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INTERIORS OF COMPLETELY POSITIVE CONES

ANWA ZHOU AND JINYAN FAN˚

Abstract. A symmetric matrix A is completely positive (CP) if there exists
an entrywise nonnegative matrix B such that A “ BBT . We characterize the
interior of the CP cone. A semidefinite algorithm is proposed for checking
interiors of the CP cone, and its properties are studied. A CP-decomposition
of a matrix in Dickinson’s form can be obtained if it is an interior of the CP
cone. Some computational experiments are also presented.

1. Introduction

A real n ˆ n symmetric matrix A is completely positive (CP) if there exist
nonnegative vectors b1, ¨ ¨ ¨ , bm P R

n such that

(1.1) A “ b1b
T
1 ` ¨ ¨ ¨ ` bmbTm,

where m is called the length of the decomposition (1.1). The smallest m in the
above is called the CP-rank of A. If A is CP, we call (1.1) a CP-decomposition of
A. Clearly, A is CP if and only if A “ BBT for an entrywise nonnegative matrix B.
Hence, a CP-matrix is not only positive semidefinite but also nonnegative entrywise.

Let Sn be the space of real n ˆ n symmetric matrices. For a cone C Ď Sn, its
dual cone is defined as

C
˚ :“ tG P Sn : xA,Gy ě 0 for all A P Cu,

where xA,Gy “ tracepAGq is the trace inner product. Denote

Cn “ tA P Sn : A “ BBT with B ě 0u, the completely positive cone,

C
˚
n “ tG P Sn : xTGx ě 0 for all x ě 0u, the copositive cone.

Both Cn and C˚
n are proper cones (i.e. closed, pointed, convex and full-dimensional).

Moreover, they are dual to each other [17].
The completely positive cone and copositive cone have wide applications in mixed

binary quadratic programming [6], standard quadratic optimization problems and
general quadratic programming [4], etc. Some NP-hard problems can also be for-
mulated as linear optimization problems over the CP cone and the copositive cone
(cf. [8]). We refer to [3, 5, 14] for the work in the field.

The membership problems for the completely positive cone and the copositive
cone are NP-hard (cf. [1, 13]). To compute a CP-decomposition of a CP-matrix
is also hard. Dickinson & Dür [9] studied the CP-checking and CP-decomposition
of some sparse matrices. Sponseldur & Dür [28] used polyhedral approximations
to project a matrix to Cn; a CP-decomposition of a matrix can be obtained if it
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is an interior of Cn. In [30], a semidefinite algorithm is proposed for solving the
CP-matrix completion problem, which includes the CP-checking as a special case;
a CP-decomposition for a general CP-matrix can be found by the algorithm.

Denote intpCnq and bdpCnq the interior and the boundary of Cn, respectively.
Shaked-Monderer, Bomze, Jarre & Schachinger [27] showed that the maximal CP-
rank of n ˆ n CP-matrices is attained at a positive definite matrix on bdpCnq.
Denote R

n
` :“ tx P R

n | x ě 0u and R
n
`` :“ tx P R

n | x ą 0u. Dür & Still [15]
characterized intpCnq as:

intpCnq “tBBT | B “ pB1, B2q with B1 ą 0 nonsingular, B2 ě 0u

“

$

&

%

m
ÿ

i“1

bib
T
i

ˇ

ˇ

ˇ

ˇ

ˇ

m ě n, bi P R
n
` for all i,

tb1, . . . , bnu Ď R
n
``,

spantb1, . . . , bnu “ R
n

,

.

-

.(1.2)

Dickinson [12] further characterized intpCnq as:

intpCnq “tBBT | rankpBq “ n,B “ pb1, B̃q, b1 P R
n
``, B̃ ě 0u

“
#

m
ÿ

i“1

bib
T
i

ˇ

ˇ

ˇ

ˇ

ˇ

b1 P R
n
``, bi P R

n
` for i “ 2, ¨ ¨ ¨ ,m,

spantb1, ¨ ¨ ¨ , bmu “ R
n

+

.(1.3)

The above characterizations are very useful in checking interiors of Cn.
How do we check whether a matrix is in the interior of Cn if it is not given in Dür

& Still’s form (1.2) or Dickinson’s form (1.3)? Little is known for checking interiors
or boundaries of Cn. In this paper, we characterize interiors of Cn from the view of
optimization. A semidefinite algorithm is proposed to check whether a symmetric
matrix A R Cn, or A P bdpCnq, or A P intpCnq. If A R Cn, we can get a certificate.
If A P Cn, we can get a CP-decomposition of A. Moreover, a CP-decomposition in
Dickinson’s form can also be obtained by a similar algorithm.

