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ABSTRACT
We present a branch and bound algorithm for the global optimization of a twice differentiable
nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set.
The algorithm is based on applying cubic regularisation techniques to the objective function
within an overlapping branch and bound algorithm for convex constrained global optimization.
Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underes-
timators of the function. For a numerical example, we apply the proposed branch and bound
algorithm to radial basis function approximations.
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1 Introduction

In this paper, we are interested in solving the global optimization problem

min
x∈D

f(x) (1.1)

where D ⊂ Rn is a compact, convex set and f : C → R is a twice-Lipschitz-continuously differ-
entiable nonconvex function defined on a suitable compact set C ⊂ Rn containing D. Global
optimization arises in many application areas including predicting the structures of proteins,
managing financial porfolios, modelling chemical processes as well as managing environmental
systems, to name but a few (see Floudas and Pardalos, 1999, for more application areas).
While global optimization is a challenging problem (Kreinovich and Kearfott, 2005), a variety
of deterministic and stochastic solution methods have been suggested (Androulakis, Maranas,
and Floudas, 1995; Horst and Pardalos, 1995; Pardalos and Romeijn, 2002) and this remains
a very active area of research (see Neumaier, 2004, and extensive references therein). Most of
these approaches fall into one of three categories: exact or complete methods (mostly based
on branch and bound, see Neumaier, 2004), heuristic or incomplete methods (mostly based
on stochastic search, see Spall, 2003) and surrogate based methods (based on replacing the
objective function by a cheap approximation, see Jones, 2001). Our approach to solving the
global optimization problem (1.1) falls into the first category, it is a deterministic branch and
bound algorithm drawing on established ideas from both the local and global optimization
communities. To the best of our knowledge, it differs from other branch and bound algorithms
in that it employs nonconvex underestimators of the function to obtain the required lower
bounds.

The outline of the paper is as follows. In §2 we describe in detail our proposed branch and
bound algorithm for solving the global optimization (1.1). We then go on to prove that under
suitable assumptions the proposed algorithm converges to the global minimum of (1.1) in §3.
§4 describes how we can efficiently calculate the necessary lower bounds required by our branch
and bound algorithm while §5 outlines a faster heuristic version of our algorithm. Then in §6
we apply our proposed algorithm to radial basis functions and provide numerical examples to
establish performance of the algorithm in this setting. Finally, we draw conclusions in §7.

1.1 Notation

Let g(x) := ∇xf(x) and H(x) := ∇xxf(x) be the gradient and Hessian of f(x), and ‖·‖ denote
the `2-norm. Following convention, let Ck denote the space of k-continuously differentiable
functions. Since C is compact and f ∈ C2(C), there are constants L > 0 and Lg > 0 for which

‖g(x)‖ ≤ L and ‖H(x)‖ ≤ Lg (1.2)

for all x ∈ C. It follows that L is an `2-norm Lipschitz constant for f(x), and thus

|f(x)− f(y)| ≤ L‖x− y‖ (1.3)

for all x, y ∈ C, and that Lg is a gradient Lipschitz constant for f(x) over C. Furthermore
let LH be a Hessian Lipschitz constant of f over C. Note that, within C, these are all global
Lipschitz constants.
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Now let B ⊂ C denote the n-dimensional closed ball of radius r(B) > 0 centred at some
xB ∈ B, i.e.,

B = {x ∈ Rn : ‖x− xB‖ ≤ r(B)} .
Furthermore, let LH(B) denote a local Hessian Lipschitz constant for f(x) over the ball B.
Unlike the global Lipschitz constants, we need to be able to calculate a numerical approximation
to the local Hessian Lipschitz constant for our proposed branch and bound algorithm. We
discuss how this is done in detail in an application to radial basis functions in §6.2.

2 Description of the Algorithm

In an attempt to solve the global optimization problem (1.1) we develop an extension of the
canonical branch-and-bound algorithm (see e.g. Horst, 1986) with bounds inspired by the trust
region subproblem (see Chapter 7 of Conn, Gould, and Toint, 2000). Our branching comprises
a systematic covering and refinement of D by balls B, while our bounding requires we compute
both lower and upper bounds on the minimum of f over each B. We will return to the branching
when we define our algorithm.

To find a lower bound for the minimum of f over B, we deduce from Taylor’s theorem that
for all x, xB ∈ B

f(x) = f(xB) + (x− xB)Tg(xB) +
1

2
(x− xB)TH(xB)(x− xB)

+

∫ 1

0

(1− τ)(x− xB)T [H (xB + τ(x− xB))−H(xB)] (x− xB)dτ.
(2.1)

Taking the absolute value of the integral and invoking the Hessian Lipschitz continuity, we find
that for all x ∈ B∣∣∣∣∫ 1

0

(1− τ)(x− xB)T [H (xB + τ(x− xB))−H(xB)] (x− xB)dτ

∣∣∣∣
≤
∫ 1

0

(1− τ)‖H (xB + τ(x− xB))−H(xB)‖‖x− xB‖2dτ

≤
∫ 1

0

(1− τ)LH(B)‖τ(x− xB)‖‖x− xB‖2dτ

=

∫ 1

0

(1− τ)τdτ LH(B)‖x− xB‖3 =
LH(B)

6
‖x− xB‖3.

Thus if we consider the lower cubic bounding function m−B : B ⊂ Rn → R (as in Nesterov and
Polyak, 2006)

m−B (x) = f(xB) + (x− xB)Tg(xB) +
1

2
(x− xB)TH(xB)(x− xB)− LH(B)

6
‖x− xB‖3,

we have that
m−B (x) ≤ f(x) (2.2)

provides a non-convex under-estimator for all x ∈ B. We can therefore use

α(B) = min
x∈B

m−B (x) (2.3)
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as a lower bound for the global minimum of f(x) over B. It is important to note that α(B) can
be calculated efficiently and we discuss how this is done in §4.

It is also possible (when g(xB) 6= 0) to use a lower bound based on the gradient Lipschitz
constant

f(xB) + (x− xB)Tg(xB)− Lg(B)

2
‖x− xB‖2

although numerical results suggest the cubic lower bounding function detailed above almost
always provides a tighter underestimator. Nevertheless, as it is faster to compute it may be
more efficient to use this quadratic lower bound in the early stages of the branch and bound
algorithm when the cubic lower bound is rather crude.

