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Abstract In this paper we provide a generalization of a Positivstellensatz by Pólya [Pólya
in Naturforsch Ges Zürich 73:141–145 1928]. We show that if a homogeneous polynomial
is positive over the intersection of the non-negative orthant and a given basic semialgebraic
cone (excluding the origin), then there exists a “Pólya type” certificate for non-negativity.
The proof of this result uses the original Positivstellensatz by Pólya, and a Positivstellensatz
by Putinar and Vasilescu [Putinar and Vasilescu C R Acad Sci Ser I Math 328(7) 1999].

Keywords Positivstellensatz · Semialgebraic set · Non-negativity certificate ·
Polynomial optimization
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1 Introduction

A Positivstellensatz is a theorem that relates positivity of certain functions (typically poly-
nomials) to algebraic representations of these functions [14]. In the real algebraic geometry
people also use term Nichtnegativestellensatz for results about algebraic certificates for non-
negative polynomials. Sometimes these two names are reserved only for theorems that are “if
and only if”, see e.g. Scheiderer [28]. In this paper we will use Positivstellensatz for results
which provide algebraic certificates for positivity (or non-negativity) for positive polynomi-
als.

The first theorem carrying this name is due to Stengle and Krivine. The so-called Krivine–
Stengle Positivstellensatz has been initially attributed to Stengle [29], but later it became clear
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that the main ideas of this result were already published few years earlier by Krivine [11].
This theorem says that for a polynomial f (in this paper we consider only polynomials with
real coefficients) that is positive over the set, defined by polynomial inequalities:

S = {x ∈ R
n | fi (x) ≥ 0, i = 1, . . . , m} (1)

we can find under some assumptions polynomials p, q such that p f = 1 + q and p, q
belong to so-called preordering generated by polynomials fi , see e.g. [20,28]. This is a pure
Positivstellensatz since it deals with positivity and is “if and only if”. Note that we call (1) a
basic closed semialgebraic set. If all of the polynomials fi are homogeneous, then we shall
refer to (1) as a semialgebraic cone.

In our opinion the most famous Positivstellensätze are due to Pólya [10,18], Schmüdgen
[26] and Putinar [22]. Pólya proved (see Theorem 2.1 in Sect. 2) that if given real homoge-
neous polynomial f is positive on R

n+ \ {0} then multiplying it with (
∑

i xi )
r , where r is

sufficiently large, gives polynomial with non-negative coefficients, i.e. a certificate that the
original polynomial is nonnegative on R

n+. Note that there exist also a “positive” version of
the Pólya’s theorem stating that all coefficients of (

∑
i xi )

r f are positive for r sufficiently
large [21].

Theorems of Schmüdgen [26] and Putinar [22] refined the Krivine–Stengle theorem by
showing that (i) if the semialgebraic set (1) is compact then f belongs to the preordering gen-
erated by { fi } (Schmüdgen) and (ii) if the quadratic module generated by { fi } is Archimedean
then f belongs to this module (Putinar). In both cases we do not have “if and only if”, i.e.
we only have certificates for non-negativity. For complexity issues related with Schmüdgen
and Putinar Positivstellensätze see [16,27], while a comprehensive overview of this type of
results can be found in [14,28].

The Pólya’s Positivstellensatz therefore implies non-negativity certificate based on poly-
nomials with non-negative coefficients while Schmüdgen’s and Putinar’s theorems guaranty
non-negativity certificates that are based on polynomials which are sum-of-squares (SOS)
(see definition in Sect. 1.1).

Reznick [25] (see Theorem 2.2) and Putinar and Vasilescu [23] (Theorem 2.3) proved
two results which together with Pólya’s theorem motivated our research. Reznick provided
a SOS type non-negativity certificate for homogeneous polynomials of even degree which
are positive on all non-zero points from R

n while Putinar and Vasilescu proved that there
exists a SOS certificate for non-negativity of homogeneous polynomial of even degree if it
is positive on the semialgebraic set (1) defined by { fi } of even degree.

In this paper, we prove a new Positivstellensatz yielding a non-negativity certificate for
homogeneous polynomials which are positive on the non-zero points from the non-negative
orthant intersected by semialgebraic set (1) where polynomials defining (1) are homogeneous.
This certificate is based on polynomials with all their coefficients being non-negative, hence
our result is in this sense a generalization of the Pólya’s theorem.

