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Abstract A new algorithm for solving equilibrium problems with differen-
tiable bifunctions is provided. The algorithm is based on descent directions of
a suitable family of D-gap functions. Its convergence is proved under assump-
tions which do not guarantee the equivalence between the stationary points of
the D-gap functions and the solutions of the equilibrium problem. Moreover,
the algorithm does not require to set parameters according to thresholds which
depend on regularity properties of the equilibrium bifunction. The results of
preliminary numerical tests on Nash equilibrium problems with quadratic pay-
offs are reported. Finally, some numerical comparisons with other D-gap algo-
rithms are drawn relying on some further tests on linear equilibrium problems.

Keywords Equilibrium problem · D-gap function · descent directions ·
monotonicity

1 Introduction

In this paper, we consider the following equilibrium problem:

find x∗ ∈ C s.t. f(x∗, y) ≥ 0, ∀ y ∈ C, (EP)

where C ⊂ Rn is a nonempty, closed and convex set and the equilibrium bi-
function f : Rn × Rn → R satisfies f(x, x) = 0 for all x ∈ C. This format
provides a rather general setting which includes several mathematical mod-
els such as optimization, multiobjective optimization, variational inequalities,
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fixed point and complementarity problems, Nash equilibria in noncooperative
games and inverse optimization (see e.g. [2,6,16]). Throughout all the paper
we suppose also that f is continuously differentiable and f(x, ·) is convex for
all x ∈ C.

Many methods for computing equilibria have been developed, which can
be divided into several classes: fixed point and extragradient methods, descent
methods, proximal point and Tikhonov-Browder regularization methods (see
the recent survey paper [2]). Often these methods extend those originally con-
ceived for optimization or variational inequalities to the more general frame-
work of equilibrium problems, exploiting the underlying common structure
provided by (EP).

In this paper we focus on the approach based on descent procedures. In
general, descent methods rely on the reformulation of the equilibrium problem
as an optimization problem through suitable merit functions. The so-called gap
functions yield reformulations as constrained optimization problems (see [1,3,
4,9,10,12,14,15]), while the difference of two appropriate gap functions (D-
gap function) leads to reformulations as unconstrained optimization problems
(see [8,13,23,24,25]).

The D-gap function approach was introduced for variational inequalities
in [17,22]. The first methods were developed to solve strongly monotone vari-
ational inequalities via unconstrained optimization [11,18,19,21,22]. Later on,
descent methods for monotone variational inequalities have been conceived
relying on steps of unconstrained minimization with a sequence of different
D-gap functions as objective function [20].

In the framework of the equilibrium problem (EP) D-gap functions have
been introduced in [13,23] and solution methods which exploit them have
been developed in [8,13,24,25]. These methods need strong assumptions, in
fact their convergence requires the strict or uniform strong monotonicity of the
gradient mappings ∇xf(x, ·): this assumption implies that all the stationary
points of a D-gap function coincide with its global minima and hence with the
solutions of (EP) [23]. Furthermore, the parameters of the algorithms in [8,
13] have to be set according to thresholds which depend on the constants of
strong monotonicity and Lipschitz continuity of the above gradient mappings.
As these values have to be known in advance, it is hard to implement these
methods in a general framework.

To overcome these drawbacks, we develop a new solution method for (EP)
relying on D-gap functions in the same fashion of [20]. In particular, a whole
family of D-gap functions is exploited in order to preserve a sufficient decrease
condition at each iteration of the algorithm, and this allows to deal with sta-
tionarity issues. In fact, the convergence of the method requires just the mono-
tonicity of the mappings ∇xf(x, ·): as a consequence, there may be stationary
points of any given D-gap function which are not global minima and therefore
do not solve (EP). Furthermore, the method does not require Lipschitz conti-
nuity assumptions and hence no a priori knowledge of constants/thresholds is
needed. Thus, the paper aims at providing a method which can be both easily
implemented and applied to a wider class of equilibrium problems.
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The paper is organized as follows. Section 2 provides basic results which
play a key role in devising the method. In particular, bounds on the values of
the D-gap functions are proved. Section 3 describes the solution method, ad-
dressing also possible improvements in the choice of the parameters. Since the
convergence result requires the boundedness of the feasible region, conditions
which allow to drop it are also addressed. Finally, Section 4 provides prelimi-
nary numerical tests to analyse the sensitivity of the algorithm with respect to
its parameters and some numerical comparisons with other similar algorithms.

2 Gap and D-gap functions

A gap function for (EP) is a real-valued function which is non-negative on C
and is 0 in C only at every solution of (EP): its global minima over C coincide
with the solution set of the equilibrium problem. The a priori knowledge of
the optimal value is a powerful information in devising solution methods.

Auxiliary bifunctions are generally exploited together with f to build gap
functions with good regularity properties. With this aim we consider a con-
tinuously differentiable bifunction h : Rn × Rn → R satisfying the following
conditions:

– h(x, y) ≥ 0 for all x, y ∈ Rn and h(x, y) = 0 if and only if x = y;
– h(x, ·) is strongly convex uniformly in x, i.e., there exists τ > 0 such that

h(x, z) ≥ h(x, y) + 〈∇yh(x, y), z − y〉+ τ ||z − y||2

holds for any x, y, z ∈ Rn;
– ∇yh(z, z) = 0 for all z ∈ Rn;
– ∇yh(x, ·) is Lipschitz continuous uniformly in x, i.e., there exists L > 0

such that
‖∇yh(x, y)−∇yh(x, z)‖ ≤ L ||y − z||

holds for any x, y, z ∈ Rn;
– ∇xh(x, y) = −∇yh(x, y) for all x, y ∈ Rn.

A bifunction with the above properties can be obtained just taking h(x, y) =
g(y−x) for some strongly convex function g : Rn → R+ with a Lipschitz gradi-
ent and g(0) = 0. The most typical choice is the square of the Euclidean norm.

Given any σ > 0, the value function

ϕσ(x) = −min { f(x, y) + σ h(x, y) : y ∈ C } (1)

is a gap function for (EP) (see, for instance, [15]). Since the objective function
f(x, ·) + σh(x, ·) is strongly convex, the above optimization problem has a
unique optimal solution yσ(x) which therefore satisfies the optimality condition

〈∇yf(x, yσ(x)) + σ∇yh(x, yσ(x)), z − yσ(x)〉 ≥ 0 ∀ z ∈ C. (2)

Moreover, f(x, x) = h(x, x) = 0 and the uniqueness of the optimal solution
yσ(x) imply that the solution set of (EP) coincides with the fixed points of
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yσ, i.e., x∗ solves (EP) if and only if yσ(x∗) = x∗. Furthermore, the mapping
yσ is continuous and the gap function ϕσ is continuously differentiable (see [2]
and the references therein).

