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Multi-objective optimization problems are often solved by a sequence
of parametric single-objective problems, so-called scalarizations. If the
set of nondominated points is finite, the entire nondominated set can be
generated in this way. In the bicriteria case it is well known that this
can be realized by an adaptive approach which requires the solution of
at most 2|ZN | − 1 subproblems, where ZN denotes the nondominated set
of the underlying problem and a subproblem corresponds to a scalarized
problem. For problems with more than two criteria, no methods were
known up to now for which the number of subproblems depends linearly
on the number of nondominated points. We present a new procedure for
finding the entire nondominated set of tricriteria optimization problems
for which the number of subproblems to be solved is bounded by 3|ZN | −
2, hence, depends linearly on the number of nondominated points. The
approach includes an iterative update of the search region that, given a
(sub-)set of nondominated points, describes the area in which additional
nondominated points may be located. If the ε-constraint method is chosen
as scalarization, the upper bound can be improved to 2|ZN | − 1.

Keywords: Discrete tricriteria optimization; Scalarization; Box
algorithm

1 Introduction

The determination of the nondominated set is the basis for a multitude of methods
in multiple criteria decision making. In multiple objective combinatorial optimization
the nondominated set is discrete and, assuming that some natural bounds are given
for the objective values, also finite. In this situation, a complete enumeration of all
nondominated points can be realized by the successive solution of a series of appro-
priately formulated scalarized problems which are called subproblems in what follows.
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Ideally, the total number of subproblems depends linearly on the number of nondom-
inated points. Indeed, in the bicriteria case approaches are known which require the
solution of at most 2|ZN |−1 subproblems, where ZN denotes the finite nondominated
set of the underlying problem. Thereby, |ZN | subproblems are solved to generate all
points in ZN , and the additional |ZN | − 1 subproblems are needed to ensure that no
further nondominated points exist between the already generated ones (see, e.g., Chal-
met et al., 1986; Ralphs et al., 2006). If the ε-constraint method is used, the entire
nondominated set of a bicriteria problem can be generated within |ZN | + 1 subprob-
lems (Laumanns et al., 2006). However, up to now, no linear bounds are known for
higher dimensional problems. The best known approach has a theoretical bound of
(|ZN | + 1)m−1 subproblems for problems with m objectives (Laumanns et al., 2006).
In this paper, we present a new procedure for finding the entire nondominated set of
tricriteria optimization problems for which the number of scalarized subproblems to
be solved is bounded by 3|ZN | − 2. This is achieved by the definition of a new split
criterion which allows to exclude redundant parts of the search region. It can then be
shown that the number of boxes, into which the search region is decomposed, depends
linearly on the number of nondominated points. If the ε-constraint method is used,
the bound can even be improved to 2|ZN | − 1.

1.1 Terminology and Definitions

We consider multiple criteria optimization problems

min
x∈X

f(x) = (f1(x), . . . , fm(x))> (1)

with m ≥ 2 objective functions fi : X → R, i = 1, . . . ,m, and with feasible set X 6= ∅.
Throughout this paper we assume that X is a discrete set. The image set of the
feasible set X in the outcome space is denoted by Z := f(X) where Z is a finite set of
distinct points in Rm.

We use the Pareto concept of optimality: A solution x̄ ∈ X is called Pareto optimal
or efficient if there does not exist a feasible solution x ∈ X such that fi(x) ≤ fi(x̄) for
all i = 1, . . . ,m and fj(x) < fj(x̄) for at least one j ∈ {1, . . . ,m}. The corresponding
objective vector f(x) ∈ Rm is called nondominated in this case. If, on the other hand,
f(x) ≤ f(x̄) for some feasible x ∈ X, i.e., fi(x) ≤ fi(x̄) for all i = 1, . . . ,m and
fj(x) < fj(x̄) for at least one j ∈ {1, . . . ,m}, we say that f(x) dominates f(x̄), and x
dominates x̄. If strict inequality holds for all m components, i.e., if fi(x) < fi(x̄) for
all i = 1, . . . ,m, then x strictly dominates x̄. If there exists no feasible solution x ∈ X
that strictly dominates x̄, then x̄ is called weakly Pareto optimal or weakly efficient.
We denote the set of efficient solutions of (1) by XE and refer to it as the efficient set.

The image set of the set of efficient solutions is denoted by ZN := f(XE) and is
called the nondominated set of problem (1). To simplify notation, we will often refer
to the points in Z without relating them back to their preimages in the feasible set.
Consequently, we equivalently formulate problem (1) in the outcome space as

min
z∈Z

z = (z1, . . . , zm)> (2)
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where Z is a discrete set of points in Rm. For two vectors z, z̄ ∈ Z we write

z < z̄ if zi < z̄i for all i = 1, . . . ,m,
z ≤ z̄ if zi ≤ z̄i for all i = 1, . . . ,m and ∃ j∈{1, . . . ,m} : zj < z̄j , and
z 5 z̄ if zi ≤ z̄i for all i = 1, . . . ,m.

The symbols >, ≥ and = are used accordingly.

Definition 1.1 (Nondominance). A point z̄ ∈ Z is called nondominated if and only
if there exists no point z ∈ Z such that z ≤ z̄.

A lower bound on the nondominated points of (2) is given by the ideal point which
we denote by zI . The i-th component of the ideal point is defined as the minimum
of the i-th objective, i.e., zIi := min{zi : z ∈ Z} for all i = 1, . . . ,m. A point zU

that strictly dominates zI is called a utopia point. Note that in general zI 6∈ Z. On
the other hand, the nadir point zN with components zNi := max{zi : z ∈ ZN} for
all i = 1, . . . ,m provides an upper bound on the nondominated set of (2). While it
can be easily determined for bi-objective problems, this is in general not the case for
higher dimensional problems. However, any upper bound on the nondominated set
is sufficient for our purpose. Therefore, we typically use upper bounds on Z = f(X)
which can be determined also in the presence of more than two criteria.

A common technique to solve problems of the form (1) is to iteratively transform the
original multiple objective problem into a series of parametric single-objective prob-
lems, so called scalarizations (see, e.g., Ehrgott, 2005; Miettinen, 1999). A variety of
different scalarization methods exists which differ, among other things, with respect
to their theoretical properties. Of particular importance is the question whether the
solutions generated by a specific method always correspond to nondominated points
of (1) and whether all nondominated points of (1) can be generated by appropriately
varying the involved parameters. In this article we do not focus on a specific scalar-
ization, but assume to have a scalarization method at hand which possesses these two
properties: Every nondominated point can be generated, and the point corresponding
to an optimal solution of the scalarization is nondominated.

1.2 Literature Review

The idea of solving parametric single-objective optimization problems in order to gener-
ate a (complete) set of nondominated points is well known in the literature. Especially
for bicriteria problems, the literature is rich. Aneja and Nair (1979) use a parametric
weighted sum method in order to find the extreme supported nondominated points
of (integer) linear problems. They show that the algorithm performs exactly 2n − 3
iterations, where n denotes the number of extreme nondominated points and the two
lexicographic minima are assumed to be known. Chalmet et al. (1986) use an ε-
constraint method with a weighted sum objective as scalarization for solving bicriteria
integer problems. Due to the hybrid scalarization, every nondominated point can be
computed. The authors show that a complete representation is obtained by solving
2|ZN | + 1 integer programs including the computation of the lexicographic optima.
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Eswaran et al. (1989) employ a weighted Tchebycheff scalarization to determine a
complete or incomplete representation of the nondominated set of nonlinear integer
bicriteria problems. Solanki (1991) use an augmented weighted Tchebycheff method
to generate incomplete representations of mixed integer bicriteria linear programs.
Ulungu and Teghem (1995) address bicriteria combinatorial optimization problems.
They introduce a two phase procedure, where all extreme supported nondominated
points are computed by weighted sum problems. In a second phase, all remaining
nondominated points are generated with the help of specific combinatorial methods.
In Sayın and Kouvelis (2005), the lexicographic weighted Tchebycheff method and
a variant of it serve to solve bicriteria discrete optimization problems. Tchebycheff
scalarizations are also used by Ralphs et al. (2006). Their algorithm is shown to find
all nondominated points by solving 2|ZN |− 1 subproblems including the generation of
the lexicographic optima. The box algorithm of Hamacher et al. (2007) uses lexico-
graphic ε-constraint problems. While it is designed for incomplete representations, it
can also be used to generate the entire nondominated set.

Also for the discrete multicriteria case, several approaches for finding the entire non-
dominated set based on parametric algorithms exist. Klein and Hannan (1982) use a
kind of ε-constraint method to determine the entire nondominated set of linear inte-
ger problems. The remaining search region containing possible further nondominated
points is described by disjunctive constraints. While Chalmet et al. (1986) mainly
address the bicriteria case, they also propose a generalization to the multicriteria
case that is based on recursively solving bicriteria problems. Tenfelde-Podehl (2003)
presents a generalization of the two phase method to any number of criteria. Sylva
and Crema (2004) revisit the idea of Klein and Hannan (1982) and reformulate the
disjunctive constraints with the help of binary variables. Laumanns et al. (2006) use
lexicographic ε-constraint problems and show that at most (|ZN |+1)m−1 subproblems
need to be solved to generate the entire nondominated set. In the bicriteria case, this
yields a total number of only |ZN | + 1 subproblems, which is smaller than the upper
bound of Ralphs et al. (2006) due to the special scalarization employed. The numerical
experiments for a knapsack problem with three objectives reveal that the number of
subproblems needed is considerably less than (|ZN | + 1)2. The authors state that it
is an open question whether the number of subproblems can be bounded linearly in
terms of the number of nondominated points for problems with more than two criteria.
Laumanns et al. (2005) improve the algorithm of Laumanns et al. (2006). However,
no better theoretical bound on the number of subproblems is obtained. Özlen and Az-
izoğlu (2009) use an augmented ε-constraint method within a recursive algorithm that
is similar to the approach of Chalmet et al. (1986) and demonstrate that O(|ZN |m−1)
iterations are required in the worst case. Dhaenens et al. (2010) extend the approach
of Tenfelde-Podehl (2003) to a three phase procedure. Their numerical experiments
show that the determination of the nadir point is very expensive regarding compu-
tational time. Przybylski et al. (2010) also propose a two phase method for integer
problems with more than two objectives. They also encounter the problem of describ-
ing the search region and solve it by saving certain upper bound vectors. Dominated
upper bound vectors are filtered out by pair-wise comparisons. Lokman and Köksalan
(2013) build on Sylva and Crema (2004) and propose two improved algorithms based
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on an augmented ε-constraint scalarization. While the numerical study of Lokman and
Köksalan (2013) suggests a linear bound on the number of subproblems to be solved
in the tricriteria case, only an upper bound of O(|ZN |2) is derived for m = 3. Ozlen
et al. (2014) improve Özlen and Azizoğlu (2009) by saving the right-hand side vectors
and the corresponding solutions of the integer problems that have already been solved.
Thereby, a huge saving of computational time is achieved. Kirlik and Sayın (2014)
improve the method of Laumanns et al. (2006) by changing the order in which the
subproblems are solved. While the numerical results are very competitive, no better
theoretical bound on the number of subproblems is proven.

1.3 Goals and Outline

We present an algorithm that generates the entire nondominated set of a discrete
tricriteria optimization problem by solving at most 3|ZN |−2 subproblems, if |ZN | ≥ 3
and if bounds on the set of feasible outcomes are given. Thereby, to the best of our
knowledge, a linear bound with respect to the number of nondominated points is given
for the first time for tricriteria problems. Our algorithm does not depend on a specific
scalarization but can be used with any scalarization method that is suited for discrete
and, in general, non-convex problems. Our method is also applicable if a subset of
nondominated points is already known and the search region potentially containing
further nondominated points shall be generated.

The remainder of this paper is organized as follows: In Section 2 we present a de-
composition of the search region based on nondominance and develop a first generic
box algorithm. We show that this generic algorithm may produce redundant boxes
which makes the algorithm inefficient. Under the technical assumption that all non-
dominated points differ pairwise in every component, we show in Section 3 how to
construct a decomposition in the tricriteria case that only contains non-redundant
boxes. The number of boxes is proven to be at most 3|ZN | − 2 for |ZN | ≥ 3. Finally,
we show that the algorithm can also be applied if the nondominated points are in arbi-
trary position, i.e., every pair of points may have up to m− 2 equal components. The
upper bound 3|ZN | − 2 is also valid in this general case. In Section 4 we demonstrate
that the upper bound can be improved to 2|ZN | − 1 when an ε-constraint method is
used as scalarization. In Section 5 we present numerical results.

