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Abstract We propose a novel optimization algorithm for continuous functions using
geodesics and contours under conformal mapping. The algorithm can find multiple
optima by first following a geodesic curve to a local optimum then traveling to the
next search area by following a contour curve. To improve the efficiency, Newton-
Raphson algorithm is also employed in local search steps. A proposed jumping mech-
anism based on realized geodesics enables the algorithm to jump to a nearby region
and consequently avoid trapping in local optima. Conformal mapping is used to re-
solve numerical instability associated with solving the classical geodesic equations.
Geodesic flows under conformal mapping are constructed numerically by using lo-
cal quadratic approximation. The parameters in the algorithm are adaptively cho-
sen to reflect local geometric features of the objective function. Comparisons with
many commonly used optimization algorithms including gradient, trust region, ge-
netic algorithm and global search methods have shown that the proposed algorithm
outperforms most widely used methods in almost all test cases with only a couple of
exceptions.
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1 Introduction

Optimization is an essential process in scientific investigation. There are many effec-
tive and efficient methods proposed in the literature, see for example [1], [2], [3] and
[4]. We propose a new algorithm that solves optimization problems from a point of
view that is different than most of the major methods in the literature. The proposed
method builds one dimensional paths or curves and travels on it with a constant speed
to search for the global optimum.

The main idea of the proposed optimization algorithm is built upon geodesics
which are a generalization of straight lines in Euclidean space that minimizes the
non-Euclidean distance between two points on a given manifold defined by the ob-
jective function. The paths of optimization are constructed numerically by using a
local quadratic approximation since there is no analytical solution to the geodesic
equation in a general manifold. To avoid numerical instabilities in converting ill-
conditioned matrices, the geodesics are constructed on a manifold under conformal
mapping which preserves intrinsic geometrical features of the objective function. The
algorithm will then follow either the geodesics or contours under conformal mapping
to search for the optimum. Each contour curve could provide a bridge to a new search
area and the constant speed enforced by the algorithm ensures that the search never
stops or be trapped at a stationary point. Even with carefully constructed geodesics,
the proposal algorithm can still be trapped within one region. In order to search an-
other promising region, we also build a jumping mechanism by examining the values
of the objective function along the geodesics to detect any potential and hidden influ-
ence to the geodesic flow from an nearby optimum.

The algorithm can be further improved by integrating with other search meth-
ods. For example, one can use a few points along the geodesic as starting points
to a Quasi-Newton algorithm to improve computational efficiency. From the Quasi-
Newton outputs the algorithm is able to change its parameters adaptively for oscil-
lating and smooth objective functions. We found that the resulting algorithm per-
forms well in both types of functions in moderately high dimensions. Furthermore,
we built a stopping criterion for the algorithm using Quasi-Newton methods by set-
ting a threshold on the number of the maximum found within tolerance.

The remaining part of the paper is organized as follows. In Section 2 we give an
introductory review on differential geometry. Theoretical properties of the proposed
algorithm are established in Section 3. In Section 4, we give a general description
of the algorithm and we also describe the method of choosing the parameters adap-
tively. Numerical results comparing the proposed algorithm with the Quasi-Newton,
genetic algorithm, wedge trust region methods and the global search function in Mat-
lab’s global optimization package are provided in Section 5. Finally, the conclusion
is given in Section 6.

2 The Main Idea

We generalize the line search method with geodesics in order to discover multiple
maxima on a manifold conformally related to Rn.
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2.1 Geodesics and Geodesic Equations

We consider a topological manifold that is a second countable and locally compact
Hausdorff space. It is also connected and completely regular. Detailed discussions
can be found in [5] and [6]. A Riemannian metric on a smooth and differentiable
manifold M is a 2-tensor field T 2(M) that is symmetric and positive definite. A
Riemannian metric thus determines an inner product on each tangent space Tp(M),
which is typically written as g(U, V ) for U, V ∈ Tp(M). For an Euclidean space, the
metric matrix (or just metric henceforth) in component form is the Kronecka delta,
i.e gij = δij . The inner product g(U, V ) in Euclidean reduces to the dot product,∑
ij δijU

iV j , where the sum is over all dimensions. In the Einstein summation con-
vention, it is understood that repeated indices are summed over and the inner product
is expressed as gijU iV j .

