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Abstract: In this paper, we propose a new algorithm for global minimization of functions rep-
resented as a difference of two convex functions. The proposed method is a derivative free method
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subdivisions.
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1 Introduction

Difference of convex (DC) programming is an important class of problems in global optimization.
Global optimization techniques are substantially different from local ones and, among others, em-
ploy combinatorial tools such as cutting-plane, branch and bound, branch and cut and so on. Many
optimization problems of potential interest can be expressed into the form of a DC program such as
production-transportation planning, location planning, engineering design, cluster analysis, multi-
level programming and multi-objective programming. DC optimization algorithms have been proved
to be particularly successful for analyzing and solving a variety of highly structured problems (see
[16, 24]).

Over the last three decades different methods have been designed to solve DC programming
problems. Horst and Tuy [17], Konno, Thach and Tuy [20], Tuy [27], Strekalovsky and Tsevendorj
[26], An and Tao [22] and Ferrer [14] among others have put forward deterministic algorithms
for solving DC programming problems whose nonconvexity is only due to having reverse convex
constraints. All the mentioned algorithms combine conical or prismatical subdivision processes with
polyhedral outer approximation in such a way that a finite number of linear programs have to be
solved at each iteration.

The problem of global optimization of DC functions is NP-hard. The number of local optima can
grow exponentially with the dimension while we are only interested in the best of these optima. Since
the volume of the search domain grows exponentially with the dimension, it makes DC optimization
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computationally very expensive even for relatively small problems (about 10 variables). Then,
efficiency of the algorithms is paramount.

In this paper, we develop an algorithm for solving DC programs with box-constraints and this
algorithm is designed by adapting the Extended Cutting Angle Method (ECAM), which is a version
of the Generalized Cutting Plane Method (GCPM) for various sets of min-type elementary functions.
The adaptation of the ECAM is based on a new order for the enumeration of the local minima of
the piecewise linear underestimates of the first component of the DC representation of the objective
function. The new order depends on the underestimate function at each iteration and of the second
component of the DC representation of the objective function.

The paper is structured as follows. In Section 2 we present some definitions and results on
DC programming. Section 3 provides a brief description of the prismatical algorithm for solving
DC programming problems. A short description of ECAM is given in Section 4. In Section 5
we describe the new algorithm, named DCECAM. The convergence of this algorithm is proved in
Section 6. Section 7 presents the implementation of DCECAM. In Section 8 we report results of
numerical experiments using DCECAM and compare it with one similar DC programming solver.
Conclusions are summarized in Section 9.

2 Preliminaries

In this section we give some preliminary results on DC programming. We start with the definition
of DC functions.

Definition 2.1 Let Ω be a convex subset of IRn. A function ϕ : Ω→ IR is said to be a DC function
(difference of convex functions or δ-convex function) on Ω if there exists a pair of continuous convex
functions ϕ1, ϕ2 : Ω→ IR such that

ϕ(x) = ϕ1(x)− ϕ2(x), x ∈ Ω.

Additionally, a function ϕ is called locally DC on Ω, if for each x ∈ Ω there exist an open ball U
centered at x such that ϕ is DC on U ∩ Ω. We denote by DC(Ω) the class of DC functions defined
on Ω.

In general, DC programming problems can be formulated as follows:

minimize ϕ0(x)
subject to: ϕi(x) ≤ 0, i = 1, . . . ,m,

ϕm+j(x) ≤ 0, j = 1, . . . , r,
(1)

where all functions ϕ0, ϕi, i = 1 . . .m are DC functions on IRn and ϕm+j , j = 1 . . . r are convex
functions on IRn. If a DC representation of these functions is known, then (1) can be transformed
into an equivalent canonical DC program,

minimize cTx
subject to: H(x) ≤ 0,

G(x) ≥ 0
(2)

with c ∈ IRn and both H and G are convex functions on IRn (Horst and Tuy [17]).

Definition 2.2 A function f : IRn → IR is called Lipschitz continuous on the set A ⊆ IRn if there
exists some finite constant L > 0, called a Lipschitz constant, satisfying

|f(x)− f(y)| ≤ L‖x− y‖
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for every x, y ∈ A. Additionally, a function f : IRn → IR is called locally Lipschitz on the set
A ⊆ IRn, if for each x ∈ A there exists an open ball U , centered at x, such that f is Lipschitz
continuous on the set U ∩A.

The class of DC functions, DC(A), where A is an open convex set of IRn, is a remarkable subclass
of locally Lipstchitz functions that is of interest both analysis and optimization. It appears very
naturally as the smallest vector space containing all continuous convex functions on a given set.
Moreover, the class DC(A) is dense in the class of continuous functions, C0(A). This property is a
consequence of the Stone-Weierstrass theorem, which states that continuous functions on compact
sets are uniform limits of sequences of polynomials. Since polynomials are functions of the class
C2(A) one has that polynomials are DC functions on A. It turns out that any problem of minimizing
a continuous real function over any compact convex set D ⊂ A can be approximated as closely as
desired by a problem of minimizing a DC function on D. DC functions were initially considered
by Alexandrov [1] and Landis [21]. Later Hartman [15] proved that every locally DC function on
A ⊂ IRn, where A is an open or closed convex set, is DC on A. In [10] Bougeard proved that if
ϕ ∈ C2(A) then there exists a DC representation (ϕ1, ϕ2) of ϕ in which ϕ1 ∈ C2(A) and ϕ2 ∈ C∞(A).
Penot and Bougeard [23] establish a similar result with more global assumptions. Indeed, let A be
an open convex set of a finite dimensional normed vector space, then any lower−C2 function ϕ on A,
in particular any ϕ ∈ C2(A), can be written as ϕ = ϕ1−ϕ2 with ϕ1 and ϕ2 convex and ϕ2 ∈ C∞(A).
Moreover, every lower−C2 function can be characterized by its (locally) decomposability as a sum
of a convex continuous and a concave quadratic function (see [28]).