2 Split of the search region for multicriteria problems

Let B0 denote an initial search region of the form

B0 := {z ∈ Rm : lj ≤ zj < uj , j = 1, . . . ,m}

with l, u ∈ Rm, l ≤ u. As lower and upper bound of B0 we choose a global lower and
upper bound on the nondominated set, for example, l := zI and u := zM , where zI is
the ideal point and zMj := max{zj : z ∈ Z} + δ for all j = 1, . . . ,m with δ > 0 is an
upper bound on the set Z. If no special scalarization method is employed, the iterative
reduction of the search region can solely be based on nondominance. Thereby, every
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generated nondominated point allows to restrict the search region, as, by Definition 1.1,
for any z∗ ∈ ZN , the two sets

S1(z∗) := {z ∈ B0 : z 5 z∗} and S2(z∗) := {z ∈ B0 : z = z∗}
do not contain any nondominated points besides z∗, i.e., S1(z∗)∩ZN = S2(z∗)∩ZN =
{z∗}. Moreover, S1(z∗) ∩ Z = {z∗}, thus, S1(z∗)\{z∗} contains no feasible points.

In the following, we decompose a given initial search region B0 iteratively into
subsets B ⊂ B0 of the same form, i.e., into sets B := {z ∈ Rm : lj ≤ zj < u′j , j =
1, . . . ,m} with u′ ∈ Rm, l ≤ u′ ≤ u. As the initial search region that potentially
contains nondominated points of (1) as well as each subset B as defined above describe
rectangular subsets of Rm with sides parallel to the coordinate axes, we call these sets
boxes in the following. The search region is always represented as the union of certain
boxes B. With the generation of every new nondominated point we replace some of
the boxes of the current search region by appropriate new boxes such that the whole
search region is covered. This property is called correctness in the following.

Definition 2.1 (Correct decomposition). Let B0 denote the starting box, let Bs denote
the set of boxes at the beginning of iteration s ≥ 1, where B1 := {B0}, and let zp ∈ ZN ,
p = 1, . . . , s− 1, be already determined nondominated points. We call Bs correct with
respect to z1, . . . , zs−1, if

B0 \
( ⋃

B∈Bs

B

)
=

⋃
p=1,...,s−1

S2(zp) (3)

holds, where S2(zp) := {z ∈ B0 : z = zp} denotes that subset of the box B0 that is
dominated by the point zp ∈ ZN , p = 1, . . . , s− 1.

Any split presented in the following maintains a correct decomposition of the search
region at any time. Under this basic condition, we try to generate as few boxes as
possible, as for every generated box a scalarized subproblem needs to be solved. Our
aim is to keep the number of subproblems low. The simplest split decomposes a box
B which contains a new outcome z∗ ∈ (B ∩ ZN ) into m subboxes.

Definition 2.2 (Full m-split). Let a nondominated point z∗ ∈ (B∩ZN ) be given. We
call the replacement of B by the m sets

Bi := {z ∈ B : zi < z∗i } ∀ i = 1, . . . ,m (4)

a full m-split of B.

Note that similar decomposition approaches are proposed, e.g., in Tenfelde-Podehl
(2003), Dhaenens et al. (2010) and Przybylski et al. (2010). Recursively applying
the full m-split to every box which contains the current nondominated point yields a
correct decomposition, as the following lemma shows.

Lemma 2.3 (Correctness of the full m-split). Let Bs, s ≥ 1, with B1 := {B0} be a
correct decomposition with respect to the nondominated points z1, . . . , zs−1, and let
zs ∈ ZN . If a full m-split is applied to all boxes B ∈ Bs with zs ∈ B, then the resulting
decomposition is correct.
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Proof. By induction on s.
s = 1 : Let B1 := {B0}, z1 ∈ ZN . Then, by definition of the full m-split, B0 is replaced
by m boxes. It holds that

B0 \
( ⋃

B∈B2

B

)
= B0 \

 ⋃
i=1,...,m

{z ∈ B0 : zi < z1
i }

 = S2(z1),

thus, B2 is correct.
s→ s+ 1 : Let Bs be correct and let zs ∈ ZN . Let Bs ⊂ Bs denote the set of all boxes
B ∈ Bs for which zs ∈ B holds. Let I be the index set of these boxes and let Q := |Bs|.
Now, let a full m-split with respect to zs be applied to all B ∈ Bs, i.e., each of the

boxes BI(q), q = 1, . . . , Q, is replaced by m new boxes B
I(q)
1 , . . . , B

I(q)
m , q = 1, . . . , Q

and ⋃
i=1,...,m
q=1,...,Q

B
I(q)
i =

⋃
B∈Bs

B \ S2(zs)

holds. Then

B0 \

 ⋃
B∈Bs+1

B

 = B0 \


 ⋃

B∈Bs\Bs

B

 ∪
 ⋃

i=1,...,m
q=1,...,Q

B
I(q)
i




= B0 \

 ⋃
B∈Bs\Bs

B

 ∪
 ⋃

B∈Bs

B \ S2(zs)

 = B0 \
(( ⋃

B∈Bs

B \ S2(zs)

))

=

(
B0 \

( ⋃
B∈Bs

B

))
∪ S2(zs) =

⋃
p=1,...,s

S2(zp).

Note that all new boxes B ∈ Bs+1, s ≥ 2, obtained from boxes in Bs, are defined
as sets with open upper boundary, as we need to exclude zs from the search region
in order to prevent it from further generation. In practical applications, it will often
be useful to replace the boxes by closed subsets and exclude zs by using, for example,
appropriate scalarization approaches.

Also note that we describe the boxes by their upper bound u only and that the lower
bound of all boxes is kept constant. This means that our decomposition contains the
union of the sets S1(zp)\{zp}, 1 ≤ p ≤ s, for all nondominated points zp ∈ ZN which
have already been generated by the algorithm, even if these sets do not contain any
feasible points. However, the splitting operation is simplified by including these sets,
since a box is never split into more than m new boxes in this case.
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Algorithm 1 Algorithm with full m-split

Input: Image of the feasible set Z ⊂ Rm, implicitly given by some problem formula-
tion

1: ZN := ∅; δ > 0;
2: InitStartingBox(Z, δ);
3: s := 1; // Initialize starting box
4: while Bs 6= ∅ do
5: Choose B ∈ Bs;
6: zs := opt(Z, u(B)); // Solve subproblem
7: if zs = ∅ then // Subproblem infeasible
8: Bs+1 := Bs\{B}; // Remove (empty) box
9: else

10: ZN := ZN ∪ {zs}; // Save nondominated point
11: Bs+1 := Bs; // Copy set of current boxes
12: GenerateNewBoxes(Bs, zs, zI ,Bs+1);
13: end if
14: s := s+ 1;
15: end while
Output: Set of nondominated points ZN

16: procedure InitStartingBox(Z, δ)
17: for j = 1 to m do // Compute bounds on Z
18: zIj := min{zj : z ∈ Z};
19: zMj := max{zj : z ∈ Z}+ δ;

20: uj(B0) := zMj ;
21: end for
22: B1 := {B0}; // Initialize set of boxes
23: return B1

24: end procedure

25: procedure GenerateNewBoxes(Bs, zs, zI ,Bs+1)
26: for all B̂ ∈ Bs do
27: if zs < u(B̂) then // Point is contained in box
28: for i = 1 to m do // Apply full m-split to B̂
29: if zsi > zIi then

30: u(B̂i) := u(B̂); // Create a copy of B̂
31: ui(B̂i) := zsi ; // Update upper bound

32: Bs+1 := Bs+1 ∪ {B̂i}; // Append new box
33: end if
34: end for
35: Bs+1 := Bs+1\{B̂}; // Remove box
36: end if
37: end for
38: return Bs+1

39: end procedure
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2.1 A generic algorithm based on the full m-split

Algorithm 1 shows a basic algorithm using the full m-split. Due to Lemma 2.3, the
algorithm is correct as it does not exclude regions from the search region which might
contain further nondominated points. A problem formulation is given as input, which is
denoted by Z. Note that this does not mean that the set of feasible outcomes is known
explicitly, but it is to be understood as a substitute for the objective functions and the
constraints. As long as Bs contains unexplored boxes, a box B is selected according
to some specified rule. As we are interested in generating the entire nondominated
set, no special rule is employed in the following, and we may, for example, always
take the first box in the list Bs. The upper bounds of the chosen box B are used
to determine the parameters of the selected scalarization. Thereby, the scalarization
method can be chosen freely, as long as it is guaranteed that the method finds a
nondominated point in B whenever there exists one. For example, the augmented
weighted Tchebycheff scalarization is an appropriate method, see, e.g., Dächert et al.
(2012) and Dächert (2014) for an adaptive parameter choice in the bicriteria and
multicriteria case, respectively. The result of the subproblem is either a nondominated
point zs in the considered box B or the detection of infeasibility, which corresponds to
the situation that B does not contain further nondominated points. In the latter case,
B is removed from the list Bs and the iteration is finished. Otherwise, zs is saved and
all boxes B̂ ∈ Bs are identified that contain zs. All these boxes are split with respect
to all i ∈ {1, . . . ,m} for which zsi > zIi holds and are replaced by the new boxes. The
algorithm iterates until all boxes have been explored. Then the entire nondominated
set has been detected.

2.2 Bicriteria case

For m = 2, Algorithm 1 is not only correct but also efficient, in the sense that the
number of subproblems that need to be solved depends linearly on the number of
nondominated points. As the decomposition does not contain redundant boxes, an
upper bound on the number of boxes can easily be derived, which can be seen as
follows. Let B0 denote the starting box and let z1 ∈ B0 ∩ ZN be the first generated
point. Consider the two new boxes B1, B2 replacing B0 in the first iteration. It holds
that

B1 ∩ Z = {z ∈ B0 : z1 < z1
1} ∩ Z =

(
{z ∈ B0 : z1 < z1

1} ∩ Z
)
\S1(z1)

= {z ∈ B0 : z1 < z1
1 , z2 > z1

2} ∩ Z

and, analogously,

B2 ∩ Z = {z ∈ B0 : z2 < z1
2} ∩ Z = {z ∈ B0 : z2 < z1

2 , z1 > z1
1} ∩ Z,

thus, (B1 ∩ Z) ∩ (B2 ∩ Z) = ∅. Therefore, the second generated point z2 ∈ ZN is
contained in exactly one of the two boxes B1, B2. This box is again split into two
new boxes whose intersections with Z are disjoint among themselves as well as from
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z1

z2

z3

z4

1

Figure 1: Decomposition of the search region for m = 2

the box (intersected with Z) which has not been changed in the current iteration.
Repeating this argument, we see that for m = 2, no redundancy occurs. Therefore, we
can easily indicate the running time of Algorithm 1 in the bicriteria case based on the
knowledge that a new nondominated point lies in exactly one box. In the initialization
phase, zI and zM are computed in order to define B0. In every iteration, either a
(new) nondominated point is generated or a box is discarded from the search region.
For every new nondominated point zs > zI , two new boxes replace the currently
investigated box, and for each of the two lexicographic optimal points (defining the
ideal point) the current box is replaced by one new box. So, the total number of
iterations is 2|ZN | − 1, cf. Chalmet et al. (1986) and Ralphs et al. (2006). In Figure 1,
we illustrate the search region after having generated and inserted four nondominated
points z1, z2, z3 and z4. If we assume that these points build the entire nondominated
set, Algorithm 1 terminates after seven iterations.

2.3 Multicriteria case (m ≥ 3)

The application of the full m-split in the case of three criteria is illustrated in Figure 2.
Different from the bicriteria case, a nondominated point may lie in the intersection of
multiple boxes for m ≥ 3. If we perform the full m-split in every box which contains the
current nondominated point, we typically create nested and, thus, redundant subboxes.
This is illustrated in the following example.

Example 2.4. Let m = 3 and let the initial search region be given by

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}.

Assume that the first nondominated point that is generated is z1 = (2, 2, 2)>. Per-
forming a full 3-split in B0 with respect to z1 replaces the search region B0 by the three
sets

B1,i := {z ∈ B0 : zi < 2}, i = 1, 2, 3.

10



1

Figure 2: Boxes Bi, i = 1, 2, 3, in R3 obtained by a full 3-split of the initial search
region; the nondominated point with respect to which the split is performed
is represented by a dot

Let z2 = (1, 1, 4)> be the next nondominated point that is generated. It holds that
z2 ∈ B11 as well as z2 ∈ B12, but z2 /∈ B13. Performing a full 3-split in B11 yields

B21 := {z ∈ B0 : z1 < 1},
B22 := {z ∈ B0 : z1 < 2, z2 < 1},
B23 := {z ∈ B0 : z1 < 2, z3 < 4}.

Performing a full 3-split in B12 yields

B′21 := {z ∈ B0 : z1 < 1, z2 < 2},
B′22 := {z ∈ B0 : z2 < 1},
B′23 := {z ∈ B0 : z2 < 2, z3 < 4}.