It is possible to reformulate (EP) as an unconstrained optimization prob-
lem, exploiting the difference of two gap functions. In fact, the so-called D-gap
function

ϕα,β(x) = ϕα(x)− ϕβ(x)

with 0 < α < β is non-negative on Rn and is 0 only at every solution of (EP)
(see [13,23]). Therefore, its global minima on Rn coincide with the solution
set of the equilibrium problem. Obviously, the D-gap function ϕα,β inherits
the properties of the gap function (1): in particular, it can be rewritten as

ϕα,β(x) = f(x, yβ(x))− f(x, yα(x)) + βh(x, yβ(x))− αh(x, yα(x)) (3)

and it is continuously differentiable with

∇ϕα,β(x) = ∇xf(x, yβ(x))−∇xf(x, yα(x))+

+β∇xh(x, yβ(x))− α∇xh(x, yα(x)).
(4)

The auxiliary bifunction h and the optimal solutions of the inner opti-
mization problems provide the lower and upper bounds for the D-gap function
given below.

Lemma 1 The inequalities

ϕα,β(x) ≥ (β − α)h(x, yβ(x)) + α τ ‖yβ(x)− yα(x)‖2 (5)

and
ϕα,β(x) ≤ (β − α)h(x, yα(x))− β τ ‖yβ(x)− yα(x)‖2 (6)

hold for any x ∈ Rn and 0 < α < β.

Proof The convexity of f(x, ·) and the strong convexity of h(x, ·) imply

f(x, yβ(x)) ≥ f(x, yα(x)) + 〈∇yf(x, yα(x)), yβ(x)− yα(x)〉

h(x, yβ(x)) ≥ h(x, yα(x)) + 〈∇yh(x, yα(x)), yβ(x)− yα(x)〉+

+τ ‖yβ(x)− yα(x)‖2,

and the optimality condition satisfied by yα(x) gives

〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yβ(x)− yα(x)〉 ≥ 0.

Therefore, (5) follows from the chain of inequalities and equalities

0 ≤ 〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yβ(x)− yα(x)〉

≤ f(x, yβ(x))− f(x, yα(x)) + αh(x, yβ(x))− αh(x, yα(x))+

−α τ ‖yβ(x)− yα(x)‖2

= ϕα,β(x) + (α− β)h(x, yβ(x))− α τ ‖yβ(x)− yα(x)‖2

where the equality holds thanks to (3). Exchanging the roles of yα(x) and
yβ(x), the same argument proves (6). 2
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The inequalities (5) and (6) improve the bounds given in [23, Proposi-
tion 3.1] and they extend those given in [20] with h(x, y) = ||y − x||2/2 for
variational inequalities to the more general equilibrium problem (EP). More-
over, the reformulation of (EP) as an unconstrained optimization problem is a
straightforward consequence of these bounds: if x∗ solves (EP) or equivalently
yα(x∗) = yβ(x∗) = x∗, then (6) implies ϕα,β(x∗) = 0 since ϕα,β is non-
negative; vice versa, if ϕα,β(x∗) = 0, then (5) implies both h(x∗, yβ(x∗)) = 0
and ‖yβ(x∗) − yα(x∗)‖ = 0, hence yα(x∗) = yβ(x∗) = x∗. It is worth noting
that if the D-gap function is 0 at some point, the feasibility of the point itself
is guaranteed while this is not necessarily true for the gap function (1).

Inequality (5) guarantees also the inequality

h(x, yβ(x)) ≤ ϕα,β(x)/(β − α). (7)

Managing to make the right-hand side smaller and smaller would drive towards
a solution of (EP). To this aim further relationships between the auxiliary
bifunction and the D-gap function come in to play.

Lemma 2 Let y∞(x) := arg min{ h(x, y) : y ∈ C }. Then, the relationships

lim
β′→+∞

yβ′(x) = y∞(x) (8)

and
lim

β′→+∞
ϕα,β′(x)/(β′ − α) = h(x, y∞(x)) ≤ ϕα,β(x)/(β − α) (9)

hold for any x ∈ Rn and 0 < α < β.

Proof First, notice that yβ′(x) = arg min{β′−1f(x, y) + h(x, y) : y ∈ C} for
any β′ > 0. The strong convexity of h(x, ·) implies

h(x, yβ′(x)) ≥ h(x, y∞(x)) + 〈∇yh(x, y∞(x)), yβ′(x)− y∞(x)〉+

+τ ‖yβ′(x)− y∞(x)‖2.

Since y∞(x) minimizes h(x, ·) over C, the first order optimality conditions
imply

〈∇yh(x, y∞(x)), yβ′(x)− y∞(x)〉 ≥ 0

and therefore we get

h(x, yβ′(x)) ≥ h(x, y∞(x)) + τ ‖yβ′(x)− y∞(x)‖2. (10)

On the other hand, we have

β′−1f(x, yβ′(x)) + h(x, yβ′(x)) ≤ β′−1f(x, y∞(x)) + h(x, y∞(x)).

Thus, the following chain of inequalities hold

τ ‖yβ′(x)− y∞(x)‖2 ≤ h(x, yβ′(x))− h(x, y∞(x))

≤ β′−1 [f(x, y∞(x))− f(x, yβ′(x))]

≤ β′−1〈∇yf(x, y∞(x)), y∞(x)− yβ′(x)〉

≤ β′−1 ‖∇yf(x, y∞(x))‖ ‖yβ′(x)− y∞(x)‖
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taking into account the convexity of f(x, ·). As a consequence we have

‖yβ′(x)− y∞(x)‖ ≤ ‖∇yf(x, y∞(x))‖/τ β′.

and hence (8) follows just taking the limit as β′ → +∞.
Taking into account that f and h are continuous, the equality in (9) follows:

lim
β′→+∞

ϕα,β′(x)/(β′ − α) = lim
β′→+∞

ϕα(x)− ϕβ′(x)/(β′ − α)

= lim
β′→+∞

(ϕα(x) + f(x, yβ′(x)) + β′h(x, yβ′(x)))/(β′ − α)

= h(x, y∞(x)).

Finally, (5) and (10) imply

ϕα,β(x)/(β − α) ≥ h(x, yβ(x))

≥ h(x, y∞(x)) + τ ‖yβ(x)− y∞(x)‖2

≥ h(x, y∞(x)),

i.e., the inequality in (9) holds. 2

If h is an actual (squared) distance between points, then y∞(x) is the
corresponding projection of x onto C. In any case, the properties of h guarantee
y∞(x) = x for any x ∈ C: whenever a feasible point is taken, the limit in (9)
is 0 and choosing β large enough allows to make the right-hand side of (7)
as small as desired. Anyway, this is not enough to devise an algorithm: the
above lemma requires β → +∞ and (7) would simply provide the obvious
statement h(x, y∞(x)) = 0 for a feasible x. A key tool to overcome these
issues is controlling the decrease of the D-gap function along search directions
by the value of the right-hand side of (7) at the current iterate within a descent
type method (see Theorem 1(a) and condition (22) in the next section).

