x@b) g
B

Using these relations and the Bayes formula the expondrdiasition kernels can be written
in the following simple form

efx@bl ga efx@b) gp

@b =T mange IO = T Fa@ngp
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Here, the normalizing integrals are constant, becausedbeyot depend oa or b, and one
can introduce théree energyfunction ®o(871) := —BIn [;€#X@P) db or thefree cumulant
generating functionVo(B) = —BPo(B1). If one of the marginal distributions, s#(B), is
fixed, then Shannon information has the following exprassio

s@b) = [ap@ [ [n 9012 apip)

/dP /Bxab |n/eﬁ 29 db—In[dP(b) /db] } dP(b | a)

= BEp,{x} —%o(B) +H{b}, (16)
Observe also that the expected utility is the derivativi’ef3) = In [ efX(@b) dp
[ X(a, b) e#X(@b) dLIJo
Epﬁ{x}_/AdP(a apstan g 9= /dP (B) (17)

Here, H{b} = — [gIn[dP(b)/dbjdP(b) is the differential entropy oP(B) (assuming that
the densitydP(b)/db exists). Also, becausk{a b} = H{b} — H{b | a}, the difference
Wo(B) — BWs(B) is the conditional differential entropid {b | a}. Expected utility defined
by equation[(1l7) is independent of the input distributiR{iB).

One can show that the produ@@®® ") dP(b) ande?®(B "2 dP(a) are constant when
A= (A,+) andB = (B,+) are equivalent locally compact groups with invariant measda
anddb, and the utility function is translation invariant(a-+ c,b+c) = x(a,b). An impor-
tant example is wheA andB are equivalent linear spaces, ax(@,b) depends only on the
differencea—b (e.g. x(a,b) = —1|la—b||?). In such cases, the simplified expressions and
equations[(16) and (17) can be applied.

Joint exponential measur®s are mutually absolutely continuous for #I> 0. Further-
more, by Corollary L about the support of utility functiax(g, b) and due to normalization of
probability measures, conditid® (A x Bj) = 0 impliesx(a, b) is constant oi; x Bj, and one
may extend this to the cagéa, b) = —. Asis well known, exponential distributions approxi-
mate the Dira@-function forf3 — . The corresponding joint probability measures define de-
terministic transition kerneld; y,) (a), where functionf is such thak( f (b),b) = sup,caX(a,b),
and one may include the case s(a b) = .

5.5 Qualitative example

Strict inequalities of Theorer] 2 present an interestingogity for constructing an ex-
ample such thafx, ps) = —c or F(ps) = o for any deterministic transition kernel satisfy-
ing a proper information constraifit(p) < A < A or a non-trivial expected utility constraint
Ep{X} = (X,p) > v > Uo. If solutions pg to the corresponding variational problems exist,
then inequalitiegx, pg) > —o or F(pg) < o« suggest that a non-deterministic transition ker-
nel satisfying the same constraints may have a finite exgadtity and information. Such
an example would provide qualitative rather than quantgatiustration. Let us consider one
prototypical example.

Let a € A andb € B be real variables, and let us consider the problem of inftioma
transmission betweeA and B that is optimal with respect to a measurable utility funetio
x:AxB—R. If be (R, #,P)is arandom variable with known distribution, then the expdc
utility Ep{x} is:

Ep{x} = // x(a,b) dP(a,b) = /dP /adea\b /Ep{x\b}dP()
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HereE,{x | b} denotes the conditional expected utility, and it is maxadiby choosing the
optimal conditional probability measudd(a | b). The maximum of information is communi-
cated by an injective functioa= f(b), defining a deterministic transition kernel. The optimal
function is such thax(f(b),b) = sup,.aX(a,b). On the other hand, if no information can be
communicated, thedP(a | b) = dP(a). A deterministic kernel communicating no informa-
tion is defined by a constant function. Note, however, that cen still choose an optimal
constant functioray = f(b). Indeed, ifx(a,b) is differentiable and concave m thena; is

a solution to the equatioll, [ x(a,b)dP(b) = 0. In particular, ifx(a,b) = —2(a—b)?, then
Oa JgX(a,b)dP(b) = [zg(b—a)dP(b), anda; = [gbdP(b) = Ep{b}, which is the well-known
classical method minimizing mean-squared deviation. Tfursonstantf (b) = a;

Ep, {x} = —%/B(al ~b)2dP(b) < —%/B(Ep{b} ~b)2dP(b) = — 5 Var{b)

The value on the right depends on the distribuf§B), and there are many examples of distri-
butions with unbounded variance, suchd&b) = [r1(b?> + 1)]~1db (the Cauchy distribution).
Indeed, the integrafy(a— b)?(b? + 1)~1dbdoes not converge dB= (—o, ).