It holds that B′21 ⊂ B21 and B22 ⊂ B′22, thus, the boxes B22 and B′21 are redundant in
the decomposition of B0.

If redundant boxes are kept in the decomposition, this typically increases the running
time of the algorithm, as additional, unnecessary subproblems are solved. Depending
on the given problem, this may be time-consuming. Thus, redundant boxes should
be detected and removed immediately. In the following, we analyze under which
conditions redundant boxes occur. We first define our notion of non-redundancy.

Definition 2.5 (Non-redundant decomposition). Let B0 denote the starting box and
let Bs be a correct decomposition at the beginning of iteration s ≥ 1. We call Bs (and
every B ∈ Bs) non-redundant, if for every pair of boxes B, B̃ ∈ Bs, B 6= B̃, it holds:

∃ i ∈ {1, . . . ,m} : ui(B) < ui(B̃) and ∃ j ∈ {1, . . . ,m} : uj(B) > uj(B̃).

In case that u(B) ≤ u(B̃) we say that box B̃ dominates B.

Note that the definition of a dominated box is somehow opposite to the definition
of a dominated point. While u ∈ Rm is dominated by u′ ∈ Rm if u ≥ u′, box B is
dominated by B′ if u(B) ≤ u(B′).

For simplicity, we make a technical assumption concerning the values of the nondo-
minated points that will be removed later. Moreover, we define our general setting.

11



Assumption 2.6. Let the following hold:

1. For all nondominated points zp ∈ ZN , p = 1, . . . , s, generated up to iteration
s ≥ 1, it holds that zpj 6= zqj for all j = 1, . . . ,m and 1 ≤ q < p.

2. The starting box B0 is non-empty, and B1 := {B0} denotes the initial decompo-
sition of the search region.

3. For every 1 ≤ p ≤ s, Bp is a correct, non-redundant decomposition of the search
region. By Bp := {B ∈ Bp : zp ∈ B} we denote the subset of boxes in iteration p
containing zp.

Lemma 2.7 (Generation of redundant boxes). Let Assumption 2.6 be satisfied. If
we apply a full m-split to every box B ∈ Bs, then redundancy can only occur among
the ‘descendants’ of two different boxes which have been split with respect to the same
component in this iteration.

Proof. We first show that no redundancy occurs between two boxes if at least one
of the boxes has not been changed in the current iteration. Therefore, consider two
arbitrary boxes B, B̃ ∈ Bs where B̃ ∈ Bs\Bs:

1. If B ∈ Bs\Bs, both boxes remain unchanged in the current iteration and, thus,
due to Assumption 2.6 (3) are non-redundant.

2. If B ∈ Bs, none of the boxes obtained from a split in B can dominate B̃, as B
does not dominate B̃ and the upper bound of B is only decreased by the split.
Conversely, B̃ cannot dominate any of the boxes obtained from a split in B,
since B̃ ∈ Bs\Bs implies that uj(B̃) ≤ zsj for at least one j ∈ {1, . . . ,m}. As
zs < u(B), for every Bi, i = 1, . . . ,m, resulting from a split of B it holds that
zsi = ui(Bi) and zsj < uj(Bi) for all j 6= i. Thus, B̃ dominates Bi if and only if

zsi = ui(B̃) holds. This, however, is excluded by Assumption 2.6 (1).

Therefore, redundancy can only occur among newly generated boxes. Consider two
boxes Bi 6= B̂j obtained from B, B̂ ∈ Bs (the case B = B̂ is included) that are split

with respect to components i 6= j. Then ui(Bi) = zsi < ui(B̂j) and uj(Bi) > zsj =

uj(B̂j), thus, none of the boxes can dominate the other one. It follows that redundancy
can only occur among the descendants of two different boxes split with respect to the
same component.

Corollary 2.8. Let Assumption 2.6 hold. If only one box is split in some iteration,
then all m resulting subboxes are non-redundant. In particular, the boxes obtained in
the first iteration are always non-redundant.

Corollary 2.9. Let Assumption 2.6 hold. Let two boxes B, B̂ ∈ Bs be split with
respect to the same component i = 1, . . . ,m. Then the resulting boxes Bi, B̂i are non-
redundant if and only if there exists an index p 6= i such that up(Bi) < up(B̂i) and

there exists an index q 6= i such that uq(Bi) > uq(B̂i).

12



These observations allow to detect redundant boxes by checking specific boxes of the
current decomposition. Translating this to an algorithm for arbitrary m ≥ 3, we apply,
in every iteration, a full m-split to every box containing the current nondominated
point. If more than one box is split in one iteration, we compare the upper bounds of
those new boxes that were generated with respect to the same component pairwise to
detect redundancy. The respective boxes are then removed from the decomposition.
A similar approach is followed in Przybylski et al. (2010) where a new upper bound is
compared to all other upper bounds excluding the one from which it has been derived.
In doing so, ‘dominated’ upper bounds are filtered out directly.

A corresponding algorithm can be improved further if redundant boxes are identified
without comparing their upper bounds to some or all other boxes. In the next section
we develop an explicit criterion for tricriteria problems that indicates already before the
split is performed whether the resulting box is redundant or not, and, thus, allows to
maintain only non-redundant boxes in the decomposition. We prove that the number
of non-redundant boxes or, equivalently, the number of subproblems to be solved in
the course of an algorithm based on such an improved split operation depends linearly
on the number of nondominated points.

3 A split criterion to avoid redundant boxes for m = 3

According to Definition 2.5, a non-redundant box can be characterized as follows. A
box is non-redundant if and only if it contains a non-empty subset which is not part
of any other box of the decomposition. These subsets are studied in the following.

Definition 3.1 (Individual subsets). Let Bs, s ≥ 1 be a non-redundant decomposition.
For every B ∈ Bs, the set

V (B) := B \

 ⋃
B̃∈Bs\{B}

B̃

 (5)

is called individual subset of B.

Obviously, for every B ∈ Bs, s ≥ 1, it holds that V (B) ⊆ B and V (B) ∩ V (B̃) = ∅
for every B̃ ∈ Bs, B̃ 6= B. Figure 3 shows the individual subsets of the three boxes
Bi, i = 1, 2, 3, in R3, obtained by a full 3-split of the initial box, which are depicted in
Figure 2.

Now, maintaining only non-redundant boxes in the decomposition of the search
region is equivalent to maintaining boxes with non-empty individual subsets. An
explicit split criterion should indicate already before performing the split whether a
given box will have a non-empty individual subset after having performed the split.
To this end, we have to describe the individual subsets explicitly. For m = 3, we
observe that the individual subset of a box is bounded by the neighbors of that box.
After defining the neighbor of a box with respect to a certain component, we show its
existence and indicate the respective neighboring boxes by a constructive proof.
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V (B1)

V (B2)

V (B3)

z!

1

Figure 3: Individual subsets V (Bi), i = 1, 2, 3, in R3 obtained by a full 3-split of the
initial search region with respect to z? ∈ ZN

Definition 3.2 (Neighbor of a box). Let Bs, s ≥ 1 be a non-redundant decomposition
of the search region, and let ui := min{ui(B) : B ∈ Bs}. Let any B̄ ∈ Bs be given.
For every i ∈ {1, 2, 3}, for which ui(B̄) > ui, we call a box B̂ ∈ Bs\{B̄} that satisfies

ui(B̂) < ui(B̄) (6)

uj(B̂) > uj(B̄) for some j 6= i (7)

uk(B̂) ≥ uk(B̄) for k 6= i, j (8)

and

ui(B̂) = max{ui(B) : B ∈ Bs\{B̄}, ui(B) < ui(B̄)} (9)

the neighbor of B̄ with respect to i at the beginning of iteration s, denoted by Bs
i (B̄).

Example 3.3. Consider Figure 2, which depicts the three boxes that are obtained in
the first iteration. At the beginning of iteration s = 2, it holds that B2

1(B2) = B1,
since B1 is the unique box satisfying (6)–(9) for B̄ := B2. Analogously, B2

3(B2) = B3

holds. A neighbor B2
2(B2) is not defined as u2(B2) = u2.

The following lemma shows that, under appropriate assumptions, for every box
B̄ ∈ Bs and every component i ∈ {1, 2, 3} for which ui(B̄) > ui holds there exists a
unique neighbor Bs

i (B̄) satisfying (6)–(9) of Definition 3.2. These neighbors Bs
i (B̄), i ∈

{1, 2, 3}, which will be indicated with the help of a constructive proof will turn out to
be the boxes that define the individual subset of B̄.

Assumption 3.4. Let the following hold:

1. For all nondominated points zp ∈ ZN , p = 1, . . . , s, generated up to iteration
s ≥ 1, it holds that zpj 6= zqj for all j ∈ {1, 2, 3} and 1 ≤ q < p.

2. The starting box B0 is non-empty, and B1 := {B0} denotes the initial decompo-
sition of the search region.
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3. For every iteration 1 ≤ p ≤ s, the set Bp+1 is obtained from Bp by applying a full
3-split to every B ∈ Bp, where Bp := {B ∈ Bp : zp ∈ B}. All redundant boxes
are removed from Bp+1 at the end of the respective iteration p.

Note that Assumption 3.4 substantiates Assumption 2.6 by specifying that the cor-
rect, non-redundant decompositions are obtained by iterative full 3-splits and that
redundant boxes are removed.

As the proof of the following lemma is rather technical, we illustrate it with the help
of two examples. In both examples, u(B0) := (5, 5, 5)> is assumed, and z1 := (2, 2, 2)>

is inserted as a first nondominated point. In the first example, depicted in Figure 4,
z2 := (3, 1, 4)> is inserted as a second nondominated point. In the second example,
depicted in Figure 5, z2 := (1, 1, 4)> represents the second nondominated point.

Lemma 3.5. Let Assumption 3.4 be satisfied. Then, for every s ≥ 2, every B̄ ∈ Bs and
every i ∈ {1, 2, 3}, for which ui(B̄) > ui := min{ui(B) : B ∈ Bs} holds, there exists
a unique neighbor Bs

i (B̄) ∈ Bs satisfying (6)–(9). Particularly, uk(Bs
i (B̄)) = uk(B̄)

holds, i.e., Bs
i (B̄) satisfies

ui(B
s
i (B̄)) < ui(B̄) (10)

uj(B
s
i (B̄)) > uj(B̄) for some j 6= i (11)

uk(Bs
i (B̄)) = uk(B̄) for k 6= i, j, (12)

and

ui(B
s
i (B̄)) = max{ui(B) : B ∈ Bs, ui(B) < ui(B̄)}. (13)

If ui(B̄) = ui, then we set Bs
i (B̄) := ∅.

Proof. By induction on s.
s = 2 : B1 = {B0} = B1, as z1 < u(B0) = zM . The starting box is split into three
subboxes B̂i := {z ∈ B0 : zi < z1

i }, i ∈ {1, 2, 3}. Due to Lemma 2.7, the new boxes

are non-redundant, thus, B2 = {B̂1, B̂2, B̂3}. Consider B̂i for fixed i ∈ {1, 2, 3}: As
ui(B̂i) = z1

i < ui(B̂j) for every j 6= i, by definition, B2
i (B̂i) = ∅. As uj(B̂i) > z1

j =

min{uj(B) : B ∈ B2}, for every j 6= i, a unique neighbor B2
j (B̂i) exists and, obviously,

B2
j (B̂i) = B̂j holds.

s→ s+ 1: We assume that unique neighbors satisfying (6)–(9) exist for all B ∈ Bs
and that, additionally, (12) holds. We insert zs ∈ ZN . Due to the correctness of the
full m-split, there exists at least one box which is split, i.e., |Bs| ≥ 1.

Case 1: |Bs| = 1, i.e., only one box is split. Let B̂ be this box and let B̂i, i ∈ {1, 2, 3},
be the subboxes resulting from the split. Due to Lemma 2.7, the new boxes are
non-redundant, thus, Bs+1 = (Bs\{B̂}) ∪ {B̂1, B̂2, B̂3}. The corresponding box in
Figure 4 (a) is B̂ = B12, which is replaced by B̂1 = B21, B̂2 = B22, B̂3 = B23, see
Figure 4 (b).

Consider an arbitrary box B̂i, i ∈ {1, 2, 3}. Then the following holds:
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(b) After the insertion of z2

Figure 4: Visualization of the upper bound vectors u(B) in case 1 of the proof of
Lemma 3.5: z2 = (3, 1, 4)> lies only in box B12 with u(B12) = (5, 2, 5)>, i.e.,
|B2| = 1. For a better illustration, the individual subsets V (B) of all boxes
are depicted.

