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Abstract. In this paper we obtain a result on Hyers-Ulam
stability of the linear functional equation in a single variable
f(o(z)) = g(z) - f(x) on a complete metric group.

1 Introduction

Hyers-Ulam stability is one of the main topics in the theory of functional
equations. Generally a functional equation is said to be stable provided,
for any function f satisfying the perturbed functional equation, there
exists an exact solution fy of that equation which is not far from the
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given f. Based on this concept, the study of the stability of functional
equations can be regarded as a branch of optimization theory. (We can
find some applications of the Hyers-Ulam stability to optimization theory
and economics in [11].)

It seems that the first result on the stability of functional equations
appeared in the famous book by Gy. Pélya and G. Szego [18] and con-
cerns the Cauchy functional equation on the set of positive integers. But
the starting point of the stability theory of functional equations is due
to S.M. Ulam who formulated a question concerning the perturbation of
homomorphisms on metric groups. The first result for Ulam’s problem
was obtained by D.H. Hyers for the Cauchy functional equation on Ba-
nach spaces. Due to the question of Ulam and the answer of Hyers the
stability of functional equations is called after their names.

For more details on Hyers-Ulam stability of functional equations and
optimization theory we refer the reader to [2, 4] 12] (13} [15] [17) 19].

The functional equation

fle(x)) = g(2) f(x) + h(z), (1.1)

where f is the unknown function and g, h, ¢ are given functions, is called
the linear functional equation in a single variable. For particular cases
of g and h in (LI)) we obtain some classical functional equations. We
mention here some of them as

e Abel’s equation

fle(@)) = fz) +c (1.2)
e Schroder’s equation
fle(@)) = cf(x) (1.3)
e Gamma functional equation
fla+1)=af(x) (1.4)
e Digamma functional equation
flo+1)= f)+ - (1.5)



Recall that Digamma function 1 : R} — R is defined by

d IV(z)
= —InT = R* 1.
where -
['(x) :/ t"letdt, VaxeRE, (1.7)
0

R, stands for the set of all nonnegative numbers, i.e., R,y = [0,00) and
R% = (0,00). For more details on the functional equation (LI and its
particular cases we refer to [16] and the references therein. It seems that
the first result on stability for the equation (1)) was obtained in 1970
by J. Brydak [3]. A generalized Hyers-Ulam stability of the gamma func-
tional equation was obtained by S.-M. Jung in [I4]. A nice result on
generalized Hyers-Ulam stability of the equation (LI]) was obtained by
T. Trif [20] for functions f acting from an arbitrary nonempty set S into
a Banach space X.

Some recent results on the stability and nonstability of the equation
(LI) and the linear functional equation of higher order in a single variable
were obtained by J. Brzdek, D. Popa, B. Xu (see [6l [7, 8, [, [10]).

The goal of this paper is to study the Hyers-Ulam stability of the
homogeneous linear functional equation (1)) for functions defined from
an arbitrary nonempty set S into a complete metric group (G, -, d), i.e.,
(G,-) is a group, (G, d) is a complete metric space, the group’s binary
operation and the inverse operation are continuous with respect to the
product topology on G x GG and the topology generated by the metric d
on G, respectively.

2 Stability of linear functional equation

Let S be a nonempty set, (G,-,d) a complete metric group with the
metric d invariant to left translations, i.e.,

dlx-y,x-z)=d(y,z), VYVuxyz€QG, (2.1)

and let p: S — S, g: S — G be given functions. An example of metric
invariant to left translations is the metric induced by a norm.



We deal with the Hyers-Ulam stability of the linear functional equa-

tion
flo(a)) = g(@) - f(2), (2.2)
where f : S — G is the unknown function.
Let R? be the class of all functions ¢ : S — R.. We study the

generalized Hyers-Ulam stability of the equation (2.2)) in the sense defined
in [4].

Definition 2.1 Let C C Ri be nonempty and 7 be an operator mapping
C into RY. We say that the equation ([2.2)) is T-stable (with uniqueness,
respectively) provided for every ¢ € C and f: S — G with

d(f(p(x)), g(z) - f(z)) <ex), Vzes

there exists a (unique, respectively) solution fy: S — G of the equation
(22)) such that

d(f(z), fo(x)) < Te(z), Vaxes.

If € is a constant function in the previous definition then the equation
(2.2) is said to be stable in Hyers-Ulam sense.

By ¢*, k € Ng = NU {0} we denote the k-th iterate of the function
0, " =1g, p* = ot keN

The main result is contained in the next theorem.

Theorem 2.2 Lete: S — Ry be a function with the property

D e(@'(x) =®(z), VazeS (2.3)

n=0

where ® : S — Ry. Then for every function f : S — G satisfying the
inequality

d(f(p(x)),g(x) - f(x)) <e(x), Vwels, (2.4)

there exists a unique solution fy: S — G of the functional equation (2.2)
such that
d(f(z), fo(z)) < ®(x), VazeS. (2.5)



Proof. Ezistence. Let f : S — G be a function satisfying (2.4]). Then the
following relation holds:

d (f(w”(x)), [To( () f(fc)> <D (¢ @) (2.6)

for all z € S and n € N. We prove (2.6) by induction on n. Since the
group (G, -) is not generally commutative, we let

n
Hak::an-an_l-...~ap,
k=p

where a, € G for p < k < n.

