
Parallel Distributed Block Coordinate Descent Methods based on

Pairwise Comparison Oracle

Kota Matsui1, Wataru Kumagai2, and Takafumi Kanamori3

1Nagoya Institute of Technology
2Kanagawa University
3Nagoya University

Abstract

This paper provides a block coordinate descent algorithm to solve unconstrained opti-
mization problems. In our algorithm, computation of function values or gradients is not
required. Instead, pairwise comparison of function values is used. Our algorithm consists of
two steps; one is the direction estimate step and the other is the search step. Both steps
require only pairwise comparison of function values, which tells us only the order of function
values over two points. In the direction estimate step, a Newton type search direction is
estimated. A computation method like block coordinate descent methods is used with the
pairwise comparison. In the search step, a numerical solution is updated along the estimated
direction. The computation in the direction estimate step can be easily parallelized, and
thus, the algorithm works efficiently to find the minimizer of the objective function. Also,
we show an upper bound of the convergence rate. In numerical experiments, we show that
our method efficiently finds the optimal solution compared to some existing methods based
on the pairwise comparison.

1 Introduction

Recently, demand for large-scale complex optimization is increasing in computational science,
engineering and many of other fields. In that kind of problems, there are many difficulties caused
by noise in function evaluation, many tuning parameters and high computation cost. In such
cases, derivatives of the objective function are unavailable or computationally infeasible. These
problems can be treated by the derivative-free optimization (DFO) methods.

DFO is the tool for optimization without derivative information of the objective function
and constraints, and it has been widely studied for decades [3, 17]. DFO algorithms include
gradient descent methods with a finite difference gradient estimation [6, 5], some direct search
methods using only function values [1, 13], and trust-region methods [4].

There is, however, a more restricted setting in which not only derivatives but also values
of the objective function are unavailable or computationally infeasible. In such a situation, the
so-called pairwise comparison oracle, that tells us an order of function values on two evaluation
points, is used instead of derivatives and function evaluation [13, 8]. For example, the pairwise
comparison is used in learning to rank to collect training samples to estimate the preference
function of the ranking problems [12]. In decision making, finding the most preferred feasible

1

ar
X

iv
:1

40
9.

39
12

v1
 [

st
at

.M
L

]
 1

3
Se

p
20

14

solution from among the set of many alternatives is an important application of ranking methods
using the pairwise comparison. Also, other type of information such as stochastic gradient-sign
oracle has been studied [15].

Now, let us introduce two DFO methods, i.e., the Nelder-Mead method [13] and stochastic
coordinate descent algorithm [8]. They are closely related to our work. In both methods, the
pairwise comparison of function values is used as a building block in optimization algorithms.

Nelder and Mead’s downhill simplex method [13] was proposed in early study of algorithms
based on the pairwise comparison of function values. In each iteration of the algorithm, a simplex
that approximates the objective function is constructed according to ranking of function values
on sampled points. Then, the simplex receives four operations, namely, reflection, expansion,
contraction and reduction in order to get close to the optimal solution. Unfortunately, the
convergence of the Nelder-Mead algorithm is theoretically guaranteed only in low-dimension
problems [10]. In high dimensional problems, the Nelder-Mead algorithm works poorly as shown
in [7].

The stochastic coordinate descent algorithm using only the noisy pairwise comparison was
proposed in [8]. Lower and upper bounds of the convergence rate were also presented in terms
of the number of pairwise comparison of function values, i.e., query complexity. The algorithm
iteratively solves one dimensional optimization problems like the coordinate descent method.
However, practical performance of the optimization algorithm was not studied in that work.

In this paper, we focus on optimization algorithms using the pairwise comparison oracle.
In our algorithm, the convergence to the optimal solution is guaranteed, when the number of
pairwise comparison tends to infinity. Our algorithm is regarded as a block coordinate descent
method consisting of two steps: the direction estimate step and search step. In the direction
estimate step, the search direction is determined. In the search step, the current solution is
updated along the search direction with an appropriate step length. In our algorithm, the direc-
tion estimate step is easily parallelized. Therefore, it is expected that our algorithm effectively
works even in large-scale optimization problems.

Let us summarize the contributions presented in this paper.

1. We propose a block coordinate descent algorithm based on the pairwise comparison oracle,
and point out that the algorithm is easily parallelized.

2. We derive an upper bound of the convergence rate in terms of the number of pairwise
comparison of function values, i.e., query complexity.

3. We show a practical efficiency of our algorithm through numerical experiments.

The rest of the paper is organized as follows. In Section 2, we explain the problem setup and
give some definitions. Section 3 is devoted to the main results. The convergence properties and
query complexity of our algorithm are shown in the section. In Section 4, numerical examples
are reported. Finally in Section 5, we conclude the paper with the discussion on future works.
All proofs of theoretical results are found in appendix.

2 Preliminaries

In this section, we introduce the problem setup and prepare some definitions and notations used
throughout the paper. A function f : Rn → R is said to be σ-strongly convex on Rn for a

2

positive constant σ, if for all x,y ∈ Rn, the inequality

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
‖x− y‖2

holds, where ∇f(x) and ‖ · ‖ denote the gradient of f at x and the euclidean norm, respectively.
The function f is L-strongly smooth for a positive constant L, if ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖
holds for all x,y ∈ Rn. The gradient ∇f(x) of the L-strongly smooth function f is referred
to as L-Lipschitz gradient. The class of σ-strongly convex and L-strongly smooth functions on
Rn is denoted as Fσ,L(Rn). In the convergence analysis, mainly we focus on the optimization of
objective functions in Fσ,L(Rn).

