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Abstract. In this paper we obtain a result on Hyers-Ulam
stability of the linear functional equation in a single variable
f(ϕ(x)) = g(x) · f(x) on a complete metric group.

1 Introduction

Hyers-Ulam stability is one of the main topics in the theory of functional
equations. Generally a functional equation is said to be stable provided,
for any function f satisfying the perturbed functional equation, there
exists an exact solution f0 of that equation which is not far from the
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given f . Based on this concept, the study of the stability of functional
equations can be regarded as a branch of optimization theory. (We can
find some applications of the Hyers-Ulam stability to optimization theory
and economics in [11].)

It seems that the first result on the stability of functional equations
appeared in the famous book by Gy. Pólya and G. Szegö [18] and con-
cerns the Cauchy functional equation on the set of positive integers. But
the starting point of the stability theory of functional equations is due
to S.M. Ulam who formulated a question concerning the perturbation of
homomorphisms on metric groups. The first result for Ulam’s problem
was obtained by D.H. Hyers for the Cauchy functional equation on Ba-
nach spaces. Due to the question of Ulam and the answer of Hyers the
stability of functional equations is called after their names.

For more details on Hyers-Ulam stability of functional equations and
optimization theory we refer the reader to [2, 4, 12, 13, 15, 17, 19].

The functional equation

f(ϕ(x)) = g(x)f(x) + h(x), (1.1)

where f is the unknown function and g, h, ϕ are given functions, is called
the linear functional equation in a single variable. For particular cases
of g and h in (1.1) we obtain some classical functional equations. We
mention here some of them as

• Abel’s equation
f(ϕ(x)) = f(x) + c (1.2)

• Schröder’s equation
f(ϕ(x)) = cf(x) (1.3)

• Gamma functional equation

f(x+ 1) = xf(x) (1.4)

• Digamma functional equation

f(x+ 1) = f(x) +
1

x
. (1.5)
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Recall that Digamma function ψ0 : R
∗
+ → R is defined by

ψ0(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
, ∀ x ∈ R

∗
+, (1.6)

where

Γ(x) =

∫ ∞

0

tx−1e−tdt, ∀ x ∈ R
∗
+, (1.7)

R+ stands for the set of all nonnegative numbers, i.e., R+ = [0,∞) and
R

∗
+ = (0,∞). For more details on the functional equation (1.1) and its

particular cases we refer to [16] and the references therein. It seems that
the first result on stability for the equation (1.1) was obtained in 1970
by J. Brydak [3]. A generalized Hyers-Ulam stability of the gamma func-
tional equation was obtained by S.-M. Jung in [14]. A nice result on
generalized Hyers-Ulam stability of the equation (1.1) was obtained by
T. Trif [20] for functions f acting from an arbitrary nonempty set S into
a Banach space X .

Some recent results on the stability and nonstability of the equation
(1.1) and the linear functional equation of higher order in a single variable
were obtained by J. Brzdek, D. Popa, B. Xu (see [6, 7, 8, 9, 10]).

The goal of this paper is to study the Hyers-Ulam stability of the
homogeneous linear functional equation (1.1) for functions defined from
an arbitrary nonempty set S into a complete metric group (G, ·, d), i.e.,
(G, ·) is a group, (G, d) is a complete metric space, the group’s binary
operation and the inverse operation are continuous with respect to the
product topology on G×G and the topology generated by the metric d
on G, respectively.

2 Stability of linear functional equation

Let S be a nonempty set, (G, ·, d) a complete metric group with the
metric d invariant to left translations, i.e.,

d(x · y, x · z) = d(y, z), ∀ x, y, z ∈ G, (2.1)

and let ϕ : S → S, g : S → G be given functions. An example of metric
invariant to left translations is the metric induced by a norm.
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We deal with the Hyers-Ulam stability of the linear functional equa-
tion

f(ϕ(x)) = g(x) · f(x), (2.2)

where f : S → G is the unknown function.
Let R

S
+ be the class of all functions ε : S → R+. We study the

generalized Hyers-Ulam stability of the equation (2.2) in the sense defined
in [4].

Definition 2.1 Let C ⊆ R
S
+ be nonempty and T be an operator mapping

C into R
S
+. We say that the equation (2.2) is T -stable (with uniqueness,

respectively) provided for every ε ∈ C and f : S → G with

d(f(ϕ(x)), g(x) · f(x)) ≤ ε(x), ∀ x ∈ S

there exists a (unique, respectively) solution f0 : S → G of the equation
(2.2) such that

d(f(x), f0(x)) ≤ T ε(x), ∀ x ∈ S.