For n = 1 the relation (2.6) holds in view of (2:4]). We suppose that
(2.6) holds for some n € N and for all x € S, and we prove that

d(f(@"“(év)), [To(e" (@) -f($)> <> e(¢* @), wes

k=1

Indeed, it follows from (2.10), (24) and (2.6) that
d<f(s0"+l($))> [To(e* (@) - f(if))
k=1
<d(f(¥"" (@), 9(¢"(2)) - (" (2)))
+ d<g(90"(93)) @), [To(e" (@) - f(l”))

< e(p"(x)) + d(f(@"(x))a [To(* (@) f(SC))
< Za(wk_l(x)), res

Hence (2.6]) holds for all z € S and n € N.
Now let (,),>1 be the sequence of functions defined by

enl(T) := (Hg(apk_l(:z))> - f("(z)), neN, xeb. (2.7)
k=1
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We prove that (€, (z)),>1 is a Cauchy sequence in (G, -,d) for all z € S,
where a~! means the inverse of the element a in the group G. Using (1))
and (2.6), we have

5n+p
d( Hg Y ) -f(w"*p(x)),<H9(s0’“‘1(93))) 'f(w"(l”)))
k=1
=d H g(#" X ) 'f(@"”(if)),f(sO"(I)))
k=n+1
ia ia R (2.8)

forx € S and n,p € N.

Now 7, (x) := Y o e(¢"™(x)), n € N, is the remainder of order n
of the convergent series (2.3)), so lim, o, m,(x) = 0 for all z € S. We
conclude that (€,(z)),>1 is a Cauchy sequence, therefore it is convergent
since G is a complete metric group. Define the function fy by

fo(z) = lim e,(z), z€b.

n— o0

The relation (2.8)), for p = 1, leads to

d(epi(x <> e(¢"™M@), neN zeS  (29)
k

o)
=0

Taking account of &,,1(z) = g(x)™ - ,(¢(x)) and letting n — oo in
(2.9) it follows that

d(g(x)™" - fole(x)), fo(z)) =0

which is equivalent to fo(p(z)) = g(x) - fo(x), z € S, i.e., fo is a solution
of the equation (2.2]).
On the other hand, the relations (2.I]) and (2.6]) lead to

n

d(en(w), f(2)) <Y (" () (2.10)

k=1



for all z € S and n € N, therefore letting n — oo in (2.10) we get

d(fo(x), f(x)) < ®(x),

which completes the proof of the existence.
Uniqueness. Assume that for a function f satisfying (2.4]) there exist
two solutions fi, fo of the equation (2.2) satisfying

d(f(z), fi(z)) < ®(z), VawesS ie{l,2}
and fi # fa.
Taking into account that fi, fo satisfy (2.2)), it follows easily that

n

f,(g@n(llf)) = Hg(gok_l(I» f,(l’), n e N> S S’ (S {172}a

k=1

and hence

d(fi(z), fa(z))

<20(p"(x)), x€S, neN.

Since lim, o, P(¢"(x)) = lim, oo ru(x) = 0, z € S, it follows that
fi(z) = fo(x), which completes the proof. O

The Digamma function 1)y : RY — R is defined by (IG). The
Digamma function is frequently called the psi function and it satisfies
the Digamma functional equation (L5)) for all z € R*. Indeed, we know
that 1) is the unique solution of the functional equation (L5l which is
monotone on R* and satisfies 1y(1) = —v, where v = 0.577215. .. is the
Euler-Mascheroni constant (see [Il, §6.3] and [21], §6.11.5]).

The gamma function defined by ([L7)) satisfies the functional equation

I'(z+1)=2l'(z), VazeR].

7



If we take the logarithmic values from both sides of the last equation,
then we have

InT(z+1)=InT'(z) + Inz, VazeRl.

We differentiate each side of the above equality with respect to x to get
d d 1 .
%lnf‘(zjtl):%lnf(x)%—;, VaxelRl.

In view of (L6]), we know that the Digamma function vy is a solution of
the Digamma functional equation (ILH]).

The generalized Hyers-Ulam stability of the Digamma functional
equation (L) follows from Theorem

Corollary 2.3 Let € : R, — R be a function with the property

ia(ijn) =®(z), VzeRL.

n=0

Then for every function f : RT — R satisfying

'f<x+1>—f<x>—1 <

T

<e(x), xzeR}

there exists a unique solution fo : R% — R of the equation (1.J) such
that

|f(z) = folz)| < ®(x), VazeRL

Proof. Take S = RY, ¢(x) = v+ 1, G = R with the usual addition and
d the Euclidian metric on R and g(z) = 1/2, x € R%. Then the result
follows in view of Theorem [2.2] O
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