To find an upper bound for the minimum of f over B, we simply evaluate f at a feasible
point x+B in B. We discuss how x+B is calculated in §2.1. We therefore let

β(B) = f(x+B ) (2.4)

be the upper bound for the global minimum of f(x) over B.
The idea behind the algorithm is to recursively partition an initial ball covering the domain

D into sub-balls until we find a ball (or balls) of sufficiently small size containing the global
minimiser of f(x) over D. Since we are able to obtain bounds on the minimum of f(x) over
any ball in D, we can use them to discard balls which cannot contain the global minimum, i.e.
balls whose lower bound is greater than the smallest upper bound. The complete branch and
bound algorithm then proceeds as follows:

Algorithm 2.1. Branch and Bound Algorithm for Hessian Lipschitz Optimization

0. Initialisation:

(a) Set k = 0.

(b) Let B0 be a ball with centre xB ∈ D of sufficiently large radius to cover D.
(c) Let L0 = {B0} be the initial list of balls.

(d) Let U0 = β(B0) be the initial upper bound for minx∈D f(x).

(e) Let L0 = α(B0) be the initial lower bound for minx∈D f(x).

1. While Uk − Lk > ε, repeat the following procedure:

(a) Remove from Lk balls B ∈ Lk such that α(B) > Uk.

(b) Choose B ∈ Lk such that α(B) = Lk.

(c) Split B into 3n overlapping sub-balls B1, . . . ,B3n according to our splitting rule (see
§2.2) and discard any sub-balls which lie entirely outside of D. Let Rk denote the
list of remaining sub-balls and let Lk+1 := (Lk \ {B}) ∪Rk.

(d) Set Uk+1 := minB∈Lk+1
β(B).

(e) Set Lk+1 := minB∈Lk+1
α(B).

(f) Set k = k + 1.

2. Return Uk as the estimate of the global minimum of f(x) over D.
Note that infeasible balls, i.e. balls which lie entirely outside of D, are discarded by the

branch and bound algorithm (see step 1c) and that the initial ball B0 contains D.
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2.1 Discarding Balls and Feasible Points

Algorithm 2.1 discards balls B which lie entirely outside of D. As D is a convex set this is easy
to check since then the convex programming problem

min
x∈Rn
‖x− xB‖2

s.t. x ∈ D

provides a feasible minimiser x+B if the minimum is smaller than r(B)2. Moreover, if the min-
imum of the convex program is larger than r(B)2, we know that the ball B lies entirely outside
of D and can be discarded. The convex programming problem can be efficiently solved using
standard convex optimization techniques (see Boyd and Vandenberghe, 2004).

2.2 Splitting Rule

We split a ball B ⊂ Rn in step 1c of Algorithm 2.1 as follows. Let B have centre xB and
radius r(B). Split B into 3n sub-balls of radius r(B)/2 centred at the vertices of a hypercubic
tessellation around xB of edge length r(B)/

√
n. Formally, construct 3n sub-balls B1, . . . ,B3n all

of radius r(B)/2 centred at

xBi = xB + ρni

(−r(B)√
n

, 0,
r(B)√
n

)
for i = 1, . . . , 3n. Here ρni (s1, s2, s3) is a vector in Rn whose elements are the i-th permutation of
s1, s2, s3 taken n at a time with repetition. We illustrate this for the case n = 2 in Figure 1. Note
that the choice of centres and radii of the sub-balls ensures that they cover the original ball B.
Furthermore, this means that at any iteration of Algorithm 2.1 we always have a covering of
closed balls of the convex set D.

Figure 1: An illustration of our splitting rule in two dimensions. The black circle is split into
nine blue circles of half radius centred at the vertices of the square tessellation.



Branch and Bound Global Optimization of Hessian Lipschitz Continuous Functions 5

3 Proof of Convergence

In this section we will prove that, under suitable assumptions, Algorithm 2.1 converges in a
finite number of iterations to within a tolerance ε > 0 of the global minimum of f(x). Our
proof is based on the convergence proof of the canonical box-based bound constrained branch
and bound algorithm in Balakrishnan, Boyd, and Balemi (1991). First we state and prove a
pair of Lemmata before giving the main convergence theorem.

Lemma 3.1. The bounds α and β given above in (2.3) and (2.4) respectively satisfy

(C1) α(B) ≤ minx∈B f(x) ≤ β(B) ∀B ⊂ Rn

(C2) ∀ε > 0 ∃δ > 0 s.t. ∀B ⊂ Rn, r(B) ≤ δ =⇒ β(B)− α(B) ≤ ε

Proof: (C1) Recall that α(B) = minx∈Bm
−
B (x) and β(B) = f(x+B ). From (2.2) we have that

min
x∈B

m−B (x) ≤ min
x∈B

f(x) (3.1)

and clearly
min
x∈B

f(x) ≤ f(x+B ).

Thus we see that the bounds satisfy condition (C1).

(C2) Let ε > 0 be arbitrary. For clarity of exposition define for all B ⊂ Rn,

x−B := arg min
x∈B

m−B (x).

Note that x−B may not be unique but this does not matter. Then r(B) ≤ δ means that

‖x−B − xB‖ ≤ δ. (3.2)

Consider

β(B)− α(B) = |f(x+B )−m−B (x−B )|
≤ |f(x+B )− f(xB)|+ ‖x−B − xB‖‖g(xB)‖

+
1

2
‖x−B − xB‖2‖H(xB)‖+

LH
6
‖x−B − xB‖3

≤ L‖x+B − xB‖+ ‖x−B − xB‖‖g(xB)‖

+
1

2
‖x−B − xB‖2‖H(xB)‖+

LH
6
‖x−B − xB‖3

≤ Lδ + ‖g(xB)‖δ +
1

2
‖H(xB)‖δ2 +

LH
6
δ3

≤ 2Lδ +
Lg
2
δ2 +

LH
6
δ3

where the first inequality follows directly from the triangle and Cauchy-Schwarz inequal-
ities, the second from (1.3), the third from (3.2) and the fourth from (1.2). It therefore
suffices to choose δ sufficiently small such that

2Lδ +
Lg
2
δ2 +

LH
6
δ3 ≤ ε
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so we simply need to pick δ ≤ min{ε/6L,
√

2ε/3Lg,
3
√

2ε/LH}, i.e. such that each of the
three terms on the left of the bounding equation for ε is less than or equal to ε/3.