If ε is a constant function in the previous definition then the equation
(2.2) is said to be stable in Hyers-Ulam sense.

By ϕk, k ∈ N0 = N ∪ {0} we denote the k-th iterate of the function
ϕ, ϕ0 = 1S, ϕ

k = ϕ ◦ ϕk−1, k ∈ N.
The main result is contained in the next theorem.

Theorem 2.2 Let ε : S → R+ be a function with the property

∞
∑

n=0

ε(ϕn(x)) = Φ(x), ∀ x ∈ S, (2.3)

where Φ : S → R+. Then for every function f : S → G satisfying the
inequality

d(f(ϕ(x)), g(x) · f(x)) ≤ ε(x), ∀ x ∈ S, (2.4)

there exists a unique solution f0 : S → G of the functional equation (2.2)
such that

d(f(x), f0(x)) ≤ Φ(x), ∀ x ∈ S. (2.5)
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Proof. Existence. Let f : S → G be a function satisfying (2.4). Then the
following relation holds:

d

(

f
(

ϕn(x)
)

,
n
∏

k=1

g
(

ϕk−1(x)
)

· f(x)

)

≤
n
∑

k=1

ε
(

ϕk−1(x)
)

(2.6)

for all x ∈ S and n ∈ N. We prove (2.6) by induction on n. Since the
group (G, ·) is not generally commutative, we let

n
∏

k=p

ak := an · an−1 · . . . · ap,

where ak ∈ G for p ≤ k ≤ n.
For n = 1 the relation (2.6) holds in view of (2.4). We suppose that

(2.6) holds for some n ∈ N and for all x ∈ S, and we prove that

d

(

f
(

ϕn+1(x)
)

,
n+1
∏

k=1

g
(

ϕk−1(x)
)

· f(x)

)

≤
n+1
∑

k=1

ε
(

ϕk−1(x)
)

, x ∈ S.

Indeed, it follows from (2.1), (2.4) and (2.6) that

d

(

f
(

ϕn+1(x)
)

,

n+1
∏

k=1

g
(

ϕk−1(x)
)

· f(x)

)

≤ d
(

f
(

ϕn+1(x)
)

, g(ϕn(x)) · f(ϕn(x))
)

+ d

(

g(ϕn(x)) · f(ϕn(x)),

n+1
∏

k=1

g
(

ϕk−1(x)
)

· f(x)

)

≤ ε(ϕn(x)) + d

(

f(ϕn(x)),

n
∏

k=1

g
(

ϕk−1(x)
)

· f(x)

)

≤

n+1
∑

k=1

ε
(

ϕk−1(x)
)

, x ∈ S.

Hence (2.6) holds for all x ∈ S and n ∈ N.
Now let (εn)n≥1 be the sequence of functions defined by

εn(x) :=

(

n
∏

k=1

g
(

ϕk−1(x)
)

)−1

· f(ϕn(x)), n ∈ N, x ∈ S. (2.7)
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We prove that (εn(x))n≥1 is a Cauchy sequence in (G, ·, d) for all x ∈ S,
where a−1 means the inverse of the element a in the group G. Using (2.1)
and (2.6), we have

d
(

εn+p(x), εn(x)
)

= d





(

n+p
∏

k=1

g
(

ϕk−1(x)
)

)−1

· f
(

ϕn+p(x)
)

,

(

n
∏

k=1

g
(

ϕk−1(x)
)

)−1

· f(ϕn(x))





= d





(

n+p
∏

k=n+1

g
(

ϕk−1(x)
)

)−1

· f
(

ϕn+p(x)
)

, f(ϕn(x))





≤

p
∑

k=1

ε
(

ϕk−1(ϕn(x))
)

≤

∞
∑

k=0

ε
(

ϕn+k(x)
)

(2.8)

for x ∈ S and n, p ∈ N.
Now rn(x) :=

∑∞

k=0
ε(ϕn+k(x)), n ∈ N, is the remainder of order n

of the convergent series (2.3), so limn→∞ rn(x) = 0 for all x ∈ S. We
conclude that (εn(x))n≥1 is a Cauchy sequence, therefore it is convergent
since G is a complete metric group. Define the function f0 by

f0(x) = lim
n→∞

εn(x), x ∈ S.