(i) Bs+1
i (B̂i) = Bs

i (B̂):

B̂i is the only new box B with ui(B) = zsi and there is no other new box

B satisfying ui(B) < zsi . Hence, Bs+1
i (B̂i) /∈ {B̂1, B̂2, B̂3}. If Bs

i (B̂) = ∅
then Bs+1

i (B̂i) = ∅. Otherwise, i.e., if Bs
i (B̂) exists, ui(B

s
i (B̂)) < ui(B̂),

uj(B
s
i (B̂)) > uj(B̂) for some j 6= i and uk(Bs

i (B̂)) = uk(B̂) for k 6= i, j hold due

to the induction hypothesis. Now ui(B
s
i (B̂)) ≤ zsi must be satisfied, as other-

wise Bs
i (B̂i) ∈ Bs would hold, a contradiction to the assumption that Bs = {B̂}.

Moreover, ui(B
s
i (B̂)) = zsi is excluded due to Assumption 3.4 (1). Thus, (10)-

(13) holds for Bs+1
i (B̂i) = Bs

i (B̂). The uniqueness of Bs
i (B̂) follows from the

induction hypothesis.

In Figure 4 (b), an example of this case is given by B3
1(B21) = B2

1(B12) = B11.

(ii) Bs+1
j (B̂i) = B̂j for all j 6= i:

B̂j is the only new box B with uj(B) = zsj and there is no other new box B

satisfying uj(B) < zsj . Furthermore, B̂j satisfies (10)-(12), as uj(B̂j) < uj(B̂i),

ui(B̂j) > ui(B̂i) and uk(B̂j) = uk(B̂i) for k 6= i, j hold. Moreover, uj(B̂j) is

maximal, as uj(B̂j) = zsj ≥ uj(B
s
j (B̂)) if Bs

j (B̂) 6= ∅ and uj(B
s
j (B̂)) maximal

due to the induction hypothesis. As zsj = uj(B
s
j (B̂)) is excluded due to Assump-

tion 3.4 (1), the uniqueness of Bs+1
j (B̂i) follows.

In Figure 4 (b), examples are given by B3
2(B21) = B22 and B3

3(B21) = B23.

Now consider an arbitrary box B 6= B̂. Then the following holds:

(iii) If Bs
i (B) 6= B̂ for some i ∈ {1, 2, 3}, then Bs+1

i (B) remains unchanged:

Assume that Bs+1
i (B) changes due to the split of B̂. Then the only candidate
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for Bs+1
i (B) is B̂i and only in case that ui(B̂i) < ui(B) ≤ ui(B̂), as otherwise

Bs
i (B) = B̂ would have been valid. Now suppose that Bs+1

i (B) = B̂i. As

uj(B̂i) = uj(B̂) for all j 6= i and, by definition of Bs
i (B), uj(B̂i) ≥ uj(B) for

all j 6= i, we have that uj(B̂) ≥ uj(B) for all j 6= i and hence ul(B̂) ≥ ul(B)
for all l ∈ {1, 2, 3}, a contradiction to Bs being non-redundant. Thus, Bs+1

i (B)
remains unchanged.

In the example depicted in Figure 4 (b), let B = B13. As B2
1(B13) = B11 6= B12,

the neighbor remains unchanged, thus, B3
1(B13) = B11.

(iv) If Bs
i (B) = B̂ for some i = 1, . . . ,m, then Bs+1

i (B) = B̂j with j being the unique

index for which uj(B̂) > uj(B) holds:

By the induction hypothesis, ui(B̂) < ui(B), uj(B̂) > uj(B) for some j 6= i and

uk(B̂) = uk(B) for k 6= i, j. As zsi = ui(B̂i) < ui(B̂) and ul(B̂i) = ul(B̂) for all

l 6= i, B̂i is a candidate for Bs+1
i (B). As B /∈ Bs and zsl < ul(B) for all l 6= j

it follows that zsj ≥ uj(B), and, due to Assumption 3.4 (1), zsj > uj(B). Thus,

ui(B̂j) = ui(B̂) < ui(B), uj(B̂j) = zsj > uj(B) and uk(B̂j) = uk(B̂) = uk(B)

hold. Therefore, B̂j is the unique other candidate for Bs+1
i (B) besides B̂i. As

ui(B̂i) < ui(B̂j) = ui(B̂), B̂j is the unique neighbor Bs+1
i (B) after the split.

In the example depicted in Figure 4 (b), B2
2(B13) = B12 = B̂ and B3

2(B13) = B23.
Box B22 is the unique other candidate for B3

2(B13), but as u2(B22) < u2(B23) it
holds that B3

2(B13) = B23.

Case 2: |Bs| > 1.
By definition of Bs, it holds that zsi < ui(B) for all i ∈ {1, 2, 3} and B ∈ Bs, thus, zsi <
min{ui(B) : B ∈ Bs} for all i ∈ {1, 2, 3}. According to Lemma 2.7 and Corollary 2.9,
redundancy occurs only for boxes B̂, B̃ ∈ Bs which are split with respect to the same
component i ∈ {1, 2, 3} (i.e., ui(B̂i) = ui(B̃i) = zsi ) and for which ul(B̂i) ≥ ul(B̃i) or

ul(B̂i) ≤ ul(B̃i) holds for all l 6= i. By assumption, those boxes are removed, i.e., Bs+1

contains only non-redundant boxes. We illustrate this case by the example depicted
in Figure 5.

Let Bs = {B̂1, . . . , B̂P } with P ∈ N, P ≥ 2. The corresponding boxes in Figure 5 (a)
are B̂1 = B11 and B̂2 = B12. For every i ∈ {1, 2, 3}, let Ii ⊆ {1, . . . , P} be the index
set of the boxes from Bs whose split with respect to i yields a non-redundant box. Note
that Ii 6= ∅ for every i ∈ {1, 2, 3}, which can be seen as follows: Consider an arbitrary
box B ∈ Bs. Applying the full 3-split to B results in three new boxes. Now any of
the resulting boxes is removed if and only if there exists another box that dominates
it. According to Lemma 2.7 the dominating box must have been created by a split
with respect to the same component as the dominated box. Therefore, Ii 6= ∅ for
every i ∈ {1, 2, 3}. We set Qi := |Ii| ≥ 1 for every i ∈ {1, 2, 3}. Furthermore, let
ūi := max{ui(B), B ∈ Bs} for all i ∈ {1, 2, 3} in the following, which is well defined as
Bs 6= ∅.

In the example depicted in Figure 5 (b), Q1 = Q2 = 1 and Q3 = 2. Moreover, from
Figure 5 (a) we see that ū = (5, 5, 5)>.
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(b) After the insertion of z2

Figure 5: Visualization of the upper bound vectors u(B) in case 2 of the proof of
Lemma 3.5: z2 = (1, 1, 4)> lies in the two boxes B11 with u(B11) = (2, 5, 5)>

and B12 with u(B12) = (5, 2, 5)>, i.e., |B2| = 2. For a better illustration, the
individual subsets V (B) of all boxes are depicted.

Consider now i arbitrary but fixed. Let B̂Ii(1), . . . , B̂Ii(Qi) denote the boxes whose

split with respect to component i yields a non-redundant box. As ui(B̂
Ii(q)
i ) = zsi holds

for all B̂
Ii(q)
i ∈ Bs+1, q = 1, . . . , Qi, as m = 3 and as we assume non-redundancy, we can

order the boxes with respect to their upper bounds increasingly by some component
j 6= i and decreasingly by component k 6= i, j, i.e.,

zsj <uj(B̂
Ii(1)
i ) < uj(B̂

Ii(2)
i ) < · · · < uj(B̂

Ii(Qi)
i ), (14)

uk(B̂
Ii(1)
i ) > uk(B̂

Ii(2)
i ) > · · · > uk(B̂

Ii(Qi)
i ) > zsk. (15)

Thereby, uj(B̂
Ii(Qi)
i ) = uj(B̂

Ii(Qi)) = ūj holds, since in the other case, i.e., if there was

some B̃ ∈ Bs with uj(B̃) > uj(B̂
Ii(Qi)
i ), either B̃ would have been the last box in (14)

with index Ii(Qi) or B̂
Ii(Qi)
i would have been dominated by B̃, both in contradiction

to the construction. Analogously, uk(B̂
Ii(1)
i ) = uk(B̂Ii(1)) = ūk must hold.

In the example depicted in Figure 5 (a), consider i = 3 and, without loss of generality,
let B̂I3(1) = B11 and B̂I3(2) = B̂I3(Q3) = B12. The upper bounds u(B11) = (2, 5, 5)>

and u(B12) = (5, 2, 5)> can be ordered increasingly with respect to component j = 1

and decreasingly with respect to component k = 2. It holds that u1(B̂
I3(Q3)
3 ) = 5 = ū1

and u2(B̂
I3(1)
3 ) = 5 = ū2.

If ui(B̂
Ii(1)) = max{ui(B) : B ∈ Bs, uk(B) = ūk} =: ūi,k holds, then the split of

B̂Ii(1) with respect to j generates a non-redundant box, too, and, depending on the
chosen enumeration, Ii(1) either equals Ij(1) or Ij(Qj). Without loss of generality,

we can set Ii(1) = Ij(1). Otherwise, i.e., if ui(B̂
Ii(1)) < ūi,k holds, then B̂

Ii(1)
j is

dominated by a unique box B̃ ∈ Bs with uk(B̃) = ūk and ui(B̃) = ūi,k. Then

B̃ = B̂Ij(1) holds.

18



Analogously, if ui(B̂
Ii(Qi)) = max{ui(B) : B ∈ Bs, uj(B) = ūj} =: ūi,j holds, then

the split of B̂Ii(Qi) with respect to k generates a non-redundant box, too, and, without
loss of generality, we can identify Ii(Qi) = Ik(Qk). Otherwise, i.e., if ui(B̂

Ii(Qi)) < ūi,j

holds, then B̂
Ii(Qi)
k is dominated by a unique box B̃ ∈ Bs with uj(B̃) = ūj and

ui(B̃) = ūi,j . Then B̃ = B̂Ik(Qk) holds.

Note that if Qi = 1, then B̂Ii(1) = B̂Ii(Qi) =: B̂ and uj(B̂) = ūj as well as

uk(B̂) = ūk hold. In this case, ui(B̂) < ūi must be satisfied, as otherwise B̂ would
dominate any other box in Bs, a contradiction to |Bs| > 1 and Bs being non-redundant.

In the example depicted in Figure 5, consider i = 3 and k = 2. It holds that
u3(B̂I3(1)) = 5 = max{u3(B) : B ∈ Bs, u2(B) = 5}. The split of B̂I3(1) with re-
spect to j = 1 generates the non-redundant box B21. If we consider i = 1, then
u1(B̂I1(1)) = u1(B11) = 2 < 5 = max{u1(B) : B ∈ Bs, u3(B) = 5}, hence, the split of
B11 with respect to component j = 2 must be redundant, and, indeed, the resulting
box is dominated by B22.

Analogously to Case 1, we will now indicate the neighbor boxes explicitly. Therefore,

consider B̂
Ii(q)
i ∈ Bs+1 for fixed i ∈ {1, 2, 3}, q ∈ {1, . . . , Qi}. It holds that

(i) Bs+1
i (B̂

Ii(q)
i ) = Bs

i (B̂Ii(q)):

Assume Bs
i (B̂Ii(q)) ∈ Bs. By definition of Bs

i , ui(B
s
i (B̂Ii(q))) < ui(B̂

Ii(q)) and

ul(B
s
i (B̂Ii(q))) ≥ ul(B̂

Ii(q)) for all l 6= i hold. But then, by an i-split of B̂Ii(q)

and Bs
i (B̂Ii(q)), the box B̂

Ii(q)
i would be redundant. Therefore, Bs

i (B̂Ii(q)) /∈ Bs
must hold. Analogously to Case 1(i), we obtain Bs+1

i (B̂
Ii(q)
i ) = Bs

i (B̂Ii(q)).

In the example depicted in Figure 5, it holds that B3
3(B23) = B2

3(B11) = B13

and B3
3(B′23) = B2

3(B12) = B13.

(ii) Determination of Bs+1
j (B̂

Ii(q)
i ) and Bs+1

k (B̂
Ii(q)
i ) for j, k 6= i:

Consider all B̂
Ii(q)
i ∈ Bs+1, q = 1, . . . , Qi, ordered as in (14) and (15): It holds

that
Bs+1

j (B̂
Ii(q)
i ) = B̂

Ii(q−1)
i for all q = 2, . . . , Qi,

as for all other boxes B̂
Ii(p)
i , p 6= q − 1, either uj(B̂

Ii(p)
i ) < uj(B̂

Ii(q−1)
i ) or

uj(B̂
Ii(p)
i ) > uj(B̂

Ii(q)
i ) holds. Moreover, all new boxes split with respect to j

have component uj smaller than uj(B̂
Ii(q−1)
i ) and all new boxes split with respect

to k have component uk smaller than uk(B̂
Ii(q)
i ), and, thus, do not satisfy (12).