The paper is organized as follows. In Section 2, we give a new sufficient and
necessary condition to characterize interiors of Cn. In Section 3, we formulate the
problem of checking the membership and interiors of Cn as the linear optimization
with moments. In Section 4, we present a semidefinite algorithm for the problem.
Its basic properties are also studied. Some computational results are reported in
Section 5. Finally in Section 6, we discuss how to give a CP-decomposition of a
matrix in Dickinson’s form if it is an interior of Cn.

2. A Characterization of interiors

In this section, we characterize interiors of Cn from the view of optimization.

Lemma 2.1. Suppose A P Sn. Then A P intpCnq if and only if for some C P
intpCnq, there exists a λ ą 0 such that A ´ λC P Cn.

Proof. Given A P intpCnq, then there exists a δ ą 0 such that for any D P Sn with
}A ´ D} ď δ, we have D P Cn. Choose an arbitrary C P intpCnq. Obviously, C is
positive and nonsingular. Let λ “ δ{}C}. Then }A´ pA ´ λCq} ď δ, which implies
that A ´ λC P Cn.

Conversely, suppose C P intpCnq and A ´ λC P Cn, where λ ą 0. By (1.2), there
exist B1 ą 0 nonsingular and B2 ě 0 such that C “ pB1, B2qpB1, B2qT . Meanwhile,
there exists a B3 ě 0 such that A ´ λC “ B3B

T
3 . Hence,

A “ λC ` B3B
T
3 “ p

?
λB1,

?
λB2, B3qp

?
λB1,

?
λB2, B3qT .
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So, by (1.2), A P intpCnq. �

Lemma 2.1 gives an equivalent condition for a matrix A to be an interior of
Cn. We wonder how to compute such a λ. This can be done by solving the linear
optimization problem:

pP1q :
"

f˚
1

“ max λ

s.t. A ´ λC P Cn

for some given C P intpCnq. A simple choice of C is In ` En. Here, In denotes
the n ˆ n identity matrix and En the n ˆ n matrix of all ones. By Lemma 2.1, if
f˚
1

ą 0, then A P intpCnq; if f˚
1

“ 0, then A P bdpCnq; if f˚
1

ă 0, then A R Cn.
Since Cn and C˚

n are dual to each other, we know

A R Cn ðñ DX P C
˚
n such that xA,Xy ă 0.(2.1)

Hence, A R Cn if and only if there exists X P C˚
n satisfying

xA,Xy ă 0, xX,Cy “ 1.(2.2)

On the other hand, as shown in [2, 12],

A P intpCnq ðñ xA,Xy ą 0 for all X P C
˚
nzt0u.(2.3)

Hence, A P Cn if and only if for all X P C˚
n with xX,Cy “ 1,

xA,Xy ą 0.(2.4)

Therefore, checking interiors of Cn is equivalent to solving the linear optimization
problem over C˚

n :

pD1q :

$

&

%

g˚
1

“ min xA,Xy
s.t. xX,Cy “ 1

X P C˚
n .

By (2.2) and (2.4), if g˚
1

ą 0, then A P intpCnq; if g˚
1

“ 0, then A P bdpCnq; if
g˚
1

ă 0, then A R Cn.
In fact, the optimization problems (P1) and (D1) are dual to each other. Denote

by Feas(P ) the feasible region of an optimization problem (P ). By the standard
duality theory, we have g˚

1
ě f˚

1
for all X P FeaspD1q and λ P FeaspP1q. This is

referred to as weak duality. If there exists a λ P FeaspP1q such that A´λC P intpCnq,
we say that Slater’s condition holds for (P1) and λ is a strictly feasible point of (P1).
If there exists a X P FeaspD1q X intpC˚

nq, we say that Slater’s condition holds for
(D1) and X is a strictly feasible point of (D1). Under Slater’s conditions, strong
duality holds (i.e. g˚

1
“ f˚

1
).

The optimization problems (P1) and (D1) have the following properties.

Theorem 2.2. Suppose A P Sn and C P intpCnq. Then the optimums of (P1)
and (D1) are finite and equal, and the optimal solution sets of (P1) and (D1) are
nonempty. Furthermore, if f˚

1
ă 0, then A R Cn; if f˚

1
“ 0, then A P bdpCnq; if

f˚
1

ą 0, then A P intpCnq.
Proof. We first show that Slater’s condition holds for (P1). If A “ 0, then all λ ă 0
are strictly feasible points of (P1). If A ­“ 0, due to C P intpCnq, there exists a

δ ą 0 such that D P intpCnq for all D P Sn with }C ´ D} ď δ. Let λ ď ´ }A}
δ
. As

}C ´ pC ´ 1

λ
¨ Aq} ď δ, we have C ´ 1

λ
A P intpCnq. So, A ´ λC P intpCnq. That is,

λ is a strictly feasible point of (P1).
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Choose an arbitrary P P intpC˚
nq. Since C P intpCnq, we have xP,Cy ą 0. Thus,

xP,Cy´1P P FeaspD1q X intpC˚
nq. So, Slater’s condition holds for (D1).