Our second Lemma shows that Algorithm 2.1 eventually creates a ball of arbitrarily small
radius.

Lemma 3.2. For k ∈ N
min
B∈Lk

r(B) ≤ r(B0)
2d(log3nk)/2e

and thus for any δ > 0 there exists K ∈ N such that

min
B∈LK

r(B) ≤ δ.

Proof: Firstly recall that our splitting rule splits each ball into 3n sub-balls. We start at iter-
ation k = 0 with our initial covering ball B0 of radius r(B0). We split B0 into 3n sub-balls of
radius r(B0)/2 at iteration k = 1. Assuming a worst-case scenario, each of these 3n sub-balls
has to be split into 3n subsub-balls of radius r(B0)/4 before we can consider any of the subsub-
balls for splitting. Following this argument through inductively, we deduce that for k ∈ N it
takes at most

k =
m∑
j=1

(3n)j−1 (3.3)

iterations to reduce the radius of the smallest ball in the covering to less than or equal to

r(B0)
2m

. (3.4)

We can bound (3.3) by
k ≤ m(3n)m−1 ≤ (3n)2m

which when combined with (3.4) gives the required bound. The second part of the Lemma then
follows trivially.

Theorem 3.3. Algorithm 2.1 converges in a finite number of iterations to within a tolerance
ε > 0 of the global minimum of f(x) over D. Formally, for any ε > 0 there exists Mε ∈ N such
that

UMε − LMε ≤ ε

and UMε is within a tolerance ε of the global minimum of f(x) over D.

Proof: Let Bk := arg minB∈Lk r(B) and let Ak ∈ LMk
be the ball which for some Mk < k we

split to obtain Bk. Note that Bk may not be unique but this does not matter. Let ε > 0 be
arbitrary. Then there exists δ > 0 such that for any B ⊂ Rn

r(B) ≤ 2δ =⇒ β(B)− α(B) ≤ ε (3.5)

by condition (C2) of Lemma 3.1. Choose K ∈ N sufficiently large such that

r(BK) ≤ δ
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which is possible by Lemma 3.2. Then AK must have r(AK) ≤ 2δ as we split it to obtain Bk
and thus from (3.5) we have that

β(AK)− α(AK) ≤ ε. (3.6)

Now, as AK was split at iteration MK , it must have satisfied α(AK) = LMK
. Hence we get

that
UMK

− LMK
≤ β(AK)− LMK

≤ ε (3.7)

since UMK
≤ β(AK) by definition and using (3.6). We therefore have an upper bound MK on

the number of branch and bound iterations.
It remains to show that UMK

is within a tolerance ε of the global minimum of f(x) over D.
Assume condition (C1) of Lemma 3.1 holds and suppose that the global minimum l∗ of f(x)

over D is attained at x∗ ∈ D. First, we show that x∗ is contained in a ball in LMK
. To see this,

observe that for all k ∈ N, Lk is a partition of the bounding ball B0 with balls which cannot
possibly contain x∗ removed, that is to say balls B which have lower bound

α(B) > Uk

i.e. α(B) > f(x+B ) for a feasible point x+B ∈ D. As x∗ is contained in a ball in LMK
it follows

that LMK
≤ l∗ and thus

UMK
− l∗ ≤ UMK

− LMK
≤ ε

by (3.7).

4 Computing the Lower Bound

We have mentioned earlier in §2 that we use lower bounds based on globally minimising the
cubic bounding function m−B (x) over balls B ⊂ Rn, in a similar vein to Nesterov and Polyak
(2006). In this subsection we will show how we can efficiently globally minimise m−B (x) over
any closed ball B centred at xB, i.e.

minimise m−B (x) = f(xB) + (x− xB)Tg(xB) +
1

2
(x− xB)TH(xB)(x− xB)

− LH(B)

6
‖x− xB‖3

subject to ‖x− xB‖ ≤ ∆

for some ∆ > 0. For clarity of exposition, we rewrite the above minimisation problem in the
equivalent form

minimise m−(x) := f + xTg +
1

2
xTHx− σ

3
‖x‖3

subject to ‖x‖ ≤ ∆

where σ := LH(B)/2, we have shifted x by xB, and we have dropped the explicit dependence
on B from the notation. It is clear that the global minimum of the above problem will occur
either on the boundary or in the interior of the ∆-ball. We solve for these two cases in turn,
starting with the case where the minimum lies on the boundary.
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4.1 Finding a minimiser on the ∆-ball boundary

For the bounding function m−(x) we have the following global optimality result (cf. Theorem
7.2.1 in Conn et al., 2000 and Theorem 3.1 in Cartis, Gould, and Toint, 2009).

Theorem 4.1. Any x∗ is a global minimiser of m−(x) over Rn subject to ‖x‖ = ∆ if and only
if it satisfies the system of equations

(H + (λ∗ − σ∆)I)x∗ = −g (4.1)

where H + (λ∗− σ∆)I is positive semidefinite for some Lagrange multiplier λ∗ and ‖x∗‖ = ∆.
If H + (λ∗ − σ∆)I is positive definite, x∗ is unique.