3 Solution method

Methods based on D-gap functions generally require the strict or strong mono-
tonicity of the gradient map ∇xf(x, ·) for any x ∈ Rn [8,13,24,25]. Under this
strict (strong) monotonicity assumption any stationary point of ϕα,β is actu-
ally a global minimum and therefore solves (EP) (see [23,24]) though ϕα,β
is not necessarily convex: therefore, in principle, any local minimization algo-
rithm could be exploited.

We aim at developing a solution method under assumptions which do not
guarantee the above property. The method of this section requires just that
∇xf(x, ·) is monotone on C for any x ∈ Rn, i.e.,

〈∇xf(x, y)−∇xf(x, z), y − z〉 ≥ 0, ∀ x ∈ Rn,∀ y, z ∈ C. (11)

Indeed, condition (11) does not guarantee that stationary points are global
minima. If (EP) is actually a variational inequality, i.e. f(x, y) = 〈F (x), y − x〉
for some F : Rn → Rn, then (11) is equivalent to the monotonicity of F .
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Example 1 Consider (EP) with n = 2, f(x, y) = x1 − y1 + x2 − y2 and the
ball B(0, 1) of center 0 and unitary radius as the feasible region C. It is easy
to check that x∗ = (

√
2/2,
√

2/2) is the unique solution of (EP). Notice that
∇xf(x, ·) is monotone but not strictly monotone since ∇xf(x, y) = (1, 1) for
any x, y ∈ R2.

Considering h(x, y) = ‖y − x‖2
2
/2, the gap function (1) reads

ϕσ(x) = max{y1 + y2 − σ[(y1 − x1)2 + (y2 − x2)2)]/2 : y ∈ C} − x1 − x2.

Since ŷσ(x) = (x1 + 1/σ, x2 + 1/σ) maximizes the objective function over the
whole R2, yσ(x) = ŷσ(x) and therefore ϕσ(x) = 1/σ hold if ŷσ(x) is feasible,
i.e., if x ∈ B(zσ, 1) for zσ = (−1/σ,−1/σ). Consequently, ϕα,β(x) = 1/α−1/β
holds whenever x ∈ B(zα, 1)∩B(zβ , 1) for any 0 < α < β. Taking any α ≥

√
2

and β > α or any α <
√

2 and α < β <
√

2α/(
√

2−α), this intersection is not
empty and has also a nonempty interior. Therefore, any point x in the interior
of B(zα, 1) ∩B(zβ , 1) is stationary for ϕα,β though it does not solve (EP).

Figure 1 shows the graph of ϕα,β for α =
√

2 and β = 2.
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Fig. 1 The D-gap function ϕα,β with α =
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2 and β = 2 in Example 1.
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The following theorem provide the key tool for devising a descent method
which does not get trapped into stationary points not solving (EP).

Theorem 1 Suppose (11) holds. Then,

(a) the inequalities

〈∇ϕα,β(x), yα(x)− yβ(x)〉 ≤

≤ 〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉 ≤ 0
(12)

hold for any x ∈ Rn and 0 < α < β.

(b) If x ∈ C does not solve (EP) and a minimum point y0(x) for f(x, ·) over
C exists, then there are ᾱ > 0 and β̄ > ᾱ such that yα(x) − yβ(x) is a
descent direction for ϕα,β at x for all α ∈ (0, ᾱ) and β > β̄.

Proof (a) Condition (11) implies that

〈∇ϕα,β(x), yα(x)− yβ(x)〉 =

= 〈∇xf(x, yβ(x))−∇xf(x, yα(x)), yα(x)− yβ(x)〉+

+ 〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉

≤ 〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉.

The optimality conditions satisfied by yα(x) and yβ(x) guarantee

〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yβ(x)− yα(x)〉 ≥ 0,

〈∇yf(x, yβ(x)) + β∇yh(x, yβ(x)), yα(x)− yβ(x)〉 ≥ 0.
(13)

Since partial derivatives of h are related to each other and f(x, ·) is convex,
(13) guarantees

〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉 =

= 〈α∇yh(x, yα(x))− β∇yh(x, yβ(x)), yα(x)− yβ(x)〉

≤ 〈∇yf(x, yβ(x))−∇yf(x, yα(x)), yα(x)− yβ(x)〉 ≤ 0.

(b) We have

〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉 =

= f(x, yα(x))− f(x, yβ(x))− α〈∇xh(x, yα(x)), yα(x)− yβ(x)〉

+f(x, yβ(x))− f(x, yα(x)) + β〈∇xh(x, yβ(x)), yα(x)− yβ(x)〉.

(14)

The convexity of f(x, ·), the relationships between partial derivatives of h and
the optimality condition satisfied by yβ(x) guarantee

f(x, yα(x))− f(x, yβ(x)) + β〈∇xh(x, yβ(x)), yβ(x)− yα(x)〉 ≥

≥ 〈∇yf(x, yβ(x)), yα(x)− yβ(x)〉+ β〈∇xh(x, yβ(x)), yβ(x)− yα(x)〉

= 〈∇yf(x, yβ(x)) + β∇yh(x, yβ(x)), yα(x)− yβ(x)〉 ≥ 0.

(15)
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Therefore (14) and (15) imply

〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉 ≤

≤ f(x, yα(x))− f(x, yβ(x))− α〈∇xh(x, yα(x)), yα(x)− yβ(x)〉

= −ϕα(x)− f(x, yβ(x))+

+α [〈∇xh(x, yα(x)), yβ(x)− yα(x)〉 − h(x, yα(x))].

