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Abstract 

We address nonconvex mixed-integer bilinear problems where the main challenge is the 

computation of a tight upper bound for the objective function to be maximized. This can be obtained 

by using the recently developed concept of multiparametric disaggregation following the solution of 

a mixed-integer linear relaxation of the bilinear problem. Besides showing that it can provide better 

bounds than a commercial global optimization solver within a given computational time, we propose 

to also take advantage of the relaxed formulation for contracting the variables domain and further 

reduce the optimality gap. Through the solution of a real-life case study from a hydroelectric power 

system, we show that this can be an efficient approach depending on the problem size. The relaxed 

formulation from multiparametric formulation is provided for a generic numeric representation 

system featuring a base between 2 (binary) and 10 (decimal). 
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1. Introduction 

The problem considered in this paper can be classified as a nonconvex, mixed-integer bilinear 

program with the following general form: 

max	� = ��(�)  

subject to  

��(�) ≤ 0				∀� ∈ �\{0} 

��(�) = � 	
(�,�)∈���

�������� + ℎ�(�)			∀� ∈ � 

�� ≤ � ≤ �� 
� ∈ ℝ�, �� ∈ ℤ,� ∈ {1,… , �} 
 

(P) 

where � is an �-dimensional vector of non-negative variables that must lie between given lower �� 

and upper �� bounds. The total number of variables is given by �, being � ≤ � of the integer type. 

Set � includes all functions ��, including the objective function �� and all the constraints. The 

function ℎ�(�) is linear in �, ��� is an (�, �)-index set that defines the bilinear terms ���� present in 

the problem and ���� is a scalar. Note that � ≠ � for strictly bilinear problems, while � = � can be 

allowed to accommodate quadratic problems. 

The global optimization of mixed-integer nonlinear problem (P) is important in areas such as 

power systems, petroleum blending operations, process networks and production planning. 

Examples of bilinear functions involving continuous variables are: (i) the production cost term in the 

objective function of the thermal unit commitment problem [19], which is a quadratic function of 

power; (ii) the power output in hydro energy systems, related to water discharge and water storage 

[1,16]; (iii) the properties of a product resulting from a mix of materials, which can be estimated as 

weighted sums by concentration of the properties of the materials [20]. The binary variables often 

appear linearly in the formulation and may have different origins: (a) accounting for system 

operation in multiple consecutive time periods, as in the power systems scheduling problems for the 

day-ahead electricity markets or in multiperiod blending operations [15]; (b) allowing for 

connections between units only if the flowrate exceeds a certain minimum value, as in generalized 

pooling [21-22] or water network design problems [23-24]; (c) choosing between alternative 
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technologies for treatment units [8,25]. In the trim loss problem [36-37], the bilinear terms involve 

integer variables related to the number of times a certain paper roll (product) is produced by each 

cutting pattern and the number of times that each cutting pattern is repeated during the process, 

appearing in the product demand satisfaction constraint. 

Most global optimization approaches for solving bilinear programs rely on the convex McCormick 

[5] envelopes, which provide a relaxation of the original problem. The quality of the relaxation is 

highly dependent on the lower and upper bounds of the variables involved in the bilinear terms, 

improving as their domain is partitioned. This can be done iteratively, as in spatial branch and bound 

frameworks [18, 26, 31] or simultaneously, using piecewise McCormick envelopes [7-8, 22, 27] or 

univariate parameterization techniques [10, 28]. An important property of the piecewise McCormick 

approach of Misener et al. [22] (building on the work of Vielma and Nemhauser [29-30]) and the 

univariate parameterization techniques, is that the number of binary variables in the mixed-integer 

linear relaxation grows logarithmically with the number of partitions, leading to an improved 

computational performance. Changing the type and number of variables involved in the bilinear 

terms may also improve the quality of the relaxation, in what is known as Reformulation 

Linearization Technique (RLT) [32]. While Liberti and Pantelides [33] have developed an algorithm 

that can provide useful insights on how best to formulate a bilinear program, no theoretical or 

systematic framework exists for deriving RLT formulations with predictably efficient performance. 

Multiparametric disaggregation [9] is a univariate parameterization technique that works by 

discretizing one of the variables of the bilinear term to a specified accuracy level. While initially 

applied to continuous polynomial problems, it was recently shown that bilinear terms with integer 

variables are actually a special case of those with real variables [28]. Closely related approaches 

dealing with bilinear terms featuring binary variables and nonlinear integer problems with signomial 

terms can be found in [34-35]. 

The quality of the relaxation from multiparametric disaggregation is dependent on the chosen 

discretization level but so is problem size. A single increase in the level from � to �-1, measured in 

terms of powers of ten (10�) in the decimal numeric representation system, may increase the 
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complexity so that no reduction in the optimality gap is observed within a reasonable computational 

time (when compared to �). Provided that modest computational time is required to solve the 

problem for level �, one can still solve multiple instances of the problem for that same level in a 

reasonable time. 

Regardless of the relaxation approach, the tighter the lower �� and upper �� bounds of the 

variables appearing in the bilinear terms, the higher the quality of the relaxation. Reducing the 

search space through variable bounding is a feature of most global optimization solvers. GloMIQO 

[26] for instance, features interval arithmetic, reduced cost and optimality-based bound contraction. 

The latter involves solving minimization and maximization problems for each variable in the bilinear 

terms, using the McCormick envelopes [5] for the relaxation. 

The main novelty of this paper is to use the relaxation from multiparametric disaggregation [10] to 

perform optimality-based bound contraction, instead of the standard approach using fixed bounds for 

the McCormick envelopes [5]. This will enable a further reduction in the domain of the bilinear 

variables, leading to smaller optimality gaps. The other major difference compared to [10], is that the 

multiparametric disaggregation formulation is no longer limited to the decimal numeric system for 

the representation of the discretized variables, allowing the use of a base between 2 and 10. The 

short-term scheduling problem of hydro power systems will be used as case study. 

2. Upper bounding formulations 

In this section, we discuss alternative upper bounding formulations (PR) that are a relaxation of 

(P). 

2.1. Using McCormick envelopes 

A mixed-integer linear programming (MILP) relaxation can be derived using the McCormick 

envelopes [5]. It suffices to replace each bilinear term involving variables �� and ��, with a new 

variable ��� = ���� , coupled with four sets of constraints. It is easy to check that the bilinear term is 

feasible in (PR-MC) but so are values of ���,	�� and �� that do not exactly satisfy ��� = ���� . Thus, 
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(PR-MC) is a relaxation of (P), the tightest continuous relaxation, for the given lower and upper 

bounds on variables �� and ��, yielding an upper bound for (P), i.e. �� ≥ �. 

Remark 1: A tighter MILP relaxation can be obtained through the use of piecewise McCormick 

envelopes [7-8]. The domain of one of the variables of the bilinear term is partitioned into n disjoint 

regions, with new binary variables being added to the formulation to select the optimal one. The 

formulation is capable of generating the global optimal solution to (P) for an infinite number of 

partitions and exhibits a linear increase in problem size with the number of partitions. A somewhat 

related concept is multiparametric disaggregation [9], which for strictly bilinear terms achieves the 

same relaxation with a much more favorable logarithmic increase in problem size [10, 12], leading 

to a considerably better computational performance. 

2.2. Using multiparametric disaggregation 

Multiparametric disaggregation acts by discretizing �� over a set of powers � ∈ {�,… , �}, where 

� = �log�� ��
�� and � is chosen by the user so as to reach a certain accuracy level. Binary variables 

���ℓ  identify the digit � ∈ {0,… ,9 } to select for position � of the decimal numeric representation 

system (base-10). Since there always exists a gap between discretization points for a finite �, slack 

variable Δ �� (0 ≤ Δ �� ≤ 10
�) is added to obtain a continuous domain. 