Proof: First we rewrite the constraint ‖x‖ = ∆ as 1
2
‖x‖2 − 1

2
∆2 = 0. Now, let x∗ be a global

minimiser of m−(x) over Rn subject to the constraint. We have from the first order necessary
optimality conditions (see Section 3.2.2 of Conn et al., 2000) that x∗ satisfies

(H + (λ∗ − σ‖x∗‖)I)x∗ = −g. (4.2)

where λ∗ is the corresponding Lagrange multiplier. We have by assumption that ‖x∗‖ = ∆ and
substituting this into (4.2) gives the required system (4.1). Now, suppose u∗ is a feasible point,
i.e. that ‖u∗‖ = ∆. We have that

m−(u∗)−m−(x∗) = gT (u∗ − x∗) +
1

2
(u∗)THu∗ − 1

2
(x∗)THx∗ +

σ

3

(
‖u∗‖3 − ‖x∗‖3

)
= gT (u∗ − x∗) +

1

2
(u∗)THu∗ − 1

2
(x∗)THx∗ (4.3)

where the last equality follows from the fact that ‖x∗‖ = ‖u∗‖ = ∆. But (4.2) gives that

gT (u∗ − x∗) = (x∗ − u∗)THx∗ + (λ∗ − σ∆)(x∗ − u∗)Tx∗. (4.4)

Also, the fact that ‖x∗‖ = ‖u∗‖ = ∆ implies that

(x∗ − u∗)Tx∗ =
1

2
(x∗)Tx∗ +

1

2
(u∗)Tu∗ − (u∗)Tx∗ =

1

2
(u∗ − x∗)T (u∗ − x∗). (4.5)

Combining (4.3) with (4.4) and (4.5), we find that

m−(u∗)−m−(x∗) =
1

2
(λ∗ − σ∆)(u∗ − x∗)T (u∗ − x∗) +

1

2
(u∗)THu∗

− 1

2
(x∗)THx∗ + (x∗)THx∗ − (u∗)THx∗

=
1

2
(u∗ − x∗)T (H + (λ∗ − σ∆)I)(u∗ − x∗). (4.6)

We also have from the second order necessary optimality conditions (see Section 3.2.2 of Conn
et al., 2000) that

H + (λ∗ − σ‖x∗‖)I − σ

‖x∗‖x
∗(x∗)T
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is positive semidefinite on the null-space of the constraint gradient x∗, i.e. that

vT
(
H + (λ∗ − σ∆)I − σ

∆
x∗(x∗)T

)
v ≥ 0 (4.7)

for all v for which vTx∗ = 0, where we have used the fact that ‖x∗‖ = ∆. In this case it
immediately follows from (4.7) that

vT (H + (λ∗ − σ∆)I) v ≥ 0

for all v for which vTx∗ = 0. It thus remains to consider vectors v for which vTx∗ 6= 0. Since v
and x∗ are not orthogonal, the line x∗ + αv intersects the constraint ‖x‖ = ∆ at two points,
x∗ and u∗. Let v∗ = u∗ − x∗ and note that v∗ is parallel to v. As x∗ is a global minimiser we
have that m−(u∗) ≥ m−(x∗) and thus we have from (4.6) that

0 ≤ m−(u∗)−m−(x∗) =
1

2
(u∗ − x∗)T (H + (λ∗ − σ∆)I)(u∗ − x∗)

=
1

2
(v∗)T (H + (λ∗ − σ∆)I)v∗ (4.8)

from which we deduce that
vT (H + (λ∗ − σ∆)I) v ≥ 0

for all v for which vTx∗ 6= 0. In summary, we have shown that

vT (H + (λ∗ − σ∆)I) v ≥ 0

for any vector, which is the same as saying that H + (λ∗−σ∆)I must be positive semidefinite.
Conversely, if H + (λ∗ − σ∆)I is positive definite, 1

2
(u∗ − x∗)T (H + (λ∗ − σ∆)I)(u∗ − x∗) > 0

for any u∗ 6= x∗ and therefore (4.8) shows that m−(u∗) > m−(x∗) whenever u∗ is feasible. Thus
x∗ is the unique global minimiser.

The global minimiser can be efficiently found by applying a safeguarded version of Newton’s
method as detailed in Section 2.1 of Gould, Robinson, and Thorne (2010) to the scalar equation

‖x(λ)‖ = ∆,

where (H + (λ− σ∆)I)x(λ) = −g,
(4.9)

and this is the approach we take (see Figure 2 below). Note that since H is of low dimension it
is more efficient to find the spectral decomposition H = QΛQT , and then to solve an equivalent
problem to (4.9) in transformed variables y = QTx for which the Hessian, Λ, is diagonal.

4.2 Finding a minimiser in the ∆-ball interior

If, by contrast, the solution we seek lies in the interior of B, we have the following result:

Theorem 4.2. The lower bounding function m−(x) can only have finite global minimisers if
H is positive semidefinite. In this case, any x∗ is a global minimiser of m−(x) over Rn if and
only if it satisfies the system of equations

(H + ω∗I)x∗ = −g (4.10)

where ω∗ = −σ‖x∗‖ and H + ω∗I is positive semidefinite.
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−λ1 + σ∆

‖x(λ)‖

λ
0

‖(H + (λ− σ∆)I)−1g‖

∆

Figure 2: Solutions to the system (4.1) are the intersections of the two curves.

Proof: For the first part, suppose H is not positive semidefinite and consider x = αu for
any eigenvector u of H corresponding to a negative eigenvalue. Then clearly m−(x) → −∞
as α → ∞ and so the function m−(x) is unbounded below. The second part of the proof is
analogous to the proof of the first part of Theorem 3.1 in Cartis et al. (2009).

Note that in this case ω∗ = −σ‖x∗‖ and so there can only be a solution for ω ≤ 0. Assuming
H is positive semidefinite, let λ1 denote the smallest eigenvalue of H and note that if λ1 = 0

there can only be a trivial solution to the system (4.10) when x = 0 and g = 0. When λ1 > 0

there will be at most two possible solutions to the system (4.10) which, once again, can be
found using Newton’s method with suitable starting points (i.e. Algorithm 6.1 in Cartis et al.,
2009). Numerical results suggest that in this case the solution closest to zero is always the best
local minimiser in the ∆-ball interior, and this is indeed the case as we show in Theorem 4.3
below. Figure 3 below illustrates this typical case when there are two possible solutions. (Note
that there may be no solutions and an example of this is the case where the straight line
lies under the curve in Figure 3.) We have the following theorem (based on Theorem 3 from

‖x(ω)‖

ω

−ω
σ

‖(H + ωI)−1g‖

−λ1 0

Figure 3: Solutions to the system (4.10) for m−(x) are the intersections of the two curves.