We consider the following pairwise comparison oracle defined in [8].

Definition 1 (Pairwise comparison oracle). The stochastic pairwise comparison (PC) oracle is
a binary valued random variable Of : Rn × Rn → { −1,+1} defined as

Pr[Of (x,y) = sign{f(y)− f(x)}] ≥ 1

2
+ min{δ0, µ|f(y)− f(x)|κ−1}, (1)

where 0 < δ0 ≤ 1/2, µ > 0 and κ ≥ 1. For κ = 1, without loss of generality µ ≤ δ0 ≤ 1/2 is
assumed. When the equality

Pr[Of (x,y) = sign{f(y)− f(x)}] = 1 (2)

is satisfied for all x and y, we call Of the deterministic PC oracle.

For κ = 1, the probability in (1) is not affected by the difference |f(y) − f(x)|, mean-
ing that the probability for the output of the PC oracle is not changed under any monotone
transformation of f .

In [8], Jamieson et al. derived lower and upper bounds of convergence rate of an optimization
algorithm using the stochastic PC oracle. The algorithm is referred to as the original PC
algorithm in the present paper.

Under above preparations, our purpose is to find the minimizer x∗ of the objective function
f(x) in Fσ,L(Rn) by using PC oracle. In the following section, we provide a DFO algorithm
in order to solve the optimization problem and consider the convergence properties including
query complexity.

3 Main Results

3.1 Algorithm

In Algorithm 1, we propose a DFO algorithm based on the PC oracle. In our algorithm,
m coordinates out of n elements are updated in each iteration to efficiently cope with high
dimensional problems. Algorithm 1 is referred to as BlockCD[n,m]. The original PC algorithm
is recovered by setting m = 1. The PC oracle is used in the line search algorithm to solve one-
dimensional optimization problems; the detailed line search algorithm is shown in Algorithm 2.

3

Algorithm 1 Block coordinate descent using PC oracle (BlockCD[n, m])

Input: initial point x0 ∈ Rn, and accuracy in line search η > 0.
Initialize: set t = 0.
repeat

Choose m coordinates i1, . . . , im out of n coordinates according to the uniform distribution.

(Direction estimate step)
[Step D-1] Solve the one-dimension optimization problems

min
α∈R

f(xt + αeik), k = 1, . . . ,m, (3)

within the accuracy η/2 using the PC-based line search algorithm shown in Algorithm 2,
where ei denotes the i-th unit basis vector. Then, obtain the numerical solutions αt,ik , k =
1, . . . ,m.
[Step D-2] Set dt =

∑m
k=1 αt,ikeik . If dt is the zero vector, add η/2 to di1 .

(Search step)
[Step S-1] Apply Algorithm 2 to obtain a numerical solution βt of

min
β
f(xt + βdt/‖dt‖)

within the accuracy η.
[Update] xt+1 = xt + βtdt/‖dt‖; t← t+ 1.

until A stopping criterion is satisfied.
Output: xt

For m = n, the search direction dt in Algorithm 1 approximates that of a modified Newton
method [11, Chap. 10], as shown below. In Step D-1 of the algorithm, one-dimensional optimiza-
tion problems (3) are solved. Let α∗t,i be the optimal solution of (3) with ik = i. Then, α∗t,i will
be close to the numerical solution αt,i. The Taylor expansion of the objective function leads to

f(xt + αei) = f(xt) + αeTi ∇f(xt) +
α2

2
eTi ∇2f(xt)ei + o(α2),

where ∇2f(xt) is the Hessian matrix of f at xt. When the point xt is close to the optimal
solution of f(x), the optimal parameter α∗i,t will be close to zero, implying that the higher order

term o(α2) in the above is negligible. Hence, αt,i is approximated by the optimal solution of
the quadratic approximation, i.e., −(∇f(xt))i/(∇2f(xt))ii. As a result, the search direction
in BlockCD[n, n] is approximated by −(diag(∇2f(xt)))

−1∇f(xt), where diag(A) denotes the
diagonal matrix, the diagonal elements of which are those of the square matrix A. In the
modified Newton method, the Hessian matrix in the Newton method is replaced with a positive
definite matrix to reduce the computation cost. Using only the diagonal part of the Hessian
matrix is a popular choice in the modified Newton method.

Figure 1 demonstrates an example of the optimization process of both the original PC al-
gorithm and our algorithm. The original PC algorithm updates the numerical solution along
a randomly chosen coordinate in each iteration. Hence, many iterations are required to get
close to the optimal solution. On the other hand, in our algorithm, a solution can move along
a oblique direction. Therefore, our algorithm can get close to the optimal solution with less
iterations than the original PC algorithm.

