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Abstract The extension of estimation of distribution algorithms (EDAs) to the multi-
objective domain has led to multi-objective optimization EDAs (MOEDASs). Most MOEDAS
have limited themselves to porting single-objective EDAs to the multi-objective domain.
Although MOEDASs have proved to be a valid approach, the last point is an obstacle to the
achievement of a significant improvement regarding “standard” multi-objective optimization
evolutionary algorithms. Adapting the model-building algorithm is one way to achieve a sub-
stantial advance. Most model-building schemes used so far by EDAs employ off-the-shelf
machine learning methods. However, the model-building problem has particular requirements
that those methods do not meet and even evade. The focus of this paper is on the model-
building issue and how it has not been properly understood and addressed by most MOEDAs.
We delve down into the roots of this matter and hypothesize about its causes. To gain a deeper
understanding of the subject we propose a novel algorithm intended to overcome the draw-
backs of current MOEDAs. This new algorithm is the multi-objective neural estimation of
distribution algorithm (MONEDA). MONEDA uses a modified growing neural gas network
for model-building (MB-GNG). MB-GNG is a custom-made clustering algorithm that meets
the above demands. Thanks to its custom-made model-building algorithm, the preservation
of elite individuals and its individual replacement scheme, MONEDA is capable of scalably

B Luis Marti
Imarti @ele.puc-rio.br; Imarti @ic.uff.br

Jesis Garcia
jgherrer@inf.uc3m.es

Antonio Berlanga
aberlan@ia.uc3m.es

José M. Molina
molina@ia.uc3m.es

Institute of Computing, Universidade Federal Flumense, Av. Gal. Milton Tavares de Souza, Niter6i,
Rio de Janerio 24210-346, Brazil

Group of Applied Artificial Intelligence, Department of Informatics, Universidad Carlos III de
Madrid, Av. de la Universidad Carlos III, 22, Colmenarejo, 28270 Madrid, Spain

Published online: 19 March 2016 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-016-0415-7&domain=pdf

J Glob Optim

solving continuous multi-objective optimization problems. It performs better than similar
algorithms in terms of a set of quality indicators and computational resource requirements.

Keywords Multi-objective optimization problems - Estimation of distribution algorithms -
Model-building problem - Neural networks - Growing neural gas

1 Introduction

Most real-world optimization problems involve optimizing more than one goal. This class
of problems is known as multi-objective optimization problems (MOPs). In these problems
the optimizer must find one or more feasible solutions that fit the extreme values (either
maximum or minimum) of two or more functions subject to a set of constraints. Therefore,
an optimizer’s solution is a set of equally good, trade-off solutions. The application of evo-
lutionary computation (EC) [43] to MOPs has prompted the creation of what has been called
multi-objective optimization evolutionary algorithms (MOEAs) [34,44]. Although MOEAs
have successfully solved many complex synthetic and real-life problems, the majority of
research has focused on low dimensional problems [45]. MOPs have two main dimensions.
One concerns the decision variables, and the other has to do with the number of functions to
be optimized. Although the increase in the number of decision variables has a direct impact
on the computational cost of evaluating the functions, the addition of more functions is a
much tougher issue [72].

This type of problems, although counterintuitive and hard to visualize for a human decision
maker, are not uncommon in real-life engineering practice (c.f. [122]).

When advancing towards higher dimensions of the objective space, the optimization algo-
rithms suffer heavily under the curse of dimensionality [13], requiring an exponential increase
of the available resources (see Khare et al. [71], Purshouse and Fleming [113] and [44,
pp. 414-419)).

A viable approach to this issue is to employ cutting-edge evolutionary algorithms that
would deal with high-dimensional problems more efficiently. Estimation of distribution algo-
rithms (EDAs) [80,83,108] are good candidates for such tasks. EDAs have been claimed to
constitute a paradigm shift in the evolutionary computation field. Instead of applying evolu-
tionary operators, they create a statistical model of the fittest elements of the population in a
process known as model-building. This model is then sampled to produce new elements.

The extension of EDAs to the multi-objective domain has led to multi-objective optimiza-
tion EDAs (MOEDAS) [109]. So far, most MOEDAs are extensions of single-objective EDAs
to the multi-objective domain. Although MOEDAs have proved to be a valid approach to
MOPs, this last point is an obstacle to the achievement of a significant improvement regarding
“standard” multi-objective optimization evolutionary algorithms.

Current MOEDASs might have a set of properties stopping them from being a substantial
improvement on MOEAs. In particular, we have identified three of such issues: the incorrect
treatment of data outliers, the loss of population diversity, and the excess computational effort
spent on finding an optimal model of the fittest population elements.

These issues can be traced back to the single-objective predecessor of most MOEDAs
and their respective model-building algorithms. Most model-building schemes used so far by
EDAs employ off-the-shelf machine learning methods. However, the research community in
this area has failed to acknowledge that the model-building problem has particular require-
ments that ready-made methods do not meet and even contradict. Furthermore, when scaling
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up the number of objectives this situation is frequently aggravated by the implications of the
curse of dimensionality.

The data outliers issue is a good example of how the MOEDA community has overlooked
the model-building issue. In common machine-learning practice, outliers are considered as
noisy or irrelevant data. However, outliers should be kept in the model-building data set, as
they represent newly discovered or candidate search space regions and therefore must be
explored. In this case, these instances should be at least as equally represented by the model
as the others that are forming groups.

Another drawback of most MOEDAs (and most EDAs, for that matter) is the loss of
population diversity. This has already been pointed out, and some proposals have been laid
out for addressing the issue [2,120,134]. This loss of diversity could also be traced back to
the nature of the model-building algorithm.

The third issue that must be dealt with is the waste of computational resources on finding an
optimal description for the subpopulation being modeled. In the model-building case, optimal
model complexity can be sacrificed in the interest of a faster algorithm. This is because, in
this context, the only requirement is to have a model that is, if not optimal, complex enough
to correctly represent the data. This is particularly true when dealing with high-dimensional
MOPs, as, in these cases, there will be large amounts of data to be repeatedly processed in
every iteration.

We argue that an understanding of the nature of the model-building problem and the
application of suitable algorithms is probably the best way of making substantial progress in
this area.

In this paper we examine the model-building issue in depth and introduce a novel MOEDA
that is specially devised for correctly dealing with this question. The proposed algorithm is
called multi-objective neural estimation of distribution algorithm (MONEDA). MONEDA
uses a modified growing neural gas (GNG) network [58] for model-building (MB-GNG),
which is also introduced here. MB-GNG is a custom-made clustering algorithm that meets the
above requirements. Thanks to its custom-made model-building algorithm, the preservation
of elite individuals and the individual replacement scheme, MONEDA is capable of scalably
solving continuous MOPs and perform better than state-of-the-art algorithms in terms of
accuracy and efficiency.

The main contributions of this paper can be summarized as follows:

— we identify and analyze a set of properties of current MOEDA, and their corresponding
model-building algorithms, which are more or less incompatible with the optimization
task;

— we put forward MONEDA, a MOEDA that is able to cope with the requirements of the
task, and;

— we perform a series of comparative experiments to assess whether our proposal actu-
ally tackles this issue properly and how it performs with regard to other MOEDASs and
MOEAs.

The remainder of this paper first lays the theoretical groundwork underlying MONEDA.
Here we also briefly review the major MOEAs and MOEDAs and point out what needs to
be improved to make substantial progress in this field. The model-building GNG is then
detailed, followed by a description of the MONEDA algorithm. After that, a series of well-
known test problems, the DTLZ3, DTLZ6, DTLZ7, WFG1, WFG2 and WFG6 problems
[48,64], are solved with MONEDA and a series of other state-of-the-art algorithms. The
performance of each algorithm is assessed using standard community-accepted indicators
like the convergence indicator, the Pareto-optimal front coverage indicator, the hypervolume
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indicator and the unary additive e-indicator. The number of optimization functions is scaled
up in each step to assess the behavior of the algorithms when exposed to extreme situations.
We conclude with some final remarks, comments and lines for future development.

2 Multi-objective estimation of distribution algorithms

The concept of multi-objective optimization refers to the process of finding one or more
feasible solutions of a problem that fit the extreme values (either maximum or minimum)
of two or more functions at the same time while being subject to a set of constraints. More
formally, a multi-objective optimization problem (MOP) can be defined as:

Definition 1 (Multi-objective Optimization Problem)
minimize F(x) = (fi(x), ..., fu(x)),

subject to ¢y (x), ..., cc(x) <0, )
di(x),....dp(x) =0,
with x € D,
where D is known as the decision space. Functions f1(x), ..., fy(x) are the objective func-
tions. The image set, O, product of the projection of D through functions f1(x), ..., fu(x)is

called objective space (F : D — ©O).Finally,c1(x), ..., cc(x) <0andd;(x),...,dp(x) =
0 express the restrictions set on the values of x.

Generally speaking, this type of problem does not have a single optimal solution. Instead,
an algorithm solving the problem defined in (1) should produce a set containing equally good,
trade-off, optimal solutions. The optimality of a set of solutions can be defined based on the
so-called Pareto dominance relation [99]:

Definition 2 (Pareto Dominance Relation) For the optimization problem specified in (1) and
having x1,x € D. x is said to dominate x (expressed as x1 < x2) iff Vf;, f;(x1) <
fi(x2) and 3f; such that f;(x1) < fi(x2).