�� =�	

�

ℓ��

� 	

�

���

10ℓ ⋅ � ⋅ ���ℓ + Δ ��				∀� ∈ {�|(�, �) ∈ ���, � ∈ �} 

max	�� = �� = � 	

(�,�)∈���

������� + ℎ�(�) 

	��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≤ 0				∀� ∈ �\{0} 

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�
⎭
⎪
⎬

⎪
⎫

∀	(�, �) ∈ ���, � ∈ � 

�� ≤ � ≤ �� 
� ∈ ℝ�, �� ∈ ℤ,� ∈ {1,… , �} 

subject to 

 

(PR-MC) 
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The bilinear variable ��� is also written as a sum of approximation terms and a slack variable 

Δ ���, where �����ℓ  is the disaggregated variable linked to �� and the discrete value � of �� associated 

to power �. 

��� =�	

�

ℓ��

� 	

�

���

10ℓ ⋅ � ⋅ �����ℓ + Δ ���				∀	(�, �) ∈ ���, � ∈ � 

Variables �����ℓ  appear naturally from the convex hull reformulation [14] of the disjunctive 

programming model [13] containing the key constraints of multiparametric disaggregation, as 

described in [10]. The sum of variables �����ℓ  over all digits � must be equal to the original variable 

�� for every power �. In case digit � of variable �� is selected in decimal position �, meaning ���ℓ =

1, variable �����ℓ  must lie between the upper and lower bounds of variable ��. Otherwise, �����ℓ = 0. 

Clearly, only one digit � can be associated to power �, thus ∑ 	�
��� ���ℓ = 1. 

Slack variables Δ ��� replace the bilinear terms �� ⋅ Δ �� and can be relaxed using McCormick 

envelopes as described in section 2.1. Although not strictly necessary, we also use the McCormick 

envelopes on variables ��� to improve the quality of the linear relaxation. The complete MILP 

formulation (PR-MDT) is: 

max	�� = �� = � 	

(�,�)∈���

������� + ℎ�(�) 

subject to 

	��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≤ 0				∀� ∈ �\{0} 

��� =� 	

�

ℓ��

� 	

�

���

10ℓ ⋅ � ⋅ �����ℓ + Δ ���				∀	(�, �) ∈ ���, � ∈ � 

�� =�	

�

ℓ��

� 	

�

���

10ℓ ⋅ � ⋅ ���ℓ + Δ ��				∀� ∈ {�|(�, �) ∈ ���, � ∈ �} 

�� = � 	

�

���

�����ℓ 				∀		(�, �) ∈ ���, � ∈ �, ℓ ∈ � 

��
� ⋅ ���ℓ ≤ 	 �����ℓ ≤ ��

� ⋅ ���ℓ 				∀		(�, �) ∈ ���, � ∈ �, ℓ ∈ �, � ∈ �  

�	

�

���

���ℓ = 1				∀		� ∈ {�|(�, �) ∈ ���, � ∈ �}, ℓ ∈ � 

��
� ⋅ Δ �� ≤ Δ ��� ≤ ��

� ⋅ Δ ��

Δ ��� ≤ (�� − ��
�) ⋅ 10� + ��

� ⋅ Δ ��

Δ ��� ≥ (�� − ��
�) ⋅ 10� + ��

� ⋅ Δ ��

� ∀	(�, �) ∈ ���, � ∈ �  

(PR-MDT) 
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��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�
⎭
⎪
⎬

⎪
⎫

∀	(�, �) ∈ ���, � ∈ �  

0 ≤ Δ �� ≤ 10
�				∀	� ∈ {�|(�, �) ∈ ���, � ∈ �} 

���ℓ ∈ {0,1}				∀		� ∈ {�|(�, �) ∈ ���, � ∈ �}, � ∈ � , ℓ ∈ � 

�� ≤ � ≤ �� 
� ∈ ℝ�, �� ∈ ℤ,� ∈ {1,… , �} 
 

Problem (PR-MDT) yields an upper bound �� for (P) that is of a better quality than the one from 

(PR-MC). Furthermore, the value of �� decreases as � decreases. 

Remark 2: Whereas continuous variables being discretized may only assume exact values in the 

limit � = − ∞ , for integer variables this will occur for � = 0. Thus, if all discretized variables �� are 

integer, solving (PR-MDT) with � = 0 will lead to the global optimal solution of (P). 

Remark 3: The discretization of variables �� was done with respect to the decimal numerical 

representation system but can be extended to a generic �-base coding, � ∈ {2 , … ,10}. Assuming that 

the location � of the last significant digit (with respect to the decimal system) is the same for all 

variables, the number of powers to consider for variable �� using base � is 

��
� = �log�(���

� ∙10��� + 1)� 

leading to the following definition of ��: 

�� = 10
� ⋅ � 	

��
���

ℓ��

� 	

���

���

�ℓ ⋅ � ⋅ ���ℓ + Δ ��				∀� ∈ {�|(�, �) ∈ ���, � ∈ �} 

As an example, for ��
�=0.7374 and an accuracy of � = − 2 , the number of powers to consider for 

the binary system is ��
� = 7. �� = 0.7374 can then be obtained by 10�� ∙(2 � + 2 � + 2 �) + 0.0074. 

Notice that ��
� < 10� 	⇒ ��,�

� = 0, meaning �� = Δ �� . If this is true for all variables ��, then the 

value of �� from (PR-MDTb) will be equal to that from (PR-MC). 

The MILP formulation (PR-MDTb) that provides a relaxation to MINLP problem (P) by 

discretizing the variables using a �-base numeric representation system is then the following: 



8 

 

Remark 4: For a strictly bilinear term ���� , MDT discretizes variable �� and disaggregates 

variable �� but provides no indication of which variables should be discretized and which should be 

disaggregated. This is quite relevant when in the presence of bilinear terms from real-life problems, 

featuring two sets of variables with different domains. As an example, in the short-term hydro 

scheduling problem considered in this paper, the bilinear terms involve the product of a discharge 

flowrate by a reservoir volume, and so one can either discretize the flowrate or the volume variables. 

max	�� = �� = � 	

(�,�)∈���

������� + ℎ�(�) 

	��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≤ 0				∀� ∈ �\{0} 

��� = 10
� ⋅ � 	

��
���

ℓ��

� 	

���

���

�ℓ ⋅ � ⋅ �����ℓ + Δ ���				∀	(�, �) ∈ ���, � ∈ � 

�� = 10
� ⋅ � 	

��
���

ℓ��

� 	

���

���

�ℓ ⋅ � ⋅ ���ℓ + Δ ��				∀� ∈ {�|(�, �) ∈ ���, � ∈ �} 

�� = � 	

���

���

�����ℓ 				∀	(�, �) ∈ ���, � ∈ �, ℓ ∈ {0,… , ��
� − 1} 

��
� ⋅ ���ℓ ≤ 	 �����ℓ ≤ ��

� ⋅ ���ℓ 				∀		(�, �) ∈ ���, � ∈ �, � ∈ {0, … , � − 1}, ℓ

∈ �0,… , ��
� − 1� 

�	

���

���

���ℓ = 1				∀		� ∈ {�|(�, �) ∈ ���, � ∈ �}, ℓ ∈ {0,… , ��
� − 1} 

0 ≤ Δ �� ≤ 10
�				∀	� ∈ {�|(�, �) ∈ ���, � ∈ �} 

���ℓ ∈ {0,1}				∀		� ∈ {�|(�, �) ∈ ���, � ∈ �}, � ∈ {0, … , � − 1}, ℓ

∈ {0,… , ��
� − 1} 

�� ≤ � ≤ �� 
� ∈ ℝ�, �� ∈ ℤ,� ∈ {1,… , �} 

subject to 

��
� ⋅ Δ �� ≤ Δ ��� ≤ ��

� ⋅ Δ ��

Δ ��� ≤ (�� − ��
�) ⋅ 10� + ��

� ⋅ Δ ��

Δ ��� ≥ (�� − ��
�) ⋅ 10� + ��

� ⋅ Δ ��

� ∀	(�, �) ∈ ���, � ∈ �  

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�
⎭
⎪
⎬

⎪
⎫

∀	(�, �) ∈ ���, � ∈ �  

 

(PR-MDTb) 
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Since previous research dealing with other engineering problems [13,15] has shown major 

differences in computational performance, it is best to try both approaches. 