For all boxes B /∈ Bs, it holds that ul(B) < min{ul(B) : B ∈ Bs} for some l, so

either uj(B) < uj(B̂
Ii(q−1)
i ) or (12) is not satisfied.

Next, we determineBs+1
j (B̂

Ii(1)
i ): As uj(B̂

Ii(q)
i ) > uj(B̂

Ii(1)
i ) for all q = 2, . . . , Qi,

no box split with respect to i can be the neighbor Bs+1
j (B̂

Ii(1)
i ). Furthermore,

as uk(B̂
Ii(1)
i ) > zsk, Bs+1

j (B̂
Ii(1)
i ) can not be found among the new boxes split

with respect to k. Therefore, Bs+1
j (B̂

Ii(1)
i ) can only be found among the boxes
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split with respect to component j. Now, as shown above, uk(B̂Ii(1)) = ūk holds,

which implies that uk(Bs+1
j (B̂

Ii(1)
i )) = ūk must be satisfied. Therefore, the

unique candidate for Bs+1
j (B̂

Ii(1)
i ) is B̂

Ij(1)
j , which, as explained above, either

equals the box obtained from B̂Ii(1) by a split with respect to j or the unique
box dominating it.

Analogously, it can be shown that

Bs+1
k (B̂

Ii(q)
i ) = B̂

Ii(q+1)
i for all q = 1, . . . , Qi − 1,

and
Bs+1

k (B̂
Ii(Qi)
i ) = B̂

Ik(Qk)
k ,

where B̂
Ik(Qk)
k either equals the box obtained from B̂Ii(Qi) by a split with respect

to k (then Ii(Qi) = Ik(Qk)) or the unique box dominating it.

In the example depicted in Figure 5, B3
1(B′23) = B23 and B3

1(B23) = B21 hold.

Finally, for all B /∈ Bs we obtain the following results which are equivalent to Case 1:

(iii) If Bs
i (B) /∈ Bs for some i ∈ {1, 2, 3}, then Bs+1

i (B) remains unchanged.

As in the example depicted in Figure 5 box B13 is the unique box which is not
split and all of its neighbors are split, this case does not occur.

(iv) If Bs
i (B) =: B̂ ∈ Bs for some i ∈ {1, 2, 3}, then, following the same argumen-

tation as in Case 1(iv), zsj > uj(B) for one unique index j 6= i and, thus, the

correct candidate for Bs+1
i (B) would be B̂j . It remains to show that B̂j exists

and that ui(B̂j) = max{ui(B̃) : B̃ ∈ Bs+1, ui(B̃) < ui(B)}.
Assume that B̂j does not exist, i.e., it is redundant in Bs+1. Then there exists

B̄ ∈ Bs with ui(B̄) ≥ ui(B̂) and uk(B̄) ≥ uk(B̂). As B̄, B̂ ∈ Bs and Bs, by
induction, is non-redundant, uj(B̄) < uj(B̂) must hold. As B̄ ∈ Bs it follows

that zsj < uj(B̄), so uj(B) < zsj < uj(B̄) and uk(B) = uk(B̂) ≤ uk(B̄) hold.

If ui(B̄) ≥ ui(B), B would have been redundant in Bs. Thus, ui(B̄) < ui(B)
must hold. However, as Bs

i (B) = B̂, the induction hypothesis then implies

that ui(B̄) < ui(B̂), a contradiction to the assumption on B̄. Thus, B̂j is non-

redundant and ui(B̂j) = ui(B̂) = max{ui(B̃) : B̃ ∈ Bs+1, ui(B̃) < ui(B)} holds.

In the example depicted in Figure 5, consider B2
1(B13) = B11. Since j = 3 is the

unique index 6= 1 such that z2
j > uj(B13), it holds that B3

1(B13) = B23, i.e., the
new neighbor is the box which results from B11 by a split with respect to j.

In the following corollary we summarize the properties of the neighbors of all new
boxes obtained in the constructive proof of Lemma 3.5.
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Corollary 3.6. Let Assumption 3.4 be satisfied. For every i ∈ {1, 2, 3}, let Ii ⊆
{1, . . . , P}, Ii 6= ∅, P ∈ N, |Ii| = Qi, be the index set of the boxes of Bs whose split

with respect to i ∈ {1, 2, 3} yields a non-redundant box. Then for all new boxes B̂
Ii(q)
i ,

q = 1, . . . , Qi, it holds that

Bs+1
i (B̂

Ii(q)
i ) = Bs

i (B̂Ii(q)) ∀ q = 1, . . . , Qi, (16)

Bs+1
j (B̂

Ii(q)
i ) =

{
B̂

Ij(1)
j q = 1,

B̂
Ii(q−1)
i ∀ q = 2, . . . , Qi,

(17)

Bs+1
k (B̂

Ii(q)
i ) =

{
B̂

Ii(q+1)
i ∀ q = 1, . . . , Qi − 1,

B̂
Ik(Qk)
k q = Qi,

(18)

where the indices j and k are chosen as in (14) and (15), i.e., the boxes B̂
Ii(q)
i , q =

1, . . . , Qi, are ordered with respect to their upper bounds increasingly by component
j 6= i and decreasingly by component k 6= i, j. Moreover, Ij(1) and Ik(Qk) are chosen

such that B̂
Ij(1)
j and B̂

Ik(Qk)
k either equal B̂

Ii(1)
j and B̂

Ii(Qi)
k , respectively, or the unique

box dominating it.

Using Lemma 3.5 we can derive an explicit formulation of the individual sub-
sets V (B) for m = 3:

Lemma 3.7. Let Assumption 3.4 hold. Then, for m = 3, the individual subsets
V (B), B ∈ Bs, which are introduced in Definition 3.1, can be represented as

V (B) = {z ∈ B0 : v(B) 5 z < u(B)}

with

vi(B) :=

{
ui(B

s
i (B)), if Bs

i (B) 6= ∅,
zIi , otherwise

, i ∈ {1, 2, 3}. (19)

Proof. For B̄ ∈ Bs, s ≥ 1, by definition,

V (B̄) := B̄ \

 ⋃
B̃∈Bs\{B̄}

B̃


holds. We consider the sets Bs,i := {B ∈ Bs : ui(B) < ui(B̄)} for i = 1, 2, 3. For
fixed i ∈ {1, 2, 3}, the following two cases can occur: If Bs,i 6= ∅, then, as shown in
Lemma 3.5, Bs

i (B̄) 6= ∅ and Bs
i (B̄) ∈ Bs,i, where ui(B

s
i (B̄)) = max{ui(B) : B ∈ Bs,i}.

Furthermore, as ul(B
s
i (B̄)) ≥ ul(B̄) for all l 6= i,

B̄ \

 ⋃
B̃∈Bs,i

B̃

 = {z ∈ B̄ : zi ≥ ui(Bs
i (B̄))}.
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Otherwise, i.e., if Bs,i = ∅, then, obviously, B̄ \
(⋃

B̃∈Bs,i
B̃
)

= B̄. So, in both cases,

it holds that

B̄ \

 ⋃
B̃∈Bs,i

B̃

 = {z ∈ B̄ : zi ≥ vi(B̄)}

with

vi(B̄) :=

{
ui(B

s
i (B̄)), if Bs

i (B̄) 6= ∅,
zIi , otherwise.

As every box B ∈ Bs\{B̄} belongs, due to the assumption of non-redundancy, at least
to one set Bs,i, i ∈ {1, 2, 3}, there does not exist any other box which can reduce V (B̄)
further. Thus, we obtain the desired representation.

Lemma 3.7 shows that for m = 3 the individual subset of a box can be represented as
a box itself. As the upper bound of V (B) and B are the same, V (B) can be described
by its lower bound v(B) ∈ Rm only. Next we show, using Corollary 3.6, how the lower
bounds v(B) can be updated in an iterative algorithm.

Lemma 3.8. Let Assumption 3.4 be satisfied. We use the notation of Corollary 3.6.

Let B̂
Ii(q)
i , q = 1, . . . , Qi, be the non-redundant boxes obtained from B̂Ii(q) ∈ Bs by a

split with respect to i ∈ {1, 2, 3}. Then the lower bound vectors v(B) ∈ Rm of these
new boxes in Bs+1 are determined by

vi(B̂
Ii(q)
i ) = vi(B̂

Ii(q)) ∀ q = 1, . . . , Qi,

vj(B̂
Ii(q)
i ) =

{
uj(B̂

Ij(1)
j ) = zsj q = 1,

uj(B̂
Ii(q−1)
i ) ∀ q = 2, . . . , Qi,

vk(B̂
Ii(q)
i ) =

{
uk(B̂

Ii(q+1)
i ) ∀ q = 1, . . . , Qi − 1,

uk(B̂
Ik(Qk)
k ) = zsk q = Qi.

All individual subsets V (B) of all B /∈ Bs remain unchanged.

Proof. The update of v(B̂
Ii(q)
i ) of all new boxes B̂

Ii(q)
i , q = 1, . . . , Qi, for some fixed

i ∈ {1, 2, 3} is derived directly from Corollary 3.6. The individual subsets of all
boxes which are not split in the current iteration do not change, as, according to the
proof of Lemma 3.5, either Bs+1

i (B) remains unchanged (Case (iii)) or Bs+1
i (B) = B̂j

(Case (iv)), i.e., ui(B) remains unchanged.

Recall that we want to split a box B ∈ Bs with respect to a component i ∈ {1, 2, 3}
if and only if the individual subset V (Bi) of the resulting box Bi is non-empty, which
is equivalent to Bi being non-redundant. With the vector v(B) ∈ Rm at hand, this
can be easily checked, as the following lemma shows.

Lemma 3.9. Let Assumption 3.4 hold up to iteration s − 1 for s ≥ 2, i.e., let Bs
be a correct, non-redundant decomposition of the search region obtained by iterative
3-splits. Let zs ∈ ZN satisfy Assumption 3.4 (1), and let Bi be the box obtained from
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B ∈ Bs by a split with respect to component i ∈ {1, 2, 3}. Then Bi is non-redundant if
and only if zsi > vi(B) holds.

Proof. Consider a fixed i ∈ {1, 2, 3}.

“⇒”: Let Bi be non-redundant and assume that zsi < vi(B) holds. (The case zsi =
vi(B) does not occur due to Assumption 3.4 (1).) Then vi(B) > zIi , and, thus,
vi(B) = ui(B

s
i (B)) with Bs

i (B) 6= ∅. As ul(B
s
i (B)) ≥ ul(B) for all l 6= i, zs ∈

Bs
i (B) must hold. But then, Bi would be redundant as it would be dominated

by the box obtained from Bs
i (B) by a split with respect to i, a contradiction to

the assumption of non-redundancy.

“⇐”: Let zsi > vi(B). A split of B with respect to i yields Bi = {z ∈ B : zi < zsi }.
Assume that there exists B̃i 6= Bi which dominates Bi. As Bs is non-redundant
and due to Lemma 2.7, B̃i must result from a split with respect to i from some
box B̃ ∈ Bs, i.e., zs ∈ B̃ must hold. As B and B̃ are split with respect to
i, ui(Bi) = ui(B̃i) = zsi holds, and, due to the assumption that B̃i dominates
Bi, ul(B̃) ≥ ul(B) for all l 6= i. Now B, B̃ ∈ Bs and Bs being non-redundant
imply that ui(B̃) < ui(B). This in turn means that vi(B) ≥ ui(B̃). But then
zsi > ui(B̃), a contradiction to zs ∈ B̃. It follows that Bi is non-redundant.

Lemma 3.9 provides a tool for defining a split operation for tricriteria problems
which generates all boxes that are necessary for maintaining the correctness of a de-
composition, but avoids the generation of redundant boxes. We call the split based on
the individual subsets V (B) a v-split in the following.

Definition 3.10 (v-split). Let Assumption 3.4 hold up to iteration s − 1 for s ≥ 2,
i.e., let Bs be a correct, non-redundant decomposition of the search region obtained by
iterative 3-splits, and let zs ∈ ZN . We call the split of a box B ∈ Bs with respect to
components i ∈ {1, 2, 3}, for which

zsi ≥ vi(B) (20)

holds, a v-split of B.

Note that equality in (20) does not occur due to Assumption 3.4 (1). However, as
Assumption 3.4 (1) will be removed in Section 3.3, we present the v-split already at
this point in this general form.

Lemma 3.11. Let Assumption 3.4 (1),(2) hold. Then the iterative application of
a v-split to every B ∈ Bs in every iteration s ≥ 1 yields a correct, non-redundant
decomposition.