The solution of (1) is a subset of D that contains elements that are not dominated by other
elements of D.

Definition 3 (Pareto-optimal Set) The solution of problem (1) is the set D* such that D* € D
and Vx| € D*3x, € D that x5 < x7.

D* is known as the Pareto-optimal set and its image in the objective space is called Pareto-
optimal front, O*.

It is often impossible to find the explicit formulation of D*. Generally, an algorithm solving
(1) yields a discrete local Pareto-optimal set, P*, that approximates D*. The image of P* in
objective space, PF™, is known as the local Pareto-optimal front.

2.1 Evolutionary approaches to multi-objective optimization

A variety of methods have been used to address MOPs [27,50,95]. Of these, evolutionary
algorithms (EAs) [4,5] have proven to be a valid and competent approach from the theoretical
and practical points of view.

“Evolutionary algorithm” is used as a generic term to indicate a population-based meta-
heuristic optimization algorithm that uses mechanisms inspired by the biological theory of
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evolution [42]. Each individual in the population represents a candidate solution for the prob-
lem being solved. A fitness assignment function determines how fit or adapted an individual
is to its environment, or, in other words, how well the solution represented by the individual
performs compared with the rest of the population. Individuals are recombined and improved
using evolutionary operators inspired by the natural processes of reproduction, cross-over
and mutation.

Single-objective EAs have been successfully extrapolated to the multi-objective domain.
This has led to what has been called multi-objective optimization evolutionary algorithms
(MOEAs) [34,44]. Their success is due to the fact that EAs do not make any assumptions
about the underlying fitness landscape. Therefore, they are believed to perform consistently
well across a wide range of problems, although it has been shown that they share theoretical
limits imposed by the no-free-lunch theorem [37]. The parallelism of the search process
results in another important benefit, because these algorithms can produce a set of equally
optimal solutions instead of just one, as many other algorithms do.

The first MOEAs proposed were non-elitist. This group includes the vector evaluated
genetic algorithm (VEGA) [116], the multi-objective genetic algorithm (MOGA) [54,55],
the non-dominated sorting genetic algorithm (NSGA) [121] and the niched-Pareto genetic
algorithm (NPGA) [62] among others. The last three algorithms apply a non-dominated
classification of the population, using another alternative type of selection operators.

Elitist approaches to MOEA are more recent techniques. They include notably the
elitist NSGA (NSGA-II) [47], the strength Pareto evolutionary algorithm (SPEA) [138],
the improved SPEA (SPEA2) [140], Pareto-archived evolution strategy (PAES) [76,77] and
the Pareto envelope-based selection algorithm (PESA) [38,39], among many others.

2.2 Measuring performance

Assessing the results of a multi-objective optimizer has become a major area of research in
the multi-objective community [34], because it is essential to compare the results of applying
different methods. This is not only an important but also a particularly complex task. It
necessarily implies a reduction from an M-dimensional space to a scalar value. In this,
as in any dimensionality reduction, valuable information might be lost, leading to invalid
conclusions. This situation has been thoroughly described in [141,142].
In practice, there are three fundamental aspects that are taken into account when evaluating
the quality of a solution, in particular,
— how close the solutions are to the Pareto-optimal front;
— how much of the Pareto-optimal front is covered by the solutions, and
— how diverse the solutions are in both the decision and objective spaces.
In our experiments, we focused on the first two aspects. Two community-accepted perfor-
mance indicators were chosen in order to gauge the solutions: the unary additive e-indicator
and the hypervolume indicator.

2.2.1 Additive e-indicator

The e-indicators [73,142] are a set of performance indicators that rely on the e-dominance
concept. These indicators measure how close the local Pareto-optimal front, PF7, is to the
global front, O*.

e-dominance is a relaxed version of the domination relation presented in definition 2. It
can be defined in multiplicative and additive terms, but the discussion here is confined to the
additive version, as it is the definition employed in this work.
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Additive e-dominance is defined as:

Definition 4 Additive e-dominance relation. For the optimization problem specified in (1),
where x1,x2 € D, x; is said to additively e-dominate x, (expressed as x| < x») iff
fi(x1) < e+ fi(x2).

The additive epsilon indicator, I.4 (A, B), is a relative indicator that expresses the mini-
mum value of € that is necessary to make a set .A e-dominate a set B3, that is,

I+ (A, B) = inufg {Vy € B, 3x € Asuchthatx <t y}. 2)
€€

The value of the indicator is to be minimized. /.4 < 0 implies that A strictly dominated
B.

To assess the progress of an optimization algorithm, one of the two sets must be substituted
by the global Pareto-optimal front, O, and the other by the actual Pareto-optimal front, PF}.
In practice, however, it is often necessary to generate a discrete version of that set, O, by
sampling O*. The correct determination of this set has a direct impact on the accuracy of the
indicator.

With this, the indicator can be computed at time O (M |A| |B]).

2.2.2 Hypervolume indicator

The hypervolume indicator, /hyp(A), [73,75,139,143] computes the volume of the region,
H, delimited by a given set of points, A, and a set of reference points, V.

Ihyp (A) = volume U hypercube(a, n) | . 3)
VxeA;VyeN

Therefore, larger values of the indicator will indicate better solutions.

To measure the absolute performance of an algorithm the reference points should ideally
be nadir points. These points are the worst elements of O, or, in other words, the elements of
O that do not dominate any other element. To contrast the relative performance of two sets
of solutions, though, one can be used as the reference set. These matters are further detailed
in [73,141].

Having NV, the computation of the indicator is a non-trivial problem. Indeed, its determi-
nation is known to be computationally intensive, thus rendering it unsuitable for problems
with many objectives.

A lot of research has focused on improving the computational complexity of this indicator
as it has a #P-hard complexity [16,17,56,129,130]. According to the most recent results, the
indicator is currently known to be O(nlogn + nM/2) [16] for more than three objectives
(M > 3); O(nlogn) for M = 2,3 [56].

2.3 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) have been claimed to be a paradigm shift in the
field of evolutionary computation. Like EAs, EDAs are population-based optimization algo-
rithms. In EDAs, however, instead of applying the evolutionary operators to the population,
a statistical model of the most promising subset of the population is built. This model is then
sampled to produce new individuals that are merged with the original population according
to a given substitution policy. Because of this model-building feature, EDAs have also been
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called probabilistic-model-building genetic algorithms (PMBGAS) [105]. A framework sim-
ilar to EDAs is proposed by the iterated density estimation evolutionary algorithms (IDEAs)
[23].

The introduction of machine learning techniques implies that these new algorithms do
not have the biological plausibility of their predecessors. In return, they gain the capacity
of scalably solving many challenging problems, often significantly outperforming standard
EAs and other optimization techniques. The early EDAs were intended for combinatorial
optimization, but they have since been extended to continuous domains (see Larrafiaga [79]
for a review).

2.4 Multi-objective estimation of distribution algorithms

Multi-objective optimization EDAs (MOEDASs) [109] are the extensions of EDAs to the
multi-objective domain. Most MOEDAs are a modification of existing EDAs whose fitness
assignment strategy has been replaced by a previously existing method used by MOEAs.

Before going on to discuss the proposal presented in this paper, let us analyze the current
approaches to this topic and briefly highlight their strengths and weaknesses. Note that this
is not meant to be a comprehensive account of EDAs but we will instead focus on EDAs and
their extrapolation to the multi-objective domain. Therefore, we will enumerate only those
algorithms of interest.

2.4.1 Algorithms based on Bayesian networks

A very popular foundation for MOEDAs is a range of EDAs that builds the population model
using a Bayesian network. The Bayesian optimization algorithm (BOA) [104], the estima-
tion of Bayesian network algorithm (EBNA) [51] and the learning factorized distribution
algorithm (LFDA) [96] are members of this group.

The exhaustive synthesis of a Bayesian network [101] from the algorithm’s population
is a NP-hard problem. Therefore, the intention behind the above approaches is to provide
heuristics for building the network of reasonable computational complexity. BOA uses a so-
called K2 metric, based on the Bayesian Dirichlet metric [36], to assess the network quality.
A simple greedy algorithm that adds edges in each iteration. EBNA, on the other hand,
has been tested with different metrics, like the Bayesian information criterion (BIC) [119],
K2+penalty and on testing conditional (in)dependencies between variables. LFDA relies on
the greedy algorithm introduced by FDA. The complexity of the learnt model is controlled
by the BIC criterion in conjunction with the maximum number of incoming edges in the
network constraint.

Most BOA-based MOEDAS are a combination of a BOA-based model-building scheme
with an already existing Pareto-based fitness assignment. This is the case of the multi-
objective BOA (mBOA) [70] that exploits the fitness assignment used in NSGA-II. A later
algorithm based on hierarchical BOA (hBOA) [102,103,106], called mhBOA [69] also used
the same form of fitness assignment. A similar idea is proposed in [81,97], where the mixed
BOA (mBOA) [98] is combined with the SPEA?2 selection scheme to form the multi-objective
mBOA (mmBOA).

