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Abstract

Nonnegative matrix factorization (NMF) is a powerful technique for dimension re-
duction, extracting latent factors and learning part-based representation. For large
datasets, NMF performance depends on some major issues: fast algorithms, fully par-
allel distributed feasibility and limited internal memory. This research aims to design a
fast fully parallel and distributed algorithm using limited internal memory to reach high
NMF performance for large datasets. In particular, we propose a flexible accelerated
algorithm for NMF with all its L1 L2 regularized variants based on full decomposition,
which is a combination of an anti-lopsided algorithm and a fast block coordinate de-
scent algorithm. The proposed algorithm takes advantages of both these algorithms to
achieve a linear convergence rate of O(1− 1

||Q||2 )k in optimizing each factor matrix when
fixing the other factor one in the sub-space of passive variables, where r is the number
of latent components; where

√
r ≤ ||Q||2 ≤ r. In addition, the algorithm can exploit

the data sparseness to run on large datasets with limited internal memory of machines.
Furthermore, our experimental results are highly competitive with 7 state-of-the-art
methods about three significant aspects of convergence, optimality and average of the
iteration number. Therefore, the proposed algorithm is superior to fast block coordinate
descent methods and accelerated methods.

Keywords: Non-negative matrix factorization, Anti-lopsided algorithm, Cooridi-
nate descent algorithm, and Parallel and distributed algorithm.
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1 Introduction
Nonnegative matrix factorization (NMF) is a powerful technique widely used in applications
of data mining, signal processing, computer vision, bioinformatics, etc. [Zha11b]. Funda-
mentally, NMF has two main purposes. First, it reduces dimension of data making learning
algorithms faster and more effective as they often work less effectively due to the curse of
dimensionality [HV05]. Second, NMF helps extracting latent components and learning part-
based representation, which are the significant distinction from other dimension reduction
methods such as Principal Component Analysis (PCA), Independent Component Analysis
(ICA), Vector Quantization (VQ), etc. This feature originates from transforming data into
lower dimension of latent components and non-negativity constraints [DS04, Gil14, LS+99].

In the last decade of fast development, there were remarkable milestones. The two first
milestones in early days of the NMF historical development were its mathematical formula-
tions as positive matrix factorization with Byzantine algorithms [PT94] and as parts-based
representation with a simple effective algorithm [LS+99]. The last decade has witnessed
the rapid NMF development [Zha11b, WZ13]. Various works on NMF can be viewed
in three major perspectives: variants of NMF, algorithms and applications. In partic-
ular, variants of NMF are based on either divergence functions [SL01, Zha11a], or con-
straints [Hoy04, PMCK+06], or regularizations [Cho08, LAW+07]. Most NMF algorithms
were developed along two main directions: geometric greedy algorithms [TKWB11] and it-
erative multiplicative update algorithms. Although geometric greedy algorithms are usually
fast, they are hard to trade off complexity, optimality, loss information and sparseness.

More recently, it is well recognized that the most challenging problems in iterative mul-
tiplicative update algorithms for NMF are fast learning, limited internal memory, parallel
distributed computation, among others. In particular, fast learning is essential in learning
NMF models from large datasets, and it is indeed difficult to carry out them when the num-
ber of variables is very large. In addition, the limited internal memory is one of the most
challenging requirements for big data [GWLT13], because data has been exploring rapidly
while the internal memory of nodes is always limited. Finally, parallel and distributed com-
putation makes NMF applications feasible for big data [LYF+10].

To deal with these challenges, this work develops an accelerated algorithm for NMF
and its L1 L2 regularized variants having several major advantages that are summarized in
Table 1. In this paper, we contribute five folders as follows:
• NMF and its variants : We fully decompose NMF and its L1 L2 regularized variants

into non-negative quadratic programming problems. This decomposition makes the proposed
algorithm flexible to adapt all L1 L2 regularized NMF in an unified framework that can
trade-off the quality of information loss, sparsity and smoothness.
• Algortihm: We employ a combinational algorithm of an anti-lopsided algorithm and

a fast block coordinate descent algorithm for non-negative quadratic programming. The
algorithm reduces variable scaling problems to achieve linear convergence rate of (1− 1

||Q||2 )k

in optimizing each factor matrix in the sub-space of passive variables, which is advanced to
fast coordinate methods and accelerated methods in terms of efficiency as well as convergence
rate. In addition, the size of optimization problem is reduced into r (r � m,n), which is the
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Table 1: Comparison Summary of NMF solvers

Criteria Inexact Exact Accelerated
MURPrGQnNtAcSBlPFCD AcH Ne Alo

Guaranteed Convergence 7 7 7 7 7 7 7 7 3 1
k2

3(1− 1
||Q||2 )k

Exploit Data Spareness 7 7 7 7 7 7 3 3 7 3

Limited Internal Memory O(mn+ r(r + n+m)) O(r(r + n))
Fully Parallel & Distributed 7 7 7 7 7 7 7 7 7 3