Proof. Due to Assumption 3.4 (1), zsi ≥ vi(B) is equivalent to zsi > vi(B). Accord-
ing to Lemma 3.9, the v-split avoids exactly the generation of redundant boxes and,
therefore, yields a correct, non-redundant decomposition.
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3.1 An algorithm for tricriteria problems based on the v-split

Algorithm 2 implements the v-split. As in Algorithm 1, an initial box B0 is computed,
which is represented by its upper bound u(B0). Additionally, for B0 as well as for all
other boxes B which are generated in the course of the algorithm, the lower bound
of the individual subset v(B) is saved. Analogously to Algorithm 1, as long as the
decomposition contains unexplored boxes, a box is selected and a subproblem is solved.
If the problem is infeasible, the selected box is deleted from the list of unexplored
boxes. Otherwise, the nondominated point zs is saved and all boxes are determined
that contain zs. Now, different from Algorithm 1, zs is compared componentwise to
v(B) for every B ∈ Bs. A split with respect to component i is performed if and only
if zsi ≥ vi(B) and zsi > zIi hold. If vi(B) > zsi for all i ∈ {1, 2, 3}, then B is deleted.
Finally, the vectors v of all new boxes are updated according to Lemma 3.8 and a new
iteration starts.

Note that according to the proof of Lemma 3.5 we can order all newly generated,
non-redundant boxes resulting from a split with respect to component i such that
their upper bound values u are increasing in one component j 6= i and decreasing in
the remaining component k 6= i, j. Hence, in Line 46 in the procedure UpdateIn-
dividualSubsets, strict inequalities hold between the components of each pair of
upper bounds. However, in order to make the algorithm also applicable when As-
sumption 3.4 (1) is removed, see Section 3.3 below, we formulate Algorithm 2 already
in a general form. Therefore, in Line 46, the strict inequalities are replaced by in-
equalities and in Lines 47 to 49 the case that the upper bound vectors of two boxes
are equal is handled. Note that this case does not occur under Assumption 3.4 (1).

According to Lemma 3.11, Algorithm 2 maintains a correct, non-redundant decom-
position in each iteration.

Example 3.12 (Application of Algorithm 2). Consider again the tricriteria problem
of Example 2.4 with initial search region B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3} and
V (B0) = B0, thus, v(B0) = (0, 0, 0)>. Consider z1 = (2, 2, 2)>. The v-split applied to
the initial box equals a full 3-split and, thus, results in

B1,i := {z ∈ B0 : zi < 2}, i = 1, 2, 3.

The corresponding individual subsets are

V (B1,i) := {z ∈ B1,i : zj ≥ 2 ∀ j 6= i}, i = 1, 2, 3,

thus, v(B11) = (0, 2, 2)>, v(B12) = (2, 0, 2)> and v(B13) = (2, 2, 0)>. Let z2 =
(1, 1, 4)>. It holds that z2 ∈ B11 as well as z2 ∈ B12, but z2 /∈ B13. Consider first
the v-split in B11: As z2

1 ≥ v1(B11), z2
2 6≥ v2(B11) and z2

3 ≥ v3(B11), B11 is split with
respect to the first and third component into

B21 := {z ∈ B11 : z1 < 1} and B23 := {z ∈ B11 : z3 < 4}
and S1 = {B21}, S2 = ∅ and S3 = {B23}. Applying the v-split to B12 results in a split
with respect to the second and third component into

B22 := {z ∈ B12 : z2 < 1} and B′23 := {z ∈ B12 : z3 < 4}
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Algorithm 2 Algorithm with v-split for m = 3

Input: Image of the feasible set Z ⊂ Rm, implicitly given by some problem formula-
tion

1: ZN := ∅; δ > 0;
2: InitStartingBoxVsplit(Z, δ); // Initialize starting box
3: s := 1;
4: while Bs 6= ∅ do
5: Choose B̄ ∈ Bs; // Select a box from the decomposition
6: zs := opt(Z, u(B̄)); // Solve subproblem
7: if zs = ∅ then // Subproblem infeasible
8: Bs+1 := Bs\{B̄}; // Remove (empty) box
9: else

10: ZN := ZN ∪ {zs}; // Save nondominated point
11: Bs+1 := Bs; // Copy set of current boxes
12: GenerateNewBoxesVsplit(Bs, zs, zI ,Bs+1);
13: UpdateIndividualSubsets(S1,S2,S3,Bs+1);
14: end if
15: s := s+ 1;
16: end while
17: return Set of nondominated points ZN

and S1 = {B21}, S2 = {B22} and S3 = {B23, B
′
23}. Note that the redundant boxes

which were obtained with the full 3-split in Example 2.4 are not generated by the v-split.
Finally, the individual subsets of the new boxes of each set Si, i ∈ {1, 2, 3}, are

updated: Box B21 is the only box generated for i = 1, box B22 the only one for i = 2.
Therefore, v(B21) = (v1(B11), z2

2 , z
2
3)> = (0, 1, 4)> and v(B22) = (z2

1 , v2(B12), z2
3)> =

(1, 0, 4)>. Boxes B23 and B′23 are both generated by a split with respect to the third
component i = 3. We can order the upper bounds of the boxes u(B23) = (2, 5, 4)>

and u(B′23) = (5, 2, 4)> increasingly with respect to component j = 1 and, at the same

time, decreasingly with respect to k = 2, thus, B
I(1)
3 := B23 and B

I(2)
3 := B′23 and then

set
v1(B23) = z2

1 = 1, v2(B′23) = z2
2 = 1,

v2(B23) = u2(B′23) = 2, v1(B′23) = u1(B23) = 2.

The third component is not changed, so v(B23) = (1, 2, 2)> and v(B′23) = (2, 1, 2)>.

3.2 A linear bound on the number of subproblems for m = 3

In the following, we will bound the number of boxes generated in the course of Algo-
rithm 2. If a box B ∈ Bs contains the current point zs, i.e., if B ∈ Bs, then we can
make the following assertion concerning the neighbors of B:

Lemma 3.13. Let s ≥ 1 be an iteration of Algorithm 2 in which a nondominated point
is generated, i.e., zs 6= ∅. Consider any B ∈ Bs. We denote by JB ⊆ {1, 2, 3} the
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18: procedure InitStartingBoxVsplit(Z, δ)
19: for j = 1 to 3 do // Compute bounds on Z
20: zIj := min{zj : z ∈ Z};
21: zMj := max{zj : z ∈ Z}+ δ;

22: vj(B0) := zIj ; uj(B0) := zMj ;
23: end for
24: B1 := {B0}; // Initialize set of boxes
25: return B1

26: end procedure

27: procedure GenerateNewBoxesVsplit(Bs, zs, zI ,Bs+1)
28: Si := ∅, i = 1, 2, 3;
29: for all B ∈ Bs do
30: if zs < u(B) then // Point is contained in box
31: for i = 1 to 3 do // Apply v-split
32: if zsi ≥ vi(B) and zsi > zIi then
33: u(Bi) := u(B); v(Bi) := v(B); // Create a copy of B
34: ui(Bi) := zsi ; // Update upper bound
35: Si := Si ∪ {Bi}; // Save new box in respective set Si
36: end if
37: end for
38: Bs+1 := Bs+1\{B}; // Remove B
39: end if
40: end for
41: return Bs+1,S1,S2,S3;
42: end procedure

43: procedure UpdateIndividualSubsets(S1,S2,S3,Bs+1)
44: for i = 1 to 3 do
45: Q := |Si|;
46: Sort all boxes B

Ii(q)
i , q = 1, . . . , Qi, in Si such that for j, k 6= i

uj(B
Ii(1)
i ) ≤ uj(BIi(2)

i ) ≤ · · · ≤ uj(BIi(Qi)
i ) and

uk(B
Ii(1)
i ) ≥ uk(B

Ii(2)
i ) ≥ · · · ≥ uk(B

Ii(Qi)
i );

47: if u(B
Ii(q)
i ) = u(B

Ii(q+1)
i ) for some q = 1, . . . , Qi − 1 then

48: (re)sort B
Ii(q)
i and B

Ii(q+1)
i such that

vj(B
Ii(q)
i ) ≤ vj(BIi(q+1)

i ) and vk(B
Ii(q)
i ) ≥ vk(B

Ii(q+1)
i );

49: end if
50: Set vj(B

Ii(1)
i ) := zsj ; vk(B

Ii(Qi)
i ) := zsk; // Update v

51: for q = 2 to Qi do

52: vj(B
Ii(q)
i ) := uj(B

Ii(q−1)
i ); vk(B

Ii(q−1)
i ) := uk(B

Ii(q)
i );

53: end for
54: Bs+1 := Bs+1 ∪ Si; // Append new boxes
55: end for
56: return Bs+1

57: end procedure
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index set of all components with respect to which B is split, and by JB := {1, 2, 3}\JB
the complement of JB. Then the following holds:

1. If JB 6= ∅, then for every j ∈ JB, the neighbor Bs
j (B) exists and contains zs,

i.e., Bs
j (B) 6= ∅ and Bs

j (B) ∈ Bs holds for every j ∈ JB.

2. If JB = ∅, then Bs = {B} holds.

Proof. Let B ∈ Bs. By definition of the v-split, it holds that zs < u(B), zsj ≥ vj(B)

for every j ∈ JB and zsj < vj(B) for every j ∈ JB . Thus, vj(B) > zIj holds for every

j ∈ JB . This, however, implies that Bs
j (B) 6= ∅ for every j ∈ JB , see the update of v

in (19).
First, let JB 6= ∅. Then, for fixed j ∈ JB and according to Definition 3.2,

uj(B
s
j (B)) ≤ uj(B) and ul(B

s
j (B)) ≥ ul(B) for all l 6= j. As uj(B

s
j (B)) = vj(B) > zsj ,

Bs
j (B) ∈ Bs holds.

Now, consider the case JB = ∅. Then, due to Lemma 3.5, every box B̃ ∈ Bs\{B}
has upper bound ul(B̃) ≤ vl(B) for at least one l ∈ {1, 2, 3}. This implies that zs /∈ B̃
for any B̃ ∈ Bs\{B}, thus, Bs = {B}.

With the help of Lemma 3.13, we can bound the number of new boxes that are
generated in each iteration of Algorithm 2.

Lemma 3.14. In every iteration s ≥ 1 of Algorithm 2 in which a nondominated point
zs is found, i.e., zs 6= ∅, the number of boxes in the decomposition increases by at most
two.

Proof. If there exists a box B ∈ Bs which is split with respect to all three components,
then, using Lemma 3.13, Bs = {B} holds, thus, |Bs| = 1. In this case, the box B is
removed and replaced by three new boxes in the decomposition, and, thus, the number
of boxes in the decomposition increases by two.

It follows that if |Bs| > 1, then every B ∈ Bs is split with respect to at most two
components. Let |Bs| > 1 and let B ∈ Bs be split with respect to two components
i, j ∈ {1, 2, 3}, j 6= i. Then, for all other boxes B̃ ∈ Bs\{B} it holds that ul(B̃) ≤ vl(B)
for some l ∈ {1, 2, 3}. If l = i, then ui(B̃) ≤ vi(B) ≤ zsi , thus, the box is not split with
respect to i. Analogously, if l = j, then uj(B̃) ≤ vj(B) ≤ zsj , thus, the box is not split

with respect to j. If l = k (with k 6= i, j), then, for any B̃ satisfying uk(B̃) ≤ vk(B) it
holds that vi(B̃) ≥ ui(B) or vj(B̃) ≥ uj(B), thus, B̃ can not be split with respect to
both components i and j.

Therefore, if two boxes are split with respect to two components, these components
must differ in one component. This implies that in one iteration, at most three boxes
are split with respect to two components. Any other boxes in Bs are split with respect
to at most one component.

In case that three boxes are split with respect to two components, six new boxes
would replace three old ones, thus, the number of boxes would increase by three. So it
remains to show that in this case, at least one box B in Bs is removed without being
split, i.e., v(B) > zs holds for at least one B ∈ Bs. In other words, we have to prove
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Figure 6: Possible neighborhood structures of boxes in Bs. Left figure: Bs contains
two ’2-boxes’; right figure: Bs contains three ’2-boxes’.

the existence of a ’0-box’, i.e., a box, which is contained in Bs, but is not split with
respect to any component.

To this end, we assume to the contrary that Bs contains three boxes which are split
with respect to two components (’2-boxes’), respectively, but that no ’0-box’ exists.
From Lemma 3.13 we see that a ’2-box’ has exactly one neighbor in Bs, as JB contains
exactly one index. A ’1-box’ has exactly two neighbors in Bs, while all three neighbors
are contained in Bs in case of a ’0-box’. Now, starting from a ’2-box’, one uniquely
defined neighbor of it must be in Bs. If that box is also a ’2-box’ (see Figure 6 on
the left), then no neighbor of the latter box is in Bs. The third ’2-box’ would require
a neighbor in Bs, but only ’1-boxes’ are available, which require a second neighbor
in turn. Thus, a fourth ’2-box’ would be needed, which, however, does not exist.
Therefore, the three ’2-boxes’ must all be connected by one structure of neighbors.
But this implies that there exists exactly one ’0-box’ connecting the three branches
emerging from each ’2-box’ (see Figure 6 on the right).