4

Algorithm 2 line search algorithm using PC oracle [8]

Input: current solution xt ∈ Rn, search direction d ∈ Rn and accuracy in line search η > 0.
Initialize: set α0 = 0, α+

0 = α0 + 1, α−0 = α0 − 1, k = 0.
[Step1]
if Of (xt,xt + α+

0 d) > 0 and Of (xt,xt + α−0 d) < 0 then
α+
0 ← 0

else if Of (xt,xt + α+
0 d) < 0 and Of (xt,xt + α−0 d) > 0 then

α−0 ← 0
end if
[Step2] (double-sign corresponds)
while Of (xt,xt + α±k d) < 0 do
α±k+1 ← 2α±k , k ← k + 1

end while
[Step3]
while |α+

k − α
−
k | > η/2 do

if Of (xt + αkd,xt + 1
2(αk + α+

k)d) < 0 then
αk+1 ← 1

2(αk + α+
k), α+

k+1 ← α+
k , α−k+1 ← αk

else if Of (xt + αkd,xt + 1
2(αk + α−k)d) < 0 then

αk+1 ← 1
2(αk + α−k), α−k+1 ← α−k , α+

k+1 ← αk
else

(double-sign corresponds)
αk+1 ← αk, α

±
k+1 ←

1
2(αk + α±k)

end if
end while
Output: αt

3.2 Convergence Properties of our Algorithm under Deterministic Oracle

We now provide an upper bound of the convergence rate of our algorithm using the deterministic
PC oracle (2). Let us denote the minimizer of f as x∗.

Theorem 1. Suppose f ∈ Fσ,L(Rn), and define γ and ε be

γ =
σ/L

53

(
1−

√
1− σ/L

1 +
√

1− σ/L

)2

, ε =
8nL2

σ

(
1 +

n

mγ

)
η2.

Let us define T0 be

T0 =

⌈
n

mγ
log

(f(x0)− f(x∗))(1 + n
mγ)

ε

⌉
. (4)

For T ≥ T0, we have E[f(xT) − f(x∗)] ≤ ε, where the expectation is taken with respect to the
random choice of coordinates i1, . . . , ik to be updated in BlockCD[n,m].

The proof of Theorem 1 is given in A. Note that any monotone transformation of the objective
function does not affect the output of the deterministic PC oracle. Hence, the theorem above
holds even for the function f(x) such that the composite function with a monotone function is
included in Fσ,L(Rn).

5

original PC algorithm proposed PC algorithm

Figure 1: A behavior of the algorithms on the contour of the quadratic objective function
x21 + x22 + x1x2 with same initialization. Left panel: Jamieson et al.’s original PC algorithm.
Right panel: proposed algorithm.

3.3 Query Complexity

Let x̂Q be the output of BlockCD[n,m] after Q pairwise comparison queries. To solve the one
dimension optimization problem within the accuracy η/2, the sufficient number of the call of
PC-oracle is

K0 = 2 log2
210L(f(x0)− f(x∗))

σ2η2
,

as shown in [8]. Hence, if the inequality Q ≥ T0K0(m + 1) holds, Theorem 1 assures that the
numerical solution x̂Q based on Q queries satisfies

E[f(x̂Q)− f(x∗)] ≤ ε.

When n/ε is sufficiently large, we have

T0K0(m+ 1)

= (m+ 1)

⌈
n

mγ
log

(f(x0)− f(x∗))(1 + n
mγ)

ε

⌉
·
⌈

2 log2
210L(f(x0)− f(x∗))

σ2η2

⌉
= (m+ 1)

⌈
n

mγ
log

∆0(1 + n
mγ)

ε

⌉
·
⌈

2 log2
213(L/σ)3∆0n(1 + n

mγ)

ε

⌉
≤ c0n

(
log

n

ε

)2
≤ c0n(log n)2

(
log

1

ε

)2

,

where c0 is a constant depending on L/σ and ∆0 = f(x0)− f(x∗). The last inequality holds if
log n and log(1/ε) are both greater than 2. Eventually we have

E[f(x̂Q)− f(x∗)] ≤ exp

{
− c

log n

√
Q

n

}
, (5)

6

Algorithm 3 Repeated querying subroutine ([8, 9])

Input: x,y ∈ Rn, p = Pr[Of (x,y) = sign{f(y)− f(x)}], δ > 0
Initialize: set n0 = 1 and toss the coin with probability p of heads once.
for k = 0, 1, ... do
pk = frequency of heads in all tosses so far

Ik =

[
pk −

√
(k+1) log(2/δ)

2k
, pk +

√
(k+1) log(2/δ)

2k

]
if 1

2 6∈ Ik then
break

else
toss the coin nk more times, and set nk+1 = 2nk.

end if
end for

if pk +
√

(k+1) log(2/δ)
2k

≤ 1
2 then

return −1
else

return +1
end if

where c = 1/
√
c0. The above bound is of the same order of the convergence rate for the original

PC algorithm up to polylog factors. On the other hand, a lower bound presented in [8] is of
order e−cQ/n with a positive constant c up to polylog factors, when the PC oracle with κ = 1 is
used.

In Theorem 1, it is assumed that the objective function is strongly convex and gradient
Lipschitz. In a realistic situation, we usually do not have the knowledge of the class parameters σ
and L of the unknown objective function. Moreover, strong convexity and gradient Lipschitzness
on the whole space Rn is too strong. In the following corollary, we relax the assumption in
Theorem 1 and prove the convergence property of our algorithm without strong convexity and
strong smoothness.