Multi-objective real BOA (MrBOA) [1] also extends a preexisting EDA, in this case
the real BOA (rBOA) [3]. RBOA performs a proper problem decomposition by means of
a Bayesian factorization and probabilistic building-block crossover. To do this, it employs
mixture models at the level of subproblems. MrBOA combines the fitness assignment of
NSGA-II with rBOA.
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2.4.2 Multi-objective mixture-based iterated density estimation evolutionary algorithm
(MIDEA)

Another approach to modeling the subset with the best population elements is to apply a
distribution mixture approach. In a series of papers, Bosman and Thierens [22-24,123-125]
proposed several variants of their multi-objective mixture-based iterated density estimation
algorithm (MIDEA). They are based on their IDEA framework. Bosman and Thierens pro-
posed a novel Pareto-based and diversity-preserving fitness assignment function. The model
construction is inherited from the single-objective version. The proposed MIDEAs consid-
ered several types of probabilistic models for both discrete and continuous problems. A
mixture of univariate distributions and a mixture of tree distributions were used for discrete
variables. A mixture of univariate Gaussian models and a mixture of multivariate Gaussian
factorizations were applied for continuous variables. An adaptive clustering method was used
to determine the capacity required to model a population.

MIDEAs do not place any constraints on the location of the centers of the distributions.
Consequently, the MIDEA clustering mechanism does not provide a specific mechanism
to ensure equal coverage of the Pareto-optimal front if the number of representatives in
some parts of the front is much larger than the number of representatives in some other
parts.

The clustering algorithms applied to do this include the randomized leader algorithm [61],
the k-means algorithm [84] and the expectation maximization algorithm [49].

The MIDEA family has been progressively improved. One of such enhancements is
the introduction of the adaptive variance scaling (AVS) and the standard deviation ratio
(SDR) [19]. The AVS and SDR combination helps fight the early reduction of the mix-
ture densities variances and therefore the premature convergence and diversity loss. Another
important milestone has been the introduction of the anticipated mean shift (AMS) that
takes into account the previous values of the means of the distribution to “push” solu-
tions towards the Pareto-optimal front. AMS has been conjointly used with AVS in the
multi-objective adapted maximum-likelihood Gaussian mixture model (MAMalL.GaM-X)
[21].

2.4.3 Regularity model-based multi-objective estimation of distribution algorithm
(RM-MEDA)

The regularity model-based multi-objective estimation of distribution algorithm (RM-
MEDA) [135,136] is based on the regularity property derived from the Karush—-Kuhn-Tucker
condition. This means that, subject to certain constraints, it can be induced that the Pareto-
optimal set, D*, of a continuous multi-objective optimization problem is a piecewise
continuous (M — 1)-dimensional manifold, where M is the number of objectives [95,118].

At each iteration, RM-MEDA models the promising area of the decision space by a
probability distribution, whose centroid is a (M — 1)-dimensional piecewise continuous
manifold. The local principal component analysis algorithm [67] is used to build such a model.
New trial solutions are sampled from the model built thus. Again, the fitness assignment
used is the one proposed by NSGA-II. The main drawback of this algorithm is its high
computational complexity.

It should also be mentioned that the regularity concept has been also introduced to create
models that are used to handle noisy multi-objective optimization problemes with evolution-
ary algorithms [128].
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2.4.4 Multi-objective Parzen EDA (MOPED)

Multi-objective Parzen EDA (MOPED) [40,41] uses the NSGA-II ranking method and the
Parzen estimator [100] to approximate the probability density of solutions lying on the Pareto
front. The proposed algorithm has been applied to different types of test case problems, and
results show a good performance of the overall optimization procedure in terms of the number
of function evaluations.

3 Scalability and the need of a new MOEDA

One topic that has yet to be properly dealt with in the MOEA/MOEDA field is algorithm scal-
ability [32,33] or what has been termed many-objective problems [111,112]. The scalability
issue for these algorithms is stated in terms of two magnitudes:

1. the decision space dimension, D, that is, the number of variables that are involved in the
problem, and;

2. the objective space dimension, O, or in other words, the number of objective functions
to be optimized.

A critical quantity is the objective space dimension as it has been shown experimentally
to have an exponential relation to the optimal size of the population (see Khare et al. [71],
Praditwong and Yao [110], Purshouse and Fleming [113] and Deb [44, pp. 414—419]). This
implies that an exponential amount of resources need to be made available to an optimization
algorithm, as the of the number of objective functions increases.

As already mentioned, a number of works [28,30,45,46] have targeted the minimization of
the number of objective functions to make the problem less complex. Although this research
provide a most useful tool for relieving the workload of a given problem, it does not ultimately
address the key issue: how to create MOEDASs capable of efficiently solving high-dimensional
problems.

This question can be reduced to the problem of how to handle a relatively small population
that does not adequately represent non-dominated and dominated individuals. This renders
approaches based on Pareto dominance useless. Therefore, in order to achieve a sizable
improvement in the scalability of these algorithms, they need to be armed with an efficient,
scalable and robust fitness assignment function and with a purpose-built model-building
algorithm that promotes search and drives the population towards newly found sub-optimal
regions in the objective space.

3.1 Improving the fitness assignment

Finding a better fitness assignment function is a complex issue. As previously discussed,
there is an exponential explosion in the amount of resources required as dimensions grow.
This growth means that the mutual comparison and/or sorting processes that are part of fitness
assignment become very time consuming. One possible solution is to bypass the exponential
relation, but this will probably lead to a situation where many individuals are non-dominated,
and therefore it is impossible to find a correct direction for the search.

A number of works [7,9,11,12,29,137] have proposed the use of performance indicators,
in particular the hypervolume indicator [139,143], as fitness assignment functions. This is a
promising line of research, as these approaches offer a solution in the situations where most
of the population is non-dominated and it is not possible to find a search direction. However,
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this indicator has been shown to be very computationally complex to compute (see Sect. 2.2.2
for further details). Still, some recent developments in this direction [6,16,17] have opened
a door to their application in high-dimensional problems.

3.2 Addressing the model-building issue

Improving the model-building algorithm looks to be a promising direction for research, as it
has, to the best of our knowledge, not been properly addressed. So far, MOEDA approaches
have mostly used off-the-shelf machine learning methods. The characteristics of the task
at hand are different to the features of the tasks for which those methods were originally
designed.

These characteristics, as the introduction of the paper suggests, are:

— incorrect treatment of data outliers;

— loss of population diversity, and

— excess of computational effort for finding an optimal model of the fittest elements of the
population.

These undesirable properties were determined as a result of a set of preliminary studies
[88,91], where we compared the behavior of a set of model-building algorithms under the
same MOEDA framework. That study found that, in high-dimensional problems and under
the same experimental conditions, statistically robust algorithms, like those commonly used
for the synthesis of Bayesian networks [101], were outperformed by “less robust™ approaches
like k-means algorithm [84] or the randomized leader algorithm [20].

The cause of this behavior can be attributed to the fact that statistically rigorous methods
are not specifically meant for the problem we are dealing with here. These behaviors, although
justified in the original field of application of the algorithms, could be an obstacle to process
performance in terms of both accuracy and resource consumption. Two of the above behaviors
are important in this respect: incorrect treatment of outliers and overexpenditure of resources
on finding the optimal model structure or topology.

In the statistical and machine learning areas, data instances that are relatively isolated or
different to the greater masses of data are known as outliers. Historically, these outliers are
treated as unrepresentative, noisy or bogus data.

In model-building, however, all the available data are known beforehand to be valid, as they
represent the best part of the current population. Therefore, no points must be disregarded.
Instead, these outliers are essential, as they represent unexplored or recently discovered areas
of the current Pareto-optimal front. They should not only be preserved but, perhaps, even
reinforced.

A model-building algorithm that primes outliers might actually accelerate the search
process and alleviate the exponential dimension-population size dependency ratio.

Some of the results on diversity loss in other MOEDASs back up this reasoning [2, 120, 134].
This loss of diversity can be traced back to the above issue of outliers in model-building
algorithms. The repetitive application of an algorithm that disregards outliers tends to generate
more individuals in more densely represented areas of the search space. Although there have
been some proposals to circumvent this problem, we take the view that the ultimate solution
is the use of an adequate algorithm.

The root cause of most standard methods disregarding outliers can be traced back to the
error-based learning used in those methods. Error-based learning minimizes a dataset-wise
error. For this reason, infrequent or poorly represented elements are sacrificed in order to
achieve a better overall error.
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Similarly, there is no need for the model-building algorithm to find the least complex
accurate data model. Even so, most of the current approaches dedicate a sizable effort to
finding the optimal model complexity using minimum description length [60], structural risk
minimization [127], Bayesian information criterion [119] or other similar heuristics.

For a thorough discussion of these matters, see [91].

By way of a conclusion to this analysis, and based on the recommendations and ground-
work of our earlier work, there is a clear need for a novel MOEDA that properly addresses the
model-building issue. In the next section we introduce a MOEDA that uses a purpose-built
model-building algorithm to overcome the problems described here.

4 Multi-objective neural EDA

The multi-objective optimization neural estimation of distribution algorithm (MONEDA)
combines the NSGA-II fitness assignment and a model builder that uses a modification of the
growing neural gas network designed for model-building (MB-GNG). The MB-GNG network
is a custom-made model-building algorithm devised to cope with the task specifications.

The NSGA-II fitness assignment is very well understood and has relatively low computa-
tional cost, which explains why it was selected. Also, a more direct comparison with similar
MOEDA approaches using this assignment strategy, since it is the most popular choice. Let
us point out, however, that recent advances in indicator-based fitness assignment have, as
already mentioned, rendered that approach an attractive choice.