2.2.1. Lower bounding with multiparametric disaggregation 

As discussed in [10], the quickest way to obtain a lower bound for problem (P) using 

multiparametric disaggregation is the following. Solve (PR-MDTb) and fix the integer variables �� 

in (P) to the values found by the solution of (PR-MDTb), reducing (P) to a linear or nonlinear 

program (NLP). Solve (P) with these fixed binary variables using a LP or local NLP algorithm to 

obtain some � using the solution to (PR-MDTb) as a starting point. Note that fixing the binary 

variables in (P) to the values from (PR-MDTb) can render (P) infeasible. This is more likely to 

occur when the bilinear terms feature integer variables (e.g. in test problems nvs23 and nvs24 for 

� ∈ {1,2 }	, see [28]) than when the integer variables appear linearly. In fact, such behavior was not 

observed for the hydro scheduling problem considered in this paper. In general, it is less likely to 

occur for smaller values of �, for which (PR-MDTb) becomes a better approximation of (P). 

The computationally more demanding alternative is to remove slack variables Δ �� and Δ ��� from 

(PR-MDTb) and solve the resulting MILP problem, as discussed in [10, 28]. 

3. Bound contraction 

The bounds �� and �� have a direct influence on the values of �� obtained by both (PR-MC) and 

(PR-MDT). Better bounds will result in a tighter relaxation, leading to values of �� that are closer to 

the global optimal solution and hence to smaller optimality gaps. On the other hand, their 

computation can be very time consuming. 

3.1. Standard approach 

The standard approach is to solve multiple instances of a problem that is closely related to (PR-

MC). More precisely, (BC-MC) features a different objective function and an additional constraint 

that limits the domain of the variable under consideration to regions that can actually improve the 

quality of the lower bound on �, �´. This can be obtained by solving (P) with a local MINLP solver. 
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min/max �� 

subject to 

��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≥ �´ 

��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≤ 0			∀� ∈ �\{0} 

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�
⎭
⎪
⎬

⎪
⎫

∀	(�, �) ∈ ���, � ∈ � 

�� ≤ � ≤ �� 
� ∈ ℝ�, �� ∈ ℤ,� ∈ {1,… , �} 
 

(BC-MC) 

MILP problem (BC-MC) is to be solved for every variable � in the bilinear terms, � ∈ {�|(�, �) ∈

��� ∧ (� = � ∨ � = �), � ∈ �}, first minimizing and then maximizing ��. Following each 

minimization problem, update the variable’s lower bound by making ��
� = ��, and after a 

maximization problem, set ��
� = ��. Since the new bound makes the McCormick envelopes tighter, 

the chosen sequence for the elements in � affects the final outcome. 

Remark 5: To reduce the computational time, the integrality constraints on variables �� ∈ ℤ can 

be relaxed so that linear problems (LP) are solved instead. Problem (BC-MCR) is obtained from 

(BC-MC) by replacing �� ∈ ℤ,� ∈ {1,… , �} with �� ∈ ℝ
�, generating weaker bounds for the 

variables. 

3.2. Novel approach using multiparametric disaggregation 

Bound contraction can also be performed with multiparametric disaggregation. It will in general 

lead to stronger bounds than (BC-MC) at the expense of a considerably larger problem, particularly 

in terms of binary variables due to the inclusion of variables ���ℓ . It can be useful in cases where: (i) 

the increase in (PR-MDTb) complexity from discretization level � to � − 1 is simply too much to 

improve the value of �� in a reasonable computational time; and (ii) each (BC-MDTb) subproblem 

can still be solved rather fast for setting � so that (PR-MDTb) can benefit from stronger �� and �� 

bounds by returning a lower �� value and reducing the optimality gap for �. Naturally, one can also 

apply different � settings for (BC-MDTb) and (PR-MDTb). 
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The complete (BC-MDTb) MILP formulation, going along the lines of (BC-MC), is given below. 

min/max �� 

subject to 

��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≥ �´ 

��(�) = � 	
(�,�)∈���

������� + ℎ�(�) ≤ 0			∀� ∈ �\{0} 

��� = 10
� ⋅ � 	

��
���

ℓ��

� 	

���

���

�ℓ ⋅ � ⋅ �����ℓ + Δ ���				∀	(�, �) ∈ ���, � ∈ � 

�� = 10
� ⋅ � 	

��
���

ℓ��

� 	

���

���

�ℓ ⋅ � ⋅ ���ℓ + Δ ��				∀� ∈ {�|(�, �) ∈ ���, � ∈ �} 

�� = � 	

���

���

�����ℓ 				∀		(�, �) ∈ ���, � ∈ �, ℓ ∈ {0,… , ��
� − 1} 

��
� ⋅ ���ℓ ≤ 	 �����ℓ ≤ ��

� ⋅ ���ℓ 				∀		(�, �) ∈ ���, � ∈ �, � ∈ {0, … , � − 1}, ℓ

∈ �0,… , ��
� − 1� 

�	

���

���

���ℓ = 1				∀		� ∈ {�|(�, �) ∈ ���, � ∈ �}, ℓ ∈ {0,… , ��
� − 1} 

��
� ⋅ Δ �� ≤ Δ ��� ≤ ��

� ⋅ Δ ��

Δ ��� ≤ (�� − ��
�) ⋅ 10� + ��

� ⋅ Δ ��

Δ ��� ≥ (�� − ��
�) ⋅ 10� + ��

� ⋅ Δ ��

� ∀	(�, �) ∈ ���, � ∈ �  

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≥ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�

��� ≤ �� ⋅ ��
� + ��

� ⋅ �� − ��
� ⋅ ��

�
⎭
⎪
⎬

⎪
⎫

∀	(�, �) ∈ ���, � ∈ �  

0 ≤ Δ �� ≤ 10
�				∀	� ∈ {�|(�, �) ∈ ���, � ∈ �} 

���ℓ ∈ {0,1}				∀		� ∈ {�|(�, �) ∈ ���, � ∈ �}, � ∈ {0, … , � − 1}, ℓ

∈ {0,… , ��
� − 1} 

�� ≤ � ≤ �� 
� ∈ ℝ�, �� ∈ ℤ,� ∈ {1,… , �} 
 

(BC-MDTb) 

4. Short-term hydro scheduling problem 

We consider the short-term scheduling problem of a head-sensitive cascaded hydro energy system 

for the day-ahead electricity market [1]. Given a set � ∈ � of reservoirs with initial ��
�, minimum 

��
��� and maximum ��

��� capacities [106 m3], and inlet flow ��,�
�� [106 m3/h], the objective is to 
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maximize the total profit of the system. Revenues result from electricity production over the set 

� ∈ � of 1-hour periods at a given price �� [$/MWh], while the costs are startup costs ��� [$] 

introduced to discourage frequent startups that shorten the lifetime of the units as a result of 

mechanical stress. Power plants are thus not necessarily operating over the full day. 