It is obvious that the optimum of (P1) is finite. Therefore, the optimums of (P1)
and (D1) are finite and equal, and the optimal solution sets of (P1) and (D1) are
both nonempty by the duality theory given in [11, Theorems 1.25 and 1.26].

By Lemma 2.1, we obtain the rest part of the theorem. �

Therefore, checking interiors of Cn is equivalent to solving (P1) or (D1). For all
A P Sn and C P intpCnq, a maximizer λ˚ of (P1) always exists. This leads to an
interesting result for A ´ λ˚C.

Proposition 2.3. Suppose A P Sn, C P intpCnq, and λ˚ is a maximizer of (P1).
Then A ´ λ˚C P bdpCnq.
Proof. We prove by contradiction. Obviously, A ´ λ˚C P Cn. Suppose A ´ λ˚C P
intpCnq. Then, there exists a δ ą 0 such that D P Cn for all D P Sn with }A ´
λ˚C ´ D} ď δ. Hence, A ´ pλ˚ ` εqC P Cn for all 0 ă ε ď δ{}C}. Thus λ˚ ` ε is
a feasible point of (P1), which contradicts that λ˚ is the maximizer of (P1). The
proof is completed. �

3. A linear moment optimization approach

As shown above, checking interiors of Cn is equivalent to a linear optimization
problem with Cn. Generally, it is difficult to solve it directly. In this section, we
formulate (P1) as a linear optimization problem with the cone of moments. We
begin with some basics about moments.

3.1. Formulation as a moment problem. A symmetric matrix can be identified
by a vector consisting of its upper triangular entries. Let N be the set of nonnegative
integers. For α “ pα1, ¨ ¨ ¨ , αnq P N

n, denote |α| :“ α1 ` ¨ ¨ ¨ ` αn. Let

(3.1) A :“ tα P N
n : α “ ei ` ej , j ě i, i, j “ 1, ¨ ¨ ¨ , nu,

where ei is the i-th unit vector. So, a matrix A P Sn can be identified as a vector
a as:

a “ paαqαPA P R
A, aα “ Aij if α “ ei ` ej ,

where R
A denotes the space of real vectors indexed by α P A. We call a an A-

truncated moment sequence (A-tms). Let

(3.2) K “ tx P R
n : x2

1 ` ¨ ¨ ¨ ` x2

n ´ 1 “ 0, x1 ě 0, ¨ ¨ ¨ , xn ě 0u
be the nonnegative part of the unit sphere. Every nonnegative vector is a multiple of
a vector in K. So, by (1.1), A P Cn if and only if there exist vectors b1, ¨ ¨ ¨ , bm P K

and ρ1, ¨ ¨ ¨ , ρm ą 0 such that

(3.3) A “ ρ1b1b
T
1 ` ¨ ¨ ¨ ` ρmbmbTm.

The A-truncated K-moment problem (A-TKMP) studies whether or not a given
A-tms a admits a K-measure µ, i.e., a nonnegative Borel measure µ supported in
K such that

aα “
ż

K

xαdµ, @α P A,

where xα :“ xα1

1
¨ ¨ ¨xαn

n . A measure µ satisfying the above is called aK-representing
measure for a. A measure is called finitely atomic if its support is a finite set, and
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is called m-atomic if its support consists of at most m distinct points. We refer
to [23] for representing measures of truncated moments sequences.

Hence, by (3.3), a symmetric matrix A, with the identifying vector a P R
A, is

completely positive if and only if a admits an m-atomic K-measure, i.e.,

(3.4) a “ ρ1rb1sA ` ¨ ¨ ¨ ` ρmrbmsA,
where each bi P K, ρi ą 0, and

rbsA :“ pbαqαPA.

In other words, checking CP is equivalent to an A-TKMP with A and K given in
(3.1) and (3.2) respectively.

Denote
RrxsA :“ spantxα : α P Au.

We say RrxsA is K-full if there exists a polynomial p P RrxsA such that p|K ą 0
(cf. [16]). An A-tms a P R

A defines an A-Riesz functional La acting on RrxsA as

(3.5) Lap
ÿ

αPA

pαx
αq :“

ÿ

αPA

pαaα.

For convenience, we also denote xp, ay :“ Lappq. Let
N

n
d :“ tα P N

n : |α| ď du
and

Rrxsd :“ spantxα : α P N
n
du.