A geodesic is defined to be the path of minimum length for two given distinct
points in a connected manifold. It is simply a straight line in Euclidean space. In
a non-flat manifold, however, it is a curve and no longer a straight line. Let Xi(t)
denote the local coordinate for the i-th dimension for a parameter t which is a time
step in our case. The geodesic is then characterized by a set of partial differential
equations, using the Einstein summation convention:

d2Xi(t)

dt2
+ Γ ijk

dXj(t)

dt

dXk(t)

dt
= 0, (1)

where Γ ijk are Christoffel symbols defined to be

Γ ijk =
1

2
gim
(
∂gmj
∂xk

+
∂gmk
∂xj

− ∂gjk
∂xm

)
,

gij is the metric and gij is the inverse metric.
There exists a unique vector field on the tangent bundle of manifold, denoted

as TM , whose trajectories are of the form (γ(t), γ
′
(t)) where γ is the geodesic.

Geodesics play an important role in General Relativity, see [8], where the path of a
planet orbiting around a star is the projection of a geodesic of the curved 4-D space-
time geometry around the star onto a 3-D Euclidean space.

2.2 Conformal Mapping

Numerical calculations of the Christoffel symbols involve the inversion of the metric
and can be unstable and computationally costly. One strategy to avoid such com-
plications is to calculate the Christoffel symbols in a manifold where the metric is
easily inverted and then map the results to the manifold desired. We consider the case
where the manifold containing information about the objective function is mapped
from Rn, where the metric and the inverse metric is the Kronecka delta. In such a
case an analytic expression for the Christoffel symbols is available and the costly
matrix inversion is avoided.
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Each local neighborhood in the new manifold is holomorphic to Rn. The re-
sulting metric under the conformal mapping is said to be conformally related to the
Euclidean metric

gij = Ψ(x)2δij ,

where the scale factor Ψ(x) = eφ(x) and φ(x) is a real valued objective function.
Trivially, the manifolds obtained this way are Riemannian as the metric tensors are
both symmetric and positive definite. The existence of such mappings is trivial since
we assume the existence of φ(x) to begin with.

3 Theoretical Properties of the Geodesic in a Conformally Flat Metric

This section investigates the path of the geodesic by considering the direction of its
tangent vector and the jumping mechanism used in the algorithm. Unless otherwise
stated, the Einstein summation convention is used on all quantities in component
form.

3.1 The Geodesics under Conformal Mapping

Theorem 3.1 The level curves and the gradient of the objective function φ are
the attractors of the geodesics on any manifold conformally related to Euclidean
space.

3.2 Jumping Mechanism

Occasionally, the geodesic can be confined in the neighborhood of a local maximum.
Here we discuss a method to estimate the direction of a neighboring maximum from
the local maximum using a geodesic so that a jump can be implemented to restart the
geodesic along that direction.

Let l be the length of the geodesic, γ. We define the jumping direction to be
along the vector

∆x :=
1

l

∫
γ

φ̂(x)x dx− 1

l

∫
γ

x dx,

where the integral is over the geodesic and φ̂ being the normalized φ over t, . In
practice, this is approximated by the sum over all steps along the geodesic

∆x ' 1

T

T∑
t=1

[φ̂(xt)xt − xt],

where T is the total number of steps and xt ∈ γ. This is just the difference of the
weighted mean and the mean position vectors along the geodesic. Suppose that a
neighboring maximum exists and the geodesic is symmetric about a local maximum
(as it would usually be the case if the geodesic is trapped, for instance, as in Figure
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2). Then the weighted mean would be slightly biased towards the neighboring max-
imum. And so ∆x would be pointed towards the neighboring maximum. We used a
decreasing jump distance for each jump. This is by no means an accurate estimate
of the direction to the next maximum. However it has been proven to be sufficient
for our algorithm to discover the global maximum in many objective functions of
multiple maxima.