Briefly, MONEDA was devised with the following properties in mind:

— scalability: MONEDA is expected to outperform similar algorithms when solving many-
objective problems;

— elitism: as its has proved itself to be a very advantageous feature in evolutionary algo-
rithms, and;

— diversity preservation: in spite of promoting the preservation of the fittest solutions, it is
also essential that the population remains as diverse as possible.

4.1 Model-building with a modified growing neural gas network

Clustering algorithms [15,66,132,133] have been used as part of EDA and MOEDA model-
building algorithms. However, as discussed in the previous section, a purpose-built algorithm
might be a way of achieving a significant improvement in this field.

After surveying the literature for suitable candidates, we chose the growing neural gas
(GNG) network [58] as a starting point. GNG networks are intrinsic self-organizing neural
networks based on the neural gas [93] model. This model relies on a competitive Hebbian
learning rule [92].

Of the vast number of existing clustering methods, we decided to base our approach on
GNG because of its interesting properties, in particular:

— the network is sensitive to outliers [114], which, although undesirable in standard appli-
cations, is a positive feature for model building;

— the network grows to adapt itself automatically to the complexity of the problem being
solved;

— it yields fast convergence to low distortion errors, and these errors are better than those
yielded by “standard” algorithms like k-means clustering, maximum-entropy clustering
and Kohonen’s self-organizing feature maps [93];
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— its learning rule is based on a stochastic gradient descent on an explicit energy surface
[114];

— although it benefits from the topological ordering of the nodes, it does not suffer the
problem associated with Kohonen networks, where a node can pull its neighbors into
invalid or non-representative locations of the input space, and;

— the addition of a cluster repulsion mechanism fosters the exploration of the input space,
assuring that each cluster represents a distinct region of the space.

A GNG network creates an ordered topology of input classes and associates a cumulative
error to each. The topology and the cumulative errors are conjointly used to determine
how new classes should be inserted. Using these heuristics the model can fit the network
dimension to the complexity of the problem being solved. GNG was originally meant to solve
unsupervised learning problems (i.e. clustering and vector quantization); it was extended to
supervised RBF networks [53,57] for the incremental generation of neuro-fuzzy systems
[59].

Our model-building GNG (MB-GNG) is an extension of the original GNG. It introduces
a cluster repulsion term that fosters a better spread of the clusters across the training dataset,
as explained by Timm et al. [126].

MB-GNG is a one-layer network that defines each class as a local Gaussian density and
adapts them using a local learning rule. The layer contains a set of nodes C = {cy, ..., cy+},
with Ng < N* < Nmax. Here Ny and Np,x represent an initial and maximal number of nodes
in the network.

A node c¢; describes a local multivariate Gaussian density that consists of a center, u;,
standard deviations vector, a;. It also has an accumulated error, &;, and a set of edges that
define the set of topological neighbors of ¢;, V;. Each edge has an associated age, v;;.

MB-GNG creates a quantization of the inputs space using a modified version of the GNG
algorithm and then computes the deviations associated with each node.

The dynamics of a GNG network consists of three concurrent processes: network adap-
tation, node insertion and node deletion. The combined use of these three processes renders
GNG training Hebbian in spirit [92].

The network is initialized with Ny nodes with their centers set to randomly chosen inputs.
A training iteration starts after an input x is randomly selected from the training data set.
Then two nodes are selected for being the closest ones to x. The best matching node, cp,

b= argmin d (p;, x), 4)
i=I,.,N*

is the closest node to x. Consequently, the second best matching node, ¢y, is determined as

b'= argmin d(p;, x). (3)
i=1,...N*;i%b

Here d (a, b) is a distance metric. For this research we used d(-) defined as the 2-norm,
d(a,b)=a—b]. (6)

If ¢ is not a neighbor of ¢, then they are linked by a new edge V), = V) U {c} with
zero age, vpy = 0. If, on the other hand, ¢,y € Vp, the age of the corresponding edge is reset
Vpp = 0.

At this point, the age of all edges is incremented by one. If an edge is older than the
maximum age, V;j > Vmax, then the edge is removed. If a node becomes isolated from the
rest, it is also deleted.
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Fig. 1 Schematic representation of MB-GNG learning. Node neighborhood edges are represented by dotted
arcs. The center of the best matching node, i}, is modified according to (8). For the neighbors of ¢, learning
takes place according to (9). For those nodes the learning rule combines a movement towards the input
(represented in green) and a repulsion term which takes into account the distance to neighboring nodes (in
red). This repulsion term avoids the concentration of nodes in the same region of the data space. No learning
takes place on nodes disconnected from cp, like ¢;. (Color figure online)

Clustering error is then added to the best matching node error accumulator,

A&y =d (u;, x)°. )

After that, learning takes place in the best matching node and its neighbors with rates €peg;
and €yic (€pest > €vic), respectively. These two rates gate the movement of the centers of the
nodes involved towards the current input x. Figure 1 shows a diagram of this process.

For ¢}, adaptation follows the rule originally used by GNG,

Apy = €pest (X — 1p) - (®)

However, for the neighbors of ¢, a cluster repulsion term [126] is added to the original
formulation. For such nodes the learning rule combines a movement towards the input and a
repulsion term that takes into account the distance to neighboring nodes. This repulsion term
avoids the meaningless concentration of nodes in the data space and, therefore, promotes a
proper representation of the data set with fewer nodes.

Following that, the learning rule for those nodes can be expressed as, V¢, € Vj,

(7 d(l‘-%vl‘h)) Zcuevb d (”'uv l/«h) (M,v - ILb)
Vsl d (py, )

This approach was already used as part of the robust GNG [114], and has proved to be
useful for obtaining a good spread of the clusters in the input space. Qin and Suganthan [114]
stated that the adaptation rule is not sensitive to its parameters. Here g is an integral multiplier
that defines the amplitude of the repulsive force, whereas ¢ controls the weakening rate of
the repulsive force regarding the distance between node centers. We have set the centers to
B =2and ¢ = 0.1 as suggested by Qin and Suganthan [114].

After a given number, 77, of dataset iterations (epochs in neural networks terminology)
have taken place, it can be presumed that the error accumulators, & have stored enough
information. This information is used to determine where to add new nodes to the network.
In particular, if the current iteration is an integer multiple of 7. and the network has not
reached its maximum size (N* < Npax), then a new node is inserted in the network (Fig. 2).

Ay, = €yic (x — 1) + Be C))
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Parameters:
e Ng and Nmax, bounds on the number of nodes.
® Umax, maximum edge age.
® cpest and €yic, learning rates.
e T, number of dataset iterations before node insertion process.
e J1, 0, error redistribution rates.
e p, stopping threshold.
Initialize t < 0.
Randomly select Ny elements from the dataset and initialize the same number of
nodes using those elements as centers p, and empty Vs.
repeat
Determine best matching node, ¢y, following (4).
Determine second best matching node, ¢/, following (5).
if ¢y € Vp, then
Make ¢ and ¢,/ neighbors,

Vy =Vp U {Cb/}; Vy =V U {Cb}.

end if

Neighborhood edge age is set to vy, = 0.

Update ¢ error accumulator, &, according to (7).

Learning takes place in ¢, as specified in (8).

Veyic € Vp learning is carried out according to (9).

if t mod Ty = 0 and N* < Nmax then
Determine node that has the largest accumulated error, c., and is the worst in
its neighborhood, c./, c./ € Ve.
Dissolve edge between c. and c./,

Ve = Ve \ {Ce’}§ Ve =Ver \ {CE}'

Create a new node between c. and ¢/, as in (10) and (12).
Decrease ce and ¢, accumulated errors, as expressed in (11).
Decrease the errors of the remaining nodes, following (13).
end if
until inequality (14) holds.
Compute the unbiased estimator of the deviations.

Fig. 2 The algorithm of MB-GNG

First, the node with the largest error, c,, is selected. Then, the worst node in its neighbor-
hood, c,, is located. Then N* is incremented, and the new node, ¢+, is inserted between
the two nodes,

My = 0.5 (e + 1yr) - (10)

The edge between ¢, and ¢, is removed, and two new edges are created to connect ¢+ with
¢ and c,s. The accumulated errors are decreased

§e =018, &0 =dibe, an
by arate 0 < 81 < 1. The error of the newly created node is computed as
En+ = 0.5(8 + &0)- 12)
Finally, the errors of all nodes are decreased by a factor g,
& =08g&, i=1,...,N% (13)
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Set s1,...,8sy* =0 and ny,...,ny* = 0.
for all x € ¥ do

Determine the closest node, c. to x.

Se =S¢+ (& — ,uC)QA

Ne = ne + 1.
end for

Compute the deviations as §; = , /3%

ng

Fig. 3 Estimating the unbiased normal estimator of the deviations of a trained GNG

When to stop GNG learning is a non-trivial issue shared by other clustering algorithms
and all reiterative heuristic algorithms. As the main priority here is to cover as much of the
input space as possible, we will stop if, at the end of a learning epoch, the standard deviation
of the accumulated errors is less than a set threshold, p,

N*
> E-Er < (14)
N* ’ '

i=1

This means that it will stop when the outliers are as well represented as possible.

After training has ended, the deviations, a;, of the nodes must be computed. To do this
we employ the unbiased normal estimator of the deviations [117] detailed in the algorithm
of Fig. 3.