For s P R
N

n
2k and q P Rrxs2k, the k-th localizing matrix of q generated by s is the

symmetric matrix L
pkq
q psq satisfying

(3.6) Lspqp2q “ vecppqT pLpkq
q psqqvecppq, @p P Rrxsk´rdegpqq{2s.

In the above, vecppq denotes the coefficient vector of p in the graded lexicograph-
ical ordering, and rts denotes the smallest integer that is not smaller than t. In

particular, when q “ 1, L
pkq
1

psq is called a k-th order moment matrix and denoted
as Mkpsq. We refer to [16, 18, 23] for more details about localizing and moment
matrices.

Denote the polynomials:

hpxq :“ x2

1 ` ¨ ¨ ¨ ` x2

n ´ 1, g0pxq :“ 1, g1pxq :“ x1, ¨ ¨ ¨ , gnpxq :“ xn.

Note that K given in (3.2) is nonempty compact. We can also describe K equiva-
lently as

(3.7) K “ tx P R
n : hpxq “ 0, gpxq ě 0u,

where gpxq “ pg0pxq, g1pxq, ¨ ¨ ¨ , gnpxqq. As shown in [23], a necessary condition for
s P R

N
n
2k to admit a K-measure is

(3.8) L
pkq
h psq “ 0, and Lpkq

gj
psq ľ 0, j “ 0, 1, ¨ ¨ ¨ , n.

If, in addition to (3.8), s satisfies the rank condition

(3.9) rankMk´1psq “ rankMkpsq,
then s admits a unique K-measure, which is rankMkpsq-atomic (cf. Curto and
Fialkow [7]). We say that s is flat if both (3.8) and (3.9) are satisfied.

Given two tms’ y P R
N

n
d and z P R

N
n
e , we say z is an extension of y, if d ď e

and yα “ zα for all α P N
n
d . We denote by z|A the subvector of z, whose entries
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are indexed by α P A. For convenience, we denote by z|d the subvector z|Nn
d
. If z

is flat and extends y, we say z is a flat extension of y. Note that an A-tms a P R
A

admits a K-measure if and only if it is extendable to a flat tms z P R
N

n
2k for some

k (cf. [23]). By (3.4), a matrix A is CP if and only if its identifying vector a has a
flat extension.

3.2. Linear optimization with moments. Let A and K be given as (3.1) and
(3.7), respectively. Denote

RApKq “ ta P R
A : measpa,Kq ‰ Hu,

where measpa,Kq is the set of all K-measures admitted by a. By (3.4), RApKq is
the CP cone (cf. [24]).

Suppose A P Sn and C P intpCnq. Let a, c P RApKq be the identifying vectors
of A and C, respectively. Replacing Cn by RApKq, we formulate (P1) as the linear
optimization problem with the cone of moments:

pP2q :
"

f˚
2

“ max λ

s.t. a ´ λc P RApKq.
Similar to Theorem 2.2, we have:

Proposition 3.1. Suppose A P Sn and C P intpCnq. Then, the optimum f˚
2

of
(P2) is finite. Furthermore, if f˚

2
ă 0, then A R Cn; if f

˚
2

“ 0, then A P bdpCnq; if
f˚
2

ą 0, then A P intpCnq.
Actually, we can further formulate (P2) in the form with RApKq and some linear

constraints. Obviously, c ­“ 0. Suppose tp1, ¨ ¨ ¨ , pn̄u is a basis of the orthogonal

complement of spantcu, where n̄ “ npn`1q
2

´ 1. Let

(3.10) p0 “ pcT cq´1c.

Then,

(3.11) xp0, cy “ 1, xpi, cy “ 0, i “ 1, ¨ ¨ ¨ , n̄.
Hence, z “ a ´ λc for some λ if and only if

(3.12) pTi z “ pTi a, i “ 1, ¨ ¨ ¨ , n̄.
Moreover,

(3.13) λ “ pcT cq´1cT pa ´ zq.
The vectors pi can also be considered as polynomials in RrxsA. Note that

(3.14) xp0, zy “ pcT cq´1cT z “ ´λ ` pcT cq´1cTa.

By (3.12)-(3.14), we know (P2) is equivalent to

pP3q :

$

&

%

f˚
3

“ min xp0, zy
s.t. xpi, zy “ pTi a, i “ 1, ¨ ¨ ¨ , n̄

z P RApKq.
Proposition 3.2. Suppose A P Sn and C P intpCnq. If z˚ is a minimizer of (P3),
then

(3.15) λ˚ “ pcT cq´1cT pa ´ z˚q
is a maximizer of (P2), and vice versa.