When we try to use Positivstellensätze mentioned above to construct non-negativity cer-
tificates or compute the infimum of f over the semialgebraic set (1) we naturally meet the
approximation hierarchies. Indeed, the Pólya nonnegativity certificate for fixed r can be
found by solving a linear programming feasibility problem (see e.g. [5,17]). Since we do not
know in advance for which r there will exist a certificate of this type we have to consider the
hierarchy of linear programs, parameterized by r .

Similarly Reznick’s and Putinar–Vasilescu’s theorems imply that we can search for non-
negativity certificates mentioned in these theorems by solving a hierarchy of semidefinite pro-
gramming problems. Indeed, finding a certificate from Reznick theorem for fixed r amounts
to solving one semidefinite programming feasibility problem with linear equations implied
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by demand (xTx)r f (x) is SOS. If this problem is infeasible for given r , we continue with
r + 1. The theorem guaranties that we will stop in a finite time if the polynomial f sat-
isfies the conditions of the theorem, but with increasing r the complexity of semidefinite
programming problems increases very fast. Similarly Putinar–Vasilescu’s theorem naturally
implies a hierarchy of semidefinite programming feasibility problems for the non-negativity
certificates of order r . Here the elements of this hierarchy are defined by putting uniform
bound on the degree of summands in the SOS certificate. We suggest the reader to consider
[12] for more details about these hierarchies, see also Remark 3.5.

Among others Pólya’s Positivstellensatz implies also a linear programming approximation
hierarchies for the copositive programming problems [5,17], while Reznick’s and Putinar–
Vasilescu’s theorems imply semidefinite programming approximation hierarchies for the
copositive programming problems. We suggest the reader to consider also [1,3,4,6,8,19] for
other results about linear and semidefinite programming approximation hierarchies for the
copositive programming problems.

Our new Positivstellensatz has strong potential to construct similar hierarchies for the
linear and non-linear optimization problems over the semialgebraic sets, which are subset of
the non-negative orthant. Some new results in this direction will be presented in the paper
[7].

1.1 Notation

We let e ∈ R
n denote the all-ones vector. We use Z+ = {0, 1, 2 . . .} and Z++ = {1, 2, 3 . . .}.

For x ∈ R
n and m ∈ Z

n+ we let xm :=∏n
i=1 xmi

i (where 00 := 1).
We let R[x] denote the ring of multivariate polynomials on R

n with real coefficients in
variables x := (x1, . . . , xn). For a polynomial f (x) =∑

m∈Zn+ fmxm ∈ R[x], we let deg( f )

denote its degree, i.e. the highest degree of its terms: deg( f ) = max{eTm | fm �= 0}, and
for f (x) = 0 we define deg( f ) := 0. When deg( f ) is even number we say that polynomial
has even degree.

Polynomial is homogeneous if all of its terms have the same degree. Note that for a
homogeneous polynomial f ∈ R[x] of degree d , we have f (λx) = λd f (x) for all λ ∈
R, x ∈ R

n .
For two polynomials f, g ∈ R[x], we write f = g, or equivalently f (x) = g(x), if all the

corresponding coefficients of these polynomials are equal.
For a, b ∈ R

n we define their Hadamard product (a ◦ b) ∈ R
n such that for all i we have

(a ◦ b)i = ai bi . Note that we have (x ◦ x)m = x2m = (xm)2 ∈ R[x] for all m ∈ Z
n+. We call

such terms even terms. The terms that are not even we call odd terms.
For a polynomial f ∈ R[x] and a set M ⊆ R, we let f −1(M) := {x ∈ R

n | f (x) ∈M}.
A polynomial f ∈ R[x] is defined to be sum-of-squares (SOS), if there exists p ∈ Z++

and polynomials h1, . . . , h p ∈ R[x] such that f (x) =∑p
i=1

(
hi (x)

)2. We now note that:

1. if f, g ∈ R[x] are SOS then both ( f + g) and f g are SOS,
2. if f ∈ R[x] is SOS then f (x) ≥ 0 for all x ∈ R

n ,
3. if f ∈ R[x] such that f (x ◦ x) is SOS then f (x) ≥ 0 for all x ∈ R

n+.