When active, water discharge is subject to given limits ��
��� and ��

��� [106 m3/h], as well as power 

production, ��
��� and ��

��� [MW]. In addition, the absolute difference between water discharge in 

two consecutive periods must not exceed ��
����

, due to requirements of navigation, environment and 

recreation. Power generation ��,� [MW] at reservoir � is considered a bilinear function of discharge 

flowrate ��,� [106 m3/h] and amount in storage of both �, ��,� [106 m3], and its immediate downstream 

reservoir �´ ∈ ��, see eq (1), where ��, �� and �� are given parameters [2,3]. More accurate power 

functions involving forebay and tailrace levels, which in turn are calculated as fourth degree 

polynomials of water storage and discharge flowrate, can be found in [38]. 

��,� = ��� + ������,� + �� ∑ ��´�´∈��
��´,�� ∙��,�		∀� ∈ �, � ∈ � (1) 

4.1. MINLP formulation 

The short-term scheduling problem can be formulated as a discrete-time mixed-integer nonlinear 

programming formulation [1], where the only source of nonlinearities is eq. (1), with two non-

convex bilinear terms. Positive continuous variables include the water flowrate not used for power 

production (spillage) ��,� [106 m3/h] and variables ��,�, ��,� and ��,�. The binary variables ��,� indicate 

if reservoir � is producing energy at time �, while binaries ��,� identify the startup of the plant. 

The multiperiod water balance given by eq (2) assumes, due to the short distance between 

consecutive reservoirs, that the time required for water to travel between consecutive reservoirs is 

much less than the 1 h time interval considered. 

��,� = ��
��
���

+ ��,��� + ��,�
�� +� (��´,� + ��´,�)�´∈�

�∈��´

− ��,� + ��,�		∀� ∈ �, � ∈ �  (2) 

Active power plants must operate within given bounds concerning water discharge and power 

production, eqs (3)-(4). Notice that ��,� = 0 ⇔ ��,� = 0 ⇔ ��,� = 0. As for the reservoirs capacity 

constraints, they do not feature binary variables, see eq (5). 
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��
��� ∙��,� ≤ ��,� ≤ ��

��� ∙��,�		∀� ∈ �, � ∈ �  (3) 

��
��� ∙��,� ≤ ��,� ≤ ��

��� ∙��,�		∀� ∈ �, � ∈ �  (4) 

��
��� ≤ ��,� ≤ ��

���		∀� ∈ �, � ∈ �  (5) 

Discharge ramping constraints are given by eq. (6). 

��,� − ��
����

≤ ��,��� ≤ ��,� + ��
����

	∀� ∈ �, � ∈ �\|�| (6) 

Every time a plant starts operating, we must trigger the startup variables ��,�, which affect the 

objective function. The required constraint written in logic proposition is ��,� ∧ ¬��,��� ⇒ ��,�, 

which can be easily converted to mathematical programming format [4], see eq (7). 

��,� ≥ ��,� − ��,���	∀� ∈ �, � ∈ � (7) 

The objective is to maximize the profit over a 24-hour period, given by the difference between 

electricity sales and the startup cost, eq (8). 

��� ∑ ∑ (����,� − �����,�)�∈��∈�  (8) 

It can easily be seen that the MINLP problem consisting of (1)-(8) is of type (P). Solving it to 

global optimality can be quite difficult as will be seen later on, but a very good feasible solution can 

be obtained quite fast with a MINLP solver that relies on convexity assumptions. Such a solution 

will correspond to a lower bound of the global optimal solution. 

4.2. Standard MILP relaxation 

As seen in section 2.1, a mixed-integer linear programming relaxation of type (PR-MC) can easily 

be derived after defining two new sets of continuous variables ��,�
� = ��,���,� and ��´,�,�

� = ��,���´,� to 

replace the bilinear terms, and adding new sets of constraints. Linear eq (9) replaces nonlinear eq (1) 

and eqs (10)-(17) are the McCormick envelopes [5]. The solution of the MILP problem consisting of 

eqs (2)-(17) will provide an upper bound on the profit that can be obtained over a 24-hour period. 

Relaxing the integrality constraints on variables ��,� and ��,� will lead to a weaker upper bound 

resulting from the solution of a LP. 

��,� = �� + ������,�
� + �� ∑ ��´�´∈��

��´,�,�
� 		∀� ∈ �, � ∈ � (9) 

��,�
� ≥ ��,���,�

� + ��,�
� ��,� − ��,�

� ��,�
� 		∀� ∈ �, � ∈ � (10) 



14 

 

��,�
� ≥ ��,���,�

� + ��,�
� ��,� − ��,�

� ��,�
� 		∀� ∈ �, � ∈ � (11) 

��,�
� ≤ ��,���,�

� + ��,�
� ��,� − ��,�

� ��,�
� 		∀� ∈ �, � ∈ � (12) 

��,�
� ≤ ��,���,�

� + ��,�
� ��,� − ��,�

� ��,�
� 		∀� ∈ �, � ∈ � (13) 

��´,�,�
� ≥ ��´,���,�

� + ��´,�
� ��,� − ��´,�

� ��,�
� 		∀� ∈ �, �´ ∈ ��, � ∈ � (14) 

��´,�,�
� ≥ ��´,���,�

� + ��´,�
� ��,� − ��´,�

� ��,�
� 		∀� ∈ �, �´ ∈ ��, � ∈ � (15) 

��´,�,�
� ≤ ��´,���,�

� + ��´,�
� ��,� − ��´,�

� ��,�
� 		∀� ∈ �, �´ ∈ ��, � ∈ � (16) 

��´,�,�
� ≤ ��´,���,�

� + ��´,�
� ��,� − ��´,�

� ��,�
� 		∀� ∈ �, �´ ∈ ��, � ∈ � (17) 

The lower and upper bounds on variables ��,� and ��,� are given by parameters ��,�
� , ��,�

� , ��,�
�  and 

��,�
� , respectively. These feature the reservoir as well as the time index to highlight that strong values 

can be calculated through the bound contraction procedures described in sections 3.1 and 3.2, 

involving the solution of problems of type (BC-MC) or (BC-MDTb). One can alternatively ignore 

the time index and rely on the given capacity and discharge flow limits, see eqs (18)-(20), which are 

also involved in the initialization of the bound contraction procedure. Notice in eq. (20) that the 

lower bound on the discharge variables cannot be made equal to the minimum discharge flow ��
��� 

since such constraint is to be enforced only if reservoir � is producing energy. 

��,�
� = ��

���	∀� ∈ �, � ∈ � (18) 

��,�
� = ��

���	∀� ∈ �, � ∈ � (19) 

��,�
� = 0	∀� ∈ �, � ∈ � (20) 

��,�
� = ��

���	∀� ∈ �, � ∈ � (21) 

4.3. MILP relaxation using multiparametric disaggregation 

We now provide the full set of constraints corresponding to (PR-MDTb) for the hydro scheduling 

problem, together with the basic building block, where the main concept is expressed as a 

disjunctive program [13]. Of the two sets of variables appearing in bilinear terms, we can either 

discretize: (i) water discharge flowrate; or (ii) volume in storage. Both alternatives are considered. 
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4.3.1. Discretizing the discharge flowrate variables ��,� 

The multiparametric disaggregation technique builds on the fact that a given variable can be 

calculated as a sum of approximation ���,� and residual terms ∆��,�, see eqs 24-26. 

��,��
�∈ℕ

= ���,��

�∈{�,…,��,�
� ��}

+ ∆��,��

�∈{��,�
� ,…,��}

	 (24) 

��,�
� = �log�(���,�

� ∙10��� + 1)�	∀� ∈ �, � ∈ � (25) 

0 ≤ ∆��,� ≤ 10
�	∀� ∈ �, � ∈ �	 (26) 

Similarly, the exact representation of bilinear term variables ��,�
�  and ��´,�,�

�  can be divided into 

approximate and residual terms, see eqs (27)-(28). 