INTERIORS OF COMPLETELY POSITIVE CONES 7

4. A semidefinite algorithm for checking interiors

In this section, we present a semidefinite algorithm for checking the membership
and interiors of Cn. The cone RApKq is typically difficult to describe. However, it
has nice semidefinite relaxations.

Let h and g be as in (3.7). For each k P N, denote

(4.1) Γkph, gq “
!

y P R
N

n
2k : L

pkq
h pyq “ 0, Lpkq

gj
pyq ľ 0, j “ 0, 1, ¨ ¨ ¨ , n

)

.

By (3.8) and (3.9), we relax RApKq by Γkph, gq. Then the k-th order relaxation of
(P2) is

pP k
2 q :

#

fk
2 “ max

λ,y
λ

s.t. a ´ λc “ y|A, y P Γkph, gq.
Since FeaspP2q Ď FeaspP k

2 q, we have fk
2 ě f˚

2
for all k. If fk

2 ă 0, then, by Theorem
2.2, A R Cn. Let λ˚,k be the maximizer of (P k

2 ). If apλ˚,kq :“ a ´ λ˚,kc P RApKq,
then f˚

2
“ fk

2 and λ˚,k is the maximizer of (P2), i.e., the relaxation (P k
2 ) is tight

for (P2). If f
k
2 “ 0, then A P bdpCnq; otherwise A P intpCnq.

Based on the above, we propose a semidefinite algorithm for checking interiors
of Cn.

Algorithm 4.1. An algorithm for checking interiors of Cn.
Input: A P Sn and K as (3.2).
Output: An answerA R Cn, orA P bdpCnq orA P intpCnq, with a CP-decomposition.
Procedure:

Step 0: Let k :“ 1.
Step 1: Compute an optimal pair pλ˚,k, y˚,kq of (P k

2 ).
Step 2: If fk

2 ă 0, output A R Cn and stop. Otherwise, let t :“ 1.
Step 3: Let v :“ y˚,k|2t. If the rank condition (3.9) is not satisfied, go to Step

6.
Step 4: If fk

2 “ 0, output A P bdpCnq and stop. Otherwise, go to Step 5.
Step 5: Compute the finitely atomic measure µ admitted by v:

µ “ ρ1δpb1q ` ¨ ¨ ¨ ` ρmδpbmq,
where m “ rankpMtpvqq, bi P K, ρi ą 0, and δpbiq is the Dirac measure supported
on the points bi P K. Output A P intpCnq with a CP-decomposition of A (3.3) and
stop.

Step 6: If t ă k, set t :“ t ` 1 and go to Step 3; otherwise, set k :“ k ` 1 and
go to Step 1.

Algorithm 4.1 gives a certificate for whether A R Cn, or A P bdpCnq, or A P
intpCnq. A CP-decomposition can also be obtained if A P Cn.

Remark 4.2. We use Henrion and Lasserre’s method [19] to get a m-atomic K-
measure for y˚,k. The CP-decomposition of the boundary point A ´ λ˚C (see
Proposition 2.3) is computed, with which the CP-decomposition of A can be further
obtained if A P Cn (i.e. λ˚ ě 0).

Remark 4.3. We apply Step 3 - Step 6 to check whether apλ˚,kq :“ a ´ λ˚,kc P
RApKq or not. It might be possible that apλ˚,kq belongs to RApKq while y˚,k|2t is
not flat for all t. In such cases, we can apply Algorithms given in [23, 30] to check
if apλ˚,kq P RApKq or not. In computational experiments, the finite convergence
always occurs.
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Remark 4.4. In Step 1, we solve (P k
2 ). By Proposition 3.2, we can instead solve

the relaxation of (P3):

pP k
3 q :

$

&

%

fk
3 “ min xp0, zy

s.t. xpi, zy “ pTi a, i “ 1, ¨ ¨ ¨ , n̄
z “ y|A, y P Γkph, gq.

Proposition 4.5. Suppose A P Sn and C P intpCnq. If z˚,k is a minimizer of (P k
3 ),

then

(4.2) λ˚,k “ pcT cq´1cT pa ´ z˚,kq
is a maximizer of (P k

2 ), and vice versa.

Since K as in (3.7) is nonempty compact and A as in (3.1) is finite, RrxsA
is K-full (cf. [30]). Note that (P2) always has feasible points. Combining Nie’s
result [24, Theorem 4.3] with Proposition 3.2 and Proposition 4.5, we have the
following asymptotic convergence of Algorithm 4.1.

Proposition 4.6. Algorithm 4.1 has the following properties:

(i) For all k sufficiently large, (P k
2 ) has a maximizing pair pλ˚,k, y˚,kq.