We also consider polynomials having only non-negative coefficients, for which we simi-
larly have:

1. if all the coefficients of f, g ∈ R[x] are non-negative then so are all the coefficients of
both ( f + g) and f g,

2. if all the coefficients of f ∈ R[x] are non-negative then f (x) ≥ 0 for all x ∈ R
n+,

3. if all the coefficients of f ∈ R[x] are non-negative then f (x ◦ x) is SOS.
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1.2 Contribution

The main contributions of this paper are twofold, and are summarized below. In these, when
we say that a homogeneous polynomial f is positive on a set K, we mean that f (x) > 0
for all x ∈ K \ {0}. The origin is excluded as for all homogeneous polynomials f we have
f (0) = 0.

1. The central result of this paper is Theorem 2.4, where we prove a non-trivial generalization
of the well-known Pólya’s theorem [10,18]. Our new Positivstellensatz is closely related
to Putinar and Vasilescu’s Positivstellensatz [23,24]. The original Pólya’s theorem states
that there exists a certificate for non-negativity for all homogeneous polynomials which
are positive on the non-negative orthant, while the Putinar–Vasilescu’s theorem states that
there exists an SOS certificate for non-negativity for all homogeneous polynomials of even
degree that are positive on a semialgebraic cone defined by homogeneous polynomials of
even degree. Our version states roughly the same, but we do not demand polynomials of
even degree and we only consider semialgebraic cones that are subsets of the non-negative
orthant.

2. If we allow the semialgebraic cone to be defined by infinitely many polynomial inequal-
ities, then we can prove that a given polynomial is positive on this set if and only if it is
positive on a semialgebraic cone which is defined by some finite subset of the polynomial
inequalities.

To the best of our knowledge, neither of these results have previously been published.

2 Positivstellensätze

In this section we recall few well-known Positivstellensätze which motivated our result in
Theorem 2.4 and are important basis to prove it. We first recall the well-known Pólya’s
Positivstellensatz:

Theorem 2.1 ([10, Section 2.24], [18]) Let f ∈ R[x] be a homogeneous polynomial on
R

n such that f (x) > 0 for all x ∈ R
n+ \ {0}. Then for some r ∈ Z+, we have that all the

coefficients of (eTx)r f (x) are non-negative.

Powers and Reznick [21] proved stronger result. If r is larger than a certain number which
depends only on the degree of f and its minimum on the standard simplex then all coefficients
of (eTx)r f (x) are positive, hence the Póly’s theorem is actually “if and only if”.

Another well known Positivstellensatz is the following from Reznick, which provides a
constructive solution to Hilbert’s seventeenth problem for the case of positive definite forms:

Theorem 2.2 [25] Let f ∈ R[x] be a homogeneous polynomial of even degree on R
n such

that f (x) > 0 for all x ∈ R
n \ {0}. Then for some r ∈ Z+, we have that (xTx)r f (x) is SOS.

Faybusovich [9, Theorem 1] provided an explicit bound for the exponent r in the theorem
above. Putinar and Vasilescu extended this Positivstellensatz to give the following theorem.

Theorem 2.3 [23, Theorem 1] Let m ∈ Z++ and f0, . . . , fm ∈ R[x] be homogeneous
polynomials of even degree on R

n such that f0(x) > 0 for all x ∈⋂m
i=1 f −1

i (R+) \ {0} and

f1(x) = 1. (Note that f −1
1 (R+) = R

n.) Then for some r ∈ Z+, there exists homogeneous
SOS polynomials g1, . . . , gm ∈ R[x] such that (xTx)r f0(x) =∑m

i=1 fi (x)gi (x).
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We suggest the reader to consider also [24, Theorem 4.5] where this theorem was gener-
alized for non-homogeneous polynomials of even degree.

In Sect. 3 we shall prove the following new Positivstellensatz, which can be seen as an
extension of Pólya’s Positivstellensatz and is closely related to Putinar–Vasilescu’s Posi-
tivstellensatz:

Theorem 2.4 Let be m ∈ Z++ and f0, . . . , fm ∈ R[x] be homogeneous polynomials on
R

n such that f0(x) > 0 for all x ∈ R
n+ ∩

⋂m
i=1 f −1

i (R+) \ {0} and f1(x) = 1. Then for
some r ∈ Z+, there exist homogeneous polynomials g1, . . . , gm ∈ R[x] such that all of their
coefficients are non-negative and (eTx)r f0(x) =∑m

i=1 fi (x)gi (x).