Some authors provide interesting theoretical DC representation results but no practical means
to get them. While it is not too difficult to prove theoretically that a given function is DC, it is
often very problematical to obtain an effective DC representation of a DC function. Although a
DC representation is often not explicitly given, except for specific functions such as polynomials
(see [13]), the richness of the space of DC functions suggest that DC structure is present in many
optimization problems.

3 The prismatical algorithm for solving DC programs

This section is a summary of the prismatical algorithm for solving DC programming problems. For
details and the general case with convex constraints we refer to [14].

By introducing an additional variable t, a DC program

minimize f(x)− h(x)
subject to: Ax ≤ b,

x ∈ S,
(3)

where A is a real m×n matrix, b ∈ IRm and f , h are convex functions on IRn and S is a (n+1)-simplex
in IRn, can be transformed into a equivalent reverse convex program in the form:

minimize f(x)− t
subject to: h(x)− t ≥ 0,

Ax ≤ b,
x ∈ S.

(4)

We will use the following notation

D := {(x, t) ∈ IRn × IR : Ax ≤ b},
C := {(x, t) ∈ IRn × IR : h(x)− t ≤ 0},
Dα := {(x, t) ∈ D : f(x)− t ≤ α}, α ∈ IR,

(5)
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where D, C and Dα are closed convex sets.
Algorithms for solving deterministic reverse convex programs are described, for example, in [17]

and [27]. All these algorithms begin by obtaining an initial point by solving a convex program.
Without this point these algorithms cannot work because the vertex of a conical subdivision process
is needed. In this article we will use the prismatical algorithm (DCPA) described by Ferrer in [14],
for comparing with DCECAM. DCPA though designed in a similar spirit to algorithms used for
solving reverse convex programs, has several differences and advantages. Among others, DCPA uses
prismatical subdivisions in place of conical ones so that it will not be necessary to solve an initial
convex program. The algorithm combines a prismatical subdivision process with polyhedral outer
approximation in such a way that only linear programs have to be solved.

Theorem 3.1 With suitable conditions of regularity we have,

(x∗, t∗)is a global optimal solution of the program (4)⇔ Dα∗ ⊂ C,α∗ = f(x∗)− t∗.

For the sake of clarity we next give a brief summary of the algorithm in the case of linear constraints.

Definition 3.1 Let Z be an n-simplex in IRn. The set

T (Z) := {(x, t) ∈ IRn × IR : x ∈ Z}

is referred to as a simplicial prism of base Z. All simplicial prisms have n+ 1 edges that are parallel
lines to the t-axis. Each such edge passes through one of the n+ 1 vertices of Z. Then, each radial
subdivision Z1, . . . , Zr, of the simplex Z via a point z ∈ Z induces a prismatical subdivision of the
prism T (Z) in subprisms, T (Z1), . . . , T (Zr), via the line through z parallel to the t-axis.

Consider T0 := T (Z0) an initial prism, with Z0 := [v10 , . . . , v
n+1
0 ] an n-simplex of IRn which contains

the polytope {x ∈ IRn : Ax ≤ b}. Let P0 be an initial convex polyhedron

P0 := {(x, t) : Ax ≤ b, li(x, t) ≤ 0, i = 1, . . . , n+ 1},

with
li(x, t) := (x− vi0)T pi − t+ ci, i = 1, . . . , n+ 1

and pi a subgradient of the function f at the vertex vi0 ∈ Z and ci = h(vi0) (in practice we will
actually take ci = h(vi0) + ε to STOP the algorithm with precision ε > 0). At each iteration the
procedure involves some basic operations as follows:

• Branching: a selected prism T (Z) is divided into a finite number of subprisms by using a
simplicial partition of Z.

• Outer approximation: a new polyhedron Pk is obtained by using a cutting plane to cut off
a part of Pk−1 in such a way that a sequence of convex polyhedra P0, P1, . . . is constructed
satisfying

P0 ⊃ P1 ⊃ · · · ⊃ Pk ⊃ · · · ⊃ Dα∗ ⊃ Dα∗\int C.

• Delete rule: prisms containing feasible solutions worse than the best one obtained so far are
deleted.

The basic operations used in the algorithm are related to the optimum µ(T ) and the optimizer
(x(T ), t(T )) of the linear program

µ(T ) = maximize atx− t− ρ
subject to: (x, t) ∈ T ∩ P, (6)
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where T := T (Z) is a prism with Z = [v1, . . . , vn+1], P is the current convex polyhedral and
atx − t − ρ is the unique hyperplane passing through the points (vi, h(vi)), i = 1, . . . , n + 1. The
optimizer of (6) is the point of the polyhedral T ∩ P with the greatest distance to the hyperplane
atx − t − ρ. When µ(T ) ≤ 0 then T (Z) is deleted because T ∩ P ⊂ C. On the other hand, if a
prism T is selected for division, which is associated with the largest value max{µ(T ) : µ(T ) > 0},
a refined partition of T is constructed and a new cut is added to the polyhedral P to obtain a new
convex polyhedral. From the solution (x(T ), t(T )) the new point (x̄, t̄) is obtained with x̄ := x(T )
and t̄ := max{h(x(T )), g(x(T ))}. If h(x(T ))− t(T ) > 0, a new cut l(x, t) is added through the point
(x̄, t̄) to obtain a new convex polyhedral

P ∩ {(x, t) : l(x, t) ≤ 0}.