Griewank, 1981) which shows that whenever m−(x) has a finite global minimiser over Rn, the
global minimiser is unique.
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Theorem 4.3. For any pair of potential finite global minimisers u∗, v∗ of the lower bounding
function m−(x) over Rn given by Theorem 4.2 with ‖u∗‖ ≤ ‖v∗‖, the corresponding lower
bounding function values satisfy

m−(v∗)−m−(u∗) ≥ σ

6
(‖v∗‖ − ‖u∗‖)3 ≥ 0.

In particular this means that when there are two possible solutions to the system (4.10) (as in
Figure 3), the solution x∗ with larger norm ‖x∗‖ is the global minimiser of m−(x) over Rn.

Proof: First of all consider a general potential finite global minimiser x∗ of m−(x). As it is a
potential finite global minimiser it must satisfy (4.10). Multiplying (4.10) on the left by (x∗)T

and dividing by two gives
1

2
(x∗)THx∗ = −1

2
gTx∗ − 1

2
ω∗(x∗)Tx∗ (4.11)

where ω∗ = −σ‖x∗‖. From the definition of m−(x) we have that

m−(x∗) = f + gTx∗ +
1

2
(x∗)THx∗ − σ

3
‖x∗‖3

= f + gTx∗ − 1

2
gTx∗ − 1

2
ω∗(x∗)Tx∗ − σ

3
‖x∗‖3 by (4.11)

= f +
1

2
gTx∗ +

σ

2
‖x∗‖‖x∗‖2 − σ

3
‖x∗‖3

= f +
1

2
gTx∗ +

σ

6
‖x∗‖3 (4.12)

where the third equality follows from the fact that ω∗ = −σ‖x∗‖ and (x∗)Tx∗ = ‖x∗‖2. Now,
assume u∗, v∗ are potential finite global minimisers of m−(x). We have from Theorem 4.2 that

(H + α∗I)u∗ = −g = (H + β∗I)v∗ (4.13)

where
α∗ = −σ‖u∗‖ ≥ −σ‖v∗‖ = β∗. (4.14)

Multiplying (4.13) by (v∗)T and (u∗)T we obtain

−gTv∗ = (v∗)THu∗ + α∗(v∗)Tu∗

−gTu∗ = (u∗)THv∗ + β∗(u∗)Tv∗

so that (since H is symmetric)

gT (v∗ − u∗) = (β∗ − α∗)(u∗)Tv∗ ≥ (β∗ − α∗)‖u∗‖‖v∗‖ = −σ(‖v∗‖ − ‖u∗‖)‖u∗‖‖v∗‖ (4.15)

where we have used the Cauchy-Schwarz inequality (multiplied by β∗ − α∗ which is negative
by (4.14)). We now have from (4.12) that

m−(v∗)−m−(u∗) =
1

2
gT (v∗ − u∗) +

σ

6
(‖v∗‖3 − ‖u∗‖3)

≥ −σ
2

(‖v∗‖ − ‖u∗‖)‖u∗‖‖v∗‖+
σ

6
(‖v∗‖3 − ‖u∗‖3) by (4.15)

=
σ

6
(−3‖v∗‖2‖u∗‖+ 3‖u∗‖2‖v∗‖+ ‖v∗‖3 − ‖u∗‖3)

=
σ

6
(‖v∗‖ − ‖u∗‖)3 ≥ 0

which completes the proof.
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5 A Faster Heuristic Algorithm

It is not always necessary or desirable to find the global minimum to a high degree of accuracy.
With this in mind we present a faster heuristic version of the Lipschitz based branch and
bound algorithm which has no theoretical convergence guarantees but still exhibits reasonable
performance.

The main drawback with regards to performance of the existing algorithm is the splitting
of each ball into 3n sub-balls since the number of sub-balls grows rapidly as n (the dimension
of the problem) increases. Rather than using overlapping balls, for the heuristic version of the
algorithm we split each ball into a dense lattice of non-overlapping sub-balls. The maximum
number of same-size balls one can pack around a central ball without overlap is given by the
kissing number κ (Conway and Sloane, 1999). Optimal kissing numbers and the corresponding
lattices we use which give rise to them are known up to 9 dimensions (see Conway and Sloane,
1999, for details). Running the algorithm with this splitting rule means that each ball is only
split into κ + 1 sub-balls, considerably less than 3n (cf. Table 1). The disadvantage is that it

n κ+ 1 3n

1 3 3

2 7 9

3 13 27

4 25 81

5 41 243

6 73 729

7 127 2187

8 241 6561

9 273 19683

Table 1: The optimal kissing number plus one (κ + 1) compared against 3n for the first 9
dimensions.

leaves holes in the domain we are trying to optimize over and so convergence to the global
optimum is not guaranteed. However, by running a local solver from the global minimum
proposed by the algorithm, we will always find a local minimum which is often a good candidate
for being the global optimum (and which can be used as an upper bound in the original slower
version of Algorithm 2.1 if desired). Figure 4 illustrates this heuristic splitting rule using the
hexagonal lattice which is known to be the optimal lattice in two dimensions.

6 Application to Radial Basis Functions

In recent years radial basis function (RBF) interpolation has become a popular and well estab-
lished approximation method for real valued functions, particularly in higher dimensions (see
Wendland, 2005). This approach is also known as intrinsic random function Kriging in the geo-
statistical literature (as proposed by Matheron, see Chilès and Delfiner, 1999) and Gaussian
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Figure 4: An illustration of our heuristic splitting rule in two dimensions. The black circle is
split into seven blue circles arranged in a hexagonal lattice.

process regression in Bayesian statistics (an early reference is O’Hagan, 1978). Under these
synonyms RBF interpolation has been applied to the design and analysis of computer experi-
ments (Santner, Williams, and Notz, 2003), machine learning (Rasmussen and Williams, 2006)
and engineering design (Forrester, Sóbester, and Keane, 2008) to name but a few. The RBF
interpolant can also be viewed as a neural network (see Chapter 5 of Bishop, 1996). One of the
main advantages of using RBFs to approximate an underlying real valued function is that one
can cheaply obtain derivatives of the RBF of any order. In particular, this allows us to easily
obtain the Hessian Lipschitz constant over any ball in Rn and thus apply our Lipschitz based
branch and bound algorithm, Algorithm 2.1 from §2. Note that this is an entirely new approach,
distinct from the canonical Lipschitz branch and bound algorithm (as described in e.g. Section
5.3 of Pardalos, Horst, and Thoai, 1995). With this in mind we will apply the proposed branch
and bound algorithm to the special case where the objective function f(x) is a radial basis
function approximation to some real valued function. Of course, the real motivation behind
using RBFs is to use the global minimizer of the RBF approximation to infer something about
the original problem, i.e. the global minimum of the underlying real valued function that is
approximated (see Farmer, Fowkes, and Gould, 2010, for an example application).