Corollary 1. Let f : Rn → R be a twice continuously differentiable convex function with non-
degenerate Hessian on Rn and x∗ be a minimizer of f . Then, there is a constant c such that
the output x̂Q of BlockCD[n,m] satisfies (5).

The proof of Corollary 1 is given in B.

3.4 Generalization to Stochastic Pairwise Comparison Oracle

In stochastic PC oracle, one needs to ensure that the correct information is obtained in high
probability. In Algorithm 3, the query Of (x,y) is repeated under the stochastic PC oracle. The
reliability of line search algorithm based on stochastic PC oracle (1) was investigated by [8, 9].

Lemma 1 ([8, 9]). For any x,y ∈ Rn with p = Pr[Of (x,y) = sign{f(y)− f(x)}], the repeated
querying subroutine in Algorithm 3 correctly identifies the sign of E[Of (x,y)] with probability
1− δ, and requests no more than

log 2/δ

4|1/2− p|2
log2

(
log 2/δ

4|1/2− p|2

)
(6)

7

queries.

It should be noted here that, in this paper, sign{E[Of (x, y)]} = sign{f(y) − f(x)} always
holds because p > 1/2 from (1). In [8], a modified line search algorithm using a ternary search
instead of bisection search was proposed to lower bound |1/2 − p| in Lemma 1 for arbitrary
x,y ∈ Rn. Then, one can find that the total number of queries required by a repeated querying

subroutine algorithm is at most Õ
(

log 1/δ

η4(κ−1)

)
, where η is an accuracy of line search. The query

complexity of the stochastic PC oracle is obtained from that of the deterministic PC oracle.
Suppose that one has Q0 responses from the deterministic PC oracle. To obtain the same
responses from the stochastic PC oracle with probability more than 1− δ, one needs more than
Õ(Q0η

−4(κ−1) log(Q0

δ)) queries. From the above discussion, we have the following upper bounds
for stochastic setting:

E[f(x̂Q)− f(x∗)] ≤


exp

{
− c1

log n

√
Q

n

}
, κ = 1,

c2
n2

m

(
n

Q

)1/(2κ−2)
, κ > 1,

(7)

where c1 and c2 are constant depending on L/σ and f(x0) − f(x∗) as well as 1/δ poly-
logarithmically. If m and n are of the same order in the case of κ > 1, the bound (7) coincides
with that shown in Theorem 2 of [8].

4 Numerical Experiments

In this section, we present numerical experiments in which the proposed method in Algorithm 1
was mainly compared with the Nelder-Mead algorithm [13] and the original PC algorithm [8],
i.e., BlockCD[n, 1] of Algorithm 1. Here, the PC oracle was used in all the optimization algo-
rithms. In BlockCD[n,m] with m ≥ 2, one can execute the line search algorithm to each axis
separately. Hence, the parallel computation is directly available to find the components of the
search direction dt. Also, we investigated the computation efficiency of the parallel implemen-
tation of our method. The numerical experiments were conducted on AMD Opteron Processor
6176 (2.3GHz) with 48 cores, running Cent OS Linux release 6.4. We used the R language [14]
with snow library for parallel statistical computing.

4.1 Two Dimensional Problems

It is well-known that the Nelder-Mead method efficiently works in low dimensional problems.
Indeed, in our preliminary experiments for two dimensional optimization problems, the Nelder-
Mead method showed a good convergence property compared to the other methods such as
BlockCD[2,m] with m = 1, 2. Numerical results are presented in Figure 2. We tested optimiza-
tion methods on the quadratic function f(x) = xTAx, and two-dimension Rosenbrock function,
f(x) = (1 − x1)2 + 100(x2 − x21)2, where the matrix A was a randomly generated 2 by 2 posi-
tive definite matrix. In two dimension problems, we do not use the parallel implementation of
our method, since clearly the parallel computation is not efficient that much. The efficiency of
parallel computation is canceled by the communication overhead. In our method, the accuracy
of the line search is fixed to a small positive number η. Hence, the optimization process stops

8

1e−03 1e−01 1e+011e
−

46
1e

−
26

1e
−

06

CPU time (s)

fu
nc

tio
n

va
lu

e

deterministic PC oracle
Quadratic: dim(x)=2

Nelder−Mead
original PC
BlockCD[2,2]

1e−02 1e+00 1e+021e
−

33
1e

−
17

1e
−

01

CPU time (s)

fu
nc

tio
n

va
lu

e

deterministic PC oracle
Rosenbrock: dim(x)=2

Nelder−Mead
original PC
BlockCD[2,2]

Figure 2: Left panel: 2-dimension quadratic function. Right panel: 2-dimension Rosenbrock
function. The Nelder-Mead method, BlockCD[2, 1], and BlockCD[2, 2] are compared. For each
algorithm, the median of the function value is depicted to the CPU time (s). The vertical bar
shows the percentile 30% to 70%.

on the way to the optimal solution, as shown in the left panel of Fig. 2. On the other hand,
the Nelder-Mead method tends to converge to the optimal solution in high accuracy. In terms
of the convergence speed for the optimization of two-dimensional quadratic function, there is
no difference between the Nelder-Mead method and BlockCD method, until the latter stops
due to the limitation of the numerical accuracy. Even in non-convex Rosenbrock function, the
Nelder-Mead method works well compared to the PC-based BlockCD algorithm.