��,�
� = ��,� ∙����,� + ∆��,�� = ��,� ∑ ���,�,�

��,�
� ��

��� + ��,�∆��,� = ∑ ���,�,�
���,�

� ��

��� + ∆��,�
� = ���,�

� +

∆��,�
� 	∀� ∈ �, � ∈ � (27) 

��´,�,�
� = ��´,� ∙����,� + ∆��,�� = ��´,� ∑ ���,�,�

��,�
� ��

��� + ��´,�∆��,� = ∑ ���´,�,�,�
���,�

� ��

��� + ∆��´,�,�
� = ���´,�,�

� +

∆��´,�,�
� 	∀� ∈ �, �´ ∈ ��, � ∈ � (28) 

The problem of finding the value of the approximate variables for position �, can actually be 

modeled as a disjunctive program. Considering all possible parameters � ∈ {0,… , � − 1} and 

making sure a single one (exclusive OR) is selected through the use of Boolean variables ��,�,�,�, eq 

(29) results. 

∨���
���

⎣
⎢
⎢
⎢
⎡

��,�,�,�

���,�,� = 10
� ∙� ∙��

���,�,�
� = 10� ∙��,� ∙� ∙�

�

���´,�,�,�
� = 10� ∙��´,� ∙� ∙�

�	∀�´ ∈ ��⎦
⎥
⎥
⎥
⎤

	∀� ∈ �, � ∈ �, � ∈ {0,… , ��,�
� − 1} (29) 

The convex hull reformulation [14] of eq (29) followed by a few algebraic transformations of 

constraints to avoid the use of approximation variables ���,�, ���,�,�, ���,�
� , ���´,�,�

� , ���,�,�
�  and ���´,�,�,�

� , leads 

us to the majority of the constraints of the upper bounding formulation, see eqs (30)-(41). Notice that 

the Boolean variables ��,�,�,� have been converted to binary variables. 

��,�
� = 10� ∙∑ ∑ ���,�,�,�

� ∙� ∙�����
���

��,�
� ��

��� + ∆��,�
� 	∀� ∈ �, � ∈ � (30) 

��´,�,�
� = 10� ∙∑ ∑ ���´,�,�,�,�

� ∙� ∙�����
���

��,�
� ��

��� + ∆��´,�,�
� 	∀� ∈ �, �´ ∈ ��, � ∈ � (31) 
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��,� = ∑ ���,�,�,�
����

��� 	∀� ∈ �, � ∈ �, � ∈ {0,… , ��,�
� − 1} (32) 

��´,� = ∑ ���´,�,�,�,�
����

��� 	∀� ∈ �, �´ ∈ ��, � ∈ �, � ∈ {0,… , ��,�
� − 1} (33) 

��,�
� ∙��,�,�,� ≤ ���,�,�,�

� ≤ ��,�
� ∙��,�,�,�	∀� ∈ �, � ∈ �, � ∈ {0,… , � − 1}, � ∈ �0, … , ��,�

� − 1� (34) 

��´,�
� ∙��,�,�,� ≤ ���´,�,�,�,�

� ≤ ��´,�
� ∙��,�,�,�	∀� ∈ �, �´ ∈ ��, � ∈ �, � ∈ {0,… , � − 1}, � ∈ �0,… , ��,�

� − 1�

 (35) 

∑ ��,�,�,�
���
��� = 1	∀� ∈ �, � ∈ �, � ∈ {0,… , ��,�

� − 1} (36) 

��,� = 10
� ∙∑ ∑ � ∙�� ∙��,�,�,�

���
���

��,�
� ��

��� + ∆��,�	∀� ∈ �, � ∈ � (37) 

��,�
� ≤ ��,� ≤ ��,�

� 	∀� ∈ �, � ∈ � (38) 

���,�,�,�
� ≥ 0	∀� ∈ �, � ∈ �, � ∈ {0,… , � − 1}, � ∈ �0,… , ��,�

� − 1� (39) 

���´,�,�,�,�
� ≥ 0	∀� ∈ �, �´ ∈ ��, � ∈ �, � ∈ {0,… , � − 1}, � ∈ �0,… , ��,�

� − 1� (40) 

��,�,�,� = {0,1}	∀� ∈ �, � ∈ �, � ∈ {0, … , � − 1}, � ∈ �0,… , ��,�
� − 1� (41) 

It remains dealing with the residual variables ∆��,�
�  and ∆��´,�,�

� . They involve bilinear terms 

themselves that can be relaxed using the standard McCormick envelopes [5] discussed in section 2.1. 

Using the bounds for ∆��,� given in eq. (26), eqs (42)-(45) can be obtained. 

��,�
� ∙∆��,� ≤ ∆��,�

� ≤ ��,�
� ∙∆��,�	∀� ∈ �, � ∈ � (42) 

(��,� − ��,�
� ) ∙10� + ��,�

� ∙∆��,� ≤ ∆��,�
� ≤ (��,� − ��,�

� ) ∙10� + ��,�
� ∙∆��,�	∀� ∈ �, � ∈ � (43) 

��´,�
� ∙∆��,� ≤ ∆��´,�,�

� ≤ ��´,�
� ∙∆��,�	∀� ∈ �, � ∈ � (44) 

(��´,� − ��´,�
� ) ∙10� + ��´,�

� ∙∆��,� ≤ ∆��´,�,�
� ≤ (��´,� − ��´,�

� ) ∙10� + ��´,�
� ∙∆��,�	∀� ∈ �, � ∈ � (45) 

The complete MILP formulation that provides an upper bound to the original MINLP problem is 

thus given by eqs (2)-(17), (25)-(26), (30)-(45). 

4.3.2. Discretizing the volume in storage variables ��,� 

The second option is to discretize variables ��,�. Keeping the same nomenclature and the bounds 

on the residual variables, which are only a function of �, the required number of positions for the 

chosen accuracy is now a function of the volume in storage upper bound, see eqs (46)-(47). 

0 ≤ ∆��,� ≤ 10
�	∀� ∈ �, � ∈ �	 (46) 



17 

 

��,�
� = �log�(���,�

� ∙10��� + 1)�	∀� ∈ �, � ∈ � (47) 

The binary variables ��,�,�,� now identify the active digit � at position � for the representation (in 

base �) of the volume of reservoir � at time �. To better understand the disjunctive program given in 

eq (48), note that variable ��,� appears in the power definition constraint (eq. 1) of reservoir � and its 

upstream reservoir �´ (� ∈ ��´). Hence, the change in the order of indices of variable ���,�´,�,�
�  (compare 

to eq 29). 

∨���
���

⎣
⎢
⎢
⎢
⎡

��,�,�,�

���,�,� = 10
� ∙� ∙��

���,�,�
� = 10� ∙��,� ∙� ∙�

�

���,�´,�,�
� = 10� ∙��´,� ∙� ∙�

�	∀�´ ∈ � ∧ � ∈ ��´⎦
⎥
⎥
⎥
⎤

	∀� ∈ �, � ∈ �, � ∈ {0,… , ��,�
� − 1} (48) 

Applying the convex hull reformulation leads to the complete set of MILP constraints given below 

in eqs (49)-(62). Eqs (36), (41) and (46)-(47), also apply. 