6.1 Introduction to Radial Basis Functions

First of all, let us give a brief introduction to radial basis function interpolation. We begin by
defining the weighted `2-norm ‖ · ‖W := ‖W · ‖2 with diagonal weight matrix W , and suppose
we have N samples y = (y1, . . . , yN)T of some real valued function we wish to approximate at
the corresponding sample points x1, . . . , xN ∈ D. An RBF approximation f : D ⊂ Rn → R
is then constructed as a linear combination of basis functions ϕ(·) composed with a weighted
`2-norm, together with an additional polynomial term to guarantee uniqueness:

f(x) =
M∑
k=1

µkπk(x) +
N∑
j=1

λjϕ(‖x− xj‖W) (6.1)
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where {πk(x)}Mk=1 is a basis for Πn
d , the space of polynomials in Rn of degree less than d, with

the notation Πn
0 = {0}. Typical choices of the basis function ϕ(·) are

the spline ϕ(r) =

{
rp if p is odd
rp log r if p is even

;

the multiquadric ϕ(r) = (r2 + γ2)β β > 0, β /∈ N;

the inverse multiquadric ϕ(r) = (r2 + γ2)−β β > 0; and

the Gaussian ϕ(r) = exp(−γ2r2),

(6.2)

where γ is a nonzero constant referred to as the shape parameter (see, for example, Chapters
6, 7, 8 of Wendland, 2005). Note that spline type RBFs are not C2 of p = 1 nor C3 unless
p is greater than two. As we use a weighted norm, we often let γ = 1 for the Gaussian basis
function. The coefficients µk, λj are determined by solving the linear interpolation system

yi =
M∑
k=1

µkπk(xi) +
N∑
j=1

λjϕ(‖xi − xj‖W), i = 1, . . . , N

along with the additional conditions
N∑
j=1

λjπk(xj) = 0, k = 1, . . . ,M

which complete the system and ensure that polynomials of degree less than d are interpolated
exactly. In matrix form this gives the non-singular (provided {xi}Ni=1 is a Πn

d -unisolvent set, see
Wendland, 2005) symmetric saddle-point system(

R P

P T 0

)(
λ

µ

)
=

(
y

0

)
(6.3)

where Pi,j = πj(xi) is a polynomial basis matrix and R is the correlation matrix given by

Ri,j = ϕ(‖xi − xj‖W).

There are two main approaches often used in the literature to find the weights in the weight
matrix W , which we will now assume to be diagonal. The first approach consists of choosing
W to maximise the likelihood of the observed data x1, . . . , xN and leads one to choose W to
be the maximiser of the log-likelihood function (see Busby, Farmer, and Iske, 2007)

`(W ) = −1

2
(N log σ2 + log det(R))

which we optimise using a general purpose global optimisation algorithm (DIRECT, Jones,
Perttunen, and Stuckman, 1993). The second approach is to use leave-one-out cross-validation
(see Rippa, 1999) and leads one to choose W to minimise the `2-norm of the cross-validation
error ε(W ) ∈ RN . The k-th element of the cross-validation error ε(W ) is the error at the
validation point xk, given by

εk(W ) =
λk

A−1k,k

where A−1k,k is the k-th diagonal element of the inverse of the interpolation matrix A =
(
R P
PT 0

)
.
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6.2 Calculating the Lipschitz constant

We now proceed to calculating a suitable Hessian Lipschitz constant for our proposed branch
and bound algorithm in the special case where the objective function f(x) is a radial basis
function approximation (6.1). We start by introducing tensors. A third order tensor T is a
generalisation of a matrix to three indices, that is to say a 3-dimensional array. As with matrices
Ti,j,k denotes the i, j, k-th component (i.e. element in the array) of the tensor T . Recall that
the matrix Frobenius norm can be defined as

‖A‖2F :=
m∑
i=1

n∑
j=1

A2
i,j

and this can be extended to a third order tensor T as

‖T‖2F :=
m∑
i=1

n∑
j=1

o∑
k=1

T 2
i,j,k.

Similarly, we can define the induced `2-norm for tensors by

‖T‖2 := max
‖x‖2=1

‖Tx‖2

where ‖Tx‖2 denotes the usual induced matrix norm. We are now in a position to prove the
following Lemma.

Lemma 6.1. Let T be a third order tensor. Then ‖T‖2 ≤ ‖T‖F .

Proof: We have that

‖T‖22 = max
‖x‖2=1

‖Tx‖22 ≤ max
‖x‖2=1

‖Tx‖2F as ‖A‖2 ≤ ‖A‖F for matrices

= max
‖x‖2=1

m∑
i=1

n∑
j=1

(
o∑

k=1

Ti,j,kxk

)2

= max
‖x‖2=1

m∑
i=1

n∑
j=1

(
o∑

k=1

(ai,j)kxk

)2

where the vector ai,j is such that (ai,j)k = Ti,j,k

≤ max
‖x‖2=1

m∑
i=1

n∑
j=1

‖ai,j‖22‖x‖22 by the Cauchy-Schwarz inequality

=
m∑
i=1

n∑
j=1

‖ai,j‖22 =
m∑
i=1

n∑
j=1

o∑
k=1

T 2
i,j,k = ‖T‖2F

Let T (x) := ∇xxxf(x) denote the third order derivative tensor of the RBF approximation
f(x) to some real valued function. We have from Taylor’s theorem that for any x, y ∈ B

‖H(x)−H(y)‖2 ≤
∥∥∥∥∫ 1

0

T (y + τ(x− y)) (x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖T (y + τ(x− y))‖2‖x− y‖2
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where ‖T (·)‖2 denotes the tensor `2-norm defined above. Thus the Hessian H(x) := ∇xxf(x) is
Lipschitz continuous on a ball B ⊂ Rn if there exists a `2-norm Lipschitz constant LH(B) > 0

such that for all x ∈ B
‖T (x)‖2 ≤ LH(B).