Let us assume now that some limited information can be contated so thatiP(a | b) #
dP(a) (and hencaP(b | a) # dP(b)). For example, this can be the information associated
with b belonging to some subset Bf such a$ > 0 orb < 0. In each case, one can choose
different optimal elements; anda,. A more ‘precise’ information would correspond to a
larger number of subseB C B and optimal elements;, such that

B0 <33 [ (B—bdR)

Observe that the value above still depend$>@B), and because for any finite partition of the
real line there are some unbounded intervals, one canRé&egiving a negatively infinite
value on the right. For example, F(B) is the Cauchy distribution, then the integrdla—
b)?(b? + 1)db does not converge on the intervads = (—o0,0] or B, = [0,). Thus,b can
be distributed in such a way that the expected value ofytilia, b) = —%(a— b)2 cannot be
larger than—co for any deterministigs with finite image| f (B)|. The expected utility can have
finite values only iff has an infinite image. By the argument of Proposilibn 6, hewehis
means that the function can communicate an infinite amounfafmation. Let us show now
that there exist non-deterministic transition kernelstfids problem achieving finite expected
utility and communicating finite amount of information.

Indeed, consider an exponential kernel from Sedtioh 5.dma for constraints on Shan-
non mutual information. Because the utility functiga,b) = —3(a—b)? is translation in-
variantx(a+ c,b+ c) = x(a,b), we can use the simplified expressions from Sedtioh 5.4. In
particular,Wo(B) = In/2mB -1, and the exponential kernel is Gaussian

dPs(a|b) = 1 e Biabig,

V2nB-1

Conditional expectatioi,, {X | b} is constant for alb € B:

_ 11 [P a_ppeBratiga. LV2MBTE 1p,
Ep, {x| b} = 2\/Tﬁl/m(a bfe P das 5N S = 58

and therefore . 1
Egp (%} = [ Egy{x|b}dP(b) = 52
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The expression above can also be easily obtained from equffil) as the derivative of
Wo(B) = In/2mB-1. The optimal valug3—! > 0 depends on the amouat of mutual in-
formation, and it can be computed using equation (16) byrimgA = Is{a,b}:

B — 2ret-2H{b}-2]

The valueB depends on the differené¢¢{b} — A, which equals to the conditional differential
entropyH{b | a}, becausds{a,b} =H{b} —H{b|a} = A. Therefore, ifH{b | a} is finite,
thenp > 0, andEp, {x} is finite for allA > 0.

Other examples can be constructed using the same princibesnstance, iR =B =N,
and the utility functiorx(a, b) is a polynomial of degree > 1, then one can distributec B
according taP(b) = ™1 (m+1)] 71, where{ (k) = Tpen b ¥ is the Riemann zeta function.
In this case, the expected utility is negatively infinite &oy deterministic kerneds y,(a), if
f has finite image satisfying a finite information constraifihe optimal transition kernels
satisfying both finite expected utility and finite inforn@iti constraints in such problems are
non-deterministic. These examples demonstrate thatrdigtistic and non-deterministic tran-
sition kernels are qualitatively different, because tlesipected utilities can be separated by
infinity.

5.6 Application: Deterministic and non-deterministic algorithms

Because Markov transition kernels give a non-determmgéineralization of functions, they
can be used to model various input-output or informatiorc@ssing systems. Computational
machines and algorithms are examples of such systems, andwaiscuss how they can be
represented by transition kernels and the correspondirigtizenal problems. Results of this
work may have interesting applications to the study of atgors and computation.

An algorithmT is defined as a system of computations transforming inputiswag in
some finite alphabet into output (e.g. final) womds(e.g. [24]). Each word in the domain of
definition of ' can be considered as initial wovg). In a deterministic algorithm, the compu-
tation process is performed by a sequence of transforngayiom ) = w1 of words, where
y is called thedirect processingperator [[21] or a transition function. In a non-deterntinis
algorithm, these transitions are randomized accordingmeeslocal probabilities. The com-
putational process may terminate reaching a final word (arjswerminate without reaching
a final word (error) or continue the computations indefigitéh addition, when computation
terminates with a non-final word, one may distinguish betwerors of the first and second
kinds (i.e. false positives and false negatives). Algonghmay be restricted to run in poly-
nomial time of the size of input words or produce only certgipes of errors (i.e. one-sided
errors).