(ii) The sequence tλ˚,ku is monotonically decreasing and converges to the max-
imizer of (P2). Furthermore, the sequence tλ˚,ku is bounded, and each of
its accumulation points is a maximizer of (P2).

The finite convergence also happens, under some general conditions in optimiza-
tion [24].

5. Numerical experiments

In this section, we present numerical experiments for checking the membership
and interiors of Cn by using Algorithm 4.1. A CP-decomposition of a matrix is also
given if it is CP. We use softwares GloptiPoly 3 [20] and SeDuMi [29] to solve (P k

3 )
in Step 1 of Algorithm 4.1. If |λ˚,k| ă 10´4, we regard that the matrix is on the
boundary of Cn.

Example 5.1. Consider the matrix A given as (cf. [3, Example 2.9]):

(5.1) A “

¨

˚

˚

˚

˚

˝

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

˛

‹

‹

‹

‹

‚

.

We have A R C5 (cf. [3]). We apply Algorithm 4.1 to verify this fact. Choose
C “ I5 ` E5. Then the identifying vector of C is

c “ p2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2qT .
We can choose

pi “ ´e1 ` ei`1, i P T1 “ t5, 9, 12, 14u ,
pi “ ´e1 ` 2ei`1, i P t1, . . . , 14uzT1

to be basis vectors of spantcuK. Let

p0 “ pcT cq´1c “ 1

30
¨ c.

Since λ˚,k “ ´0.3982 ă 0 at k “ 1, we know A R C5.
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Example 5.2. Consider the matrix A given as (similar to [3, Exercise 2.22]):

(5.2) A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 1 0 0 0 0 1
1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1
1 0 0 0 0 1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It is shown in [3] that nonnegative symmetric diagonally dominant matrices are
completely positive. So, A P C7. Since A č 0, we have A P bdpC7q. We now verify
it by Algorithm 4.1. Choose C “ I7 ` E7. Then the identifying vector of C is

c “ p2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2qT.

We choose

pi “ ´e1 ` ei`1, i P T2 “ t7, 13, 18, 22, 25, 27u ,

pi “ ´e1 ` 2ei`1, i P t1, . . . , 27uzT2

to be basis vectors of spantcuK. Let

p0 “ pcT cq´1c “ 1

49
¨ c.

Algorithm 4.1 terminates at k “ 4, with |λ˚,k| “ 2.0815e´008 ă 10´4 and ypλ˚,kq P
RApKq. As λ˚,k « 0, we regard A P bdpC7q. We obtain the CP-decomposition

A “ ř7

i“1
ρibib

T
i , where the points and their weights are:

ρ1 “ 2.0000, b1 “ p0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7071, 0.7071qT ,

ρ2 “ 2.0000, b2 “ p0.0000, 0.0000, 0.0000, 0.0000, 0.7071, 0.7071, 0.0000qT ,

ρ3 “ 2.0000, b3 “ p0.7071, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7071qT ,

ρ4 “ 2.0000, b4 “ p0.0000, 0.0000, 0.7071, 0.7071, 0.0000, 0.0000, 0.0000qT ,

ρ5 “ 2.0000, b5 “ p0.0000, 0.7071, 0.7071, 0.0000, 0.0000, 0.0000, 0.0000qT ,

ρ6 “ 2.0000, b6 “ p0.0000, 0.0000, 0.0000, 0.7071, 0.7071, 0.0000, 0.0000qT ,

ρ7 “ 2.0000, b7 “ p0.7071, 0.7071, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000qT .

In fact, we get the minimal CP-decomposition (cf. [27, Remark 3.1]).

Example 5.3. Consider the matrix A given as:

(5.3) A “

»

—

—

—

—

—

—

–

2 1 1 1 1 2
1 2 3 1 1 1
1 3 6 4 1 1
1 1 4 11 3 1
1 1 1 3 9 3
2 1 1 1 3 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Since A can be written as

A “

¨

˚

˚

˚

˚

˚

˚

˝

1
1
1
1
1
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1
1
1
1
1
1

˛

‹

‹

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˚

˚

˝

0
1
2
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0
1
2
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˚

˚

˝

0
0
1
3
0
0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0
0
1
3
0
0

˛

‹

‹

‹

‹

‹

‹

‚

T

(5.4)

`

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
1
2
0

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
1
2
0

˛

‹

‹

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
2
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
2
1

˛

‹

‹

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˚

˚

˝

1
0
0
0
0
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1
0
0
0
0
1

˛

‹

‹

‹

‹

‹

‹

‚

T

,

by Dickinson’s result (1.3), A P intpC6q. We now verify it by Algorithm 4.1. Choose
C “ I6 ` E6. Then the identifying vector of C is

c “ p2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2qT .
Choose

pi “ ´e1 ` ei`1, i P T1 “ t6, 11, 15, 18, 20u ,
pi “ ´e1 ` 2ei`1, i P t1, . . . , 20uzT1

to be basis vectors of spantcuK. Let

p0 “ pcT cq´1c “ 1

39
¨ c.