The procedure continues until all generated prisms have been deleted. At this stage, we have

i) a partition {Ti, i = 1, 2, . . . } of the initial prism T0 = ∪∞i=1Ti with µ(Ti) < 0, i = 1, 2, . . .

ii) a sequence of convex polyhedrons P0, P1, . . . such that

P0 ⊃ P1 ⊃ · · · ⊃ Dα∗ ⊃ Dα∗\int C,

where each polyhedral Pj , j = 1, 2 . . . is obtained by using a cutting plane to cut off a part of
Pj−1, j = 1, 2 . . . ,

iii) a bounded sequence of points {(x̄k, t̄k), k = 0, 1, . . . } so that there exists a subsequence {ki}
such that {(x̄ki , t̄ki)} → (x∗, t∗).

Hence, we have that for all i = 1, 2, . . . there exists an index k such that Ti ∩ Pk ⊂ C. Since
Ti ∩Dα∗ ⊂ Ti ∩ Pk ⊂ C for all i = 1, 2, . . . we can write

C ⊃ ∪∞i=1(Ti ∩Dα∗) = ∪∞i=1(Ti) ∩Dα∗ = T0 ∩Dα∗ = Dα∗ . (7)

On the other hand, the point (x∗, t∗) as defined in (iii) satisfies

(x∗, t∗) ∈ Dα∗\int C and α∗ = f(x∗)− t∗. (8)

From the Theorem 3.1 we can deduce that the point (x∗, t∗) is a global minimizer.

4 A short description of ECAM

We start this section by recalling the Cutting Plane method by Kelley [19] and Cheney and Goldstein
[11] to solve convex programs. It is known that a lower semicontinous convex function f is the upper
envelope of the set of all its affine minorants:

f(x) = sup {h(x) | h affine function, h ≤ f}. (9)

The Cutting Plane method proceeds by constructing a piecewise affine underestimate of the objective
function f as a pointwise maximum of elements of the subdifferential of f . At each iteration a new
support hyperplane is built at the point of the global minimum of the current underestimate, which
is found by methods of linear programming. Then the underestimate is modified by adding this new
support hyperplane so it becomes a more accurate approximation to f , and the method iterates.
The generalized cutting plane method (of which the ECAM is a special case) follows the same script,
except that the underestimate is built using the so-called H−subgradients (see [25]). Consequently,
minimization of an underestimate is no longer a convex problem. For special cases of abstract
convex functions, specialized efficient numerical methods for minimizing the underestimates exist
[2, 3, 4, 8, 25].
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4.1 Solution to the relaxed problem for ECAM

This subsection reproduces details of the Cutting Angle Method from [3, 4, 6, 7, 8] to solve the
following problem:

minimize f(x)
subject to: x ∈ S, (10)

with S the unit simplex and f : IRn → IR a Lipschitz function. These details are essential for
understanding how the DCECAM works. Let us define the support vectors lk, k = 1, 2, . . .:

lki :=
f(xk)

C
− xki , i = 1, . . . , n+ 1. (11)

As the support functions, we use

hk(x) := min
i=1,...,n+1

(f(xk)− C(xki − xi)) = min
i=1,...,n+1

C(lki + xi). (12)

We are interested in locating all local minima of the function

HK(x) := max
k=1,...,K

hk(x) (13)

in S′ (feasible domain in the plane {x ∈ IRn+1|
∑
xi = 1}), which after sorting will yield the global

minimum of HK .

Theorem 4.1 [7, 8] A necessary and sufficient condition for a point x∗ ∈ ri S′ to be a local mini-
mizer of HK(x) given by (12),(13) is that there exist an index set J = {k1, k2, . . . , kn+1} of cardi-
nality n+ 1, such that

d = HK(x∗) = C(lk11 + x∗1) = C(lk22 + x∗2) = . . . = C(lkn+1
n + x∗n+1),

and ∀i ∈ {1, . . . , n+ 1},
(lkii + x∗i ) < (lkij + x∗j ), j 6= i.

Let x∗ be a local minimizer of HK(x), which corresponds to some index set J satisfying conditions
of Theorem 4.1. Form the ordered combination of the support vectors L = {lk1 , lk2 , . . . , lkn+1} that
corresponds to J . It is helpful to represent this combination with a matrix L whose rows are the
support vectors lki :

L :=


lk11 lk12 . . . lk1n+1

lk21 lk22 . . . lk2n+1
...

...
. . .

...

l
kn+1

1 l
kn+1

2 . . . l
kn+1

n+1

 , (14)

so that its components are given by Lij = f(xki)

C − xkij .