Theorem 3.15. Let a problem with a finite set of nondominated points be given. After
having computed the starting box based on the ideal point and a global upper bound on
Z, Algorithm 2 requires the solution of at most 3|ZN | − 2 subproblems in order to
generate the entire nondominated set ZN .

Proof. In every iteration of Algorithm 2, one subproblem is solved. Thus, the num-
ber of subproblems to be solved equals the number of iterations. When a nondom-
inated point is generated, the number of boxes increases by at most two according
to Lemma 3.14. As every nondominated point is generated exactly once, and since
every empty box is investigated exactly once in order to verify that no further non-
dominated points are contained, at most 3|ZN | boxes are explored in the course of the
algorithm. Together with the initial box, at most 3|ZN |+ 1 boxes are explored, which
corresponds to the number of subproblems to be solved. As we additionally assume
that the ideal point is given, we can reduce this bound further: In every iteration in
which the current nondominated point equals the ideal point in at least one compo-
nent, one box per component equal to the ideal point can be directly discarded. For
each component i ∈ {1, 2, 3}, there must exist at least one nondominated point whose
i-th component equals zIi . Therefore, the total number of subproblems to be solved is
at most 3|ZN | − 2.
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3.3 Applying the v-split to arbitrary nondominated sets for
tricriteria problems

For the construction of the v-split we assumed that no pair of nondominated points
has an identical value in at least one component, i.e., that all values are pairwise
different (Assumption 3.4 (1)). Under this assumption, the individual subsets of all
(non-redundant) boxes are boxes themselves, which is the basis for the v-split criterion.
In practice, Assumption 3.4 (1) may be violated since arbitrary nondominated points
may coincide in up to m − 2 components, i.e., in one component for m = 3. In this
case, additional redundant boxes may occur as the following example shows.

Example 3.16. Let z1 = (3, 1, 4)>, z2 = (3, 2, 1)> and let the initial search region be
given as B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}. If we insert z1 into B0, we obtain
the three subboxes B1,i := {z ∈ B0 : zi < z1

i }, i = 1, 2, 3, with respective upper bounds

u(B11) = (3, 5, 5)>, u(B12) = (5, 1, 5)>, u(B13) = (5, 5, 4)>.

The second point z2 = (3, 2, 1)> is only contained in B13. Thus, B13 is replaced by the
three subboxes B2,i := {z ∈ B13 : zi < z2

i }, i = 1, 2, 3, with respective upper bounds

u(B21) = (3, 5, 4)>, u(B22) = (5, 2, 4)>, u(B23) = (5, 5, 1)>.

It holds that B21 ⊆ B11.

Note that under Assumption 3.4 (1) no redundancy appears if |Bs| = 1, which
is, as shown in Example 3.16, no longer true for arbitrary nondominated points.
If the redundant box B21 is removed from the decomposition, i.e., if we set B3 :=
{B11, B12, B22, B23}, then, however, the individual subset V (B11) does not have the
structure of a box anymore, as

V (B11) := B11 \

 ⋃
B̃∈B3\{B11}

B̃


= {z ∈ B11 : z = (0, 2, 1)>} ∪ {z ∈ B11 : z = (0, 1, 4)>}.

Nevertheless, the box format of the individual subsets can be preserved if we maintain
the redundant box B21 in the decomposition. Then, V (B11) = {z ∈ B11 : z = v(B11)}
with v(B11) = (0, 1, 4)> holds. Also the individual subset of B21 has box format with
v(B21) = (3, 2, 1)>. However, as B21 ⊆ B11, it holds that V (B21) = ∅.

Despite some individual subsets being empty, the v-split can be applied regularly
in the following iterations since the lower bound v(B) is compared to the current
nondominated point zs component-wise. Thus, it is irrelevant for the v-split whether
V (B) for some B ∈ Bs is empty or not. Clearly, in Example 3.16, box B21 cannot be
split with respect to the first component, but it can be split with respect to the second
and the third component like a ‘regular’ non-redundant box.

In order to distinguish the redundant boxes that appear in the case that a point
equals a previously generated point in one component from the actual redundant boxes,
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we call the former boxes quasi non-redundant boxes. Evidently, Lemma 3.5 does
not hold if quasi non-redundant boxes are part of the decomposition. However, the
neighborhood structure which was obtained under Assumption 3.4 (1) can be preserved
in the presence of quasi non-redundant boxes if we use a recursive update of the
neighbors that is analogous to the non-redundant case, i.e., that uses the same sorting
of the boxes. Then, Bs

i (B) can be set as derived in Corollary 3.6. This in turn
means that the v-split as well as Algorithm 2 do not need to be changed, but can
be applied also when Asssumption 3.4 (1) is removed. Thus, Theorem 3.15 which
shows that the number of subproblems is bounded by 3|ZN | − 2 holds independently
of Assumption 3.4 (1). Finally, we revisit and extend the previous example in order
to illustrate how Algorithm 2 is applied in the presence of quasi non-redundant boxes.

Example 3.17. As in Example 3.16, let B1 := {B0} with

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}

be a given initial decomposition, and let z1 = (3, 1, 4)> and z2 = (3, 2, 1)> be two non-
dominated points. Then, the decomposition of the search region (including the quasi
non-redundant box B21) at the beginning of the third iteration is B3 := {B11, B12, B21, B22, B23}
with

u(B11) = (3, 5, 5)>, v(B11) = (0, 1, 4)>,

u(B12) = (5, 1, 5)>, v(B12) = (3, 0, 4)>,

u(B21) = (3, 5, 4)>, v(B21) = (3, 2, 1)>,

u(B22) = (5, 2, 4)>, v(B22) = (3, 1, 1)>,

u(B23) = (5, 5, 1)>, v(B23) = (3, 2, 0)>.

The corresponding individual subsets are depicted in Figure 7 (a). Note that the
empty individual subset of the quasi non-redundant box B21 is illustrated as the two-
dimensional face

{z ∈ B0 : v(B21) 5 z 5 u(B21)} .
Let now as third nondominated point z3 = (2, 2, 2)> be given. As z3 is contained in

B11 and B21, we consider v(B11) = (0, 1, 4)> and v(B21) = (3, 2, 1)> for the v-split.
Comparing z3 with these two vectors reveals that B11 is split with respect to the first
and the second component, and B21 is split with respect to the second and the third
component, which yields

u(B31) = (2, 5, 5)>, u(B32) = (3, 2, 5)>, u(B′32) = (3, 2, 4)>, u(B33) = (3, 5, 2)>.

Hence, B4 := {B12, B22, B23, B31, B32, B
′
32, B33}. As B31 is the only box obtained by

a split with respect to the first component, we obtain v(B31) = (0, 2, 2)>. Analogously,
v(B33) = (2, 2, 1)>. For the update of v(B32) and v(B32)′, the upper bound vectors
u(B32) and u(B′32) are ordered increasingly with respect to one component j 6= 2 and
decreasingly with respect to the remaining component k 6= j, k 6= 2, e.g., j = 1 and
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Figure 7: Illustration of the sets V (B) in Example 3.17; In (a) the individual sub-
set of the occurring quasi non-redundant box (which is actually empty) is
represented as a slightly darker, two-dimensional face, in (b) as a black one-
dimensional face, i.e., a line.

k = 3. As u1(B32) = u1(B′32) and u3(B32) > u3(B′32), we can order the boxes strictly
decreasingly with respect to k = 3. Therefore,

v(B32) = (2, 1, 4)> and v(B′32) = (3, 2, 2)>

is obtained. Note that v1(B′32) = u1(B′32) and v2(B′32) = u2(B′32). The quasi non-
redundant box B′32 is completely contained in B22 and B32, as (3, 2, 4)> 5 (5, 2, 4)>

and (3, 2, 4)> 5 (3, 2, 5)>, respectively.
The individual subsets of all B ∈ B4 are depicted in Figure 7 (b). As the individual

subset V (B′32) is empty, we depict the set

{z ∈ B0 : v(B′32) 5 z 5 u(B′32)} = {z ∈ B0 : (3, 2, 2)> 5 z 5 (3, 2, 4)>}

instead, which describes a one-dimensional face. It is represented as a black line in
Figure 7 (b).

Figure 8 shows an example with 68 nondominated points for which Assumption 3.4 (1)
does not hold. After having determined the initial search box, 3|ZN | − 2 = 202 sub-
problems are solved until the termination criterion of Algorithm 2 is reached, i.e.,
the upper bound derived in Theorem 3.15 is sharp and holds also when quasi non-
redundant boxes occur.

4 Using the ε-constraint method as scalarization

Algorithm 2 presented in Section 3 is formulated independently of a specific scalariza-
tion. In every iteration, only points that are dominated by the current nondominated
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Figure 8: Individual subsets of all boxes of the final decomposition for an example with
68 nondominated points

point are eliminated. In this section we show that we can reduce the search region
and, thereby, the number of subproblems further if we use the ε-constraint method.
The specific properties of the ε-constraint method are also used, e.g., in Laumanns
et al. (2006), Lokman and Köksalan (2013), Ozlen et al. (2014) and Kirlik and Sayın
(2014). However, as to the best of our knowledge we present the first algorithm for
tricriteria problems whose number of subproblems is proven to depend linearly on the
number of nondominated points, the bound which is derived in this section is new as
well.

The reduction of the search region stems from the following property of the ε-
constraint method, which holds for any number of criteria. First, recall that for every
z∗ ∈ ZN , by definition of nondominance, we can exclude the two sets

S1(z∗) := {z ∈ B : z 5 z∗} and S2(z∗) := {z ∈ B : z = z∗}

from every box B that contains z∗. If the point z∗ has been obtained as an optimal
solution of an ε-constraint problem of the form

min z1

s.t. zi < ui(B̄) ∀ i = 2, . . . ,m, (21)

where B̄ is a box of the current decomposition, then, additionally, the set

S′1(z∗) := {z ∈ B̄ : z1 < z∗1} = {z ∈ Rm : z1 < z∗1 , zi < ui(B̄) ∀ i = 2, . . . ,m}

cannot contain any further points, as this would contradict the optimality of z∗ in (21).
Note that S′1(z∗) depends on B̄ as well as on the component i with respect to which
the ε-constraint problem is minimized. We choose i = 1 without loss of generality.
Also note that an optimal solution of (21) is only weakly efficient, in general. Hence,
in order to guarantee that z∗ is nondominated, a lexicographic (see, e.g., Laumanns
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Figure 9: Reduction of the search region for m = 3: Solely based on nondominance of
z∗ (left) and when taking into account that z∗ is obtained as optimal point
of a corresponding ε-constraint method (right)

et al., 2006), a two-stage (see, e.g., Kirlik and Sayın, 2014) or an augmented (see,
e.g., Lokman and Köksalan, 2013) ε-constraint method should be employed. When
solving (21), two cases might occur. If z∗1 ≥ u1(B̄), then B̄ ⊆ S′1(z∗) = ∅ holds. This
case corresponds to the situation in which the current subproblem is infeasible, see
Line 7 in Algorithm 2. Box B̄ is removed from the decomposition and a new iteration
starts. Otherwise, i.e., if z∗1 < u1(B̄), z∗ ∈ B̄ holds. In Figure 9, an example of the
sets S1, S′1 and S2 for z∗ ∈ B̄ is depicted.

We consider now the implications of this additional reduction of the search region
in combination with the v-split algorithm. Let box B̄ ∈ Bs be the currently selected
box, and let zs denote the nondominated point obtained in iteration s, zs ∈ B̄. Then,
the set S′1(zs) := {z ∈ B̄ : z1 < zs1} corresponds to the box obtained by a split of
B̄ with respect to the first component. Since S′1(zs) is empty, B̄ does not need to be
split with respect to the first component. A split with respect to all other components
i ∈ {2, 3} is performed according to the v-split criterion, i.e., if and only if zsi ≥ vi(B̄)
holds for i ∈ {2, 3}. For all other boxes B ∈ Bs\{B̄} the usual v-split criterion is
employed with respect to all components. In particular, a box B ∈ Bs\{B̄} must be
split with respect to the first component whenever zs1 ≥ v1(B) holds.