Example 2.5 Consider n = 3 and m = 4, with

f0(x) = 3x1 − 2x2 − 2x3,

f1(x) = 1,

f2(x) = x1 − x2,

f3(x) = x1 − x3,

f4(x) = x2
1 − 4x2x3.

For r = 1, a certificate for f0(x) ≥ 0 for all x ∈ R
n+ ∩

⋂4
i=1 f −1

i (R+) is given by:

(eTx) f0(x) = (x1 + 2x2) f2(x)+ (x1 + 2x3) f3(x)+ f4(x).

We can say even more, this is a certificate for positivity of f0 since there exists no x ≥ 0
such that fi (x) = 0 for i = 2, 3, 4.

In Sect. 4, the final section of this paper, we shall look at how Theorem 2.3 and 2.4 can
be extended for infinitely many polynomials.

3 Proof of new Positivstellensatz

In this section we shall consider m ∈ Z++ and homogeneous polynomials f1, . . . , fm ∈ R[x]
on R

n , with f1(x) = 1, and we define the set

X = {x ∈ R
n+ | ‖x‖2 = 1, fi (x) ≥ 0 for all i = 1, . . . , m}. (2)

Note that f1(x) ≥ 0 for all x ∈ R
n , so this is a redundant constraint in the description of

X , however it will simplify the notation later on. It should also be noted that X is a compact
set, as it is a closed and bounded set.

We next consider a homogeneous polynomial f0 such that f0(x) > 0 for all x ∈ X . Note
that this is equivalent to having f0(x) > 0 for all x ∈ cone X \ {0}, where

cone X := {0} ∪ {λx | λ > 0, x ∈ X }
= {x ∈ R

n+ | fi (x) ≥ 0 for all i = 1, . . . , m}.
The aim of this section is to find simple certificates, based on polynomials with nonnegative

coefficients, to certify that f0(x) ≥ 0 for all x ∈ cone X .
We begin by considering how Theorem 2.3 can be extended for x being restricted to the

non-negative orthant but with the polynomials not being restricted to have even degree. We
will use the fact that if x ∈ R

n+ then x = z ◦ z for some z ∈ R.
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Theorem 3.1 Let f0 to be a homogeneous polynomial such that f0(x) > 0 for all x ∈ X ,
where X is as given in (2). Then for some r ∈ Z+, there exists homogeneous polynomials
g1, . . . , gm ∈ R[x] such that the polynomials gi (z ◦ z) (in the variable z = (z1, . . . , zn)) are
SOS for all i and (eTx)r f0(x) =∑m

i=1 fi (x)gi (x).

Proof Since X ⊂ R
n+ we can substitute every x ∈ X with z ◦ z for z ∈ R. Polynomials

fi (z ◦ z) in variable z = (z1, . . . , zn) are satisfying assumptions of Theorem 2.3, hence
this theorem implies that for some r ∈ Z+ there exist sets of homogeneous polynomials
{h j | j ∈ Ii } ⊆ R[x] for all i = 1, . . . , m such that

(eT(z ◦ z))r f0(z ◦ z) = (zTz)r f0(z ◦ z) =
m∑

i=1

fi (z ◦ z)
∑

j∈Ii

(
h j (z)

)2
.

We now note that for all j there exists a unique set of homogenous polynomials {h j,t |
t ∈ {0, 1}n} ⊆ R[x] such that h j (z) =∑

t∈{0,1}n zth j,t(z ◦ z). We then get that

(eT(z ◦ z))r f0(z ◦ z) =
∑

i

fi (z ◦ z)
∑

j∈Ii

∑

t∈{0,1}n
(z ◦ z)t(h j,t(z ◦ z)

)2

+
∑

i

fi (z ◦ z)
∑

j∈Ii

∑

s,t∈{0,1}n :
s �=t

zs+th j,s(z ◦ z)h j,t(z ◦ z).

We shall call terms of the form z2m for some m ∈ Z
n+ even terms and all other terms odd

terms. We note that all terms on the left hand side are even while on the right hand side we
have only even terms in the first part and only odd terms in the second part. Therefore the
second part on the right hand side must be identically zero, hence all its coefficients are equal
zero. Therefore

(eT(z ◦ z))r f0(z ◦ z) =
∑

i

fi (z ◦ z)
∑

t∈{0,1}n
(z ◦ z)t

∑

j∈Ii

(
h j,t(z ◦ z)

)2
.