4.2 Numerical Experiments of Parallel Computation

In high dimensional problems, however, the performance of the Nelder-Mead method is easily
degraded as reported by several authors; see [7] and references therein. In the below, we focus
on solving moderate-scale optimization problems.

In experiments using the PC oracle, BlockCD[n,m] with m ≥ 2 and its parallel imple-
mentations were compared with the Nelder-Mead method and the original PC algorithm, i.e.,
BlockCD[n, 1]. In each iteration of BlockCD[n,m] with m ≥ 2, m + 1 runs of the line search
were required. In the parallel implementation, tasks of line search except the search step in
Algorithm 1 were almost equally assigned to each core in processors. In the below, the parallel
implementation of BlockCD[n,m] is referred to as parallel-BlockCD[n,m]. Suppose that c cores
are used in parallel-BlockCD[n,m]. Then, ideally, the parallel computation will be approxi-
mately (m+ 1)/(m/c+ 1) ≈ c times more efficient than the serial processing, when n and m are
much greater than c. Practically, however, the communication overhead among processors may
cancel the effect of the parallel computation, especially in small-scale problems.

We tested optimization methods on two n-dimensional optimization problems, i.e., the
quadratic function f(x) = xTAx, and Rosenbrock function, f(x) =

∑n−1
i=1 [(1−xi)2 + 100(xi+1−

x2i)
2], where the matrix A was a randomly generated n by n positive definite matrix. The

9

1e−02 1e+00 1e+021e
−

07
1e

−
04

1e
−

01
1e

+
02

CPU time (s)

fu
nc

tio
n

va
lu

e

deterministic PC oracle
Quadratic: dim(x)=30

Nelder−Mead
original PC
BlockCD[30,30]
BlockCD[30,10]
parallel−BlockCD[30,30]
parallel−BlockCD[30,10]

1e−01 1e+00 1e+01 1e+02 1e+03

1e
+

01
1e

+
03

1e
+

05
CPU time (s)

fu
nc

tio
n

va
lu

e

deterministic PC oracle
Quadratic: dim(x)=300

Nelder−Mead
original PC
BlockCD[300,300]
BlockCD[300,100]
parallel−BlockCD[300,300]
parallel−BlockCD[300,100]

1e−02 1e+00 1e+02

1e
−

08
1e

−
02

1e
+

04

CPU time (s)

fu
nc

tio
n

va
lu

e

deterministic PC oracle
Rosenbrock: dim(x)=30

Nelder−Mead
original PC
BlockCD[30,30]
BlockCD[30,10]
parallel−BlockCD[30,30]
parallel−BlockCD[30,10]

1e−02 1e+00 1e+02

1e
−

02
1e

+
02

1e
+

06

CPU time (s)

fu
nc

tio
n

va
lu

e

deterministic PC oracle
Rosenbrock: dim(x)=300

Nelder−Mead
original PC
BlockCD[300,300]
BlockCD[300,100]
parallel−BlockCD[300,300]
parallel−BlockCD[300,100]

Figure 3: Deterministic PC oracle is used in PC-based BlockCD algorithm. Top panels: results
in optimization of quadratic function. Bottom panels: results in optimization of Rosenbrock
function. The original PC algorithm, BlockCD[n,m] with m = n and m = n/3, and parallel-
BlockCD[n,m] with m = n and m = n/3, are compared for n = 30 and n = 300. The median
of the function value is shown to the CPU time (s). The vertical bar shows the percentile 30%
to 70%.

10

quadratic function satisfies the assumptions in Theorem 1, while the Rosenbrock function is
not convex. We examine whether the proposed method is efficient even when the theoretical
assumptions are not necessarily assured. In each objective function, the dimension was set to
n = 30 or 300. In all problems, the optimal value is zero. For each algorithm, the optimization
was repeated 10 times using randomly chosen initial points. According to [7], we examined
some tuning parameters for the Nelder-Mead algorithm, and we found that the initial simplex
does not significantly affect the numerical results in the present experiments. Hence, the stan-
dard parameter setting of the Nelder-Mead method used in [7] was used throughout the present
experiments.

The numerical results using the deterministic PC oracle are presented in Figure 3. For each
algorithm, the median of function values in optimization process is depicted as the solid line with
30 and 70 percentiles for each CPU time. The results indicate that the Nelder-Mead method
does not efficiently work even for 30-dimensional quadratic function. The original PC algorithm
and serially executed BlockCD[n,m] were comparable. This result is consistent with (5). When
the deterministic PC oracle is used, the upper bound of the query complexity is independent of
m. As for the efficiency of the parallel computation, the parallel-BlockCD[n,m] outperformed
the competitors in 300 dimensional problems. In our experiments, the parallel implementation
was about 15 times more efficient than the serial implementation in CPU time. For large-scale
problems, the communication overhead is canceled by the efficiency of the parallel computation.
In our approach, the parallel computation is easily conducted without losing the convergence
property proved in Theorem 1.