(16)

Since x ∈ C does not solve (EP), for any α ≤ 1 we have

ϕα(x) ≥ ϕ1(x) > 0. (17)

Since x ∈ C, then (8) and the continuity of f guarantee

lim
β→+∞

f(x, yβ(x)) = f(x, y∞(x)) = f(x, x) = 0. (18)

The function f(x, ·) + αh(x, ·) is strongly convex, thus

f(x, y0(x)) + αh(x, y0(x)) ≥ f(x, yα(x)) + αh(x, yα(x))+

+〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), y0(x)− yα(x)〉+ ατ ||y0(x)− yα(x)||2 ≥

≥ f(x, yα(x)) + ατ ||y0(x)− yα(x)||2,

where the last inequality is due to the positiveness of h and the optimality
condition (2) with σ = α and z = y0(x). Since f(x, y0(x)) ≤ f(x, yα(x)) holds
by the choice of y0(x), then the inequality

||y0(x)− yα(x)||2 ≤ τ−1h(x, y0(x))

follows. Hence the sequence {yα(x)} is bounded as α → 0, and moreover
yβ(x)→ x as β → +∞ by Lemma 2. Thus, the continuous differentiability of
h guarantees

lim
α→0

β→+∞

α [〈∇xh(x, yα(x)), yβ(x)− yα(x)〉 − h(x, yα(x))] = 0. (19)

Thanks to (16), (17), (18) and (19) we get that there exist ᾱ > 0 and β̄ > ᾱ
such that for all α ∈ (0, ᾱ) and β > β̄ we have

〈β∇xh(x, yβ(x))− α∇xh(x, yα(x)), yα(x)− yβ(x)〉 < 0, (20)

hence yα(x)− yβ(x) is a descent direction by inequality (12). 2

When (EP) is a variational inequality, condition (12) with h(x, y) = ||y −
x||22 collapses to the one exploited in [20] (see equation (15) therein) while the
right inequality in (12) reduces to Lemma 3.2 in [22].

Theorem 1(a) guarantees that the directional derivative of ϕα,β at x along
the direction yα(x) − yβ(x) is not positive, but this is not enough for achieving
descent along the direction. Indeed, this is not necessarily the case even when
the gradient maps are strictly monotone since yα(x) = yβ(x) may still occur.
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In fact, different directions have been exploited in [8,13,23,24]. Anyway, ac-
cording to Theorem 1(b), the search direction yα(x)−yβ(x) is indeed a descent
direction (therefore yα(x) 6= yβ(x) must hold too) if x is feasible and provided
that α and β are chosen, respectively, small and large enough. Notice that the
assumption that a minimizer for f(x, ·) exists is always satisfied whenever C
is bounded or f(x, ·) is coercive on C.

The above results provide the basic idea for a solution method: given α
and β, the D-gap function ϕα,β is exploited until the search direction is no
longer recognized as a descent direction, in which case a null step is performed
while the parameters α and β are updated. An analogous idea was already
exploited for gap functions in [1], but a substantial difference holds: the search
direction yα(x)−yβ(x) might be unfeasible, that is no stepsize might provide a
feasible point moving away from the current iterate along the search direction.
Since all the global minima of the D-gap functions ϕα,β are feasible, this is
not a serious drawback: the search direction is exploited as long as a sufficient
decrease condition (see (22) below) is satisfied even if unfeasible iterates are
generated; when a sufficient decrease is no longer achieved, the current iterate
is somehow replaced by a feasible point and the parameters α and β updated
in such a way that the required decrease is lowered (see (21) below).

Algorithm

Step 0. Fix γ, η ∈ (0, 1), δ ∈ (0, η). Let {αk} and {εk} be two decreasing
sequences going to zero, choose any x0 ∈ C, β0 > α0 and set k = 1.

Step 1. If xk−1 ∈ C then set z0 = xk−1; else choose any z0 ∈ C. Set j = 0.
Choose βk ≥ β0 such that

ϕαk,βk(z0)/(βk − αk) ≤ εk. (21)

Step 2. Compute

yjαk = arg min{ f(zj , y) + αk h(zj , y) : y ∈ C },

yjβk = arg min{ f(zj , y) + βk h(zj , y) : y ∈ C }.

If yjαk = zj then STOP, else set dj = yjαk − y
j
βk

.
Step 3. If

〈βk∇xh(zj , yjβk)− αk∇xh(zj , yjαk), dj〉 ≤ −η ϕαk,βk(zj)/(βk − αk), (22)

then compute the smallest s ∈ N such that

ϕαk,βk(zj + γs dj)− ϕαk,βk(zj) ≤ −δ γs ϕαk,βk(zj)/(βk − αk),

set tj = γs, zj+1 = zj + tj d
j , j = j + 1 and goto Step 2

else set xk = zj , k = k + 1 and goto Step 1.

If the algorithm performs an infinite sequence of null steps, i.e., k → +∞,
then αk necessarily goes to 0 while βk is not forced to go to infinity. Conver-
gence to a solution of (EP) is achieved considering separately the case in which
αk actually goes to 0 from the case in which the parameters are updated a
finite number of times.
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Theorem 2 If f satisfies (11) and C is bounded, then either the algorithm
stops at a solution of (EP) after a finite number of iterations, or it produces
either a bounded sequence {xk} or a bounded sequence {zj} such that any of
its cluster points solves (EP).

Proof Lemma 2 guarantees that given any z0 ∈ C there exists a sufficiently
large βk such that (21) holds so that Step 1 is well-defined.

The line search procedure at step 3 is always finite. In fact, suppose by
contradiction that there exist k and j such that

ϕαk,βk(zj + γs dj)− ϕαk,βk(zj) > −δ γs ϕαk,βk(zj)/(βk − αk)

holds for all s ∈ N. Taking the limit, we have

〈∇ϕαk,βk(zj), dj〉 ≥ −δ ϕαk,βk(zj)/(βk − αk).

On the other hand, Theorem 1 and condition (22) imply

〈∇ϕαk,βk(zj), dj〉 ≤ −η ϕαk,βk(zj)/(βk − αk),

and thus
(δ − η)ϕαk,βk(zj)/(βk − αk) ≥ 0,

which is not possible since δ < η and ϕαk,βk(zj) > 0.
If the algorithm stops at some zj after a finite number of iterations, then

the stopping criterion guarantees that zj solves (EP) since it is a fixed point
of the mapping yαk .

Now, suppose the algorithm produces an infinite sequence {zj} for some
fixed k. Therefore, we can set α = αk and β = βk as these values don’t change
anymore. Since the sequence {ϕα,β(zj)} is decreasing and the sublevel sets of
ϕα,β are bounded (see [23]), then the sequence {zj} is bounded. Let z∗ be
any of its cluster points: taking the appropriate subsequence {zj`}, we have
zj` → z∗. By the continuity of the mappings yα and yβ , zj` → z∗ implies also
dj` → d∗ := yα(z∗)− yβ(z∗).

By contradiction, suppose that z∗ does not solve (EP), or equivalently
ϕα,β(z∗) > 0. By the step size rule we have

ϕα,β(zj`)− ϕα,β(zj`+1) ≥ δ tj` ϕα,β(zj`)/(β − α) ≥ 0.

Since {ϕα,β(zj`)} is decreasing and bounded below by zero, we have

lim
`→∞

[ϕα,β(zj`)− ϕα,β(zj`+1)] = 0,

and thus we get lim`→∞ tj` = 0 since ϕα,β is continuous and zj` → z∗.
Moreover, we have

ϕα,β
(
zj` + tj` γ

−1 dj`
)
−ϕα,β(zj`) > −δ tj` γ−1 ϕα,β(zj`)/(β−α), ∀ ` ∈ N.