��,�
� = 10� ∙∑ ∑ ���,�,�,�

� ∙� ∙�����
���

��,�
� ��

��� + ∆��,�
� 	∀� ∈ �, � ∈ � (49) 

��,�´,�
� = 10� ∙∑ ∑ ���,�´,�,�,�

� ∙� ∙�����
���

��,�
� ��

��� + ∆��,�´,�
� 	∀� ∈ �, �´ ∈ � ∧ � ∈ ��´, � ∈ � (50) 

��,� = ∑ ���,�,�,�
����

��� 	∀� ∈ �, � ∈ �, � ∈ {0,… , ��,�
� − 1} (51) 

��´,� = ∑ ���,�´,�,�,�
����

��� 	∀� ∈ �, �´ ∈ � ∧ � ∈ ��´, � ∈ �, � ∈ {0, … , ��,�
� − 1} (52) 

��,�
� ∙��,�,�,� ≤ ���,�,�,�

� ≤ ��,�
� ∙��,�,�,�	∀� ∈ �, � ∈ �, � ∈ {0,… , � − 1}, � ∈ �0, … , ��,�

� − 1� (53) 

��´,�
� ∙��,�,�,� ≤ ���,�´,�,�,�

� ≤ ��´,�
� ∙��,�,�,�	∀� ∈ �, �´ ∈ � ∧ � ∈ ��´, � ∈ �, � ∈ {0,… , � − 1}, � ∈

�0,… , ��,�
� − 1� (54) 

��,� = 10
� ∙∑ ∑ � ∙�� ∙��,�,�,�

���
���

��,�
� ��

��� + ∆��,�	∀� ∈ �, � ∈ � (55) 

��,�
� ≤ ��,� ≤ ��,�

� 	∀� ∈ �, � ∈ � (56) 

��,�
� ∙∆��,� ≤ ∆��,�

� ≤ ��,�
� ∙∆��,�	∀� ∈ �, � ∈ � (57) 

(��,� − ��,�
� ) ∙10� + ��,�

� ∙∆��,� ≤ ∆��,�
� ≤ (��,� − ��,�

� ) ∙10� + ��,�
� ∙∆��,�	∀� ∈ �, � ∈ � (58) 

��´,�
� ∙∆��,� ≤ ∆��,�´,�

� ≤ ��´,�
� ∙∆��,�	∀� ∈ �, �´ ∈ � ∧ � ∈ ��´, � ∈ � (59) 

(��´,� − ��´,�
� ) ∙10� + ��´,�

� ∙∆��,� ≤ ∆��,�´,�
� ≤ (��´,� − ��´,�

� ) ∙10� + ��´,�
� ∙∆��,�	∀� ∈ �, �´ ∈ � ∧ � ∈

��´, � ∈ � (60) 



18 

 

���,�,�,�
� ≥ 0	∀� ∈ �, � ∈ �, � ∈ {0, … , � − 1}, � ∈ �0,… , ��,�

� − 1� (61) 

���,�´,�,�,�
� ≥ 0	∀� ∈ �, �´ ∈ � ∧ � ∈ ��´, � ∈ �, � ∈ {0, … , � − 1}, � ∈ �0,… , ��,�

� − 1� (62) 

4.4. Problem data 

The hydro energy system under consideration is located in the Douro River, in Portugal, and 

consists of seven cascaded reservoirs [1], see Figure 1. Hydro plants � ∈ {1,2 ,4,5,7} are run-of-the-

river, characterized by a small storage capacity and an operating efficiency that is sensitive to the 

head change effect [2,3]. On the other hand, plants � ∈ {3,6} are storage hydro plants. Inflow ��,�
�� is 

considered only on reservoirs 1-6 and the final water storage in the reservoirs is constrained to be 

equal to the initial water storage: ��,|�| = ��
�. Startup costs are a linear function of maximum power 

production [16]: ��� = 2 .5��
��� [$/MW]. Model parameters that can be revealed are given in Table 

1, while the electricity price profile is given in Table 2. 

Table 1. Hydro system data 

� ��
� 

[106 m3] 
��
��� 

[106 m3] 
��
��� 

[106 m3] 
��
��� 

[MW] 
��
��� 

[MW] 
��
��� 

[106 m3/h] 
��
��� 

[106 m3/h] 

1 10.35 5.18 12.94 28 188.08 0.60527 4.12020 
2 10.64 5.32 13.3 29.99 237.14 0.37692 3.88800 
3 78 39 97.5 10.64 60 0.01080 0.05904 
4 9.6 4.8 12 24.99 185.99 0.37681 3.24000 
5 8.8 4.4 11 29.99 201.02 0.33563 3.17272 
6 46.7 36.89 58.38 39.99 134.02 0.34196 1.17482 
7 17.2 8.6 21.5 19.99 117.01 0.65819 4.88344 

 

Table 2. Electricity price profile [$/MWh] 

Hour 0 1 2 3 4 5 6 7 
�� 50.400 46.287 44.187 44.787 45.477 47.523 58.359 68.487 

Hour 8 9 10 11 12 13 14 15 
�� 87.441 91.395 93.846 94.995 86.187 92.295 93.495 92.259 

Hour 16 17 18 19 20 21 22 23 
�� 93.795 103.254 103.359 100.623 95.418 92.136 82.305 68.946 
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Figure 1: Hydro energy system under consideration. 

5. Numerical experiments 

The short-term hydro scheduling problem of type (P) is tackled with commercial MINLP solvers 

DICOPT, an outer approximation algorithm [17] guaranteed to converge only under certain 

convexity assumptions, and BARON [18], a branch-and-bound algorithm enhanced with a variety of 

constraint propagation and duality techniques that can provide global optimal solutions. MILP 

formulations resulting from the relaxation of the bilinear terms using McCormick envelopes (PR-

MC) or multiparametric disaggregation (PR-MDTb) are solved with CPLEX. These are capable of 

providing upper bounds on (P) that can be used to compute an optimality ��� = 1 − � ��⁄ . 

Problems of type (PR-MDTb) are generated by discretizing over variables ��,� and ��,�, for different 

discretization levels � and basis � ∈ {2 ,10}. 

Since the quality of the upper bound is greatly influenced by the quality of the variables bounds, 

problems (PR-MC) and (PR-MDTb) are solved following three different bound contraction 

strategies: (i) no bound contraction, with bounds on the variables calculated from eqs (18)-(20); (ii) 
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standard bound contraction using McCormick envelopes (BC-MC); (iii) new strategy using 

multiparametric disaggregation (BC-MDTb). We also provide the lower bound resulting from the 

solution of the NLP with commercial solver CONOPT, after fixing the binary values of (P) to the 

values obtained from multiparametric disaggregation (PR-MDTb), recall section 2.2.1. 

In order to evaluate the influence of problem size on performance, smaller problems consisting of 

the first 2 and 4 reservoirs are considered besides the full, 7-reservoir problem. All mathematical 

formulations and algorithms were implemented in GAMS 23.8.2 and solved on an Intel i7 950 (3.07 

GHz) desktop computer with 8 GB of RAM and running Windows 7. Default options were used for 

the commercial solvers and the maximum computational time for each solve statement was set to 

3600 CPUs unless stated otherwise. MILP problems were tacked using a single thread down to a 10-6 

relative optimality tolerance. 

5.1. Optimal solution for problem (P) 

We start by analyzing the best feasible solution returned by the commercial solvers. As can be 

seen in Table 3, the optimal solutions (�) from DICOPT are better than the ones obtained by 

BARON in 1-hour of computational time, even after performing bound contraction. It is a clear 

indication that DICOPT is a better solver for the solution of the hydro scheduling problem for the 

day-ahead electricity market, requiring just a couple of seconds to provide very good solutions. In 

fact, we were unable to improve the values listed in the 2nd column using the methods described in 

this paper even after several computational runs, often terminating with suboptimal solutions. 

Table 3. Results for (P) using commercial MINLP solvers 

 DICOPT BARON BARON preceded by (BC-MCR) MINLP problem size 
|�| � [$] CPUs � [$] �� [$] ���a � [$] �� [$] ���a CPUs Binary 

variables 
Total 

Variables 
Equations 

2 209721 0.59 209712 210663 0.45% 209712 210547 0.39% 3600b 96 289 429 
4 371812 1.06 371737 376560 1.26% 371195 376120 1.15% 3600b 192 577 857 
7 744964 2.13 743432 761999 2.24% 743752 760461 2.04% 3600b 336 1009 1499 

a Optimality gap calculated using � from DICOPT. b Maximum resource limit. 