The equality above states that the polynomials on the left hand side and on the right
hand side are equal on the non-negative orthant. Since this set has an interior point these
polynomials are equal (all corresponding coefficients are equal) on whole R

n , i.e.

(eTx)r f0(x) =
∑

i

fi (x)
∑

t∈{0,1}n
xt

∑

j∈Ii

(
h j,t(x)

)2
, ∀x ∈ R

n .

Now letting gi (x) =∑
t∈{0,1}n xt ∑

j∈Ii

(
h j,t(x)

)2 for all i we get the required result.

�

Remark 3.2 In the previous theorem we have for all i either

gi (x) = 0 or deg(gi )+ deg( fi ) = r + deg( f0),

since all polynomials are homogeneous.

We next consider the following proposition and the corresponding corollary.

Proposition 3.3 Let f0 to be a homogeneous polynomial such that f0(x) > 0 for all x ∈ X ,
where X is as given in (2). Then for any homogeneous polynomial h ∈ R[x] such that
deg(h) = deg( f0), there exists ε > 0 such that f0(x)− εh(x) > 0 for all x ∈ X .
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Proof If h(x) = 0 for all x ∈ X then the result trivially holds. From now on we assume that
this is not the case and thus Mh := maxx{|h(x)| | x ∈ X } > 0. Moreover, by assumption
m f0 := minx{ f0(x) | x ∈ X } > 0. Here we have used the fact that X is compact and
that continuous function on a compact set attains their maximum and minimum. Therefore
ε = m f0

2Mh
> 0 and thus the polynomial f0 − εh is positive on X . �


Corollary 3.4 Let f0 to be a homogeneous polynomial such that f0(x) > 0 for all x ∈ X ,
where X is as given in (2). We let

ci = − deg( fi )+max{deg( f j ) | j = 0, . . . , m} for all i = 0, . . . , m,

and for all ε ∈ R we define the homogeneous polynomial

fε(x) := (eTx)c0 f0(x)− ε

m∑

i=1

(eTx)ci fi (x).

Then there exists an ε > 0 such that fε(x) > 0 for all x ∈ X .

Proof Since F(x) = (eTx)c0 f0(x) is homogeneous and positive on X and
∑m

i=1(e
Tx)ci fi (x)

is homogeneous with degree equal to deg(F) we can apply Propsition 3.3. �

We can prove our main result now. It was formulated in Sect. 2 already and for convenience

we repeat it here again. The proof relies on Pólya’s Positivstellensatz from Theorem 2.1 and
Putinar–Vasilescu’s Theorem 2.3.

Theorem 2.4 Let f0 to be a homogeneous polynomial such that f0(x) > 0 for all x ∈ X ,
where X is as given in (2). Then for some r ∈ Z+, there exists homogeneous polynomials
g1, . . . , gm ∈ R[x] such that all their coefficients are non-negative and (eTx)r f0(x) =∑m

i=1 fi (x)gi (x).

Proof The polynomial f0 satisfies assumptions of Corollary 3.4, hence we can use the nota-
tion and results from this corollary to show that there exists ε > 0 such that fε(x) is a
homogeneous polynomial with fε(x) > 0 for all x ∈ X . Theorem 3.1 applied to fε implies
that for some r1 ∈ Z+ there exist homogenous polynomials h1, . . . , hm ∈ R[x] such that
hi (z ◦ z) is SOS for all i and (eTx)r1 fε(x) =∑m

i=1 fi (x)hi (x). Therefore

(eTx)r1+c0 f0(x) =
m∑

i=1

fi (x)
(
ε(eTx)r1+ci + hi (x)

)
.

Furthermore, by Remark 3.2, without loss of generality, for all i = 1, . . . , m, either hi (x) = 0
or

deg( fi )+ deg(hi ) = r1 + deg( fε) = r1 + deg( fi )+ ci .

In other words, for all i = 1, . . . , m, either hi (x) = 0 or deg(hi ) = r1+ci . From this it can be
seen that

(
ε(eTx)r1+ci + hi (x)

)
is homogeneous and positive for all x ∈ R

n+ \ {0}, and thus,
by Theorem 2.1, for some r2 ∈ Z+ there exist homogeneous polynomials g1, . . . , gm ∈ R[x],
with all their coefficients being non-negative, such that

(eTx)r2
(
ε(eTx)r1+ci + hi (x)

)
= gi (x) for all i = 1, . . . , m.