Theorem 4.2 [8] Let the support vectors lk, k = 1, . . . ,K be defined using (11). Let x∗ denote a
local minimizer of HK(x) in ri S′ and d = HK(x∗). Then matrix (14) corresponding to x∗ enjoys
the following properties:

1) ∀i, j ∈ {1, . . . , n+ 1}, i 6= j : l
kj
i > lkii ;

2) ∀r 6∈ {k1, k2, . . . , kn+1} ∃i ∈ {1, . . . , n+ 1} : Lii = lkii ≥ lri ;

3) d = Trace(L)+1
C− , where C− =

∑
i∈{1,...,n+1}

1
C = n+1

C and

4) x∗i = d
C − l

ki
i , i = 1, . . . , n+ 1.
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Table 1: Extended Cutting Angle Method framework.
Procedure: ECAM

Initialization: Set k := 0, stop:=1 and choose x0 ∈ X;
begin

while (stop) do
Calculate a support function hk(x);
Let Hk(x) = maxi=0,...,k hi(x) for all x ∈ X; (saw-tooth understimate)
Find a global minimum y∗ of the problem minx∈X Hk(x);
Set k := k + 1, xk := y∗;
stop=evaluateStop();

end while
return bestSolution;

end

Furthermore, combinations L determine a partition of S′ into subsets A(L), such that in the interior
of each subset the local minimum d of HK is unique. The following system of inequalities determines
a subset A(L)

∀i, j ∈ {1, . . . , n+ 1}, i 6= j : C(xj − x
kj
j ) ≤ C(xi − x

kj
i ), (15)

and on each A(L) function HK is given by

HK(x) = max
i=1,...,n+1

C(xi + lkii ). (16)

Condition 1) of the Theorem 4.2 reads that the diagonal elements of matrix L are dominated by
their respective columns, and condition 2) reads that no support vector lr (which is not part of L)
strictly dominates the diagonal of L. The approach taken in [4, 5] is to enumerate all combinations
L with the properties 1)-2), which will give the positions of local minima x∗ and their values d by
using 3)-4).

In [4, 5] is showed that combinations L can be built incrementally, by taking initially the first
n+ 1 support vectors (which yields the unique combination L = {l1, l2, . . . , ln+1}), and then adding
one new support vector at a time. Clearly,

HK(x) = max{Hk−1(x), hk(x)}, k = n+ 2, . . . ,K. (17)

Suppose, we have already identified the local minima of Hk−1(x), i.e., all the required combinations
L. Let us denote this set by V k−1. When we add another support vector lk, we can “inherit” most
of the local minima of Hk−1(x) (a few will be lost since condition 2) of Theorem 4.2 may fail with lk

playing the role of lr), and we only need to add a few new local minima, that are new combinations
L necessarily involving lk. In [4] is proved that these new combinations are simple modifications
of those combinations that were discarded because they failed 2) with lr = lk. Furthermore, in
[5, 8] is proved that all local minimizers of the functions Hn+1, . . . ,Hk, . . . HK can be represented
in a tree structure, in which the required minima of HK are the leaves. The root of the tree is
V n+1 = {(l1, l2, . . . , ln+1)}. It is possible to perform test of the condition 2) by starting the test
from the root using depth-first search. This results in a highly efficient algorithm for enumeration
of local minima of HK [5, 6, 8]. Table 1 describes ECAM.
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Algorithm 4.1 Extended Cutting Angle Algorithm
TK ,K ≥ n+1 denotes the tree of local minima of functions Hn+1, . . . ,HK , V K denotes the priority
queue containing the leaves of the tree arranged in the order of increasing d(L). d(L) is computed
by using property 3) in Theorem 4.2.

Step 0. (Initialisation)

0.1 Take the initial points xk, k = 1, . . . , n+1, and construct the support vectors lk, k = 1, . . . , n+1
according to (11).

0.2 Set K := n+ 1, Lroot := {l1, l2, . . . , ln+1}, Tn+1 = V n+1 := {Lroot}.

0.3 fbest := mink=1,...,n+1 f(xk).

Step 1. (Form a new support vector)

1.1 Choose L∗ := Head(V K) (corresponds to the global minimum of HK).

1.2 Form x∗ := x∗(L∗) using condition 4) of Theorem 4.2.

1.3 Evaluate f∗ := f(x∗). fbest := min{fbest, f∗}.

1.4 Set K := K + 1.

1.5 Form lK using lKi := f(x∗)
C − x∗i .

Step 2. (Update TK)

2.1 Call Algorithm 7.1 (TK−1, lK ,V n+1,TK ,V K).

2.2 Delete from V K elements L if dP (L) < fbest.

Step 3. (Stopping criterion)

3.1 If K < Kmax and fbest − dP (L∗) > ε go to Step 1.

5 The proposed algorithm DCECAM

We are interested in obtaining the global minimum of a DC function on a compact set D ⊂ IRn.

minimize f(x)− g(x)
subject to: x ∈ D. (18)

where f and g are convex on IRn. Without loss of generality we consider D the unit simplex. DC
programs can be transformed into equivalent reverse convex programs by introducing an additional
variable t.

minimize f(x)− t
subject to: g(x)− t ≥ 0,

x ∈ D.
(19)

First, we present the following well-known result from convex analysis.

Proposition 5.1 If f : IRn → [−∞, +∞] is a proper convex function with f(z) finite for some
z ∈ IRn then it follows that the function f is continuous on ri(dom(f)) and Lipschitz continuous on
every compact subset of ri(dom(f)).
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When the DC components f and g are both convex functions on IRn then the DC program (18)
has a objective function that is Lipschitz on any compact D so algorithms for solving Lipschitz
programs, such as the ECAM, can be directly applied for solving the program (18). Nevertheless,
there exists DC functions on compact sets that are not Lipschitz on them, for example, the non
Lipstchitz function φ(x) :=

√
x on [0, 1] is a DC function on [0, 1], since it can be written in the

form φ(x) = x2 − (x2 −
√
x). Notice, that in the DC representation of

√
x the first component, x2,

is a Lipschtiz function but not the second component, x2−
√
x. In this case Lipschitz programming

cannot be used and specific DC algorithms are needed.
In this section we present a generalization of ECAM so additional DC programs can be solved.