The mean value theorem guarantees

ϕα,β
(
zj` + tj` γ

−1 dj`
)
− ϕα,β(zj`) = 〈∇ϕα,β(zj` + θ` tj` γ

−1 dj`), tj` γ
−1 dj`〉,
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for some θ` ∈ (0, 1). Therefore, we have

〈∇ϕα,β(zj` + θ` tj` γ
−1 dj`), dj`〉 > −δ ϕα,β(zj`)/(β − α).

Since {dj`} is bounded, taking the limit we get

〈∇ϕα,β(z∗), d∗〉 ≥ −δ ϕα,β(z∗)/(β − α).

Theorem 1 and condition (22) imply

〈∇ϕα,β(zj`), dj`〉 ≤ −η ϕα,β(zj`)/(β − α),

and thus
〈∇ϕα,β(z∗), d∗〉 ≤ −η ϕα,β(z∗)/(β − α)

follows just taking the limit. Hence, we get

(δ − η)ϕα,β(z∗)/(β − α) ≥ 0,

which is not possible since δ < η and ϕα,β(z∗) > 0. Therefore, z∗ solves (EP).
Now, suppose that the algorithm produces an infinite sequence {xk}. Since

0 ≤ ϕαk,βk(xk)/(βk − αk) ≤ ϕαk,βk(z0)/(βk − αk) ≤ εk,

we have
lim
k→∞

ϕαk,βk(xk)/(βk − αk) = 0. (23)

Moreover, condition (22) is not satisfied at xk, which reads

0 ≤ 〈βk∇xh(xk, yβk(xk))− αk∇xh(xk, yαk(xk)), yβk(xk)− yαk(xk)〉

< η ϕαk,βk(xk)/(βk − αk),

where the left inequality is provided by (12). Thus, (23) implies

lim
k→∞

〈βk∇xh(xk, yβk(xk))− αk∇xh(xk, yαk(xk)), yβk(xk)− yαk(xk)〉 = 0. (24)

The lower bound (5) implies

0 ≤ h(xk, yβk(xk)) ≤ ϕαk,βk(xk)/(βk − αk),

and thus
lim
k→∞

h(xk, yβk(xk)) = 0

follows from (23). Since h(x, ·) is strongly convex, we get

h(xk, yβk(xk)) ≥ h(xk, xk) + 〈∇yh(xk, xk), yβk(xk)− xk〉+ τ ‖yβk(xk)− xk‖2

= τ ‖yβk(xk)− xk‖2,

and thus
lim
k→∞

‖yβk(xk)− xk‖ = 0.
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Since C is bounded, then also the sequence {xk} is bounded. Let x∗ be any of
its cluster points: taking an appropriate subsequence {xk`}, we have xk` → x∗

and
lim
`→∞

yβk` (x
k`) = x∗.

Since yβk` (x
k`) ∈ C for all ` ∈ N, we also have x∗ ∈ C. On the other hand, we

also have

−f(xk` , y)− αk`h(xk` , y) ≤ ϕαk` (x
k`) ≤

≤ 〈βk`∇xh(xk` , yβk` (x
k`))− αk`∇xh(xk` , yαk` (x

k`)), yβk` (x
k`)− yαk` (x

k`)〉+

−f(xk` , yβk` (x
k`))+

+αk` [〈∇xh(xk` , yαk` (x
k`)), yβk` (x

k`)− yαk` (x
k`)〉 − h(xk` , yαk` (x

k`))],

where the first inequality follows from the definition of ϕα while the second is
actually (16). Taking the limit, thanks to (24) we get

−f(x∗, y) ≤ 0 ∀ y ∈ C,

i.e., x∗ solves (EP). 2

Notice that convergence does not depend upon the way unfeasible iterates
are replaced by feasible points during the null steps. A straightforward choice
is to take one of the minimizers yα or yβ computed at Step 2 during the last
iteration. Another reasonable choice is to take the projection of the current
iterate onto C, but it requires to solve a further optimization problem and
it is therefore computationally expensive. Actually, it is also possible to not
replace an unfeasible xk−1 by some feasible point and therefore set z0 = xk−1

all the same if the inequality

ϕαk,βk−1
(xk−1)/(βk−1 − αk) < εk

holds. In fact, Lemma 2 guarantees the existence of some βk satisfying (21)
also in this case.

In order to slow down the decrease of αk towards 0, it is possible to keep it
unchanged at a null step if the current D-gap function is still making enough
progress towards 0, namely if ϕαk−1,βk−1

(xk−1) ≤ µk−1 holds for some given
sequence µk ↓ 0. If an infinite sequence of null steps is performed, either αk ↓ 0
or αk = ᾱ definitely for some ᾱ > 0 may occur. In the latter case convergence
is guaranteed by (5): in fact, it guarantees both ‖yβk(xk)− yᾱ(xk)‖ → 0 and
h(xk, yβk(xk))→ 0 so that any cluster point x∗ of {xk} satisfies yᾱ(x∗) = x∗.

Furthermore, it is not necessary to fix the sequence {εk} a priori before
running the algorithm. Adaptive choices may be performed at each null step,
for instance taking any εk such that

0 < εk ≤ σk + θkϕαk−1,βk−1
(xk−1)/(βk−1 − αk−1) (25)

where σk ↓ 0 and 0 < θk < θ < 1 for some given θ. Indeed, if an infinite
sequence of null steps is performed, then the required condition εk → 0 holds
also in this case.
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3.1 Convergence in the unbounded case

The boundedness of C is a key tool to achieve the convergence of the algorithm.
Indeed, it is exploited to guarantee that the sequences {xk}, {yαk(xk)} and
{yβk(xk)} as well as the sublevel sets

{x ∈ Rn : ϕα,β(x) ≤ ε} (26)

are bounded. Actually, even if C is unbounded, the boundedness of the sublevel
sets (26) alone is enough to achieve convergence, provided that the algorithm
behaves in a such a way that {βk} is not bound to go to infinity.

Theorem 3 Suppose f satisfies (11) and the sublevel set (26) is bounded for
any ε ≥ 0 and 0 < α < β. If the algorithm generates an infinite sequence {βk}
bounded above, then the algorithm produces either a bounded sequence {xk} or
a bounded sequence {zj} such that any of its cluster points solves (EP).

Proof If the algorithm produces an infinite sequence {zj} for some fixed k,
then we can set α = αk and β = βk as these values don’t change anymore.
The sequence {zj} is bounded since the sequence {ϕα,β(zj)} is decreasing and
the sublevel sets of ϕα,β are bounded. Therefore, the thesis follows just arguing
as in the proof of Theorem 2.