Now letting r = (r1 + r2 + c0) ∈ Z+, we get the required result. �
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Remark 3.5 We briefly recall that searching for polynomials with nonnegative coefficients
(as are implied by Theorems 2.1 and 2.4) for fixed r can be done by linear programming (LP),
whilst searching for SOS polynomials from Theorems 2.2 and 2.3 can be done by semidefinite
programming (SDP). In practice we find such non-negativity certificates numerically by wide
range of efficient methods implemented in the state-of-the-art software like Mosek [15] or
CPLEX [2], see also the comprehensive list of available LP and SDP software together with
list of benchmarks [13].

Our main result from Theorem 2.4 was also the key tool in [7] to find new LP and SDP
based lower bounds for the polynomial optimization problems where we want to minimize
a homogeneous polynomial f0 over the basic closed semialgebraic set (1) interested by
constraint g(x) = 1 with deg( f0) = deg(g). The main idea of approach in [7] to find largest
ε such that f0 − εg has a non-negativity certificate from Theorem 2.4.

4 Infinite number of polynomials

We finish this paper by noting that the Positivstellensätze given in Theorem 2.3 and 2.4 can
be extended for infinitely many polynomials using the following theorem.

Theorem 4.1 Consider a set of homogeneous polynomials { f0} ∪ { fi | i ∈ I} ⊆ R[x] with
infinite cardinality. Then f0(x) > 0 for all x ∈⋂

i∈I f −1
i (R+)\{0} if and only if there exists

a subset J ⊆ I of finite cardinality such that f0(x) > 0 for all x ∈⋂
i∈J f −1

i (R+) \ {0}.
Proof The “if” part is trivial. We proceed with the “only if” part.

We begin by letting Z∅ = {x ∈ R
n | ‖x‖2 = 1}, which is a compact set, and we note that

for any J ⊆ I we have f0(x) > 0 for all x ∈⋂
i∈J f −1

i (R+) \ {0} if and only if f0(x) > 0

for all x ∈ Z∅ ∩⋂
i∈J f −1

i (R+).
Without loss of generality, we assume that for all i ∈ I we have deg( fi ) ≥ 1 and

1 ≥ max
x∈Rn
{‖∇ fi (x)‖2 | ‖x‖2 ≤ 1}.

Considering the mean value theorem for this implies that for all x, y ∈ Z∅ and all i ∈ I,
there exists θ ∈ [0, 1] and z = θx + (1− θ)y (note that ‖z‖ ≤ 1) such that

fi (x)− fi (y) = (x − y)T∇ fi (z)

≤ ‖x − y‖2 ‖∇ fi (z)‖2
≤ ‖x − y‖2 max

x∈Rn
{‖∇ fi (x)‖2 | ‖x‖2 ≤ 1}

≤ ‖x − y‖2. (3)

By the same line of reasoning we obtain also that for all x ∈ Z∅ and all i ∈ I we have

| fi (x)| ≤ 1. (4)

For all j ∈ I and J ⊆ I, we define the compact sets

Y = Z∅ ∩ f −1
0 (−R+),

Z j = Z∅ ∩ f −1
j (R+),

ZJ = Z∅ ∩
⋂

i∈J
f −1
i (R+) =

⋂

i∈J
Zi .
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We have that f0(x) > 0 for all x ∈ Z∅ ∩⋂
i∈J f −1

i (R+) if and only if Y ∩ ZJ = ∅. In
particular we have Y ∩ ZI = ∅.

Next we define the following function from Z∅ to R

ξ(x):= sup{− fi (x) | i ∈ I} for all x ∈ Z∅.
From (3) and (4) we get that this is a continuous function from Z∅ to [−1, 1]. Furthermore, as
Y ∩ ZI = ∅, we have that ξ(x) ∈ (0, 1] for all x ∈ Y . We now set ε = minx{ξ(x) | x ∈ Y}.
As Y is compact, ξ is a continuous function and ξ(x) ∈ (0, 1] for all x ∈ Y , we get that
ε ∈ (0, 1].