Indeed, when the first component of a DC representation of the DC objective function is a Lipschitz
convex function then it is possible to design a new approach, named DCECAM, that generalizes
ECAM for solving DC programs. We apply ECAM to the first component f(x) of the DC repre-
sentation of the DC objective function, which is considered as the new objective function. Then,
at each iteration, k, a new increasing order is established on the local minimums of the saw-tooth
underestimate, Hk(x), of f(x) by evaluating the function Hk(x) − g(x) at every local minimum of
the underestimate. The new approach performs a new Branch and Bound on ECAM that converges
to a global minimum of the DC objective function f(x)− g(x).

Following ECAM, at each iteration k, we consider support functions of type

hk(x) = min
i=1,...,n

(f(xk)− Ci(xki − xi)), (20)

where coefficients Ci can be chosen to coincide with the Lipschitz constant of the objective function.
Support functions can be rewritten in the form:

hk(x) = min
i=1,...,n

(Cixi + bi), Ci > 0, x ∈ IRn,

n∑
i=1

xi = 1, (21)

where bi = f(xk) − Cix
k
i . Explicit characterizations of the local minima of the underestimate

provides a partition of the domain into smaller regions. Therefore this type of method for Lipschitz
programming can be seen as a version of a branch-and-bound method. The underestimate provides
lower bounds of the objective function on each region of the partition. When a new support function
is added to the underestimate, the partition is refined (branching step), and new lower bounds are
calculated (bounding step). Such relaxed problems arise at every iteration of the ECAM.

Our approach for solving the DC program (18) consists of the iterative process of building at
each iteration a piecewise linear underestimate.

Hk(x) = max{Hk−1(x), hk(x)} = max
0≤j≤k

hj(x). (22)

At this point we translate the relaxed problem to a combinatorial problem of enumerating all local
minima by using the new order defined by the evaluation of the function Hk(x)− g(x) at each local
minima of Hk(x). Then we consider the local minima, xk+1, satisfying

Hk(xk+1)− g(xk+1) = min{Hk(z)− g(z) : z local minima ofHk(x)}. (23)

Table 2 summarizes the DCECAM. We establish its convergence in Section 6.

6 Convergence of DCECAM

In this section we establish the convergence of the DCECAM for solving the DC programming
problem 18, in which f and g are convex and in addition, f is Lipschit on D. We introduce
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Table 2: DCECAM general framework
Procedure: DCECAM

Initialization: Set k := 0, stop:=1 and choose x0 ∈ D;
begin

while (stop) do
Calculate hk(x) = mini=0,...,n f(xk)− Ci(xki − xi);
Let Hk(x) = maxi=0,...,k hi(x) for all x ∈ D;
Find a local optimum y∗ of the problem maxx∈DH

k(x)
with minimum value for the function Hk(x)− g(x);
Set k := k + 1, xk := y∗;
stop=evaluateStop();

end while
return bestSolution;

end

the following useful quantities: αk := fk−1(xk) − g(xk), k = 1, 2, . . . , and βk := fk(xk) − g(xk),
k = 0, 1, . . . . Next lemmas point out some properties of the functions fk and the numbers αk and
βk.

Lemma 6.1 For all k = 0, 1, . . . we have βk = f(xk)− g(xk) = hk(xk)− g(xk).

Proof. Indeed,

βk = fk(xk)−g(xk) ≤ f(xk)−g(xk) = hk(xk)−g(xk) ≤ max
0≤i≤k

hi(x
k)−g(xk) = fk(xk)−g(xk) = βk.

Lemma 6.2 For all k = 1, 2, . . . , the following inequalities hold:

αk ≤ min
x∈D

(f − g)(x) ≤ βk.

Proof.

• For all x ∈ D we have fk−1(x)− g(x) ≤ f(x)− g(x), then

αk = fk−1(xk)− g(xk) = min
x∈D

fk−1(x)− g(x) ≤ min
x∈D

f(x)− g(x).

• From lemma 6.1 we can write

min
x∈D

(f − g)(x) ≤ f(xk)− g(xk) = hk(xk)− g(xk) = βk.

Corollary 6.1 The sequence {αk} is nondecreasing and bounded, that implies the existence of the
limit lim

k→+∞
αk = α.

Proof. The algorithm has been designed in such a way that satisfies the inequality

αk = fk−1(xk)− g(xk) ≤ fk(xk+1)− g(xk+1) = αk+1.

On the other hand, from Lemma 6.2 we have that {αk} is bounded for any βk.
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Theorem 6.1 Each limit point x∗ of the sequence {xk} produced by DCECAM is a global minimizer
of the program (18).

Proof. Let x∗ = limj→+∞ xkj then for each j, consider the function hi(x) with i ≤ kj and find a
supergradient ϕi(x) of the concave function hi(x) at the point xkj , ϕi(x) = hi(x

kj ) + 〈ai, x− xkj 〉.
Then ϕi(x) ≥ hi(x) for all x ∈ D and ϕi(x

kj ) = hi(x
kj ).