Also, we conducted optimization using the stochastic PC oracle. The results are shown in
Fig. 4. The parameter in the stochastic PC oracle was set to κ = 2, δ0 = 0.3 and µ = 0.01. Thus,
the difference of two function values affects the probability that the oracle returns the correct
sign. According to Lemma 1, the query was repeated at each point so that the probability
of receiving the correct sign was greater than 1 − δ with δ = 0.01. As shown in the results
of BlockCD[300, 100] and BlockCD[300, 300], the serial implementation of BlockCD[n,m] for a
large m was extremely inefficient. Indeed, the right panels of Fig. 4 indicate that an iteration
of BlockCD[300, 300] takes a long time. Also, the convergence rate of the original PC algorithm
was slow, though the computational cost of each iteration was not high. When the stochastic
PC oracle was used, the parallel implementation of BlockCD[n,m] achieved fast convergence
rate compared with the other algorithms in CPU time.

5 Conclusion

In this paper, we proposed a block coordinate descent algorithm for unconstrained optimiza-
tion problems using the pairwise comparison of function values. Our algorithm consists of two
steps: the direction estimate step and search step. The direction estimate step can easily be
parallelized. Hence, our algorithm is effectively applicable to large-scale optimization problems.
Theoretically, we obtained an upper bound of the convergence rate and query complexity, when
the deterministic and stochastic pairwise comparison oracles were used. Practically, our algo-
rithm is simple and easy to implement. In addition, numerical experiments showed that the
parallel implementation of our algorithm outperformed the other methods. An extension of our
algorithm to constrained optimization problems is an important future work. Other interesting
research directions include pursuing the relation between pairwise comparison oracle and other
kind of oracles such as gradient-sign oracle [16].

11

20 50 100 500 2000

5
50

50
0

50
00

CPU time (s)

fu
nc

tio
n

va
lu

e

stochastic PC oracle
Quadratic: dim(x)=30

original PC
BlockCD[30,30]
BlockCD[30,10]
parallel−BlockCD[30,30]
parallel−BlockCD[30,10]

20 50 200 1000 50001e
+

03
1e

+
04

1e
+

05
1e

+
06

CPU time (s)
fu

nc
tio

n
va

lu
e

stochastic PC oracle
Quadratic: dim(x)=300

original PC
BlockCD[300,300]
BlockCD[300,100]
parallel−BlockCD[300,300]
parallel−BlockCD[300,100]

20 50 100 500 2000

1e
+

01
1e

+
03

1e
+

05

CPU time (s)

fu
nc

tio
n

va
lu

e

stochastic PC oracle
Rosenbrock: dim(x)=30

original PC
BlockCD[30,30]
BlockCD[30,10]
parallel−BlockCD[30,30]
parallel−BlockCD[30,10]

10 50 200 1000 50001e
+

02
1e

+
04

1e
+

06

CPU time (s)

fu
nc

tio
n

va
lu

e

stochastic PC oracle
Rosenbrock: dim(x)=300

original PC
BlockCD[300,300]
BlockCD[300,100]
parallel−BlockCD[300,300]
parallel−BlockCD[300,100]

Figure 4: Stochastic PC oracle is used in PC-based BlockCD algorithm. Top panels: results
in optimization of quadratic function. Bottom panels: results in optimization of Rosenbrock
function. The original PC algorithm, BlockCD[n,m] with m = n and m = n/3, and parallel-
BlockCD[n,m] with m = n and m = n/3, are compared for n = 30 and n = 300. The median
of the function value is shown to the CPU time (s). The vertical bar shows the percentile 30%
to 70%.

12

References

[1] Charles Audet and John E Dennis Jr. Analysis of generalized pattern searches. SIAM
Journal on Optimization, 13(3):889–903, 2002.

[2] Stephen Poythress Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[3] A Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free
optimization, volume 8. SIAM, 2009.

[4] Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region methods, volume 1.
Siam, 2000.

[5] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the
bandit setting: Gradient descent without a gradient. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 385–394, Philadelphia,
PA, USA, 2005. Society for Industrial and Applied Mathematics.

[6] M. C. Fu. Gradient estimation. In S. G. Henderson and B. L. Nelson, editors, Hand-
books in Operations Research and Management Science: Simulation, chapter 19. Elservier
Amsterdam, 2006.

[7] Fuchang Gao and Lixing Han. Implementing the Nelder-Mead simplex algorithm with
adaptive parameters. Comput. Optim. Appl., 51(1):259–277, 2012.

[8] K. G. Jamieson, R. D. Nowak, and B. Recht. Query complexity of derivative-free optimiza-
tion. In NIPS, pages 2681–2689, 2012.

[9] Matti Kääriäinen. Active learning in the non-realizable case. In Algorithmic Learning
Theory, pages 63–77. Springer, 2006.

[10] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Conver-
gence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of
Optimization, 9:112–147, 1998.

[11] D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2008.

[12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2012.

[13] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 7(4):308–313, 1965.

[14] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2014.

[15] Aaditya Ramdas and Aarti Singh. Algorithmic connections between active learning and
stochastic convex optimization. In Algorithmic Learning Theory, pages 339–353. Springer,
2013.