If the algorithm produces an infinite sequence {xk}, then the same argu-
ments of the proof of Theorem 2 show that (23) holds. Furthermore, any k ∈ N
satisfies 0 < αk ≤ α0 and β0 ≤ βk ≤ β̄ for some β̄ > 0, hence the inequalities

0 ≤ ϕα0,β0
(xk)/β̄ ≤ ϕαk,βk(xk)/β̄ ≤ ϕαk,βk(xk)/(βk − αk)

hold. Therefore, (21) implies ϕα0,β0
(xk)→ 0. Since the sublevel sets of ϕα0,β0

are bounded, the sequence {xk} is bounded. As a consequence, any cluster
point x∗ of {xk} satisfies ϕα0,β0(x∗) = 0, i.e., x∗ solves (EP). 2

The boundedness of the sublevel sets (26) is guaranteed if ∇yf is Lipschitz
continuous and G(x) = ∇yf(x, x) is strongly monotone [8, Corollary 3.4] or
if the mappings ∇yf(·, y) are strongly monotone uniformly in y ∈ C [24,
Theorem 4.1]. Instead of strong monotonicity, some kind of coercivity could
be exploited. Indeed, a further result can be achieved relying on the condition

∃ y ∈ C s.t. lim
‖x‖→+∞

f(x, y)/‖x‖ = −∞, (27)

which implies the well-known coercivity condition [7]:

∃ r > 0, ∃ y ∈ C with ‖y‖ ≤ r s.t. f(x, y) < 0, ∀ x ∈ C with ‖x‖ > r.

As a consequence, it guarantees also the existence of solutions (see, for in-
stance, [2]). Moreover, (27) holds whenever f is strongly monotone: in fact,
there exists µ > 0 such that the inequalities

f(x, y) ≤ −f(y, x)− µ‖x− y‖2

≤ −f(y, y) + 〈∇yf(y, y), x− y〉 − µ‖x− y‖2

≤ ‖∇yf(y, y)‖‖x− y‖ − µ‖x− y‖2
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hold for any x, y ∈ Rn (thanks to to strong monotonicity, the convexity of
f(x, ·) and the Cauchy-Schwarz inequality). Therefore, (27) follows immedi-
ately choosing any y ∈ C, since ‖x− y‖/‖x‖ → 1 as ‖x‖ → +∞.

Condition (27) guarantees the boundedness of the sublevel sets (26) if
paired with the condition

lim sup
‖x‖→+∞

‖∇yf(x, x)‖/‖x‖ < +∞, (28)

which, roughly speaking, requires that the gradient of f(x, ·) at x does not
grow faster than x itself as ‖x‖ → +∞.

Proposition 1 If f satisfies (27) and (28), then the sublevel set (26) is
bounded for any ε ≥ 0 and 0 < α < β.

Proof Ab absurdo, suppose there exists a sequence {xk} such that ‖xk‖ → ∞
and ϕα,β(xk) ≤ ε for some fixed ε ≥ 0 and 0 < α < β.

The uniform strong convexity of h(x, ·) and inequality (5) provide the fol-
lowing inequalities

τ (β − α) ‖xk − yβ(xk)‖2 ≤ (β − α)h(xk, yβ(xk)) ≤ ϕα,β(xk) ≤ ε,

which guarantee ‖xk − yβ(xk)‖ ≤
√
ε/[τ (β − α)] := M . Hence, the bound

‖yβ(xk)‖ ≤M + ‖xk‖ follows as well.
Let y ∈ C be provided by (27). The following chain of inequalities holds

f(xk, yβ(xk))− f(xk, y) ≤ 〈∇yf(xk, yβ(xk)), yβ(xk)− y〉
≤ β 〈∇yh(xk, yβ(xk)), y − yβ(xk)〉
≤ β ‖∇yh(xk, yβ(xk))‖ ‖y − yβ(xk)‖
≤ β L ‖xk − yβ(xk))‖ ‖y − yβ(xk)‖
≤ β LM ‖y − yβ(xk)‖
≤ β LM (‖y‖+M + ‖xk‖).

The first inequality is due to the convexity of f(x, ·), the second follows
from the optimally condition (2), the third is the Cauchy-Schwarz inequality,
and the forth follows from the uniform Lipschitz continuity of the functions
∇yh(xk, ·) taking into account that ∇yh(xk, xk) = 0. Therefore, the inequality

f(xk, yβ(xk))− f(xk, y) ≤ 2β LM‖xk‖ (29)

holds whenever k is large enough (precisely, whenever ‖xk‖ ≥ ‖y‖ + M).
Furthermore, the convexity of f(x, ·) and the Cauchy-Schwarz inequality imply

f(xk, yβ(xk)) ≥ 〈∇yf(xk, xk), yβ(xk)− xk〉
≥ −‖∇yf(xk, xk)‖ ‖yβ(xk)− xk‖
≥ −M ‖∇yf(xk, xk)‖.
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Therefore, (28) guarantees f(xk, yβ(xk)) ≥ −M̂‖xk‖ for some M̂ > 0 when-
ever k is large enough. Consequently, (27) implies

[f(xk, yβ(xk))− f(xk, y)]/‖xk‖ ≥ −M̂ − f(xk, y)/‖xk‖ → +∞,

contradicting (29). 2

Notice that the so-called linear equilibrium problem, that is (EP) with

f(x, y) = 〈Px+Qy + r, y − x〉 (30)

for some r ∈ Rn and some P,Q ∈ Rn×n where Q is positive semidefinite, fulfills
the growth condition (28) since ∇yf(x, x) = (P + Q)x + r. Furthermore, it
fulfills also the coercivity condition (27) if P is positive definite, since f(·, y)
turns out to be quadratic and strongly concave.

Proposition 1 is neither weaker nor stronger than Theorem 4.1 of [24] and
Corollary 3.4 of [8]. Though the uniform strong monotonicity of the mappings
∇yf(·, y) implies the strong monotonicity of f (see [5, Theorem 3.1 b)]) and
hence condition (27), no other assumption is required by Theorem 4.1 un-
like the above Proposition 1. The Lipschitz continuity of ∇yf implies condi-
tion (28), but the strong monotonicity of G(x) = ∇yf(x, x) and condition (27)
are independent of each other (the former is stronger than the latter for vari-
ational inequalities, vice versa it is weaker for linear equilibrium problems).

4 Numerical results

Some preliminary tests have been run to analyse the sensitivity of the algo-
rithm with respect to its parameters. Afterwards, another set of numerical
tests has been run to compare it with other algorithms which exploit D-
gap functions. The algorithms have been implemented in MATLAB 7.10.0.
The built-in functions fmincon and quadprog from the Optimization Toolbox
were exploited to evaluate the D-gap functions ϕα,β and to compute yα(x)
and yβ(x), choosing the regularizing bifunction h(x, y) = ‖y − x‖22/2.