Algorithm 4.1 terminates at k “ 3, with λ˚,k “ 0.0726 ą 0. So, A P intpC6q. We

obtain the CP-decomposition A “ 0.0726 ¨ pI6 ` E6q `
ř7

i“1
ρibib

T
i , where

ρ1 “ 2.9447, b1 “ p0.1034, 0.0000, 0.1929, 0.9757, 0.0000, 0.0000qT,
ρ2 “ 5.5366, b2 “ p0.0945, 0.0561, 0.4340, 0.8734, 0.0000, 0.1918qT,
ρ3 “ 5.8588, b3 “ p0.0000, 0.0030, 0.0000, 0.6941, 0.7199, 0.0000qT,
ρ4 “ 3.0631, b4 “ p0.0986, 0.3668, 0.7263, 0.5729, 0.0000, 0.0000qT,
ρ5 “ 4.1047, b5 “ p0.0790, 0.5271, 0.8462, 0.0000, 0.0000, 0.0000qT,
ρ6 “ 2.8900, b6 “ p0.7372, 0.2209, 0.0000, 0.0000, 0.0000, 0.6386qT,
ρ7 “ 7.7308, b7 “ p0.1383, 0.1364, 0.1383, 0.0000, 0.8676, 0.4365qT.

6. Dickinson’s form

We present Algorithm 4.1 for checking the membership and interiors of Cn. If
A P Cn, Algorithm 4.1 can give a CP-decomposition of A. Actually, we can also
design a similar algorithm to give a CP-decomposition of A in Dickinson’s form if
A P intpCnq.
Lemma 6.1. Suppose A P Sn. Then A P intpCnq if and only if rankpAq “ n and,
for some b1 P Rn

``, there exists a λ ą 0 such that A ´ λb1b
T
1 P Cn.

The proof of Lemma 6.1 is similar to that of Lemma 2.1, so we omit here.
Lemma 6.1 gives an equivalent characterization of the interior of Cn. Therefore, we
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can also transform the problem of checking interiors of Cn to the following linear
optimization problem:

pP̄1q :
"

f̄˚
1

“ max λ

s.t. A ´ λb1b
T
1 P Cn,

where b1 P Rn
``. A simple choice of b1 is 1n, the n dimensional vector of all

ones. The difference between pP̄1q and pP1q is that we use b1b
T
1 P bdpCnq instead of

C P intpCnq.
By repeating similar arguments as in Sections 2 and 3, we can get

(1) If pP̄1q is infeasible, then A R Cn.
(2) If pP̄1q is feasible, we have:

(i) If f̄˚
1

ă 0, then A R Cn.
(ii) If f̄˚

1
“ 0, then A P bdpCnq.

(iii) If f̄˚
1

ą 0 and rankpAq ă n, then A P bdpCnq.
(iv) If f̄˚

1
ą 0 and rankpAq “ n, then A P intpCnq.

We formulate pP̄1q as the linear optimization problem:

pP̄2q :
"

f̄˚
2

“ max λ

s.t. a ´ λb̄ P RApKq,

where a and b̄ are the identifying vectors of A and b1b
T
1 , respectively. The k-th

order semidefinite relaxation of pP̄2q is

pP̄ k
2 q :

#

f̄k
2 “ max

λ,y
λ

s.t. a ´ λb̄ “ y|A, y P Γkph, gq.
We present another algorithm for checking the membership and interiors of Cn

as follows.

Algorithm 6.2.

Input: A P Sn and K as (3.2).
Output: A R Cn, or A P bdpCnq, or A P intpCnq with a CP-decomposition in
Dickinson’s form (1.3).
Procedure:

Step 0: Let k :“ 1.
Step 1: Solve the relaxation (P̄ k

2 ). If (P̄ k
2 ) is infeasible, stop and output that

A R Cn; otherwise, compute an optimal pair pλ˚,k, y˚,kq of (P k
2 ).

Step 2: If f̄k
2 ă 0, stop and output that A R Cn; else let t :“ 1.

Step 3: Let v :“ y˚,k|2t. If the rank condition (3.9) is not satisfied, go to Step
6.

Step 4: Compute the finitely atomic measure µ admitted by v:

µ “ ρ2δpb2q ` ¨ ¨ ¨ ` ρmδpbmq,
where m “ rankpMtpvqq, bi P K, ρi ą 0, and δpbiq is the Dirac measure supported
on the point bi P K.