3.3 Solving the Geodesic Equation with a Quadratic Approximation

In this subsection we discuss the quadratic approximation used to solve the geodesic
equation iteratively. We give an estimation of the adaptive step sizes to ensure that
the approximation is valid. The geodesic equation is

d2xi(t)

dt2
+ Γ ijk

dxj(t)

dt

dxk(t)

dt
= 0. (2)

In the neighborhood of xt, the (discretized) approximation to the solution of the
geodesic equation is

xt+1 = xt + vtδt+ ct(δt)
2, (3)

where vt is the unit tangent vector of the geodesic at xt, δt is the step size, and

ct =
1

2

dv

dt
=

1

2
[∇φ(xt)− 2(vt · ∇φ(xt))vt]. (4)

The tangent vector is estimated by the (normalized) difference xt − xt−1 and we
set the initial tangent vector to be the gradient, vt=1 = ∇φ(xt=1). Note that the
quadratic approximation (3) is not valid when there exist a component i such that
O(vtiδt) � O(cti(δt)

2), as the approximation is only accurate when the quadratic
term is small. The value of δt when the linear term equals to the quadratic term in
magnitude is δt = tC , where

tC = min
i

∣∣∣∣vticti
∣∣∣∣.

If the quadratic term has opposite sign to the linear term, then xit+1 = xit when
δt = tC for some component i. Also, when δt = 1

2 tC , xit+1 − xit is maximized.
Therefore, at every time step, the algorithm chooses a step size of δt = 1

2 tC , if it
is not smaller than the specified lower bound on t (to be explained in the algorithm
section).

Since the geodesic aligns itself with the gradient (or the level curves) as shown
in the Section 3.1, in both cases, the step sizes are

||xt+1 − xt|| =
3

4

1

|∇φ|
.

It can be found by substituting δt = 1
2 tC into Equation 3 and setting vi = 1 in the

component parallel to the gradient (or the level curves). Furthermore, as the geodesic
travels towards a maximum following the gradient, it has a linear rate of convergence
similar to gradient descent.
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Fig. 1 Geodesic traversing through multiple local maxima in the search space.

Fig. 2 Geodesic trapped in a local maximum.

4 Algorithm

The algorithm has two parts. The first is a geodesic guided optimization (GEO) al-
gorithm. It estimates the geodesic using the quadratic approximation for a total of T
steps. The step size is adaptive and bounded by the validity of the quadratic approx-
imation. Quasi-Newton (QN) optimization may be performed, using points along
the geodesic as the starting points. Figure 1 shows the estimated geodesic moving
through three local maxima. The algorithm returns the location of the maximum and
its function value along the geodesic, or the one obtained by QN, whichever is the
largest.

4.1 Choosing Parameters

There are cases where the geodesic fails to reach multiple maxima, for instance, as
in Figure 2. When the objective function is highly oscillatory, the global maximum is
less likely to be found by the geodesic. Furthermore, a lower bound on the step size
δtLB must be specified as an input parameter to prevent the step size to become im-
practically small in regions of large gradient, but the choice of an appropriate lower
bound for any objective function is difficult (if not impossible) to determine. Intu-
itively, a large δtLB would allow the geodesic to escape from local fluctuations. On
the other hand, it may prevent the geodesic from visiting the global maximum.

The second part of the algorithm, Sequential GEO (SGEO), is developed to
overcome these difficulties. Information from the geodesic is obtained and passed
to SGEO. It includes an estimate of the direction of a neighboring local maximum,
∆̂x, an indicator, k, to denote whether the geodesic is trapped in a local maximum,
and the average distance between the starting points and the end points of QN, R̄, to
determine whether the objective function is oscillatory.

SGEO calls GEO sequentially with decreasing δtLB for N times. In each sub-
sequent run, δtLB is reduced by a factor of α, determined by requiring that δtLB in
the last run to be 1000 times smaller than that in the first run. The next GEO run
starts from a position obtained by translating x∗ along ∆̂x, with the magnitude and
method of the jump determined by k. The two mechanisms described above assist
in the escape from local maxima. In the case of oscillatory functions, QN is not per-
formed, allowing for a larger number of GEO runs. The algorithm first assumes a
non-oscillatory function, and adaptively adjusts its parameters suitable for an oscil-
latory function by setting a threshold on R̄. Finally, we impose a stopping criterion
to improve its computational cost. The technical details are described in the follow
subsections. The only inputs needed are the number of GEO runs, N , total number
of steps NT , the stopping threshold, Nth, which only depends on the dimensionality,
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and the initial δtLB which is only dependent on the dimensionality and the size of
the search region.