βkj−1
= fkj−1

(xkj−1)− g(xkj−1)

= max
0≤i≤kj−1

hi(x
kj−1)− g(xkj−1)

≤ max
0≤i≤kj−1

ϕi(x
kj−1)− g(xkj−1)

= max
0≤i≤kj−1

(hi(x
kj ) + 〈ai, x− xkj 〉)− g(xkj−1)

≤ max
0≤i≤kj−1

hi(x
kj ) + max

0≤i≤kj−1

‖ai‖‖x− xkj‖ − g(xkj−1)

= fkj−1
(xkj ) + max

0≤i≤kj−1

‖ai‖‖x− xkj‖ − g(xkj−1)

= fkj−1
(xkj )− g(xkj ) + max

0≤i≤kj−1

‖ai‖‖x− xkj‖+ g(xkj )− g(xkj−1)

= αkj + max
0≤i≤kj−1

‖ai‖‖x− xkj‖+ g(xkj )− g(xkj−1).

Since ‖ai‖ with i ≤ kj are bounded from above for all j (for the chosen constant C ≥ L with
L being the Lipstchitz constant of the component f), ‖x − xkj‖ → 0 and g(xkj ) − g(xkj−1) → 0
when j → +∞, we have that lim supβkj ≤ α. On the other hand from Lemma 6.2 we deduce that
lim inf βkj ≥ α. Finally, we obtain:

min
x∈D

(f−g)(x) = α = lim
j→+∞

βkj = lim
j→+∞

(fkj (xkj−1)−g(xkj )) = lim
j→+∞

(f(xkj )−g(xkj )) = f(x∗)−g(x∗).

7 Implementation of algorithms

In this section we discuss the implementation of algorithms. We start with the Extended Cutting
Angle Method.

7.1 Implementation of ECAM

This implementation consists of two parts. The inner recursive part updates the tree of local minima
TK−1 to TK . The main Algorithm 4.1 calls the Algorithm 7.1 to maintain the tree TK . A special
data structure was designed to hold the information about the local minimizers of HK [9]. It consists
of an n + 1-ary tree and a priority queue (binary heap) to hold the references to the leaves of the
tree. The use of the priority queue simplifies sorting out local minima of HK , as locating the global
minimum is O(1) operation. The maintenance of the heap at every iteration takes O(log |V K |)
operations.

Algorithm 7.1 Update of the tree TK−1, K > n+ 1
Input: The tree TK−1 of local minima of Hn+1, Hn+2, . . . ,HK−1; the new support vector lK ; tested
node L.
Output: The tree TK ; the set of leaves V K .

Step 1. Test L against condition 2), with lr = lK .

11



Step 2. If test succeeds, go to Step 5 (cut off this branch).

Step 3. If test fails, and L is not a leaf, then
call Algorithm 7.1 (TK−1,lK ,child(L), TK ,V K) for all children of L.
Go to Step 5.

Step 4 Otherwise (test failed, and L is a leaf) add n+ 1 children to L.
Each child node is a copy of L, with lki replaced with lK in the i-th child.
Test condition 1) for each child. If test fails, delete this child node.

Step 5 If L is V n (root), then TK=TK−1; V K = leaves(TK)
(we need to check this only once, at the first level of recursion).
Return.

7.2 Implementation of DCECAM

The problem of adapting the Extended Cutting Angle method for solving DC programs is important
as far as the new approach will be more efficient from a computational point of view. Basically the
new approach perform a new Branch and Bound on ECAM by using the reverse convex constraint
g(x)− t ≥ 0.

Algorithm 7.2 DCECAM
TK denotes the tree of local minima of functions Hn+1, . . . ,HK , V K denotes the priority queue
containing the leaves of the tree arranged in the INCREASING order determinated by evaluating
HK(x)− g(x) at every local minimum of HK(x).

Step 0. (Initialisation)

0.1 Take the initial points xk, k = 1, . . . , n+1, and construct the support vectors lk, k = 1, . . . , n+1
according to (11).

0.2 Set K := n+ 1, Lroot := {l1, l2, . . . , ln+1}, Tn+1 = V n+1 := {Lroot}.

0.3 hbest := mink=1,...,n+1 f(xk)− g(xk).

Step 1. (Form a new support vector)

1.1 Choose L∗ := Head(V K) (corresponds to the maximum of g(x)− t at the nodes of HK).

1.2 Form x∗ := x∗(L∗) using condition 4) of Theorem 4.2.

1.3 Evaluate h∗ := f(x∗)− g(x∗), hbest := min{hbest, h∗}.

1.4 Set K := K + 1.

1.5 Form lK using lKi := f(x∗)
C − x∗i .

Step 2. (Update TK)

2.1 Call Algorithm 7.1 (TK−1, lK ,V n+1,TK ,V K).

Step 3. (Stopping criterion)

3.1 If K < Kmax and hbest +HK(L∗) > ε go to Step 1.

12



8 Numerical experiments

In this section we present results of numerical experiments using some DC programming test prob-
lems. We consider only test problems with box constraints. The description of test problems can be
found in Section 10: Appendix. We used both the DCECAM and DCSOL in numerical experiments.
These experiments were carried out on a PC with Processor Intel(R) Core(TM) i5-3470S CPU 2.90
GHz.