It suffices to find an upper bound τ(B) on T (x) over B and we can then use Lemma 6.1 to
calculate an upper bound LH(B) on the optimal Hessian Lipschitz constant as

‖T (x)‖2 ≤ ‖τ(B)‖2 ≤ ‖τ(B)‖F =

(
m∑
i=1

n∑
j=1

o∑
k=1

τ 2i,j,k

)1/2

= LH(B).

Thus it remains to determine the upper bound for the RBF approximation f(x). The approx-
imation f(x) has the form (6.1)

f(x) =
M∑
k=1

µkπk(x) +
N∑
j=1

λjϕ(‖x− xj‖W)

with associated third order derivative tensor T (x) given by

T (x) =
M∑
k=1

µk∇xxxπk(x) +
N∑
j=1

λj∇xxxϕ(‖x− xj‖W).

To calculate the upper bound τ(B), it therefore suffices to calculate upper and lower bounds on
the tensors ∇xxxπk(x) and ∇xxxϕ(‖x− xj‖W) over B depending on the signs of the coefficients
λj, µk. For example, for the cubic spline RBF ϕ(r) = r3 we have ∇xxxπk(x) = 0 as the
polynomial term is linear and

(
∇xxxϕ(‖x− xj‖W)

)
a,b,c

=



−3w6
a(xa − xja)3
‖x− xj‖3W

+
9w2

a(xa − xja)
‖x− xj‖W

if a = b = c

−3w2
c (xc − xjc)w4

a(xa − xja)2
‖x− xj‖3W

+
3w2

c (xc − xjc)
‖x− xj‖W

if e.g. a = b 6= c

−3w2
a(xa − xja)w2

b (xb − xjb)w2
c (xc − xjc)

‖x− xj‖3W
otherwise.

It is trivial to find upper and lower bounds on w2
a(xa − xja)/‖x− xj‖W over the smallest box

containing B which we can substitute into the above to obtain bounds on ∇xxxϕ(‖x− xj‖W).
A similar approach can be used for other radial basis functions (6.2) with interval arithmetic
techniques for higher order polynomial terms.

6.3 Numerical Examples

To begin with let us look at an illustrative two dimensional example. Consider the problem of
finding the global minimum of a cubic spline RBF approximation f(x, y) to the Dixon-Szegő
six hump camel back function at thirty scattered points in [−2, 2] × [−1.25, 1.25]. We will
use Algorithm 2.1 with overlapping balls and local Lipschitz constants from §2. The optimal
solution as found in 244 iterations of Step 1 of the algorithm with a tolerance of 4 × 10−6 is
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shown in Figure 5 below. This took about 25 seconds of cpu time for a Matlab implementation
on an AMD Phenom II X3 705e processor machine.

Compare this with the heuristic version using a lattice of balls from §5. In this case, the
optimal solution as found in 147 iterations of Step 1 of the algorithm with a tolerance of
6 × 10−6 is shown in Figure 6 below. This took about 12 seconds of cpu time, considerably
less. Notice how the alternate splitting rule is more efficient at filling the available space (albeit
with gaps).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Figure 5: Contours of the RBF approximation f(x, y) to the camel function. The black circles
denote the overlapping closed balls B used by the branch and bound algorithm. Note that they
cluster at the global minimum of f(x, y) which is denoted by a red circle.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Figure 6: Contours of the RBF approximation f(x, y) to the camel function. The black circles
denote the hexagonal lattice of balls B used by the branch and bound algorithm. Note that they
cluster at the global minimum of f(x, y) which is denoted by a red circle.

For a more interesting example, we will now compare the performance of the two branch
and bound algorithm variants for dimensions from 2 to 5. In addition, we will also compare our
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algorithms to the canonical Lipschitz branch and bound algorithm (see Section 5.3 of Pardalos
et al., 1995). This is simply the canonical branch and bound algorithm (see e.g. Horst, 1986)
with the lower bound

α(B) = f(xB)− L(B) max
x∈B
‖x− xB‖ (6.4)

where xB is the midpoint of B and L(B) an upper bound on the optimal Lipschitz constant
over B, calculated by bounding the norm of the gradient over B similarly to how we calculate
LH(B) in § 6.2. For this example, the objective function f : [−4, 4]n ⊂ Rn → R will be a cubic
spline radial basis function approximation to the sum of sine functions given by

s(x) =
n∑
k=1

sinxk

at 10n maximin Latin hypercube sample points in [−4, 4]n. The approximation typically has
a number of local minima with one global minimum as one can see in Figure 7 for dimension
n = 2. Table 2 below shows the run time in seconds of a Matlab implementation of each
branch and bound algorithm for dimensions n from 2 to 5. The algorithm was stopped if

2 3 4 5

Canonical Lipschitz (Lf ) 145s 4×100† 1×102† 4×102†
Algorithm 2.1 (LH) 4s 737s 3×101† 4×103†
Heuristic Algorithm 2.1 (LH) 3s 81s 2886s 4×101†

Table 2: Run times of the different branch and bound algorithms on a radial basis function
approximation to the sum of sines function for dimensions from 2 to 5. The best results for
each dimension are denoted in bold. †The tolerance reached is given instead if the algorithm
did not complete in 50 minutes.