The local Gaussian densities resulting from the above algorithm can be combined to
synthesize the Gaussian mixture with parameters @,

N*
1
P(x|©) =~ > P (xlm;, 0i). (15)
i=1
Each Gaussian density is formulated as
1 1 T y-1
P(x|ﬂia0i)=WeXP _E(X—ﬂi) Yo x—pn)), (16)

with the covariance matrices X'; defined as a diagonal matrix with its non-zero elements set
to the values of the deviations o7;,

Ei=10'i. (17)

Here | X;| is the determinant of X';, I is the identity matrix and, again, # is the dimension of
x.

The Gaussian mixture can be used by the EDA to generate new individuals. These new
individuals are created by sampling the P (x|®). Many researchers have dealt with the gener-
ation of randomly distributed numbers that follow a given distribution. It has been thoroughly
described, for example, by Rubinstein [115]. In our case, we applied the Box—Muller trans-
formation [26]. This transformation converts uniformly distributed random variables to a
new set of random variables with a Gaussian distribution.

See Fig. 2 for a summary of the MB-GNG algorithm.
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Fig.4 Diagram of the MONEDA algorithm. Atiteration ¢ the population is ranked using the fitness assignment
function. Then a population subset 75, containing the best Lanpopj elements of P; is extracted. A MB-GNG
network is trained with the elements of 73;. Lwnpopj new individuals are sampled from the neural network.
These individuals substitute the same number of randomly selected elements of Py \ Py. The resulting set is
then combined with 75, to form the population of the next iteration, P; 4|

4.2 The MONEDA algorithm

MONEDA maintains a population, Py, of np,p, individuals, where ¢ is a given iteration. The
algorithm’s workflow is similar to other EDAs (see Fig. 4). It starts with a random initial
population Py of individuals.

A first variant of MONEDA, which we will call MONEDA/NS from now on, proceeds to
sort the individuals using the NSGA-II fitness assignment function.

NSGA-II fitness assignment is a two-phase process. First, individuals are ranked accord-
ing to the dominance relations by which they are linked. Then, individuals with the same
domination rank are then compared using a local crowding distance.

The first step consists of classifying the individuals in a series of categories, Fi, ..., Fr.
Each of these categories stores individuals that are only dominated by the elements of the
previous categories,

Vx € F; : dy € F;—1 such that y < x, and;

Pze P\ (F1U---UFi_) that z < x; (18)

with 7 equal to P/, the set of non-dominated individuals of P;.

After all individuals have been ranked, they are assigned a local crowding distance. The
use of this distance primes individuals that are more isolated from others. The assignment
process goes as described in Fig. 5.

Theere the sort (F, m) function produces a vector I of indexes ranked in ascending order
with respect to the value of objective function f;,,.

They are sorted by their individual ranks and local distances, using the following operator:

Definition 5 (Crowded Comparison Operator) An individual x; is better than x ; if:

— x; has a better rank: x; € i, x; € Fyand k <, or;
—ifk=landd; > d;.
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Parameters:
e Set of categories F1,...,F.

for all category sets F;, having f; = |F;| do
for all individuals ; € F; do

d; = 0.
end for
for all objective functions m =1,..., M do
I = sort (F;, m) (generate index vector in ascending order).
O _ 40 _
dp) =dj, =

1
fori=2,...,fi—1do
Update the remaining distances as

di =d; + fm ( 1“) I (mIFl) .
fon (@1y)) = fin (1)

end for
end for
end for

Fig. 5 Assigning crowding distances after non-domination sorting

Indicator-based selection seems to have a superior performance than non-domination
selection in complex and many-objective problems. Hypervolume-based selection has many
theoretical features, like being the only indicator that have the properties of a metric and the
only to be strictly Pareto monotonic [52,142] but has the drawback of being computationally
intensive to compute.

The HypE algorithms [8] attempt to circumvent this problem by estimating the value of
the hypervolume by means of a Monte Carlo simulation. In our case, P; can be constructed
by determining the elements of P; that produce the larger value of the hypervolume indicator,
as in the HypE algorithm: for problems of two and three objectives this task is carried out by
exactly calculating it and for cases of more objectives the Monte Carlo sampling alternative
is used with an accuracy of 95 %, as it is more computational cost-effective and it has been
reported that yield an adequate performance as selection mechanism.

We have called the variant that makes use of hypervolume-based selection as MON-
EDA/Hyp. As the algorithmic description of HypE and its selection algorithm is rather
lengthy, we refer the interested reader to the corresponding reference for further details.

Relying on the chosen selection principle a set P; containing the best |« |P;|] elements
is extracted from the sorted version of 7;,

\73, = | P1] = [anpop] - (19)

A MB-GNG network is then trained using P; as its training data set. To get a controlled
relation between the size of P; and the maximum size of the network, Ny, these two sizes
are bounded by the rate y € (0, 1],

Nmax = ’7)/ ‘75[

=17 L] 1. 20)
The trained GNG network is a model of ;. The network can be interpreted as a Gaussian

mixture, as explained in the previous section. Therefore, it can be used to sample new indi-
viduals. In particular, |w |P;|] new individuals are synthesized.
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MB-GNG parameters: No, Vmax, €best; €vicy 1+ 01, 0g and p.
MONEDA parameters: npop, @, ¥ and w.
t <+ 0.
Randomly generate the initial population Pg with npep individuals.
repeat
Sort P individuals with regard to the crowded comparison operator.
Extract first a|P¢| elements the sorted Py to Ps.

Train MB-GNG network with ’f’t training data set and Nmax = {'y ‘f%u (see

algorithm in Figure 2).
Sample |w |P¢|] from the MB-GNG.
Substitute randomly selected individuals of Py \’f?t with the new individuals to
produce P;.
Py = 7515 U ’P;
t=t+1.
until end condition not met
Determine the set of non-dominated individuals of Py, Pj.
return Pj as the algorithm’s solution.

Fig. 6 Algorithmic representation of MONEDA

Each individual substitutes another randomly selected individual from the section of the
population not used for model-building P; \ 7,. The resulting set is then united with the
best elements, 73,, to form the population of the next iteration 7, 1. Some other substitution
strategies could be used in this step. For example, the new individuals could substitute the
worst individuals of P; \ P;. We opted for the above approach because it promotes diversity
and avoids stagnation.

Iterations are repeated until a given stopping criterion is met. The output of the algorithm
is a subset of P that contains the non-dominated solutions, P;*.

Figure 6 gives an algorithmic outline of MONEDA.

5 Assessing MONEDA

A key part of this work is to understand how both variants of MONEDA: MONEDA/NS
and MONEDA/Hyp perform in practical situations, and its outcome compared with similar
state-of-the-art algorithms. MONEDA embeds the hypothesis related to the model-building
issue presented in the above theoretical discussion. Therefore, an analysis of the experimental
results is indispensable for gaining a better understanding of the issue. For this reason, we
now focus on solving a set of well-known problems with a selected set of the previously
discussed evolutionary multi-objective optimizers, namely, naive MIDEA [24], MrBOA [1],
RM-MEDA [135], the parameter-free version of MAMaLGaM-X" [21,25], MOPED [40],
NSGA-II [47], SPEA2 [140] and, of course, MONEDA/NS and MONEDA/Hyp.

We will now describe the experimental setup of our study in detail. First, we discuss the
test problems used and the performance indicators applied. We then depict the hardware and
software configurations and the choice of the initial parameters of the applied algorithms.

5.1 Test problems

Most experiments involving MOPs deal with only two or three objective problems. In these
experiments we intend to deal with higher dimensional problems since we are interested in
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Fig. 7 Representation of the Pareto-optimal fronts of DTLZ3, DTLZ6, DTLZ7, WFG1, WFG2 and WFG6
problems configured with three objectives (M = 3)

assessing MONEDA's scalable behavior. Consequently, we have chosen for our analysis some
of the members of the DTLZ family of scalable problems [48], in particular, the DTLZ3,
DTLZ6 and DTLZ7 problems, and some of the WFG set of scalable problems [63], in
particular WFG1, WFG2 and WFG6.

The DTLZ problems were selected for our experiments because of the relative simplicity
of their specification, and the existence of an a priori known Pareto-optimal front.

The DTLZ3 problem is a M-objective problem with an n-dimensional decision vector.
Its Pareto-optimal front lies on the first orthant of a unit hypersphere (see Fig. 7a for a 3-D
representation). This problem was introduced to test the ability of a MOEA to converge to
the global Pareto-optimal front, since there are 3"+ — ] suboptimal fronts parallel to the
optimal one.

The DTLZ6 problem is based on a simpler problem, in this case the DTLZS problem. As
in the previous case, suboptimal fronts are also present with the intention of deceiving the
optimizer. For a graphical representation see Fig. 7b.

On the other hand, the DTLZ7 problem has a Pareto-optimal front that consists of a heavily
disconnected set of 2! Pareto-optimal regions that test an algorithm’s ability to maintain
a robust coverage of all optimal regions. Figure 7c illustrates a 3-D graphical representation
of the Pareto-optimal front of DTLZ7.

To complement the above, relatively simple problems, we also deal with a selection
of the more complex walking fish group (WFG) problem set [63,64]. The WFG prob-
lem construction toolkit was devised with the aim of providing experimenters with a set
of synthetic problems where the problem features were not “hard-wired” in the problem
definition. Instead, a target set of characteristics, like bias, multi-modality, non-separability,
non-linearity, etc., can be plugged in and combined as required.