The relation (2.8), for p = 1, leads to

d(εn+1(x), εn(x)) ≤

∞
∑

k=0

ε
(

ϕn+k(x)
)

, n ∈ N, x ∈ S. (2.9)

Taking account of εn+1(x) = g(x)−1 · εn(ϕ(x)) and letting n → ∞ in
(2.9) it follows that

d
(

g(x)−1 · f0(ϕ(x)), f0(x)
)

= 0

which is equivalent to f0(ϕ(x)) = g(x) · f0(x), x ∈ S, i.e., f0 is a solution
of the equation (2.2).

On the other hand, the relations (2.1) and (2.6) lead to

d(εn(x), f(x)) ≤

n
∑

k=1

ε
(

ϕk−1(x)
)

(2.10)
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for all x ∈ S and n ∈ N, therefore letting n→ ∞ in (2.10) we get

d(f0(x), f(x)) ≤ Φ(x),

which completes the proof of the existence.
Uniqueness. Assume that for a function f satisfying (2.4) there exist

two solutions f1, f2 of the equation (2.2) satisfying

d(f(x), fi(x)) ≤ Φ(x), ∀ x ∈ S, i ∈ {1, 2}

and f1 6= f2.
Taking into account that f1, f2 satisfy (2.2), it follows easily that

fi(ϕ
n(x)) =

n
∏

k=1

g
(

ϕk−1(x)
)

· fi(x), n ∈ N, x ∈ S, i ∈ {1, 2},

and hence

d(f1(x), f2(x))

= d





(

n
∏

k=1

g
(

ϕk−1(x)
)

)−1

· f1(ϕ
n(x)),

(

n
∏

k=1

g
(

ϕk−1(x)
)

)−1

· f2(ϕ
n(x))





= d
(

f1(ϕ
n(x)), f2(ϕ

n(x))
)

≤ d
(

f1(ϕ
n(x)), f(ϕn(x))

)

+ d
(

f(ϕn(x)), f2(ϕ
n(x))

)

≤ 2Φ(ϕn(x)), x ∈ S, n ∈ N.

Since limn→∞Φ(ϕn(x)) = limn→∞ rn(x) = 0, x ∈ S, it follows that
f1(x) = f2(x), which completes the proof. �

The Digamma function ψ0 : R
∗
+ → R is defined by (1.6). The

Digamma function is frequently called the psi function and it satisfies
the Digamma functional equation (1.5) for all x ∈ R

∗
+. Indeed, we know

that ψ0 is the unique solution of the functional equation (1.5) which is
monotone on R

∗
+ and satisfies ψ0(1) = −γ, where γ = 0.577215 . . . is the

Euler-Mascheroni constant (see [1, §6.3] and [21, §6.11.5]).
The gamma function defined by (1.7) satisfies the functional equation

Γ(x+ 1) = xΓ(x), ∀ x ∈ R
∗
+.
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If we take the logarithmic values from both sides of the last equation,
then we have

ln Γ(x+ 1) = ln Γ(x) + lnx, ∀ x ∈ R
∗
+.

We differentiate each side of the above equality with respect to x to get

d

dx
ln Γ(x+ 1) =

d

dx
ln Γ(x) +

1

x
, ∀ x ∈ R

∗
+.

In view of (1.6), we know that the Digamma function ψ0 is a solution of
the Digamma functional equation (1.5).

The generalized Hyers-Ulam stability of the Digamma functional
equation (1.5) follows from Theorem 2.2.

Corollary 2.3 Let ε : R∗
+ → R+ be a function with the property

∞
∑

n=0

ε(x+ n) = Φ(x), ∀ x ∈ R
∗
+.

Then for every function f : R∗
+ → R satisfying

∣

∣

∣

∣

f(x+ 1)− f(x)−
1

x

∣

∣

∣

∣

≤ ε(x), x ∈ R
∗
+

there exists a unique solution f0 : R∗
+ → R of the equation (1.5) such

that
|f(x)− f0(x)| ≤ Φ(x), ∀ x ∈ R

∗
+.

Proof. Take S = R
∗
+, ϕ(x) = x + 1, G = R with the usual addition and

d the Euclidian metric on R and g(x) = 1/x, x ∈ R
∗
+. Then the result

follows in view of Theorem 2.2. �
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Wydawnictwo Naukowe, Warszawa, 1968.

[17] P. M. Pardalos and T. F. Coleman (eds.), Lectures on Global Optimiza-
tion, Fields Institute Communications, Amer. Math. Soc., 2009.
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