4.2 The first component, GEO

GEO estimates the geodesic corresponding to a conformally Euclidean metric with
the conformal factor given by the objective function up to T steps and evaluates the
objective function φ(xt) at every time step, t, along the geodesic.

At each t, the normalized tangent vector is used to evaluate xt+1 in Equation
3. Since the step size is at most of order O(1/∇iφ) as discussed in Section 3.3.
The geodesic tends to get trapped in regions of large gradient. To avoid this problem
we introduce a lower bound on the step size, δtLB , so that the step size is δt =
max{0.5tC , δtLB}. The lower bound also ensures that the geodesic has length of at
least Tδt.

Now, consider the case where tLB � tC . The trajectory is dominated by the
quadratic term ct(δt)

2. But at t = 1, the tangent vector is the unit gradient and so
ct=1 = −∇φ/2, the geodesic moves against the gradient. An additional minus sign
is introduced to ct whenever tLB > 0.5tC at t = 1. A backward geodesic that
initially moves against the gradient is also estimated by using the initial condition
vt=1 = −∇φ.

For both the forward and backward geodesics, Quasi-Newton optimization can
be performed at every TQN steps. Whenever xt+1 is outside the search region, the
algorithm sets xt+1 to be a random point sampled uniformly within the search region.
The following quantities are also evaluated to pass to SGEO, the mean distance be-
tween the Quasi-Newton initial position and the solution R̄, the normalized mean of
φ(xt)xt − xt over all t, and an integer k ∈ {0, 1, 2} which characterizes the degree
of locality of the geodesics,

k =


0 if φ∗t is not unique in the forward geodesic within tolerance ∀t.
1 if φ∗t is unique in only the forward geodesic within tolerance ∀t.
2 if φ∗t is unique in both geodesics within tolerance ∀t,

where φ∗t is the larger of φ(xt) and the optimized value with QN. The algorithm
returns the maximum objective function value and its position along the geodesics as
well as the information needed to pass onto SGEO.

4.3 Algorithm 1: GEO, Geodesic Guided Optimization

Matlab’s fminunc() function is used for the Quasi-Newton optimization. Its input
parameters are set as MaxIter = 200, T olf = 0.05, T olX = 0.01, where the last
two quantities are the tolerances in φ and x, respectively.

The set of input parameters for GEO is

– T , the number of time steps along the geodesic,
– TQN , the number of time steps between each QN call.
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– x0, a vector the initial point of the geodesic,
– φ(·), the objective function,
– ∇φ(·), the gradient of the objective function,
– L, a vector containing the lower bounds of the search space,
– U, a vector containing the upper bounds of the search space,
– δtLB , the lower bound on the step size,
– sQN , boolean variable denoting whether QN is performed.

The algorithm is as follows

1. For t = 1 : T
(a) Calculate φ(xt) and∇φ(xt).
(b) If t = 1, set xt := x0, k := 1 and δxt := ∇φ(xt),

i. else, set δxt := xt − xt−1.
(c) If mod(t, TQN ) = 0 and sQN = 1,

i. call QN(φ(·),xt) and obtain {φ∗(1)t ,x∗},
ii. set R(1)

m := ||x∗ − xt|| and set m := m+ 1,
iii. else set φ∗(1)t := φ(xt).

(d) Calculate the normalized tangent vector vt := δxt/||δxt||.
(e) Calculate ct := 1

2 [∇φ(xt)− 2(vt · ∇φ(xt))vt].
(f) Set tC := mini |vti/cti|, where i ∈ {1, . . . , D} denotes the i-th component.
(g) Set the step size δt := max{ 12 tC , δtLB}.
(h) If δt = δtLB and t = 1, change the sign of ct := −ct.
(i) Calculate xt+1 := xt + vtδt+ ct(δt)

2.
(j) If x(t+1)i < Li or x(t+1)i > Ui for any component i, sample x(t+1) from a

uniform distribution in [L,U].
(k) Calculate ∆x(1) := 1

T [
∑T
t=1(xtφ̂

∗(1)
t − xt)], where φ̂∗(1)t = φ

∗(1)
t /

∑
φ
∗(1)
t

(l) Set φ∗(1) = maxφ
∗(1)
t .