In order to benefit from the fact that the set S′1(zs) can be excluded additionally
from the search region, we must guarantee that the box resulting from a split of B̄ with
respect to the first component would have been part of the decomposition. According
to the definition of the v-split, this is the case if zs1 ≥ v1(B̄) holds. A sufficient criterion
to guarantee that zs1 ≥ v1(B̄) holds is to select a box B̄ that does not have a neighbor
in Bs with respect to i = 1, i.e., Bs

i (B̄) = ∅. Equivalently, we might select a box B̄
which satisfies v1(B̄) = min{v1(B) : B ∈ Bs}. This means that we replace Line 5 in
Algorithm 2 by ‘choose B̄ ∈ Bs such that v1(B̄) = min{v1(B) : B ∈ Bs}’. If a box with
minimal value v1 is selected according to this rule at the beginning of each iteration,
then one box is saved in each iteration in which a new nondominated point, that does
not equal the ideal point in the first component, is generated in the selected box.
Therefore, we obtain 2|ZN | − 1 as new upper bound on the number of subproblems to
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be solved in the tricriteria case.

5 Numerical results

For our tests we use five instances of a tricriteria multidimensional knapsack problem,
i.e., a zero-one knapsack problem with three objectives and three constraints. The
considered instances have already been employed for numerical experiments, e.g., in
Laumanns et al. (2005) and Ozlen et al. (2014), wherefore we regard them as a good
benchmark. The five instances correspond to five different numbers of (knapsack)
items n = 10, 20, 30, 40, 50. The respective cardinality of the nondominated set is
9, 61, 195, 389 and 1048, as reported in Laumanns et al. (2005) and Ozlen et al. (2014)
and verified by our algorithms. Note that we generated and saved the nondominated
set of every instance once. For all methods presented in the following we always
compare the respective generated representation with the saved nondominated set
in order to verify that the complete nondominated set is computed correctly. The
computational platform for our study is a compute server with 4x Intel Xeon E7540
CPUs (2.0 GHz) and 128 GB of memory. All algorithms are (re)implemented in
MATLAB R2013a and call IBM ILOG CPLEX Optimization Studio Version 12.5 to
solve the subproblems. We turned off the option of CPLEX to parallelize.

5.1 Validation of the v-Split Algorithm

We test Algorithm 2 in combination with a weighted Tchebycheff method (WT) and an
ε-constraint method (EC). In particular, we are interested in the question whether the
upper bounds on the number of subproblems 3|ZN |−2 (WT) and 2|ZN |−1 (EC), which
were derived in Sections 3 and 4, can be validated numerically. Both scalarizations
are tested in an augmented and a two-stage formulation, see Steuer and Choo (1983)
in case of the weighted Tchebycheff scalarization. Note that typically it makes a
difference for computational time whether an augmented or a two-stage approach is
used. This is caused by the fact that in the latter, two integer problems are solved in
every subproblem in which the first stage yields a feasible solution. In contrast, when
an augmented method is used, only one integer problem per subproblem is solved.
The parameters of all scalarizations are set adaptively dependent on the upper bound
vector of the box that is selected in the current iteration. For the two-stage variant,
we solve (21) in the first stage and

min

{
m∑
i=1

zi : zj ≤ z∗j , j = 1, . . . ,m

}
in the second stage, where z∗ denotes the weakly nondominated point obtained in the
first stage. For the augmented variant we exploit the given integrality in order to
determine a suitable augmentation parameter. For a detailed description we refer to
Dächert (2014).

In Table 1, the results are reported. The CPU times (in seconds) are averaged over
three independent runs. To facilitate the comparison of the number of subproblems
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n |ZN | Algorithm 2 (WT) Algorithm 2 (EC)

CPU #SP CPU #SP

10
9 TS 10.03

25
7.97

17
(25/17)? A 7.81 6.09

20
61 TS 56.42

181
43.29

121
(181/121)? A 42.72 30.02

30
195 TS 213.31

583
163.15

389
(583/389)? A 163.29 114.39

40
389 TS 464.47

1165
361.74

777
(1165/777)? A 361.01 257.64

50
1048 TS 1552.56

3142
1369.89

2095
(3142/2095)? A 1174.90 1012.15

Table 1: Average CPU times (in seconds) and number of subproblems solved by Al-
gorithm 2 in combination with a weighted Tchebycheff method (WT) and an
ε-constraint method (EC). Each scalarization is evaluated in a two-stage (TS)
and an augmented (A) formulation, respectively. In the second column, addi-
tionally to |ZN |, the theoretical upper bounds 3|ZN |− 2 (WT) and 2|ZN |− 1
(EC) are given in parentheses ()? for better comparison.

with the values 3|ZN | − 2 and 2|ZN | − 1, respectively, we indicate these values in
parentheses in the second column of Table 1.

Consider first the number of subproblems solved. From Table 1 we see that Algo-
rithm 2 (WT) requires exactly 3|ZN | − 2 and Algorithm 2 (EC) exactly 2|ZN | − 1
subproblems for all problem sizes and for both formulations, i.e., for a two-stage (TS)
and an augmented (A) formulation. Hence, the predicted upper bound on the number
of subproblems is met precisely.

Regarding computational times in Table 1 we observe that all variants using (EC)
are considerably faster than the variants using (WT) as the former solve about one
third less subproblems compared to the latter. However, the savings with respect to
computational time are not proportional to the savings with respect to the number of
subproblems, in general. Recall from Section 4 that in order to achieve a saving with
respect to the number of subproblems when using the ε-constraint method, the box at
the beginning of each iteration cannot be selected arbitrarily, but a box with minimal
value v1 must be identified. This causes an additional computational effort.

5.2 Comparison of Three Recent Algorithms to the New Algorithm

We additionally compare Algorithm 2 to three recent algorithms for generating com-
plete representations for discrete multicriteria optimization problems with finite non-
dominated set. These comprise the second algorithm stated in Lokman and Köksalan
(2013), the approach of Kirlik and Sayın (2014) and the method of Ozlen et al. (2014).
All three methods employ an ε-constraint scalarization, however, each in a different
variant: Lokman and Köksalan (2013) use an augmented, Kirlik and Sayın (2014)
a two-stage and Ozlen et al. (2014) a lexicographic ε-constraint method. In order to
make the comparison in our numerical study as fair as possible, we implement and test
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all algorithms with both, a two-stage and an augmented formulation, where the aug-
mentation parameter is set adaptively according to the formulas presented in Dächert
(2014). Note, however, that thereby we extend and/or modify the original algorithms
of Lokman and Köksalan (2013), Kirlik and Sayın (2014) and Ozlen et al. (2014).
Dependent on the formulation and particular parameters (as the augmentation pa-
rameter) used, the order in which the points are generated might change. However,
this does not affect the general functionality of the respective algorithms.

In the literature, further methods to compute complete representations of discrete
multicriteria optimization problems are presented, see, e.g., Tenfelde-Podehl (2003),
Sylva and Crema (2004), Laumanns et al. (2005), Laumanns et al. (2006) and Özlen
and Azizoğlu (2009). However, all these approaches have been reported to be outper-
formed by at least one of the three methods that we incorporate into this numerical
study.

We reimplement the algorithms of Lokman and Köksalan (LK), Kirlik and Sayın
(KS) and Özlen, Burton and MacRae (OBM) with the following slight modifications.
The algorithm of Lokman and Köksalan (2013) is originally formulated for problems
in maximization format. For the sake of simplicity, we implement it for minimization
problems. Moreover, as recommended in Lokman and Köksalan (2013), we keep the
list of current nondominated points sorted, as, thereby, better computational times
are obtained. In (LK) and (OBM), the right-hand side vectors of previously solved
subproblems are saved as well as the corresponding results, i.e., a (nondominated) point
or a value indicating infeasibility. Before solving a subproblem, the list of bounds is
scanned to find a so-called relaxation. If a relaxed problem exists and it is either
infeasible or the saved point is feasible for the current subproblem, then the current
subproblem does not need to be solved since the solution of the relaxation is also valid
for the considered subproblem. In this case, the bounds of the current subproblem
should not be saved, as they do not contribute new information and, clearly, the
shorter the list of bounds is, the better computational times can be expected. In the
implementation of (KS) we change a detail with respect to the pseudocode given in
Kirlik and Sayın (2014). When a new nondominated point is generated, all cells of the
decomposition are checked twice in Kirlik and Sayın (2014): first, to identify the cells to
be split, secondly, to remove cells that can not contain further nondominated points.
We combine both checks, which are performed within two independent procedures
in the original pseudocode, into one by removing cells that can not contain further
nondominated points immediately after or during the split. In our implementation,
this slight modification led to a huge saving of computational time.

The CPU times and the number of subproblems solved by all methods and for all
instances are given in Table 2. Again, the given CPU times are averaged over three
independent runs.

Regarding the number of subproblems solved, we observe that (KS) generates a
complete representation within the lowest number of subproblems among all compared
methods in all instances. Method (LK) requires the largest number of subproblems in
all instances. While methods (OBM), (KS) and Algorithm 2 (EC), except (OBM) for
n = 10, solve at most 2|ZN |−1 subproblems, (LK) exceeds this bound in all instances.
These results go in line with the results of Lokman and Köksalan (2013), who state that
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n |ZN | LK KS OBM Algorithm 2 (EC)

CPU #SP CPU #SP CPU #SP CPU #SP

10 9
TS 9.48

20
8.50

17
8.85

19
7.97

17
A 6.67 6.07 6.46 6.09

20 61
TS 53.04 127 50.08

115
48.50

117
43.29

121
A 31.76 128 30.26 28.83 30.02

30 195
TS 267.88 468 242.42 373 197.05 375 163.15

389
A 159.12 464 155.89 372 110.33 374 114.39

40 389
TS 657.58

852
701.95 739 430.84 741 361.74

777
A 445.07 516.15 738 246.68 740 257.64

50 1048
TS 4772.89 2193 4174.48 1913 1533.93 1915 1369.89

2095
A 4129.47 2200 3603.67 1914 945.35 1916 1012.15

Table 2: Average CPU times (in seconds) and number of subproblems solved by three
state of the art algorithms and Algorithm 2 (EC). Each scalarization is eval-
uated in a two-stage (TS) and an augmented (A) formulation, respectively.

they solved on average 2.08 subproblems per nondominated point in their numerical
study for a classic (one-dimensional) tricriteria knapsack problem. Our results also
coincide with the results of Kirlik and Sayın (2014), who state that they required
on average 1.97 and at most 1.99 subproblems per nondominated point with their
algorithm when it was applied to a classic tricriteria knapsack problem. In our study,
(KS) even performs better. In the worst case (n = 30) less than 1.92 subproblems per
nondominated point are solved. The results of (OBM) can be compared directly with
the results reported in Ozlen et al. (2014), as they solve the same problem with the
same instances. In their numerical study, 46, 333, 1204, 2357 and 6001 subproblems
are solved for n = 10, . . . , 50, respectively. Interestingly, we obtain a considerably
smaller number of subproblems with our reimplementation in all instances. A possible
reason for this mismatch might be the scalarization used. While we apply (OBM)
in combination with a two-stage and an augmented scalarization, a lexicographic ε-
constraint scalarization is used in Ozlen et al. (2014), which might lead to a higher
number of subproblems.

Considering CPU times, we obtain a slightly different picture. For the small instance
n = 10, the CPU times of all methods are quite close. For all other problem sizes, the
best CPU times are clearly obtained by Algorithm 2 (EC) and (OBM). When the aug-
mented formulation is used, (OBM) consumes less CPU time than Algorithm 2 (EC).
When the two-stage formulation is used, Algorithm 2 (EC) outperforms (OBM) for
all problem sizes.

Both other methods, i.e., (LK) and (KS) require considerably more CPU time than
(OBM) and Algorithm 2 (EC) for n = 20, 30, 40, 50. Besides n = 40, (LK) performs
worst. As (LK) solves more subproblems than all other methods, this result is not
surprising. In contrast, the rather bad performance of (KS) is not expected with
regard to the fact that (KS) solves the lowest number of subproblems in basically all
instances. The reason lies in the huge number of cells, which are maintained in (KS)
and which are scanned several times during each iteration. This computational effort
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is reflected in the CPU times.
We summarize that our new algorithm based on the v-split generates complete

representations within the predicted number of subproblems. Moreover, it competes
with state of the art algorithms.

6 Conclusion

In this paper, we positively answer the question whether there exists an algorithm
which generates the entire nondominated set of a problem with more than two ob-
jectives by solving a number of subproblems which depends linearly on the number
of nondominated points. We construct an algorithm which requires a linear number
of subproblems for tricriteria problems. This is achieved by avoiding the generation
of redundant boxes and by using neighborhood properties between the boxes. Fur-
ther research should analyze whether and how the concept of individual subsets can
be transferred to problems with more than three criteria. Moreover, the presented
algorithm can be improved further by using the neighborhood properties also for iden-
tifying all boxes containing a current point. Thereby, no exhaustive search is needed
in each iteration and the boxes can be updated more efficiently. Finally, with slight
modifications, the new algorithm can also be used if only a representative subset of
the nondominated set shall be generated.
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