The computational cost df(wp) can be associated with resources or complexity of com-
putations, such as the length of the output sequénge .., w;), if w; is final:

i t if F(wp) = (wq,...,w) andw is a final word
(T (wo), o) := { 00 oth((arW?se ( !
A Boolean loss function can be defined &y(I (I (wp),wo)), whered.(-) indicates an error
(i.e. one, if the algorithm does not terminate or terminaték a non-final word). A utility
of computation can be defined by any function proportionaldgative loss, such as Boolean
utility x(I" (wo),wWo) = 1 — & (I (I (Wo),Wp)). Maximization of expectatiof,{x} for Boolean
utility is maximization of the probability that computatiderminates with a final word.
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Both deterministic and non-deterministic algorithms catepa function from the set of
input wordswg, for which the computation terminates with an answer, ohtodet of final
wordsw;. The main difference is that a non-deterministic algoritbam compute the pair
(wo, W) in different ways and with different running times, so thia¢ tcost or utility of a
non-deterministic computation is a random variable. Weregnesent algorithms by Markov
transition kernels as follows.

Let B be the set of all input wordap, and letA be the set of all, possibly infinite, output
word sequence§w; }. A deterministic algorithm corresponds to a determinisarkov tran-
sition kerneldr ) (), so that each input word is mapped to a particular output wecgience:
B> wp— IN'(Wp) = (Wa,...,W,...) € A. Anon-deterministic algorithm assigns non-zero prob-
abilities B-(a | b) to different output sequences. We say that two algorithraequivalent, if
they correspond to identical Markov transition kernelsinBoin the set”(A x B), which is a
Chogquet simplex, correspond to equivalence classes ofttministic and non-deterministic
algorithms, defined oB, together with all distribution®(B) of input words. This formalism
allows us to consider optimization of algorithms in the eof variational problem${2),1(3)
and their generalizations.

Indeed, optimization of a class of algorithms subject tost@intEp{l} < v on the ex-
pected loss or a constraifip {x} > v on the expected utility has been considered in complexity
theory (e.g. see [16]). For example, the complexity cladsoninded error probabilistic poly-
nomial time machines (BPP) is defined as a class of probleleedsdy non-deterministic
algorithms with constraints on the expected error (Eg{x} > v > 1/2, wherex is Boolean
utility). Information constraints have also been consdein complexity theory, such as con-
straints on communication capacity (communication comiglgor in the class of probabilis-
tically checkable proofs (PCP), which is defined as a noprdshistic algorithm with con-
straints on randomness and a number of queries to an orale (@onstraint on information
amount about the proof). Problems of optimization of alidponis can be considered as a search
for the corresponding class of optimal Markov transitionneds (i.e. variational problems of
the third kind in information theory). The optimal value fitions [5)-(8) put the expected
utility constraintEp{x} > v in duality with a constrainE (p) < A on an information resource.
Thus, the study of performance and computational compi@fithe algorithms is related to
the study of their information constraints.

6 Discussion

We have studied families of optimal measures using a genatiah of the classical varia-
tional problems of information theory [38, 134] and statiatiphysics[[1/7]. In fact, standard
formulae of these theories relating Gibbs measures, fregygnentropy and channel capacity
can be recovered simply by defining information constrairdi®g the Kullback-Leibler di-
vergence. The main motivation for the generalization watewmstanding the mutual absolute
continuity of measures within optimal families, and it wasablished that such families ex-
ist if an abstract information resource has a strictly carseal, which is a geometric rather
than algebraic property of information. We have discusded #hat strict convexity of the
dual functional is related to separability of different isdional problems, which is useful in
the context of optimization. Our method does not depend onntatativity of the algebra
of random variables or observables, and for this reasonethdtrholds both for commutative
(classical) and non-commutative (quantum) measures.

Mutual absolute continuity of optimal probability measuidlowed us to show that de-
terministic transition kernels are strictly sub-optimdthis result is important not only for
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applications of optimization theory, but also for some tlediocal questions in studies of al-
gorithms and computational complexity, where much of tHerefs devoted to the question
whether non-deterministic procedures have any quakatotvantage over deterministic. Our
results suggest that in a broad class of optimization problevith constraints on informa-
tion optimal deterministic kernels do not exist. Moreowaan, example has been constructed
to show that the difference between expected utilities ¢érdeinistic and non-deterministic
kernels can be infinite for all proper constraints on an imi@tion resource.

These results about strict sub-optimality of determioigtrnels do not contradict the
established understanding in the classical theory ofstitadl decisions that asymptotically
randomized policies cannot be better than deterministg: @eel[35] or more recently [22]).
Indeed, these asymptotic results are concerned with abgaidl, possibly infinite amount of
information, in which case there are deterministic optikerhels. Our results, on the other
hand, are about optimality subject to constraints makimp sisymptotic solutions unfeasible.
Note also that a simple randomization of a function’s outpart only decrease (loose) the
amount of information it communicates. However, we have garad deterministic and non-
deterministic kernels that can communicate the same anofunformation. The possibility
to separate deterministic and non-deterministic tramsstiqualitatively (i.e. by infinity) is
particularly interesting, because it confirms a commonitiotu in applied optimization about
numerous problems, in which non-deterministic algorittoagperform all known determinis-
tic methods.
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