4.1 Preliminary tests

We tested the algorithm on some noncooperative games with quadratic payoffs.
Each player i has a set of feasible strategies Ki ⊆ Rni and aims at maximizing
an utility function which depends also on the strategies of the other players,
namely fi : C → R with C = K1×· · ·×KN where N is the number of players.
Finding a Nash equilibrium amounts to solving (EP) with the Nikaido-Isoda
aggregate bifunction:

f(x, y) =

N∑
i=1

[fi(x)− fi(x(yi))] ,
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where x(yi) denotes the vector obtained from x by replacing xi with yi (see,
for instance, [2,6]).

In our test we chose to consider 3 players, each of them controlling 2 vari-
ables (ni = 2) in the following intersection of a box and a ball

Ki = [−5, 5]2 ∩B
(

0, 5(1 +
√

2)/2
)

in order to maximize the following type of quadratic utility function

fi(x) =
1

2
〈xi, Aiixi〉+

N∑
j=1
j 6=i

〈xi, Aijxj〉+ 〈bi, xi〉,

where the squared matrices A11, . . . , ANN are symmetric and negative semidef-
inite while ATij = −Aji for all i 6= j. In this setting, the key assumption (11)
of the algorithm is satisfied. In fact, we have

∇xf(x, y) = Dx− Sy + b,

where

D =


A11 0 . . . 0
0 A22 . . . 0
...

. . .
...

0 . . . . . . ANN

 , S =


0 AT21 . . . ATN1

−A21 0 . . . ATN2
...

. . .
...

−AN1 −AN2 . . . 0

 , b =


b1
...
...
bN

 ,

and therefore

〈∇xf(x, y)−∇xf(x, z), y − z〉 = −〈y − z, S(y − z)〉 = 〈y − z, S(y − z)〉 = 0

holds for any y and any z since S is a skew-symmetric matrix. Thus, the
mapping ∇xf(x, ·) is monotone, but it is not strictly/strongly monotone and
the algorithms from [8,13,24,25] can not be exploited.

Instances have been produced relying on the generator of uniformly dis-
tributed pseudorandom numbers of MATLAB to choose the coefficients of the
utility functions fi and the starting point of the algorithm. In particular, Aii =
−BiBTi while Aij with i 6= j are taken from the matrix (B − BT )/2, where
Bi ∈ R2×2 and B ∈ R6×6 are matrices with pseudorandom elements drawn
from the uniform distribution on [0, 1]; similarly, the components of the vectors
bi are uniform pseudorandom values in the range [0, 5]. Finally, the starting
point is the Euclidean projection on the ball B

(
0, 5(1 +

√
2)/2

)
of a vector

whose components are uniform pseudorandom values in the range [−5, 5].
At step 1, we set z0 = yαk for the yαk computed at previous iteration

whenever xk−1 is not feasible, and we took

βk = min{β′i : β′i ≥ βk−1 and β′i satisfies (21)},

for a given increasing sequence {β′i} which goes to +∞. The value 10−2 was
used as the threshold for the stopping criterion at step 2, more precisely the
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algorithm stopped whenever ‖yαk−zj‖∞ ≤ 10−2. A preliminary set of tests on
random instances suggested to set the parameters of the algorithm in following
way: γ = 0.4, δ = 0.4, η = 0.9, αk = 1/3k, εk = 1/3k, β′i = 99 + 3i.

Afterwards, computational tests have been carried out to show the be-
haviour of the algorithm with different values of the parameters. First, we
ran the algorithm for different choices of the parameters γ, δ, η and different
kinds of sequences {β′i} on a set of 100 random instances. Results with re-
spect to different values of γ, δ and η are given in Tables 1 and 2: each row
reports the average number of iterations, null steps, number of updates of β
which have been performed and the average number of optimization problems
which have been solved for each instance. The results suggest that the choice
of these 3 parameters does not have a relevant impact on the performance of
the algorithm.

Table 1 δ = 0.4, η = 0.9, αk = 1/3k, εk = 1/3k, β′
i = 99 + 3i

γ iterations null steps β updates opt. pbs
0.1 19.91 1.78 1.10 39.86
0.2 19.36 1.80 1.13 38.75
0.3 19.36 1.78 1.10 38.30
0.4 19.24 1.78 1.10 37.84
0.5 19.30 1.79 1.11 39.08
0.6 19.24 1.78 1.10 37.86
0.7 19.28 1.78 1.10 37.94
0.8 19.81 1.78 1.10 39.32
0.9 19.64 1.78 1.10 39.14

Table 2 γ = 0.4, αk = 1/3k, εk = 1/3k, β′
i = 99 + 3i

δ η iterations null steps β updates opt. pbs
0.2 0.3 20.61 1.90 1.22 40.82
0.2 0.5 20.19 1.90 1.22 39.52
0.2 0.7 19.95 1.90 1.22 39.05
0.2 0.9 19.81 1.90 1.22 38.87
0.4 0.5 20.16 1.90 1.22 40.19
0.4 0.7 19.94 1.90 1.22 39.28
0.4 0.9 19.79 1.90 1.22 38.94
0.6 0.7 19.97 1.90 1.22 39.76
0.6 0.9 19.78 1.90 1.22 38.98
0.8 0.9 19.80 1.90 1.22 39.42

Table 3 reports the performance of the algorithm when different sequences
{β′i} are chosen. The results show that the exponential growth provides a bet-
ter performance than the quadratic growth with respect to all the considered
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indicators. Higher values of β′0 produce better results both in the exponential
and quadratic case.

Table 3 γ = 0.4, δ = 0.4, η = 0.9, αk = 1/3k, εk = 1/3k

β′
i iterations null steps β updates opt. pbs

2 + i2 23.89 4.16 9.69 53.87
10 + i2 24.40 4.34 8.97 54.09
100 + i2 20.00 2.01 3.79 41.92
1 + 3i 23.18 3.66 4.04 48.96
9 + 3i 23.23 3.93 3.62 47.37
99 + 3i 19.40 1.96 1.21 38.19

To test the algorithm when null steps do occur, we ran it for different
sequences {αk} and {εk} on a set of 100 random instances in which at least 1
null step is performed. Table 4 shows that {εk} impacts on the performance
of the algorithm more than {αk} and that exponentially decreasing sequences
seem to be the best choice for both parameters.

Table 4 γ = 0.4, δ = 0.4, η = 0.9, β′
i = 99 + 3i.