Results are presented in Tables 3 and 4 in which ε is the given precision. Note that ε is the
accuracy with which both methods guarantees the globally optimal solution, i.e., the difference
between the minimum found and its guaranteed underestimate, which is different to the accuracy
compared to the known solution. In tables we include the number of function calls, the CPU time
required by algorithms and the best function value found by these algorithms. For the DCECAM
we report the number of DC objective function evaluations whereas for the DCSOL we report this
number for each component of the DC representation. For the DCECAM algorithm we report CPU
time and the number of function calls necessary to obtain the best reported value.

Table 3: Results for problems with non-Lipschitz objective functions and with ε = 0.01

Prob Dim DCECAM DCSOL
Best Function CPU Best Function CPU

value calls time(sec.) value calls time(sec.)
10.1 2 0.999981 1264 2.61 −0.999998 5037/12717 8.19
10.2 2 0.758714 761 0.16 0.758588 18/46 0.00
10.3 2 −2.092702 529 0.31 −2.098612 44/111 0.00
10.4 3 −6.289743 1058 1.24 −6.295837 1291/3642 1.28
10.4 4 −2.183011 1846 1.53 −2.197225 858/2731 1.28
10.4 5 3.861705 2109 2.78 3.861668 955/3631 3.34
10.4 10 8.503067 3107 24.15 8.501569 1284/7441 26.25
10.4 15 12.64905 3461 34.71 12.643976 932/7105 41.84
10.4 20 18.918043 12095 86.14 19.015127 722/6905 71.20

9 Discussion and concluding remarks

The results are analyzed using the performance profile introduced in [12]. We compare the efficiency
of the solvers both in terms of CPU time and the number of function evaluations. Results of the
numerical experiments are described in Tables 3 and 4 and Figure 1. As we can see both solvers
are robust and the comparative behavior of solvers are similar for CPU-time, in the 56% of the
problems DCECAM is the fast against the 44% of DCSOL. Nevertheless, DCECAM is better than
DCSOL in the number of function evaluations, 72% and 28% respectively, as it can be seen in
Figure 1, which is due to the efficiency of the design of DCECAM, which developed a modified
version of Extended Cutting Angle Method. The new algorithm takes into account a new order for
the enumeration of the local minima of the piecewise linear underestimates of the first component
of the DC representation of the objective function. The new order depends on the underestimate
function at each iteration and of the second component of the DC representation of the objective
function, the only function that is necessary to evaluate. This is one of the main advantages of using
DCECAM from a computational point of view.
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Table 4: Numerical results for Lipschitz DC problems with ε = 0.01

Prob Dim DCECAM DCSOL
Best Function CPU Best Function CPU

value calls time(sec.) value calls time(sec.)

10.5 2 −2.140901 1108 0.25 −2.140748 297/747 0.17
10.6 2 −0.009604 953 1.47 −0.009212 2855/7217 2.22
10.7 2 −9.000000 671 0.05 −9.000000 28/76 0.00
10.8 2 −0.999453 1206 1.14 −0.999869 1109/2774 0.78
10.9 4 0.002348 3210 9.71 0.002209 2842/7652 12.09
10.10 2 0.000000 1201 0.21 0.000241 364/925 0.22
10.10 3 3.572103 4587 3.57 3.571803 2269/5775 4.63
10.10 4 0.553429 2395 2.74 0.545601 666/1843 0.78
10.10 5 1.500652 14382 345.12 1.500000 12679/35677 502.29

On the other hand, DCECAM’s contribution is also important from a theoretical point of view
because it allows generalizing ECAM (which requires that the objective function be a Lipschitz
function) to non-Lipschitzian objective functions conveniently expressed as a difference of convex
functions. In this way, ECAM, through of DCECAM, solves DC programming problems (in addition
to solving Lipschitz programming problems) in a competitive way against specific DC solvers.

Figure 1: Performance profiles of number of function evaluations and CPU-time

Notice that mathematical and computational modeling in several areas requires solving DC
programs such as production-transportation planning, location planning, engineering design, cluster
analysis, multilevel programming and multi-objective programming. DC optimization algorithms
have been proved to be particularly successful for analyzing and solving a variety of highly structured
problems (see [16, 24]).
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10 Appendix

In Appendix we describe test problems used in the numerical experiments.

10.1 Test problems with non-Lipschitz objective functions

Problem 10.1
minimize f(x, y) := − sin(

√
3x+ 2y + |x− y|),

subject to: 0 ≤ x ≤ 5,
0 ≤ y ≤ 5.

(24)

The function 5(x2 + y2), allows us to obtain a d.c. representations of the objective function f so
DCECAM can be applied:

f(x, y) = 5(x2 + y2)− (−f(x, y) + 5(x2 + y2)).

The best solution found is (0.29658 . . . , 0.62279 . . . ) with f∗ = −0.99999825 . . . .
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Problem 10.2
minimize ϕ(x) := a

√
|1− x|+ |2− x|3,

subject to: 1 ≤ x ≤ 3,
(25)

with a = 0, 9 and a = 1.5. Then we have the convex functions

ϕ1(x) = |2− x|3,
ϕ2(x) = −a

√
|1− x|.

that satisfy
ϕ(x) = ϕ1(x)− ϕ2(x).