The focus of the paper is however on determining whether such solutions are indeed globally 

optimal, which is done by exploring systematic solution strategies that are capable of reducing the 

optimality gap. A good reference for comparison purposes can be calculated using the upper bound 
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(��) from BARON at the time of termination. Notice that the optimality gap increases 5 times when 

going from the 2 to the 7-reservoir problem. 

5.2. Upper bound from McCormick envelopes 

A fast way of determining an upper bound to (P) is to relax the bilinear terms using the 

McCormick envelopes and solve MILP problem (PR-MC) or its relaxed LP version. The results in 

Table 4 show that it is advantageous to consider the MILP since lower gaps are obtained at almost 

no additional computational cost. These can be further reduced by first tightening the lower and 

upper bounds of the two sets of model variables forming the bilinear terms. It involves solving 

|�| ∙|�| ∙ 2 ∙ 2 = 96 ∙|�| problems of type (BC-MC), or (BC-MCR) in case the integrality 

constraints are dropped, using the optimal solution from DICOPT as �´. Indeed, (BC-MCR) is a 

better option for bound contraction since the results show a minor improvement in terms of 

optimality gap for (BC-MC), for up to 5.8 times increase in computational time, which is already of 

the order of minutes. 

Table 4. Results for (PR-MC) with and without bound contraction 

 (PR-MC) LP (PR-MC) (BC-MCR) + 
(PR-MC) 

(BC-MC) + 
(PR-MC) 

|�| �� [$] ���a CPUs �� [$] ���a CPUs �� [$] ���a CPUs �� [$] ���a CPUs 
2 216391 3.08% 0.12 215703 2.77% 0.25 214128 2.06% 22.7 214040 2.02% 54.1 
4 383107 2.95% 0.12 382323 2.75% 0.37 379743 2.09% 50.6 379724 2.08% 176 
7 770942 3.37% 0.15 770108 3.27% 0.60 764098 2.50% 108 764087 2.50% 627 

a Optimality gap calculated using � from DICOPT. 

5.3. On the choice of discretized variables and discretization level 

Multiparametric disaggregation can improve the quality of the upper bound by discretizing the 

domain of half of the variables of the bilinear terms. Yet, decisions need to be made concerning: (i) 

which variables to discretize, ��,� or ��,�; (ii) the appropriate discretization level �. Concerning (i) 

both alternatives are tested, while for (ii) we start with the maximum value still leading to 

discretization of some variables. According to Table 1, the upper bounds on the discharge (��
���) 

and volume (��
���) variables are at most 4.88 and 97.5 (using the appropriate units) and so as 

discussed in section 2.2, we start with � = 0 for ��,� and � = 1 for ��,�. Provided that (PR-MDT10) 
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for � is solved to optimality before the 1-hour mark, we also solve it for � = � − 1. Following the 

solution of (PR-MDT10), binary variables ��,� and ��,� are fixed to the values obtained so that (P) 

becomes a NLP and a good feasible solution � can be found. 

In Table 5, we give the results without bound contraction, where it can be seen that the lowest 

gaps are equal to 0.21, 0.97 and 1.95% (compare to the 0.45, 1.26 and 2.24% returned by BARON in 

Table 3), for |�| = 2 ,4,7, respectively. Reducing the domain of the variables through bound 

contraction (BC-MCR), has the double advantage of making the formulation tighter and reducing 

the number of binary variables of type ��,�,�,�. It takes at most 108 CPUs (recall Table 4) and leads to 

a significant improvement in the values for |�| = 4,7. The gaps now become 0.20, 0.73 and 1.62 % 

(compare to 0.39, 1.15 and 2.04% by BARON), see Table 6. Furthermore, we could find DICOPT’s 

optimal solution for |�| = 2  and all runs for |�| = 7 provided better schedules than the best one 

found by BARON, which solves multiple rather than a single NLP subproblem in the search for the 

global optimal solution. These results confirm the potential of multiparametric disaggregation to 

provide tighter bounds and better solutions than those obtained by state-of-the-art solvers in the same 

computational time. 

Another interesting result from Table 5 and Table 6 is that the appropriate setting related to 

decisions (i) and (ii) varies significantly with the problem size. More specifically, the lowest gaps 

were obtained for: ��,� and � = − 1 (|�| = 2 ); 	��,� and � = 0 or ��,� and � = 0 (|�| = 4); ��,� and 

� = 0 or ��,� and � = 1 (|�| = 7). For the given ��
��� and ��

��� values, one can argue that the 

approximation of the discretized variables becomes more accurate in the sequence: ��,�, � = 1��,�, 

� = 0��,�, � = 0��,�, � = − 1��,�, � = − 1 (higher accuracy is somewhat related to more 

binary variables, see computational statistics in Table 7). This does not necessarily mean that the 

optimality gap always decreases from left to right since the increase in accuracy also augments 

problem size, and so a tradeoff is involved. As an example, the results in Table 5 for |�| = 4 show a 

higher gap (1.29%) for ��,�, � = 0 than ��,�, � = 0 (0.97%), but as soon as we make the formulations 

tighter due to bound contraction, the MILP solver becomes more efficient, with the results showing a 

lower gap at termination for ��,�, � = 0 (0.73% vs. 0.80%, see Table 6). The overall 
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recommendation is thus to test both discretization alternatives to take the most of multiparametric 

disaggregation in the available computational time. 

5.4. Basis for numeric representation 

Multiparametric disaggregation can be applied to basis other than 10. In Table 8, we provide the 

results of (PR-MDT2) after bound contraction, where a similar performance to (PR-MDT10) can be 

observed. Nevertheless, we were now able to find DICOPT’s optimal solution for |�| = 4 (��,�, 

� = 0), while reducing the gap to 0.69%. The optimality gap for |�| = 7 was also slightly reduced to 

1.60% (��,�, � = 1). Another aspect worth highlighting is that the value of �� is independent of the 

chosen basis, provided that the MILP problem is solved to optimality. 

Comparing the computational statistics related to problem size (Table 9 with Table 7) it can be 

observed that the binary base is generating problems with a larger number of variables and 

constraints, contrary to previous observations [11]. It can be explained by the lower discretization 

level used in this work and the tight variable domains, since increasing the value of � will result in 

more binary variables being required by base 10 (increase in � prevails over decrease in �) and more 

constraints being required by base 2 (check ��,�, � = − 1 columns). Using the 4 reservoir problem as 

an example, after bound contraction we get ��,�
� = 77.91  and ��,�

� = 78.01, which for � = 1 means 

��,�
�� = 1, requiring a single binary variable ��,�,�,�, and ��,�

� = 3, requiring three binary variables 

(��,�,�,�,	��,�,�,�,	��,�,�,�,) to approximate the number 7 ∙10� = (2 � + 2 � + 2 �) ∙10�. 

 



24 

 

Table 5. Results for (PR-MDT10) followed by (P) as a function of discretization level � when discretizing over variables ��,� and ��,� (without bound 

contraction) 

 ��,�, � = 0 ��,�, � = − 1 ��,�, � = 1 ��,�, � = 0 ��,�, � = − 1 

|�| � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs 
2 209613 211053 0.63% 46.8 209721 210525 0.38% 3600b 209687 212170 1.15% 4.36 209687 210461 0.35% 138 209712 210161 0.21% 3600b 
4 371584 375444 0.97% 3600b     371462 376800 1.32% 31.7 371765 376655 1.29% 3600b     
7 744150 759800 1.95% 3600b     744470 760905 2.10% 3600b         

a Optimality gap calculated using � from DICOPT. b Maximum resource limit. 