13

[16] Aaditya Ramdas and Aarti Singh. Algorithmic connections between active learning and
stochastic convex optimization. In Sanjay Jain, Rémi Munos, Frank Stephan, and Thomas
Zeugmann, editors, ALT, volume 8139 of Lecture Notes in Computer Science, pages 339–
353. Springer, 2013.

[17] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: A review of
algorithms and comparison of software implementations. Journal of Global Optimization,
56(3):1247–1293, 2013.

A Proof of Theorem 1

Proof. The optimal solution of f is denoted as x∗. Let us define ε′ be ε/(1 + n
mγ). If f(xt) −

f(x∗) < ε′ holds in the algorithm, we obtain f(xt+1) − f(x∗) < ε′, since the function value is
non-increasing in each iteration of the algorithm1.

Next, we assume ε′ ≤ f(xt)− f(x∗). The assumption leads to

2σε′ ≤ 2σ(f(xt)− f(x∗)) ≤ ‖∇f(xt)‖2,

in which the second inequality is derived from (9.9) in [2]. In the following, we use the inequality

f(xt + βtdt/‖dt‖) ≤ f(xt)−
|∇f(xt)

Tdt|2

2L‖dt‖2
+
L

2
η2

that is proved in [8]. For the i-th coordinate, let us define the functions glow(α) and gup(α) as

glow(α) = f(xt) +
∂f(xt)

∂xi
α+

σ

2
α2, and gup(α) = f(xt) +

∂f(xt)

∂xi
α+

L

2
α2.

Then, we have

glow(α) ≤ f(xt + αei) ≤ gup(α).

Let αup and α∗i be the minimum solution of minα gup(α) and minα f(xt + αei), respectively.
Then, we obtain

glow(α∗i) ≤ f(xt + α∗i ei) ≤ f(xt + αupei) ≤ gup(αup).

The inequality glow(α∗i) ≤ gup(αup) yields that α∗i lies between −c0 ∂f(xt)∂xi
and −c1 ∂f(xt)∂xi

, where
c0 and c1 are defined as

c0 = (1−
√

1− σ/L)/σ, c1 = (1 +
√

1− σ/L)/σ.

Here, 0 < c0 ≤ c1 holds. Each component of the search direction dt = (d1, . . . , dn) 6= 0 in
Algorithm 1 satisfies |di − α∗i | ≤ η if i = ik and otherwise di = 0. For I = {i1, . . . , im} ⊂
{1, . . . , n}, let ‖a‖2I of the vector a ∈ Rn be

∑
i∈I a

2
i . Then, the triangle inequality leads to

‖dt‖ ≤ c1‖∇f(xt)‖I +
√
mη,

|∇f(xt)
Tdt| ≥ c0‖∇f(xt)‖2I −

√
mη‖∇f(xt)‖I .

1Monotone decrease of f(xt) is assured by a minor modification of PC-oracle in [8].

14

The assumption ε′ ≤ f(xt)− f(x∗) and the inequalities 2σ(f(xt)− f(x∗)) ≤ ‖f(xt)‖2, 1/4L2 ≤
c0

2 lead to

η =

√
ε′σ

8L2n
≤ c0

√
σε′

2n
≤ c0

‖∇f(xt)‖
2
√
n

.

Hence, we obtain

‖dt‖ ≤ c1‖∇f(xt)‖I +
c0
2

√
m

n
‖∇f(xt)‖,

|∇f(xt)
Tdt| ≥

[
c0‖∇f(xt)‖2I −

c0
2

√
m

n
‖∇f(xt)‖‖∇f(xt)‖I

]
+

,

where [x]+ = max{0, x} for x ∈ R. Let Z =
√

n
m‖∇f(xt)‖I/‖∇f(xt)‖ be a non-negative

valued random variable defined from the random set I, and define the non-negative value k as
k = c0/c1 ≤ 1. A lower bound of the expectation of (|∇f(xt)

Tdt|/‖dt‖)2 with respect to the
distribution of I is given as

EI

[(
|∇f(xt)

Tdt|
‖dt‖

)2
]
≥ EI

([c0‖∇f(x)‖2I −
c0
2

√
m
n ‖∇f(xt)‖‖∇f(xt)‖I

]
+

c1‖∇f(xt)‖I + c0
2

√
m
n ‖∇f(xt)‖

)2


= k2
m

n
‖∇f(xt)‖2EI

[
Z2 [Z − 1/2]2+

(Z + k/2)2

]
≥ k2m

n
‖∇f(xt)‖2EI

[
Z2 [Z − 1/2]2+

(Z + 1/2)2

]
.

The random variable Z is non-negative, and EI [Z2] = 1 holds. Thus, Lemma 2 in the below
leads to

EI

[(
|∇f(xt)

Tdt|
‖dt‖

)2
]
≥ k2

53

m

n
‖∇f(xt)‖2.

Eventually, if ε′ ≤ f(xt) − f(x∗), the conditional expectation of f(xt+1) − f(x∗) for given
d0,d1, . . . ,dt−1 is given as

E[f(xt+1)− f(x∗)|d0, . . . ,dt−1] ≤ f(xt)− f(x∗)− k2

106L

m

n
‖∇f(xt)‖2 +

Lη2

2

≤
(

1− m

n
γ
)

(f(xt)− f(x∗)) +
Lη2

2
.