For any x ∈ Y , there exists an i ∈ I such that − fi (x) ≥ 2
3 ξ(x) ≥ 2

3ε > 0. Now, for all
y ∈ Z∅ such that ‖x− y‖2 ≤ 1

3ε, we have fi (y) ≤ fi (x)+ ‖x− y‖2 ≤ − 2
3ε + 1

3ε < 0 and
thus y /∈ Zi . Keeping this in mind, we consider Algorithm 1.

Algorithm 1 Finding a set J ⊆ I of finite cardinality such that Y ∩ ZJ = ∅.
1: Let J ← ∅.
2: while ∃z ∈ Y ∩ZJ do
3: Let i ∈ I such that fi (z) ≤ − 2

3 ε and let J ← J ∪ {i}.
4: end while
5: print J .

We see that no z in this algorithm can be within a distance of 1
3ε of a previous z. Therefore,

as Y is a bounded subset of R
n , the algorithm finishes within a finite number of iterations.

The resultant J then conforms to the requirements in the theorem.

Note that Algorithm 1 is purely there to aid the proof and is not meant for use in practice.
This is due to the fact that simply checking whether Y ∩ ZJ = ∅ is in general an NP-hard
problem.

We will now consider a couple of examples connected to Theorem 4.1.

Example 4.2 Let us consider

X = {x ∈ R
2+ | (x1 − ax2)(x1 − (a + 1)x2) ≥ 0 ∀a ∈ Z} = (R+ × {0}) ∪ cone(Z× {1})

and f0(x) = 4x3
1 − x1x2

2 . Obviously we have f0(x) > 0 for all x ∈ X \ {0}. We can write
f0(x) = 4(x1+ x2)x1(x1− x2)+ 3x1x2

2 . Therefore f0(x) > 0 for all x ∈ R
2+ \ {0} such that

x1(x1 − x2) ≥ 0, hence we can keep only one single constraint (the one that corresponds to
a = 0) out of countable many.

Example 4.3 Let us consider { f0} ∪ {hν | ν ∈ R} ⊆ R[x, y, z] such that

f0(x, y, z) = 4x2 + 4y2 − 9z2,

hν(x, y, z) = (
x − z sin(νπ/6)

)2 + (
x − z cos3(νπ/6)

)2 − 2z2 cos(νπ/6).

Note that f0(x, y, 0) > 0 for all (x, y) ∈ R
2 \ {0}. From this, and the fact that we are

dealing with homogeneous polynomials of degree two, in this example we shall equivalently
consider Z∅ = {(x, y, z) ∈ R

3 | z = 1}. This makes the visualizations somewhat simpler.
We then have the following for I ⊆ R:

Y = {(x, y, 1) | f0(x, y, 1) ≤ 0}, ZI = {(x, y, 1) | hν(x, y, 1) ≥ 0 for all ν ∈ I}.
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(a) (b) (c)

Fig. 1 Representation of Example 4.3. a The inner white circle represents Y . The black area (and outwards
to infinity) represents ZR. b The inner white circle represents Y . The black area (and outwards to infinity)
represents ZJ . c A combination of representations for ZR,ZJ and Y

Note that ZR is built from uncountably many constraints and we visualize the sets Y
and ZR in Fig. 1a. We have Y ∩ ZR = ∅ and thus f0(x, y, z) > 0 for all (x, y, z) ∈⋂

ν∈R h−1
ν (R+) \ {0}.

If we now consider the set J = {1, 5, 7, 11} of cardinality four, then visualizing Y
and ZJ in Fig. 1b, we have Y ∩ ZJ = ∅ and thus f0(x, y, z) > 0 for all (x, y, z) ∈⋂

ν∈J h−1
ν (R+) \ {0}.

5 Conclusions

In this paper we proved a generalization of a well-known Positivstellensatz from Pólya [10,
18]. The proof of this used the original Positivstellensatz from Pólya, and a Positivstellensatz
from Putinar and Vasilescu [23,24]. We showed that for homogeneous polynomials which
are positive on the semialgebraic cones defined by homogeneous polynomials and intersected
by the non-negative orthant, there exists a Pólya type certificate which can be numerically
found by solving an instance of a linear programming problem. We also showed that this can
further be extended for infinitely many polynomials in the definition of the semialgebraic
cone. An application of these theorems in constructing linear programming based hierarchies
for polynomial optimization problems will be presented in the forthcoming paper [7].
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