Table 6. Results for (PR-MDT10) and (P) preceded by bound contraction using (BC-MCR) 

 ��,�, � = 0 ��,�, � = − 1 ��,�, � = 1 ��,�, � = 0 ��,�, � = − 1 

|�| � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs 
2 209613 210838 0.53% 22.2 209721 210371.4 0.31% 3600b 209687 211535 0.86% 3.22 209687 210290 0.27% 88.4 209721 210147 0.20% 3600b 
4 371584 374794 0.80% 3600b     371331 375344 0.94% 22.4 371709 374556 0.73% 3600b     
7 744591 757260 1.62% 3600b     744256 757260 1.62% 3600b 744870 759425 1.90% 3600b     

a Optimality gap calculated using � from DICOPT. b Maximum resource limit. 

Table 7. MILP problem statistics for (PR-MDT10) as a function of discretization level � when discretizing over variables ��,� and ��,�, after bound 

contraction 

 ��,� ��,� 
 Binary variables Total variables Equations Binary variables Total variables Equations 
|�| � = 0 � = − 1 � = 0 � = − 1 � = 0 � = − 1 � = 1 � = 0 � = − 1 � = 1 � = 0 � = − 1 � = 1 � = 0 � = − 1 
2 244 724 860 2060 1755 3315 192 469 949 721 1436 2636 1581 2577 4137 
4 444  1695  3621  382 927  1529 3149  3481 5895  
7 838  3187  6819  706   2869   6512   
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Table 8. Results for (PR-MDT2) and (P) preceded by bound contraction using (BC-MCR) 

 ��,�, � = 0 ��,�, � = − 1 ��,�, � = 1 ��,�, � = 0 ��,�, � = − 1 

|�| � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs � [$] �� [$] ���a CPUs 
2 209613 210838 0.53% 30.6 209721 210493.6 0.37% 3600b 209687 211535 0.86% 3.21 209687 210290 0.27% 119 209721 210507 0.37% 3600b 
4 371584 374783 0.79% 3600b     371331 375344 0.94% 23.2 371812 374381 0.69% 3600b     
7 744483 757901 1.71% 3600b     744410 757113 1.60% 3600b 744527 758533 1.79% 3600b     

a Optimality gap calculated using � from DICOPT. b Maximum resource limit. 

Table 9. MILP problem statistics for (PR-MDT2) after bound contraction 

 ��,� ��,� 
 Binary variables Total variables Equations Binary variables Total variables Equations 
|�| � = 0 � = − 1 � = 0 � = − 1 � = 0 � = − 1 � = 1 � = 0 � = − 1 � = 1 � = 0 � = − 1 � = 1 � = 0 � = − 1 
2 270 594 921 1743 1925 3332 192 480 836 721 1441 2337 1581 2805 4333 
4 494  1823  3992  478 1104  1721 3409  3769 6737  
7 932  3445  7561  906   3315   7288   
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5.5. Bound contraction using multiparametric disaggregation 

A novel aspect of this paper has been to propose using multiparametric disaggregation in the 

bound contraction stage. The advantage is that by using a tighter MILP formulation than the one 

resulting from McCormick envelopes, we get an even smaller domain for the variables that make up 

the bilinear terms, which in turn will allow achieving smaller optimality gaps. The disadvantage 

comes from solving a larger MILP per iteration, due to the additional binary variables and 

constraints resulting from the discretization, leading to a larger computational time. 

In Table 10, we show the results for the McCormick relaxation MILP (PR-MC) after performing 

bound contraction using (BC-MDT10) for three different settings in terms of discretization variables 

and accuracy level. When compared to the McCormick bound contraction in Table 4, it can be seen 

that we were able to reduce the gap from 2.02% to 0.86%, and from 2.08 to 1.86%, respectively for 

|�| = 2 ,4. However, an unreasonable amount of computational time was spent (considering that one 

is making decisions for the day ahead market) when using the highest accuracy level, at 17 and 173 

h. So, do the tighter variable bounds really make a difference? The answer can be found in Table 11. 

While there is only a small improvement for BARON, the most noticeable from 0.39% (see Table 

3) to 0.29%, multiparametric disaggregation can reduce the gap from 0.20% to a mere 0.04% for 

|�| = 2 . This is 1/6 of the gap that can be obtained by BARON without bound contraction up to 

65000 CPUs (��=210234, �=209721) and so the answer to the question is yes, but just for small 

problems. This because the gaps returned by multiparametric disaggregation for |�| = 4 (��,�, � = 0) 

are very similar to those obtained by (PR-MDT2) with the standard bound contraction (see Table 8), 

which took 1/700 of the time. It is also important to note that BARON returns worse objective values 

than multiparametric disaggregation. 

Table 10. Results for (PR-MC) after bound contraction with (BC-MDT10) 

 ��,�, � = 1 ��,�, � = 0 ��,�, � = 0 

|�| �� [$] ���a CPUs �� [$] ���a CPUs �� [$] ���a CPUs 
2 213145 1.61% 746 212571 1.34% 3374 211539 0.86% 61334b 
4 379043 1.91% 34644b 378867 1.86% 624247b    

a Optimality gap calculated using � from DICOPT. b Maximum computational time per 
iteration=3600 CPUs. 
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Table 11. Results for (PR-MDT10) and (P) after bound contraction with (BC-MDT10) 

  BARON ��,�, � = − 1/0, |�| = 2 /4 ��,�, � = − 1/0, |�| = 2 /4 

|�| (BC-
MDT10) 

� [$] �� [$] ���a � [$] �� [$] ���a � [$] �� [$] ���a 

2 ��,�, � = 1 209712 210584 0.41% 209721 210013 0.14% 209721 209986 0.13% 
 ��,�, � = 0 209710 210515 0.38% 209721 209971 0.12% 209721 209959 0.11% 
 ��,�, � = 0 209719 210322 0.29% 209721 209795 0.04% 209721 209878 0.07% 

4 ��,�, � = 1 371185 375875 1.08% 371642 374527 0.73% 371765 374273 0.66% 
 ��,�, � = 0 371183 375927 1.09% 371642 374391 0.69% 371758 374369 0.68% 

a Optimality gap calculated using � from DICOPT. CPUs=3600 in all runs. 

5.6. Optimal operating profiles 

Finally, we show in Figure 2 the optimal operating profiles for the 7-reservoir problem. Notice that 

the background pattern is related to electricity price, with dark green representing a low cost and 

dark rose a high cost within the 24-hour period. Not surprisingly, the reservoirs increase the storage 

capacity while the electricity is cheap, to get the most of it when the electricity cost is at its peak. 

Production then starts to decrease in the last 4 hours to get all the reservoirs to their initial state. 

Other relevant information is that there is a single startup for every plant. 

 

Figure 2: Optimal power and storage capacity profiles (profit= $744964) 

6. Conclusions 

This paper has shown that multiparametric disaggregation is capable of providing tighter bounds 

on the optimal solution for the hydro scheduling problem than those obtained by the state-of-the-art 
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global optimization algorithm BARON. It has also shown that the convex MINLP solver DICOPT is 

capable of providing better solutions to the problem in considerable less time. 

A novel aspect has been the use of multiparametric disaggregation to further reduce the domain of 

the variables when compared to the standard approach using McCormick envelopes. The improved 

bounds come at a computational cost, which was shown to be worth for small problems. 

Acknowledging that multiparametric disaggregation offers a distinct treatment for the two variables 

defining the bilinear term, both discretization alternatives were tested, with the results showing no 

clear winner. When coupled with the accuracy level of the discretized variables, which should be 

decreased as the problem size increases, the overall recommendation is to test different settings to 

take the most of multiparametric disaggregation for the given computational resources. 

Future work will look at the integration of multiparametric disaggregation with spatial branch-and-

bound methods, taking advantage of the tighter relaxation to improve the bound on the objective 

function of the original problem, as well as to reduce the variables domain in bound contraction 

procedures. This will definitely lead to fewer iterations to reach a certain optimality gap, the 

question being if this strategy will be computationally more efficient than current ones. 
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