The WFG problem set was devised as a particular instantiation. It consists of nine prob-
lems. Of these, we chose WFG1, WFG2 and WFG6 because of their properties and inherent
complexities. Although these problems share the same formulation of their Pareto-optimal
sets, the corresponding Pareto-optimal fronts each have a different appearance. WFGI is a
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separable, uni-modal problem with polynomial and flat bias. Its Pareto-optimal front has a
mixed convex geometry, as shown in Fig. 7d. WFG2 differs from WFGI in that it is non-
separable, multi-modal and has a disconnected Pareto-optimal front. The properties of its
Pareto-optimal front are illustrated in Fig. 7e. Finally, WFG6 is non-separable, uni-modal
and has a concave Pareto-optimal front (Fig. 7f).

In all cases, the complexity of the problems was configured in a progressive fashion,
increasing the number of objective space dimensions, specifically, 3, 6, 9 and 12 objective
functions.

It should be noted that these are not the only problems that could be used for the type of
experiments we carried out (see Huband et al. [64] and Coello et al. [34] for comprehensive
reviews). Unfortunately, because of the high computational demands of such experiments
and the limited amount of resources available, we were forced to confine the study to fewer
problems in order to be able to deal with a larger number of objectives.

5.2 Statistical testing

In order to reach substantiated conclusions, we have to do more than just report the descriptive
statistics of the performance indicators. To do this, we have to carry out a set of statistical
inferences that would support any deductions made from the data.

In our case, the standard statistical inference of interest would assert whether the distribu-
tion of the local Pareto-optimal set output by one optimizer is better than another. This cannot
be determined unequivocally because we have only a finite sample of the local Pareto-optimal
sets output by the algorithms. Therefore, some statistical hypothesis test should be applied
to get a measure of how likely the above claim is to be true.

Some statistical hypothesis tests have to be applied to validate the results of different
executions. Other authors (see for example [34,74,144]) have already discussed different
frameworks for this purpose.

In our case, for each problem/dimension combination, we performed a Kruskal-Wallis
test [78] with the indicator values yielded by each algorithm’s run. In this context, the null
hypothesis of this test is that all algorithms are equally capable of solving the problem. If the
null hypothesis was rejected, which was actually the case in all instances of the experiment,
the Conover—Inman procedure Conover [35, pp.288-290] was applied in a pairwise manner to
determine whether one algorithm had significantly better results than another. A significance
level, , of 0.05 was used for all the tests. A similar test framework was previously applied
for assessing similar experiments [6].

There are some possible alternatives, like the use of the Mann—Whitney—Wilcoxon U
test [85,131] or the Kolmogorov—Sminoff test [94]. We decided to apply the above test
methodology, as it has been successfully used before in multi-objective experimental contexts.
It is also used to compare the performance of the algorithms across problems and number of
objectives, as described later in this section.

5.3 Measuring algorithms’ computational costs

Besides measuring how good the algorithm solutions are, it is also very important to under-
stand how much computational effort it takes to arrive at those solutions. This effort is
expressed in two ways: spatial and temporal. Spatial effort refers to how much storage space
(memory, disk, etc.) an algorithm uses during the optimization process. Temporal effort deals
with the time that it takes the algorithm to reach the solution. We are concerned with this latter
magnitude, as it is the most critical point given the current state of computing technology.
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Because of the nature of evolutionary approaches, the traditional methods for estimating
the computational complexity of algorithms are no longer suitable. That is why different
alternative strategies for assessing the temporal complexity of multi-objective optimizers
have been put forward.

The simplest one is to measure the time employed in each independent run and then
output a mean execution time. This procedure is sensitive to the uncontrollable influence
of concurrent hardware and software processes, like memory swapping, garbage collection,
etc., that might interfere with an accurate measurement.

A more common approach is to compute the number of algorithm iterations (the number
of generations in the evolutionary case) needed to achieve the results. This method has the
advantage of providing a measurement that is repeatable using different hardware and soft-
ware combinations. On the downside, it does not account for the time taken to complete each
iteration. This intra-iteration time is often considerable, and therefore the wrong conclusions
could be drawn if it is disregarded.

The third strategy counts the number of evaluations of the objective functions. This method
is rooted in real-life engineering problems, where evaluations are usually costly and should
be minimized. This approach provides more complete information than the others. Even so,
it does not take into account the amount of computation spent on the actual optimization
process, which can be the most time-consuming parts.

One way of gaining a better understanding of time complexity is to measure the number
of floating-point operations carried out by each algorithm. This approach assumes that all
floating-point operations have to do with the optimization process itself. This requirement
can be easily met under experimental conditions.

There are a number of profiling tools that are capable of tracking the number of floating-
point operations that have taken place as part of a process. For this research, we chose the
OProfile program profiling toolkit [82].

5.4 Experiment design

Experiments were carried out under the PISA framework [18]. Algorithm implementations
were adapted from the ones provided by their respective authors, with the exception of
NSGA-II and SPEA2, which were already distributed as part of the framework, and MOPED
and MONEDA, which were implemented from scratch. In all cases, the code was reviewed
to ensure its optimality in order to output valid temporal complexity measurements.

A correct selection of each algorithm’s initial parameters has a direct impact on the validity
of experiments like the ones we are proposing. Normally, initial parameters are selected
after a preliminary hand tuning for small-scale problems Because of the high computational
demands of the experiments in this study, this adjustment phase has been limited to the three
dimensional problems. Some parameters, however, needed to be bound to the dimension of
the objective space, M. In such cases an explicit bounding formula was used. The parameters
selected for each algorithm are summarized in Table 1. Whenever possible, we have used
the algorithm parameters as reported in their corresponding papers. This should ensure the
reproducibility and comparability with previously published results.

Experiments were carried out on a 3.4 GHz Intel Quad-core computer with 4 GB of RAM
memory running the Linux operating system. Each execution was repeated 30 times in order
to output statistically significant results.

Stopping an optimizer is in itself a complex matter. It is usual practice in the evolutionary
field to stop experiments after a given number of iterations. This strategy is of no use for
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Table 1 Parameters of the
algorithms used in the
experiments

@ Springer

Common parameters

Population size (npop) 250 x 10%71
MONEDA(NS/Hyp)

Number of initial GNG nodes (Ng) 2
Maximum edge age (Vmax) 40
Best node learning rate (et,) 0.1
Neighboring nodes learning rate (ey) 0.05
Insertion error decrement rate (8y) 0.1
General error decrement rate (5G) 0.1
Accumulated error threshold (p) 0.2
Selection percentile («) 0.3
13[ to Nmax ratio (y) 0.5
Substitution percentile (@) 0.25
RM-MEDA

Selection portion 0.3
Number of LPCA clusters % M
Maximum training steps in LPCA ZS—OM
Extension rate 0.25
MOPED

Selection portion 0.3
Sampling parameter (7) 2
Fitness parameter (o) 0.2
Naive MIDEA

Selection percentile (7) 0.3
Diversity percentile () 15
Number of parents of a variable (k) 2
Maximum number of clusters [0.5[Tnpop]]
Threshold for the leader algorithm 0.1
MAMaLGaM-X+

Selection percentile (7) 0.3
Parallel runs (m) 10
MrBOA

Selection portion (7) 0.3
Number of parents or a variable 5
Number of mixture components 3
Threshold of leader algorithm 0.3
NSGA-II

Crossover probability (pc) 0.7
Distribution index for SBX (n.) 15
Mutation probability (p;;) ’lpl()p
Dist. index for polynomial mut. (17,,) 20
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Table 1 continued
Common parameters

M

Population size (pop) 250 x 103 !
SPEA2
Crossover probability (p.) 0.7
Distribution index for SBX (17¢) 15

. . 1
Mutation probability (py;) pop
Dist. index for polynomial mut. (1) 20
Ratio of pop. to archive sizes 4:1

this study since it is impossible to predict how much computation is required to solve high-
dimensional problems. This is why we applied the MGBM multi-objective optimization
stopping criterion [86,89]. This criterion is a relative, domination-based criterion that was
previously developed with these types of applications in mind.

The above performance indicators have to have a reference set of points. The the additive
e-indicator uses the Pareto-optimal front, O*, to carry out their calculations. Similarly, the
hypervolume indicator needs a set of nadir points. All this poses a problem when carrying
out experiments that deal with many dimensions. This problem is particularly acute in cases
requiring the Pareto-optimal front. In such cases, even when an explicit formulation of the
front exists, it is computationally unviable to sample well enough to output O*.

The test problems employed in this paper, with the exception of DTLZ3 and WFG6, suffer
from this drawback. In the case of DTLZ3 and WFG6, as their O* lie on the first orthant of an
hypersphere of radius 1 situated on the origin of coordinates, it is straightforward to determine
the distance from any point in the objective space to O*. However, this feature for calculating
the Pareto-optimal front coverage is of no use, as it requires a sampled version of O*.

To address this issue we have taken an alternative approach, similar to the one used by
the purity performance indicator [10,65]. A combined set PF " is defined as the union of
the solutions of the different algorithms across all the experiment executions. O* is then
determined by extracting the non-dominated elements

x € O*iff x e PF and By € PFT such that y < x. 1)

Although this procedure circumvents the problems of performing a direct sampling of the
Pareto-optimal front shape function, special precautions should be taken when interpreting
the results. Note that algorithm performance will be measured with regard to the set of best
overall solutions; not against the actual Pareto-optimal front.