(m) If |φ∗(1) − φ∗(1)t | < Tolfφ
∗(1) for all t, then set k = 1. Else set k = 0.

2. For the backward geodesic, step (1) is repeated with the following adjustments,
(a) δxt is defined as δxt := −∇φ(xt), in step (1b),
(b) φ∗(2)t := QN(φ(·),xt) in step (1c(i)),
(c) R(2)

m := ||x∗ − xt|| in step (1c(iii)), and
(d) omitting step (1h).
(e) ∆x(2) := 1

T [
∑T
t=1(xtφ̂

∗(2)
t − xt)] in step (1k).

(f) Set φ∗(2) = maxφ
∗(2)
t in step (1l).

(g) If |φ∗(2) − φ∗(1)| < Tolfφ
∗(2) for all t and k = 1, set k = 2.

3. Set ∆x := 1
2 [∆x(1) +∆x(2)].

4. Return φ∗ := max{φ∗(1), φ∗(2)},x∗ := {x|φ(x) = φ∗}, R̄ := mean{R(1),R(2)},
∆̂x := ∆x/||∆x|| and k.

4.4 The second component, SGEO

SGEO runs GEO sequentially with different parameters. Let U and L be vectors
denoting the upper and lower bounds of the search space and let Λ = min(U − L).
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This algorithm checks whether the objective function is highly oscillating. We use the
following criterion that an oscillatory function must satisfy: R̄ < 0.1Λ

√
D in any the

first two GEO calls. The reason for limiting to just the first two GEO runs is that δtLB
gets smaller after each consecutive runs and it is more likely for R̄ to be small even
for non-oscillatory functions. In the case of a high dimensional (D > 10) oscillatory
function, no Quasi-Newton optimization is performed to allow for a higher number
of GEO runs. Both of which are crucial in locating the global optimum of highly
oscillating functions.

The algorithm uses a procedure similar to annealing to reduce δtLB for each
GEO run. Initially, δt(n=0)

LB is set to be Λ
√
D/100, where n denotes the n-th GEO

run. Then the lower bound on δt is lowered such that δtnLB = αnδt
(n=0)
LB , α ∈ (0, 1).

The factor α is chosen such that δt(n=N)
LB /δt

(n=0)
LB = 10−3.

After each GEO call, the initial value, x(n)
0 , for the next GEO call is estimated

depending on the value of k passed from GEO. Intuitively, ∆x would be a vector
pointing roughly towards a neighboring maximum. For k = 0, the local geodesic is
not trapped,

x
(n+1)
0 = x∗(n) + (αnΛ)∆̂x

(n)
.

For k = 1, the forward geodesic is trapped and we set x(n+1)
0 to be further away from

x
(n)
0 ,

x
(n+1)
0 = x∗(n) + (αΛ)∆̂x

(n)
.

Finally for k = 2, when both the backward and forward geodesics are trapped, the
method using ∆x becomes ineffective as the objective function has similar values
along the geodesics -∆x(n) points in the same direction as x(n). Therefore we simply
set x(n+1)

0 to be a point reflected across the midpoint of the search space from x
(n)
0 ,

x
(n+1)
0 :=

L + U

2
+ αnΛ(

L + U

2
− x

(n)
0 ).

A stopping criterion is imposed to reduce the computational cost. Let Φ(n) =
{φ∗(n=1), . . . , φ∗(n)} be a series of maxima found up to the n-th GEO run, φ∗ =
maxΦ(n) and N∗ be the number of elements in Φ(n) that are within tolerance of φ∗.
The algorithm is stopped if N∗ > Nth(D), where

Nth(D) =


5 D < 10

10 10 ≤ D < 20

20 20 ≤ D ≤ 50.

The algorithm returns φ∗ and x∗ = {x|φ(x) = φ∗}.

4.5 Algorithm 2: SGEO, Sequential Geodesic Optimization

Let Λ = min(U− L), the set of input parameters is

– N , the number of GEO runs,
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– NT , total step number,
– δt

(n=0)
LB , starting lower bound on the step size,

– Nth(D).