Combining the above inequality with the case of f(xt)− f(x∗) < ε′, we obtain

E[f(xt+1)− f(x∗)|d0, . . . ,dt−1]

≤ 1[f(xt)− f(x∗) ≥ ε′] ·
[(

1− m

n
γ
)

(f(xt)− f(x∗)) +
Lη2

2

]
+ 1[f(xt)− f(x∗) < ε′] · ε′.

The expectation with respect to all d0, . . . ,dt yields

E[f(xt+1)− f(x∗)] ≤
(

1− m

n
γ
)
E[1[f(xt)− f(x∗) ≥ ε′](f(xt)− f(x∗))]

+ E[1[f(xt)− f(x∗) ≥ ε′]]Lη
2

2
+ E[1[f(xt)− f(x∗) < ε′]]ε′

≤
(

1− m

n
γ
)
E[f(xt)− f(x∗)] + max

{
Lη2

2
, ε′
}
.

15

Since 0 < γ < 1 and max{Lη2/2, ε′} = ε′ hold, for ∆T = E[f(xT)− f(x∗)] we have

∆T −
n

m

ε′

γ
≤
(

1− m

n
γ
)(

∆T−1 −
n

m

ε′

γ

)
≤
(

1− m

n
γ
)T

∆0.

When T is greater than T0 in (4), we obtain
(
1− m

n γ
)T

∆0 ≤ ε′ and

∆T ≤ ε′
(

1 +
n

mγ

)
= ε.

Let us consider the accuracy of the numerical solution xT . As shown in [2, Chap. 9], the
inequality

‖x− x∗‖2 ≤ 8L

σ2
(f(x)− f(x∗))

holds. Thus, for T ≥ T0, we have

E[‖xT − x∗‖]2 ≤ E[‖xT − x∗‖2] ≤ 8L

σ2
ε = 64n

(
L

σ

)3(
1 +

n

mγ

)
η2.

Lemma 2. Let Z be a non-negative random variable satisfying E[Z2] = 1. Then, we have

E
[
Z2 [Z − 1/2]2+

(Z + 1/2)2

]
≥ 1

53
.

Proof. For z ≥ 0 and δ ≥ 0, we have the inequality

[z − 1/2]2+
(z + 1/2)2

≥ δ2

(1 + δ)2
1[z ≥ 1/2 + δ].

Then, we get

E
[
Z2 [Z − 1/2]2+

(Z + 1/2)2

]
≥ δ2

(1 + δ)2
E[Z21[Z ≥ 1/2 + δ]]

=
δ2

(1 + δ)2
E[Z2(1− 1[Z < 1/2 + δ])]

=
δ2

(1 + δ)2
(
1− E[Z21[Z < 1/2 + δ]]

)
≥ δ2

(1 + δ)2
(
1− (1/2 + δ)2 Pr(Z < 1/2 + δ)

)
≥ δ2

(1 + δ)2
(
1− (1/2 + δ)2

)
.

By setting δ appropriately, we obtain

EI
[
Z2 [Z − 1/2]2+

(Z + 1/2)2

]
≥ 1

53
.

16

B Proof of Corollary 1

Proof. For the output x̂Q of BlockCD[n,m], f(x̂Q) ≥ f(x̂Q+1) holds, and thus, the sequence
{x̂Q}Q∈N is included in

C(x0) := {x ∈ Rn|f(x) ≤ f(x0)}.

Since f is convex and continuous, C(x0) is convex and closed. Moreover, since f is convex and
it has non-degenerate Hessian, the Hessian is positive definite, and thus, f is strictly convex.
Then C(x0) is bounded as follows. We set the minimul directional derivative along the radial
direction from x∗ over the unit sphere around x∗ as

b := min
‖u‖=1

∇f(x∗ + u) · u.

Then, b is strictly positive and the following holds for any x ∈ C(x0) such that ‖x− x∗‖ ≥ 1,

b‖x− x∗‖+ (f(x∗)− b) ≤ f(x) ≤ f(x0).

Thus we have

C(x0) ⊂
{
x

∣∣∣∣‖x− x∗‖ ≤ 1 +
f(x0)− f(x∗)

b

}
. (8)

Since the right hand side of (8) is a bounded ball, C(x0) is also bounded. Thus, C(x0) is a
convex compact set.

Since f is twice continuously differentiable, the Hessian matrix ∇2f(x) is continuous with
respect to x ∈ Rn. By the positive definiteness of the Hessian matrix, the minimum and
maximum eigenvalues emin(x) and emax(x) of ∇2f(x) are continuous and positive. Therefore,
there are the positive minimum value σ of emin(x) and maximum value L of emax(x) on the
compact set C(x0). It means that f is σ-strongly convex and L-Lipschitz on C(x0). Thus, the
same argument to obtain (5) can be applied for f .

17

	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Algorithm
	3.2 Convergence Properties of our Algorithm under Deterministic Oracle
	3.3 Query Complexity
	3.4 Generalization to Stochastic Pairwise Comparison Oracle

	4 Numerical Experiments
	4.1 Two Dimensional Problems
	4.2 Numerical Experiments of Parallel Computation

	5 Conclusion
	A Proof of Theorem ??
	B Proof of Corollary ??