A similar method is used to determine the nadir points set used by the hypervolume
indicator. In this case A is computed as

x e Niff x e PF and Ay € PF* such that x < y. (22)

5.5 Quality and performance analysis

Figures 8, 9 and 10 show the statistical description of the final results yielded by the algorithm
runs when dealing with the DTLZ problems in the form of box plots [14,31] and as tables
that summarize the outcome of the above statistical tests. This representation assists in the
assessment of the quality and validity of the final solutions of the algorithms. In all cases,
the performance was computed using the results of the iterations marked by the stopping
criterion.
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(a) Graphical representation of the indicators as box—plots.
(b) Results of the statistical test for the hypervolume indicator.
MON MOH nMI MrB RMM MAM MOP NSG SPE
MONEDA/NS — 3 6,912 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12
MONEDA /Hyp — 9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12
naive MIDEA —  6,9,12 6,9,12 6,12 6 6,9,12 6,9,12
MrBOA — 9,12 6,9,12 6,9,12
RM-MEDA — 6,9,12 6,9,12
MAMaLGaM-X+ — 9 6,9,12 6,9,12
MOPED —  6,9,12 6,9,12
NSGA-II —  6,9,12
SPEA2 —

Fig. 8 Summary of the statistical description of the results yielded by the MONEDA (MON), naive MIDEA
(nMI), MrBOA (MrB), RM-MEDA (RMM), MOPED (MOP), NSGA-II (NSG) and SPEA2 (SPE) algorithms
when solving the DTLZ3 problem. a The indicator values obtained after each experiment as box-plots. b The
outcome of performing the statistical hypothesis tests. The numbers shown are the problem dimension where
the test detected a statistically significant better indicator values of the algorithm in each row with respect of
those in the columns

In the three-dimensional configurations, both MONEDAs performed similarly to the other
algorithms. This was an expected outcome since our MOEDA uses an already existent fitness
function and its model-building algorithm is meant to provide a significant advantage in more
extreme situations.

However, as the tests move into higher dimensions, it becomes evident that MONEDA
outperforms the other applied optimizers. Not only both MONEDA s yield better final results,
but also results variance is very low and fewer iterations are required. This means that it per-
formed consistently well across the different runs. The results not only show that MONEDA’s
solutions are close to the optimal but also that they manage to evenly cover the Pareto-optimal
front.

In spite of the encouraging results described here, special care should be taken during
analysis. Notice that because of the methodology used for generating the surrogate Pareto-
optimal front, O, the e-indicator is not contrasting the solutions against the true optimal
front. This could potentially bias the findings.
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(a) Graphical representation of the indicators as box—plots.
(b) Results of the statistical test for the hypervolume indicator.
MON MOH nMI MrB RMM MAM MOP NSG SPE
MONEDA/NS — 9 9,12 6,9,12 6,9,12 6,9 6,9 6,9,12 3,6,9,12
MONEDA /Hyp —  3,6,9,12 3,6,9,12 3,6,9,12 3,6,9 3,6,9,12 6,9,12 3,6,9,12
naive MIDEA — 9,12 3,6,9,12 6 6 6,9,12 3,6,9,12
MrBOA — 3,9 6 6,912 3,6,9,12
RM-MEDA — 6 6,9,12 6,9,12
MAMaLGaM-X* — 6,12 6,9,12 3,6,9,12
MOPED — 6,9,12 3,6,9,12
NSGA-II — 3,6,12
SPEA2 —

Fig.9 Statistical description of the results yielded by the algorithms involved in the experiments when solving
the DTLZ6 problem. See Fig. 8 for an extended description

In this light, the outstanding results of MONEDA should be interpreted in relative terms.
MONEDA’s low I values indicate that its solutions were better than most of the solutions
of the other algorithms and they, therefore, belong to the joint local Pareto-optimal front, O%.
Similarly, although MONEDA has managed to produce better results when compared to the
other algorithms, its solutions cannot be said to be close enough to the Pareto-optimal front.
The scheme applied to determine O* may also be the cause of the particularly low variance
of MONEDA's results.

Nevertheless, the analysis of the variances of the indicators prompts a most interesting
side discussion. On the one hand, the /. indicator reports relatively low variances for most
algorithms and particularly small for MONEDA. On the other, the spread of the measure-
ments of Iy is greater. Again, this is probably caused by the scheme we used to determine (O%.
The initial conclusion of this is that, for experiments like the ones we are analyzing here, it is
of more use to apply performance indicators that do not depend on a known Pareto-optimal
front, such as the Iy indicator. Anyhow, in spite of the higher variances, MONEDA still
yields better and more statistically sound results than the other algorithms.

It should also be pointed out that the hypervolume-based MONEDA yielded consistently
better results than the non-domination sorting one. This fact can be balanced by the fact that
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(a) Graphical representation of the indicators as box—plots.

(b) Results of the statistical test for the hypervolume indicator.

MON MOH nMI MrB RMM MAM MOP NSG SPE

MONEDA/NS — 9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12
MONEDA /Hyp —  6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12
naive MIDEA —  6,9,12 6,9,12 6 6 6,9,12 6,9,12
MrBOA — 9,12 6,9,12 6,9,12
RM-MEDA — 6,9,12 6,9,12
MAMaLGaM-X+ — 12 6,9,12 6,9,12
MOPED —  6,9,12 6,9,12
NSGA-II —
SPEA2 —

Fig. 10 Statistical description of the results yielded by the algorithms involved in the experiments when
solving the DTLZ7 problem. See Fig. 8 for an extended description

even using a Monte Carlo approach, the application of this selection principle required far
more computational resources, as we will see in a subsequent analysis.

In spite of the relevant information that can be extracted from the above visual represen-
tation, a more formal approach is necessary to confirm the stated results from a statistical
point of view. The results of applying the Mann—Whitney test to the outcome of the above
experiments is summarized in Figs. 8b, 9b and 10b for the DTLZ3, DTLZ6 and DTLZ7
problems, respectively. They verify that MONEDA was able to tackle the problem better
than rest of the algorithms in most experiments with 6 objectives and beyond.

Similar conclusions can be drawn from the experiments involving the WFG1, WFG2 and
WFG®6 problems. Although, in general terms, these problems pose a bigger challenge to the
optimizers, the progress shapes of the algorithms are rather similar to those of the previous
problems. Figures 11, 12 and 13 respectively, which depict the statistical properties of the
indicator values yielded by each algorithm, illustrate this point.

The results of the WFG problems share the same properties as explained above. Even
though the scalar values of the indicators change, the outcome of comparing algorithm per-
formance is more or less the same.
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(a) Graphical representation of the indicators as box—plots.
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b) Resul f th istical for the hyp 1 indi
MON MOH nMI MrB RMM MAM MOP NSG SPE

MONEDA/NS — 6 6,9 6,9,12 3,6,9,12 6,9 3,6,9,12 6,9,12
MONEDA /Hyp — 6,9,12 3,6,9,12 3,6,9,12 9  3,6,9,12 3,6,9,12 3,6,9,12
naive MIDEA —  3,6,9,12 3,6,9,12 9  3,69,12 3,912
MrBOA — 3 3,6,9,12 9,12
RM-MEDA — 6,9,12 9,12
MAMaLGaM-X+ — 3,6,9,12 3,6,9,12 3,6,9,12
MOPED —  3,6,9,12 9,12
NSGA-II — 9
SPEA2 —

Fig. 11 Statistical description of the results yielded by the algorithms involved in the experiments when
solving the WFG1 problem. See Fig. 8 for an extended description

The critical assessment of these results led us to hypothesize that, thanks to its novel
treatment of the outliers in the model-building data set, our approach manages to overcome
the weaknesses that are an obstacle to the other methods. Although very interesting, the
results presented here raise the question of how conditioned they are by the particularities
of the solved problems. This issue requires further investigation, to understand whether the
low dispersion of the error indicators is achieved for the solved problems only, or can be
extrapolated to other more complex problems as well.

In any case, one of the most important conclusions of these experiments is that MONEDA
has shown itself to be a robust algorithm. Despite having a relatively large number of para-
meters, MONEDA is capable of dealing with a wide range of problems, each with different
characteristics, without having to custom tune its configuration.

It is rather hard to confirm these facts, as it implies cross-examining and comparing
the results presented separately. For this reason, we decided to adopt a more integrative

representation, as proposed in [6]. That is, for a given set of algorithms Ay, ..., Ak, a set of
P test problem instances @1 ,, . .., @ p m, configured with m objectives, the function §(-) is
defined as

Lif A; > Aj solving @, ,

0 in other case ’ (23)

1) (Ai,Aj,(Dp’m) = [
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(a) Graphical representation of the indicators as box—plots.

(b) Results of the statistical test for the hypervolume indicator.

MON MOH nMI MrB RMM MAM MOP NSG SPE

MONEDA/NS — 3,9,12 6,9,12 3,9,12 3,9 3,6,9,12 6,9,12 3,6,9,12
MONEDA /Hyp — 3,6,9,12 6,9,12 3,6,9,12 3,6,9 3,6,9,12 3,6,9,12 3,6,9,12
naive MIDEA — 6,12 6,9,12 6 6 6,9,12 3,6,9,12
MrBOA — 3,9 3 3,6 3,6,9,12 3,6,9,12
RM-MEDA — 6 6,9,12 3,6,9,12
MAMaLGaM-X+ — 6,12 69,12 3,6,9,12
MOPED — 6,9,12 3,6,9,12
NSGA-II — 3,6,12

SPEA2 —

Fig. 12 Statistical description of the results yielded by the algorithms involved in the experiments when
solving the WFG2 problem. See Fig. 8 for an extended description

where the relation A; > A; defines whether A; is significantly better than A ; when solving
the problem instance @, ,,, as computed by the above statistical tests.