The algorithm is

1. SetΛ := min(U−L), then set {N,α,NT , δt(n=0)
LB , TQN , sQN} = {20, 0.7, 500, Λ

√
D/100, 10, 1}.

2. Calculate T := bNT

N c and sample x
(n=1)
0 uniformly in [L,U].

3. For n = 1 : N
(a) Calculate δt(n)LB := αδt

(n−1)
LB .

(b) Obtain {φ∗(n),x∗(n), R̄, ∆̂x
(n)
, k} by calling GEO(x(n)

0 , δt
(n)
LB , sQN , T, TQN ).

(c) If D > 10, R̄ < 0.1Λ
√
D, n ≤ 2 and sQN = 1,

i. set {N,α,NT , sQN} := {400, 0.98, 4000, 0} and
ii. break and restart current loop with the parameters in the above step in

place of those in step 1.

(d) If k = 0, set x(n+1)
0 := x∗(n) + (αnΛ)∆̂x

(n)
. Else if k = 1, set x(n+1)

0 :=

x∗(n) + (αΛ)∆̂x
(n)

. Else set x(n+1)
0 := L+U

2 + αnΛ(L+U
2 − x

(n)
0 ).

(e) If n = 1, set φ∗ = φ∗(n=1). Else set φ∗ := max{φ∗, φ∗(n)}.
(f) Find N∗, the number of instances such that |φ∗ − φ∗(n′)| < Tolfφ

∗, n′ ∈
{1, . . . , n}.

(g) If N∗ ≥ Nth(D), exit loop.
4. Return φ∗ and x∗ := {x|φ(x) = φ∗}.

5 Numerical Experiments

In this section we compare SGEO with other algorithms on test functions commonly
used in the literature. The objective functions1 used have dimensions ranging from 2
to 50. Sixteen of which are reasonably smooth, the other twelve are oscillatory. All
calculations are performed in Matlab.

Table 1 shows the number of failures in locating the global maximum for exist-
ing methods. A success is defined when the estimated function value is within 5% of
the maximum value. If the maximum value is zero, a success corresponds to finding
a function value less than 0.05. As it can be seen in Table 1, the Global Search (GS)
method in Matlab’s global optimization toolbox outperforms Quasi-Newton (QN),
Trust Region (TR), and Genetic Algorithm (GA).

In Table 2 we justify the use of QN and the jumping mechanism in SGEO.
The algorithm without QN fails in high dimensions whereas without jumping the
algorithm fails in oscillatory cases.

For finding a global maximum from the chosen test functions, we found that the
global search method is the best among all commonly used optimization method. We
therefore did an extensive comparison with the global search method in Table 3. We

1 These are obtained from http://www.sfu.ca/∼ssurjano/optimization.html. We have used the log of
the Hartman and Goldstein-Price functions as the values of these functions vary across five orders of
magnitude within the search space.

http://www.sfu.ca/~ssurjano/optimization.html
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found that SGEO can discover the true global maximum with a higher chance than
GS in the objective functions tested. Our method is more accurate than the global
search in many test functions. There is only one function that our method is not as
good as the global search. At the same time, the computational cost represented by the
number of function calls and the computational time remains similar in most cases.

Table 1 Number of failures over 100 runs for Quasi-Newton (QN), Trust Region (TR), Genetic Algorithm
(GA), and Global Search (GS).

Table 2 Number of failures over 50 runs for SGEO, without Quasi-Newton (with T = 200), and without
jumping.

Table 3 The number of failures (Nfailure), computational time, and the number of function calls (Ncall)
over 50 runs of SGEO and GS.

6 Conclusion

A new algorithm is proposed in order to find multiple optima of a continuous objec-
tive function. The path constructed by the algorithm follows either a geodesic or a
contour line. Conformal mapping and the Newton Raphston algorithm are employed
to enhance computational efficiency. A built-in jumping mechanism also directs the
proposed algorithm to a more promising search area. A stopping criterion is imple-
mented if the same maximum is found too many times. We are extending this algo-
rithm to handle optimization in high dimensions with contestation.
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