αk εk iterations null steps β updates opt. pbs
1/(1 + k2) 1/(1 + k2) 135.51 105.47 4.36 173.43

1/3k 1/(1 + k2) 135.64 105.42 4.33 171.28
1/(1 + k2) 1/3k 31.20 8.40 5.43 63.81

1/3k 1/3k 29.76 8.40 5.42 60.80

Finally, we tested the adaptive rule (25) for εk at step 1 taking precisely
the upper bound, namely

εk = σk + θkϕαk−1,βk−1
(xk−1)/(βk−1 − αk−1),

for different sequences {σk} and {θk}. Table 5 shows that the number of it-
erations and the number of optimization problems significantly decrease as
the rate of convergence of {σk} increases, and actually the best results are
achieved for {σk} ≡ 0. The impact of {θk} seems to be less relevant, anyway
notice that the non-adaptive rule ({θk} ≡ 0) provides worse results than the
best choices for the adaptive rule.

4.2 Comparison with other D-gap algorithms

Two other algorithms rely on D-gap functions [8,13,24,25]. Actually, they are
both based on the minimization of a single D-gap function ϕα,β for some fixed
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Table 5 γ = 0.4, δ = 0.4, η = 0.9, αk = 1/3k, β′
i = 99 + 3i.

σk θk iterations null steps β updates opt. pbs
1/(1 + k2) 0 135.77 105.56 4.31 171.56
1/(1 + k2) 0.5 182.81 150.64 4.28 218.84
1/(1 + k2) 1/[1 + (k + 1)2] 136.14 105.92 4.32 171.95
1/(1 + k2) 1/3k+1 135.77 105.56 4.31 171.56

1/3k 0 29.99 8.41 5.41 61.42
1/3k 0.5 32.81 9.18 4.85 64.22
1/3k 1/[1 + (k + 1)2] 30.09 8.44 5.44 61.62
1/3k 1/3k+1 29.99 8.41 5.41 61.42

0 0.5 18.06 1.00 6.00 41.12
0 1/[1 + (k + 1)2] 18.06 1.00 7.00 42.12
0 1/3k+1 18.06 1.00 7.09 42.21

values of α and β. Another meaningful difference with the algorithm of this
paper is that they exploit search directions other than yα(xk)− yβ(xk).

The first algorithm (see [8,13]) performs an inexact line search along the
direction yα(xk) − yβ(xk) + ρs(xk) for some suitable fixed ρ > 0, where the
additional term s(xk) = α[xk − yα(xk)] − β[xk − yβ(xk)] is needed to guar-
antee descent without changing α and β. Since it was the first method to be
developed, it will be referred to as the “basic algorithm”.

The other algorithm (see [24,25]) tries to exploit the same direction dk =
yα(xk)− xk which is used by the algorithms based on gap functions (see, for
instance, [2]). If xk + dk provides a large enough improvement of the value
of the D-gap function, it is taken as the new iterate; otherwise, an inexact
line search along either dk or −∇ϕα,β(xk) is performed. Since the algorithm
combines together features of both the gap and D-gap function approaches, it
will be referred to as the “hybrid algorithm”.

In order to converge to a solution of (EP) both algorithms require the
boundedness of the sublevel sets of ϕα,β (see also Section 3.1). In addition, the
basic algorithm requires that the mappings ∇xf(x, ·) are strongly monotone
and Lipschitz continuous uniformly with respect to x ∈ Rn, while the hybrid
algorithm requires that the mappings ∇xf(x, ·) are strictly monotone. As a
consequence, the noncooperative games of the previous subsection can not be
used as test problems to compare the three algorithms, since the mappings
∇xf(x, ·) are monotone but neither strictly nor strongly monotone.

We tested the algorithms on the so-called linear equilibrium problems, that
is (EP) with f given by (30) for some r ∈ Rn and some matrices P,Q ∈ Rn×n
such that Q is positive semidefinite. Asking for PT −Q to be positive definite
guarantees the desired properties. In fact, the equality

∇xf(x, y)−∇xf(x, z) = (PT −Q)(y − z)

guarantees that the mappings ∇xf(x, ·) are uniformly strongly monotone and
Lipschitz continuous, with the minimum eigenvalue of the symmetric part of
PT − Q and ‖PT − Q‖ providing the corresponding moduli of uniformity µ
and L.
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Instances have been produced relying on the generator of uniformly dis-
tributed pseudorandom numbers of MATLAB to choose P , Q and r. In partic-
ular, Q = AAT and P = Q+aB BT + b I+ c (S−ST ), where A, B and S are
matrices with pseudorandom elements drawn from the uniform distribution
on [0, 1] and the parameters a, b and c have been exploited to control µ and L.
Finally, the components of r are uniform pseudorandom values in the range
[−1, 1].

Test have been made considering C = [−5, 5]n and taking a vector with
uniform pseudorandom components in the range [−5, 5] as the starting point,
while the same stopping criterion of the previous subsection has been exploited
for all the three algorithms. A preliminary set of tests has been run to set
the parameters. Afterwards, we ran each algorithm on a set of 1000 random
instances for given values of µ and L. When an algorithm did not stop before
solving 1000 optimization problems, we considered it a failure.

Tables ?? and 6 report the performances of the algorithms on instances
with n = 5 and n = 10, respectively. Each row corresponds to a choice of
µ and L and reports the percentage of failures and the average number of
optimization problems required by a single instance. Both tables show that
our algorithm performs better than the two others when the modulus of strong
monotonicity of ∇xf(x, ·) is close to zero, while it behaves at least comparably
with them in the other situations.

Table 6 n = 10.

our algorithm basic algorithm hybrid algorithm
µ L % fail opt. pbs % fail opt. pbs % fail opt. pbs
0.001 0.01 0.8 92.67 99.8 956.00 52.3 91.41
0.001 0.05 0.4 92.20 15.4 522.63 53.2 85.70
0.001 0.1 0.2 91.08 0.1 174.27 53.0 84.60
0.01 0.1 0.5 85.34 24.6 630.38 33.9 84.60
0.01 0.5 0.3 78.32 0.0 73.77 5.8 75.92
0.01 1 0.0 73.05 0.0 68.89 1.1 69.06
0.1 0.2 0.0 51.06 31.6 673.82 0.0 47.32
0.1 0.5 0.0 48.47 0.6 220.35 0.0 44.58
0.1 1 0.0 45.47 2.2 94.32 0.0 41.46
0.3 0.5 0.0 26.91 0.0 211.62 0.0 22.95
0.3 1 0.0 26.08 0.0 73.65 0.0 22.15
0.3 1.5 0.0 25.44 0.0 34.47 0.0 21.39
0.5 0.6 0.0 19.59 0.0 77.62 0.0 15.31
0.5 1 0.0 19.25 0.0 25.26 0.0 15.03
0.5 1.5 0.0 18.99 0.0 31.80 0.0 14.66
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