Relying on §(-), the performance index P, ,,(A;) of a given algorithm A; when solving
@), m is then computed as

K
Ppm(A)= D 5(AiAj.@pm). (24)
J=lj#
This index intends to summarize the performance of each algorithm with regard to its peers.
Figure 14 exhibits the results of computing the performance indexes. Figure 14a represents
the average performance indexes yielded by each algorithm when solving each problem in
all of its configured objective dimensions,

_ 1
Py (A) = o > Ppm (A (25)
meM

It is worth noticing that the MONEDASs have better overall results with respect to the
other algorithms. The relatively poor overall performance of the randomized leader and
the k-means algorithms for some problems was unexpected. A possible hypothesis is that
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(a) Graphical representation of the indicators as box—plots.

(b) Results of the statistical test for the hypervolume indicator.

MON MOH nMI MrB RMM MAM MOP NSG SPE

MONEDA/NS — 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12
MONEDA /Hyp — 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9,12 6,9, 12
naive MIDEA —  6,9,12 6,9,12 6 6,9,12 6,9,12
MrBOA — 9,12 6,9,12 6,9,12
RM-MEDA — 6,9,12 6,9,12
MAMaLGaM-X+ — 6,12 6,9,12 6,9,12
MOPED —  6,9,12 6,9,12
NSGA-II — 6,12

SPEA2 —

Fig. 13 Statistical description of the results yielded by the algorithms involved in the experiments when
solving the WFG6 problem. See Fig. 8 for an extended description

the three objective problems are biasing these results, where there are dramatic differences
compared to the results for the other dimensions.

This situation is clarified in Fig. 14b, which presents the average values of the index
computed for each dimension,

B} 1 <&
P (Ai) = 5 2 Ppm (Ai). (26)
1

p=

In this case, it can be corroborated that there is no substantial difference in the results
produced by the different algorithms in the three objective cases, as their indexes have more
evenly shared values. The panorama changes when inspecting the higher dimensionality
results (in the objective function space). In those cases the least statistically robust algorithms
tend to perform comparatively better, with the exception of Bayesian networks that seem to
improve as the number of dimensions increases, but, of course, at the expense of a great
computational cost.

Itis worthwhile analyzing the performance of MB-GNG. In most cases, MB-GNG outper-
formed the other algorithms in higher dimensionality. This corroborates the results that we
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Fig. 14 Average values of the performance index across the different problems, 15,, () (a) and objective space
dimensions, Py, (b)

presented in previous works [87,90]. This outcome can be attributed to the fact that MB-GNG
is the only algorithm that has so far been specially devised for the model-building problem.

Finally, it is also important to underscore that the hypervolume-based selection produced
better results than the NSGA-II based approach.

5.6 Computational cost of the algorithms

One of our main concerns when comparing the different algorithms was their computational
requirements. One simple and illustrative way of doing this is to plot the progress of the
different algorithms when solving each problem, as already argued in Sect. 5.3.

Figure 15 summarizes the average number of iterations for each algorithm, the mean
floating-point CPU operations per iteration and the mean total floating-point CPU operations
used by the algorithms when solving the DTLZ problems. Figure 16 contains the same
analysis for the WFG problems.

This set of measurements reinforces our earlier conclusions. The figures suggest that,
besides requiring relatively few iterations to converge, it also performs fewer operations in
every iteration.

The cases of MrBOA and RM-MEDA are very illustrative. Although they require fewer
iterations, their mean CPU operations per iteration are the highest, as are their total number
of CPU operations, too. This makes the case for not measuring the number of iterations or
function evaluations only in this class of experiments.

Another interesting phenomenon is the relatively low increase in the number of iterations
when moving from 6 to 9 objectives. This behavior is shared across most algorithms and
problems. In our opinion it can be attributed to the relatively large size of the population
used.

Also noticeable is the (presumably) exponential increase in the number of iterations and
amount of CPU consumption as the problem complexity grows. This means that future
algorithms should take into account this problem and at least try to curb this growth.

5.7 Commentaries about the results

It can be argued that, as in any experimental comparison, the parameters of the different
algorithms have strongly biased the results. For example, it could be hypothesized that NSGA-
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Fig. 15 Comparative analysis of the computational cost of the algorithms under study when dealing with the
DTLZ3, DTLZ6 and DTLZ7 problems. For each algorithm/problem/number of objectives combination the
mean of the cost indicators yielded by each of the 30 runs is computed. The first row represents the mean
number of iterations used by each algorithm, while the second, the mean of the intra-iteration floating-point
CPU operations used for model-building

IT'and SPEA2, with much larger population sizes, would probably yield better approximations
to the Pareto-optimal fronts, albeit at a higher computational expense.

In any case, the most remarkable conclusion, when assembling the results listed in Sects.
5.5 and 5.6, is that MONEDA is capable of consistently producing similar or better results
with regard to similar approaches at a lower computational cost. In its turn, this improvement
can only be attributed to the introduction of a novel model-building algorithms specially
designed for the purpose, since other algorithm properties, like, for example, the fitness
assignment, were unchanged.

6 Final remarks and salient issues

In this work we have dealt with an open issue of current multi-objective optimization esti-
mation of distribution algorithms: the model-building problem. We argued that current
model-building approaches, which are based on off-the-shelf machine learning methods,
do not meet the task requirements. In particular, they do not correctly handle outliers; they
suffer from population diversity loss, and they expend too many resources on building the
model.

To test our arguments we introduced a novel evolutionary algorithm called the multi-
objective optimization neural estimation of distribution algorithm (MONEDA). MONEDA
puts forward an innovative neural network-based scheme for model-building. In particular,
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Fig. 16 Comparative analysis of the computational complexity of the algorithms under study when dealing
with the WFG1, WFG2 and WFG6 problems. For each algorithm/problem/number of objectives combination
the mean of the cost indicators yielded by each of the 30 runs is computed. The first row represents the mean
number of iterations used by each algorithm, while the second, the mean of the intra-iteration floating-point
CPU operations used for model-building

a modified GNG neural network is applied. This model-building algorithm addresses two
theoretical and practical issues not taken into account by earlier approaches.

Furthermore, we have presented MONEDA with two individual selection methods, one
based on non-domination sorting, as proposed by NSGA-II, and one based on the hypervol-
ume indicator, which is based on the HypE algorithm.

MONEDA’s behavior has been assessed on a set of well-known community-accepted
problems with a progressive increase in the number of objectives. Its results have been
compared against a range of state-of-the-art algorithms.

The experimental results show that MONEDA performs similarly to other approaches in
problems with relatively few dimensions. However, as the problem complexity scales up,
MONEDA outperforms the other algorithms in terms of the quality of the solutions and their
computational complexity.

However, there are many issues that remain open. For example, the algorithm’s sensitivity
to its parameters must be explored in depth. One of the main drawbacks of MONEDA is its
rather large number of free parameters. Improvements should target building less parameter-
ized algorithms.

Itis equally important to grasp a more extensive range of test problems. These experiments,
although very costly in terms of computational resources, are essential for understanding the
reach of the improvements suggested here.
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Similarly, there is plenty of room for improvement in MONEDA. Different combinations
of selection and replacement schemes would probably produce better results. Similarly, there
are different fitness assignment strategies, like the methods employed by SPEA2 or PAES,
methods based on relaxed forms of Pareto dominance and methods based on performance
indicators, besides the one presented here, that should be contrasted in order to determine
their suitability.

Another strategy of interest is the fusion of the information present in both the deci-
sion variable space and objective function space. Most MOEDAS construct their models by
exploiting only the decision variable space information, since the resulting model can be
used for sampling new individuals. To the best of our knowledge, the only MOEDA work
that has addressed this issue is related to the use of the multi-objective hierarchical BOA
(mhBOA) [107,109]. An interesting work in this direction is put forward in [68] where a
MOEDA applies a multidimensional Bayesian network as its probabilistic model in order to,
it can capture the dependencies between objectives, variables and objectives, as well as the
dependencies learned between variables in other Bayesian network-based EDAs.

Other interesting lines of research are the reuse of models across iterations and the fusion
of the fitness assignment and the model-building processes into a combined process that
would be less computationally demanding. In this paper we have focused on improving the
model-building algorithm, but, even so, we acknowledge that there are further improvements
to be made to fitness assignment after introducing these alternatives.

Beyond the successful outcome of experiments, the most important consequence of this
work is that we have exposed a previously overlooked issue in the EDA field. To the best of our
knowledge, ours is the first model-building analysis and the proposal. Therefore, this research
would be most valuable if it inspires a set of new approaches to the model-building issue.
A more exhaustive review of suitable machine learning methods taking the considerations
put forward into account would probably yield even better model builders. Perhaps even new
methods should be synthesized in order to properly address this task.

Although we have focused on the multi-objective case, the discussed model-building issue
can also be extended to single-objective EDAs. In cases where the optimizer must yield more
than one optimal solution, like multi-modal optimization problems, the model-building issue
should also be manifest. The points that we made about the incorrect treatment of outliers
are not out of place here either. These matters, however, open another line of research, which
is beyond the scope of this paper.
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