Step 5: If rankpAq ă n or fk
2 “ 0, output A P bdpCnq with a CP-decomposition

and stop. Otherwise, output A P intpCnq with a CP-decomposition of A in Dickin-
son’s form (1.3) and stop.

Step 6: If t ă k, set t :“ t ` 1 and go to Step 3; otherwise, set k :“ k ` 1 and
go to Step 1.
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Algorithm 6.2 can check whether a matrix A P Sn is CP or not. If it is CP,
Algorithm 6.2 can further check whether A P bdpCnq or A P intpCnq. If A P intpCnq,
a CP-decomposition of A in Dickinson’s form (1.3) can be given. The convergence
results of Algorithm 6.2 are similar to those of Algorithm 4.1, so we omit here.

We test Algorithm 6.2 on some examples.

Example 6.3. Consider the matrix A given as (5.3). We now use Algorithm 6.2
to verify A P intpC6q. Let b1 “ 16. Then the identifying vector of b1b

T
1 is b̄ “ 121.

b̄ “ p1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1qT .

Choose

pi “ ´e1 ` ei`1, i P t1, . . . , 20u
to be basis vectors of spantb̄uK, and let

p0 “ pb̄T b̄q´1b̄ “ 1

21
¨ b̄.

Algorithm 6.2 terminates at k “ 3, with λ˚,k “ 1.0000 ą 0 and ypλ˚,kq P RApKq.
So, A P intpC6q. We obtain the CP-decomposition A “

ř6

i“1
ρibib

T
i in Dickinson’s

form, where

ρ1 “ 1.0000, b1 “ p1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000qT ,
ρ2 “ 5.0000, b2 “ p0.0000, 0.4472, 0.8944, 0.0000, 0.0000, 0.0000qT ,
ρ3 “ 10.0000, b3 “ p0.0000, 0.0000, 0.3162, 0.9487, 0.0000, 0.0000qT ,
ρ4 “ 5.0000, b4 “ p0.0000, 0.0000, 0.0000, 0.0000, 0.8944, 0.4472qT ,
ρ5 “ 2.0000, b5 “ p0.7071, 0.0000, 0.0000, 0.0000, 0.0000, 0.7071qT ,
ρ6 “ 5.0000, b6 “ p0.0000, 0.0000, 0.0000, 0.4472, 0.8944, 0.0000qT .

The computed decomposition above is the same as (5.4).

Example 6.4. Consider the matrix A given as (cf. [28]):

(6.1) A “

¨

˚

˚

˚

˚

˝

2 1 1 1 2
2 2 2 1 1
1 2 6 5 1
1 1 5 6 2
2 1 1 2 3

˛

‹

‹

‹

‹

‚

.

Since A can be written as

(6.2)

A “

¨

˚

˚

˚

˚

˝

1
1
1
1
1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1
1
1
1
1

˛

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˝

0
1
1
0
0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

0
1
1
0
0

˛

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˝

0
0
2
2
0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

0
0
2
2
0

˛

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˝

0
0
0
1
1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

0
0
0
1
1

˛

‹

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˚

˝

1
0
0
0
1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1
0
0
0
1

˛

‹

‹

‹

‹

‚

T

,
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by Dickinson’s form (1.3), A P intpC5q. Moreover, the decomposition above is
minimal (cf. [12]). We verify A P intpC5q by Algorithm 6.2. Choose b1 “ 15. Then
the identifying vector of b1b

T
1 is b̄ “ 115. Choose

pi “ ´e1 ` ei`1, i “ 1, . . . , 14

to be basis vectors of spantb̄uK, and let

p0 “ pb̄T b̄q´1b̄ “ 1

15
¨ 115.

Algorithm 6.2 terminates at k “ 3, with λ˚,k “ 1.0000 ą 0 and ypλ˚,kq P RApKq.
So, A P intpC5q. We obtain the CP-decomposition A “ ř5

i“1
ρibib

T
i in Dickinson’s

form, where

ρ1 “ 1.0000, b1 “ p1.0000, 1.0000, 1.0000, 1.0000, 1.0000qT,
ρ2 “ 2.0000, b2 “ p0.0000, 0.0000, 0.0000, 0.7071, 0.7071qT,
ρ3 “ 8.0000, b3 “ p0.0000, 0.0000, 0.7071, 0.7071, 0.0000qT,(6.3)

ρ4 “ 2.0000, b4 “ p0.7071, 0.0000, 0.0000, 0.0000, 0.7071qT,
ρ5 “ 2.0000, b5 “ p0.0000, 0.7071, 0.7071, 0.0000, 0.0000qT.

The computed decomposition (6.3) is the same as (6.2). We get a minimum CP-
decomposition.
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