it verifiably found the global minimum to within a tolerance of 10−2, i.e. Uk − Lk < 10−2.
If this was not possible in 3000 seconds (50 minutes) we give the tolerance reached by the
algorithm instead. The experiments were performed on an AMD Phenom II X3 705e processor
machine with 4 GB of RAM running Matlab R2010b and the NAG toolbox for Matlab, Mark
22 which provided the local optimization solvers. As one can see from the results, the canonical
Lipschitz branch and bound algorithm shows the worst performance and takes considerably
more iterations than all the other algorithms. This is because the lower bounding function (6.4)
used in the algorithm only makes use of the function Lipschitz constant and is therefore quite
crude. The other algorithms use much tighter bounds which explains their superior performance
in lower dimensions. As the dimension increases, the need to split 3n balls at each iteration
hampers the performance of our Lipschitz algorithm, however the heuristic version (which
splits considerably fewer balls at each iteration) consistently outperforms the overlapping balls
algorithm. Nonetheless, one must concede that the tolerance returned by the heuristic algorithm
is often that of a global minimum on a subset of [−4, 4]n, particularly in higher dimensions.
While the inability of the algorithms to complete in higher dimensions may seem disappointing
one must bear in mind that these are research implementations written in object oriented
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Figure 7: Contours of the radial basis function approximation (left) to the sum of sines func-
tion (right) on [−4, 4]× [−4, 4]. As one can see the approximation is particularly accurate for
this example.

Matlab which is very slow. Moreover, our Lipschitz algorithm can be trivially parallelised as
the bounds on each ball can be computed independently which should lead to a significant
speedup on modern multiprocessor hardware.

Let us now compare the our proposed branch and bound algorithm with overlapping balls
and its heuristic counterpart subject to convex constraints. As in the previous example, the
objective function f : [−4, 4]n ⊂ Rn → R will be a cubic spline radial basis function approx-
imation to the sum of sine functions, this time with the elliptical constraint

c(x) = xTCx− 1 ≤ 0

where C is a matrix with 1/2 on the diagonal and 1/4 elsewhere. This time the global minimum
of the constrained surrogate typically lies on the boundary as one can see in Figure 8. It is our
intention to test the convergence of the algorithms on the boundary, for if the global minimum
were to lie in the interior, performance would be comparable to the bound constrained example
above. Table 3 below shows the run time in seconds of a Matlab implementation of each
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Figure 8: Contours of the radial basis function approximation to the sum of sines function on
[−4, 4]× [−4, 4] with the elliptical constraint region denoted in black.

constrained branch and bound algorithm for dimensions n from 2 to 5. The testing methodology
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and hardware is the same as in the previous experiments. The speed advantage of the heuristic

2 3 4 5

Algorithm 2.1 (LH) 4s 5×10−2† 1×101† 3×101†
Heuristic Algorithm 2.1 (LH) 5s 485s 2×10−2† 1×10−1†

Table 3: Run times of the different convex constrained branch and bound algorithms on a
radial basis function approximation to the sum of sines function for dimensions from 2 to 5.
The best results for each dimension are denoted in bold. †The tolerance reached is given instead
if the algorithm did not complete in 50 minutes.

Lipschitz algorithm is evident, once again it consistently outperforms the algorithm using balls
for dimensions greater than 2. Even so, the results are worse than in the bound constrained
example above. This is because the boundary contains a large region where the function takes
similar values and the algorithms expend a significant effort searching this region for the global
minimiser. However, in such situations a constrained local search algorithm can easily locate
the global minimum once the branch and bound algorithm has located its basin of attraction.

Finally, let us consider the performance of Algorithm 2.1 and its heuristic counterpart on
RBF approximations to the extended Dixon-Szegő test set (see Dixon and Szegő, 1978) which
is widely used in the global optimization literature (see e.g. Huyer and Neumaier, 2008). The
test set consists of nine functions with dimensions n ranging from two to six all defined on
rectangular domains. Table 4 below gives a brief overview of the test functions and Table 5 gives
results for the algorithms on RBF approximations to the test functions. These approximations
interpolate each test function at 10n Halton samples (Halton, 1960). The testing methodology
and hardware is the same as for the previous examples and we once again compare against the
canonical Lipschitz branch and bound algorithm.

n Local Minima Global Minima D
Branin 2 3 3 [−5, 10]× [0, 15]

Six-hump Camel 2 6 2 [−3, 3]× [−2, 2]

Goldstein-Price 2 4 1 [−2, 2]2

Shubert 2 760 18 [−10, 10]2

Hartman 3 3 4 1 [0, 1]3

Shekel 5 4 5 1 [0, 10]4

Shekel 7 4 7 1 [0, 10]4

Shekel 10 4 10 1 [0, 10]4

Hartman 6 6 4 1 [0, 1]6

Table 4: The dimension n, number of local and global minima and domain D for each of the
Dixon-Szegő test functions.
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RBF Heuristic Canonical
approximation to Algorithm 2.1 (LH) Algorithm 2.1 (LH) Lipschitz (Lf )

Branin 7s 5s 78s
Six-hump Camel 19s 9s 4×10−2†
Goldstein-Price 144s 203s 4×103†
Shubert 18s 15s 2×102†
Hartman 3 562s 72s 5×100†
Shekel 5 1×101† 9×10−2† 2×100†
Shekel 7 7×100† 1067s 4×100†
Shekel 10 7×100† 1076s 4×100†
Hartman 6 1×103† 1×102† 1×102†

Table 5: Run times (in seconds) of the two variants of Algorithm 2.1 and the canonical
Lipschitz algorithm on a radial basis function approximation to functions from the Dixon-
Szegő test set. The best results for each dimension are denoted in bold. †The tolerance reached
is given instead if the algorithm did not complete in 50 minutes.

7 Conclusions

We have presented an entirely new algorithm for the minimisation of of a twice differentiable
nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set.
The algorithm is based on the canonical branch and bound global optimization algorithm with
bounds inspired by the trust region subproblem from local optimization. Numerical results
suggest that the proposed algorithm outperforms existing Lipschitz based approaches in the
literature when applied to a radial basis function approximation and one would expect good
performance in other settings where a Hessian Lipschitz constant is available. One main ad-
vantage of the proposed algorithm is that it is naturally parallelisable, especially in higher
dimensions, and we are currently looking into a large-scale parallel implementation.
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