Problem 10.3

minimize φ(x) := − log(x) + min{
√
|1− x|, (2− x)3,

√
|3− x|}

subject to: 1 ≤ x ≤ 3,
(26)

Then we have the convex functions

φ1(x) = 6x2 − 12x+ 8 + max{0,−x3} − log(x),

and

φ2(x) = max

 −
√
|3− x|+ 6x2 − 12x+ 8 + max{0,−x3},

−
√
|1− x|+ 6x2 − 12x+ 8 + max{0,−x3},

max{0, x3})


that satisfy

φ(x) = φ1(x)− φ2(x).

Problem 10.4 By combining the above-mentioned functions we can obtain new function with n
variables.

minimize f(x) :=
∑n
i=1 ϕ(xi)

subject to: 1 ≤ xi ≤ 3, i = 1, . . . , n
(27)

and
minimize f(x) :=

∑n
i=1 φ(xi)

subject to: 1 ≤ xi ≤ 3, i = 1, . . . , n.
(28)

10.2 Test problems with Lipschitz objective functions

By using the convex function g(x) := K‖x‖2 with K > 0, we can obtain a DC representation of the
objective functions of the test problems as follows.

f(x) = (f(x) + g(x))− g(x), (29)

with K being a real number such that f(x) + k
∑n
j=1 x

2
j is a convex function.
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Problem 10.5 The class of test problems HPTnXmY .
The following class of test problems can be found in [18]:

minimize −
∑m
i=1 1/

(
‖x− ai‖2 + ci

)
subject to x ∈ IRn, 0 ≤ xj ≤ 10, j = 1, . . . , n

(30)

where ai ∈ {x ∈ IRn : 0 ≤ xj ≤ 10, 1 ≤ j ≤ n} and ci > 0. By using the convex function

k
(∑n

j=1 x
2
j

)
with k > 0, we can obtain a d.c. representation of the objective function in (30) as

follows. Consider f(x) =
∑m
i=1 fi(x), with fi(x) := 1/

(
‖x− ai‖2 + ci

)
and x ∈ IRn. Hence, we can

write

f(x) =

f(x) + k

n∑
j=1

x2j

−
k n∑

j=1

x2j

 , (31)

with k a real number such that f(x) + k
∑n
j=1 x

2
j is a convex function. The different instances of

the test problem (30) are denoted by HPTnXmY where X represents the dimension and Y means
the number of local optimal solutions of the instance. Parameters are given in Table 5.

Table 5: Parameters for the test problem HPTnXmY
i 1 2 3 4 5 6 7 8 9 10
ci 0.70 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97
ai1 4.0 2.5 7.5 8.0 2.0 2.0 4.5 8.0 9.5 5.0

Problem 10.6 The class of test problems TnXrY .
Let x ∈ IRn be x = (x1, . . . , xn). A reduced version of the test problem

minimize f(x) = Πn
i=1(x2i + cixi)

subject to −2 ≤ xi ≤ 1, i = 1, . . . , n,
(32)

where A ∈ IRm∗n and b ∈ IRm, can be found in [27]. The names of the different instances of the
test problem (32) are denoted by TnXrY , where X is the dimension and Y means the number of
linear constraints of the instance. For numerical tests, we have chosen the instance Tn2r4 with the

parameters c1 = 0.09 and c2 = 0.1. As before, by using the convex function k
(∑n

j=1 x
2
j

)
different

d.c. representations of the objective function can be obtained in the form:

f(x) =

f(x) + k
n∑
j=1

x2j

−
k n∑

j=1

x2j

 .

We consider the values k = 7.5, k = 8 and k = 8.5.

Problem 10.7 The class of test problems HPBr1.
The problem

minimize f(x, y) = 1
4 (x+ y)2 − 1

4 (x− y)2

subject to: −2 ≤ x ≤ 3,
−3 ≤ y ≤ 4,

(33)

which will be denoted by HPBr1, is a nonconvex programming problem. The objective function
of HPBr1 is an homogeneous polynomial of degree two with two variables (in this case it is a
hyperbole). It is known that the d.c. representation of xy in (33) is the optimal. Alternative
non-optimal d.c. representations of xy are:
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(1) xy = 1
2 (x+ y)2 − 1

2 (x2 + y2), and

(2) xy = 1
2 (x2 + y2)− 1

2 (x− y)2.

Problem 10.8 The class of test problems COSr0
The problem

minimize f(x, y) := 0.03(x2 + y2)− cos(x)cos(y)
subject to: −6 ≤ x ≤ 4,

−5 ≤ y ≤ 2,
(34)

which will be denoted by COSr0, is a multiextremal programming problem with minimizer (0, 0) and
minimum −1. The function k(x2 +y2), k > 0 allows us to obtain many different d.c. representations
of the objective function f :

f(x, y) = (f(x, y) + k(x2 + y2))− k(x2 + y2).

Problem 10.9
minimize f(x) := f1(x)− f2(x), x ∈ IR4

subject to: −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.
(35)

Here
f1(x) = |x1 − 1|+ 200 max{0, |x1| − x2}+ 180 max{0, |x3| − x4}+ |x3 − 1|

+10.1(|x2 − 1|+ |x4 − 1|) + 4.95|x2 + x4 − 2|,

f2(x) = 100(|x1| − x2) + 90(|x3| − x4) + 4.95|x2 − x4|.

Problem 10.10
minimize f(x) := f1(x)− f2(x), x ∈ IRn

subject to: −10 ≤ xi ≤ 10, i = 1, . . . , n.
(36)

Here

f1(x) = |x1 − 1|+ 200

n∑
i=2

max{0, |xi−1| − xi},

f2(x) = 100

n∑
i=2

(|xi−1| − xi).
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