Optimization Problem Size r(m,n) r r(n,m) (m,n)r(m,n) r

3means considered, and 7means not considered√
r ≤ ||Q||2 ≤ r, n×m is the data matrix size, r is the number of latent components

(m,n) = max(m,n), and r(m,n) = r.max(m,n)
Abbreviations: MUR: Multiplicative Update Rule [LS+99]; PrG: Projected Gradient meth-
ods [Lin07b]; Nt: Newton-type methods [KSD07]; Qn: Projected Quasi-Newton [ZC06]; AcS: Fast
Active-set-like method [KP08a]; BlP: Block Principal Pivoting method [KP08b]; FCD: Fast Coor-
dinate Descent methods with variable selection [HD11]; AcH: Accelerated Hierarchical Alternating
Least Squares [GG12]; Nev: Nesterov’s optimal gradient method [GTLY12]; Alo: The proposed
method.

smallest among the state-of-the-art methods. Hence, the algorithm has the low complexity
and converges very fast to the optimal solution, and it is highly potential to be applied in
alternating least squares methods for factorization models.
• Parallel and Distribution: The proposed algorithms are fully parallel and distributed

on limited internal memory systems, which is crucial for big data when computing nodes
having limited internal memory that cannot hold the whole dataset.
• Implementation: The proposed algorithms are convenient to implement for hybrid

multi-core distributed systems because this algorithm works on each individual instance and
each latent feature.
• Comparision: This is the first time that state-of-the-art algorithms in different research

directions for NMF are compared together.
The rest of paper is organized as follows: Section 2 discusses the background and related

works of NMF; Section 3 mentions our proposed algorithm; Section 4 gives a complexity anal-
ysis of our proposed algorithms; Section 5 experimentally compares our proposed algorithm
with state-of-the-art algorithms for NMF among remarkable approaches; our conclusion is
stated in Section 6.

2 Background and Related Works

2.1 Background

Mathematically, NMF in Frobenius norm is defined as follows:
Definition 1 [NMF]: Given a dataset consisting of m vectors in a n-dimension space
V = [V1, V2, ..., Vm] ∈ Rn×m

+ , where each vector presents a data instance. NMF seeks to
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decompose V into a product of two nonnegative factorizing matrices G and F , where G =
[G1, ..., Gr] ∈ Rn×r

+ and F = [F1, ..., Fm] ∈ Rr×m
+ are the latent component matrix and

the coefficient matrix respectively, V ≈ GF , in which the quality of approximation can be
guaranteed by the objective function in Frobenius norm: D(V ||GF ) = ||V −GF ||22.

Although NMF is a non-convex problem, optimizing each factor matrix when fixing the
other one is a convex problem. In other words, F can be traced when G is fixed, and
vice versa. Furthermore, F and G have different roles although they are symmetric in the
objective function. G are latent components to represent data instances V by coefficients
F . Hence, NMF can be considered as a latent factor model of latent components G, and
learning this model is equivalent to find out latent components G. Therefore, in this paper,
we propose an accelerated parallel and distributed algorithm to learn NMF models G for
large datasets.

2.2 Related works

NMF algorithms can be divided into two groups: the greedy algorithms and the iterative
multiplicative update algorithms. The greedy algorithms [TKWB11] are often based on geo-
metric interpret-ability, and they can be extremely fast to deal with large datasets. However,
it is hard to trade off complexity, optimality, loss information and sparseness. The iterative
multiplicative update algorithms such as “two-block coordinate descent” often consist of two
steps, each of them fixes one of two matrices to replace the other matrix for obtaining the
convergence of the objective function. There are numerous studies on these algorithms, see
Table 1, because NMF is nonconvex, though two steps corresponding to two non-negative
least square (NNLS) sub-problems are convex [GTLY12, KHP14]. In addition, various con-
straints and optimization strategies have been used to trade off the convexity, information
loss, complexity, sparsity, and numerical instability.

Based on the optimization updating strategy, these iterative multiplicative update algo-
rithms can be further divided into three sub-groups:
• Inexact Block Coordinate Descent : The algorithms’ common characteristic is their

usage of gradient methods to seek an approximate solution for NNLS problems, which is
neither optimal nor fulfilling of fast approximations and accelerated conditions. Lee et al.
[LS+99] proposed the (basic) NMF problem and simple multiplicative updating rule (MUR)
algorithm using first-order gradient method to learn the part-based representation. Seung at
al. [SL01] concerned rescaling gradient factors with carefully selected learning rate to achieve
a faster convergence rate. Subsequently, Lin [Lin07a] modified MUR, which is theoretically
proved getting a stationary point (a local minimum optimization). However, that algorithm
cannot improve the convergence rate. Berry et al. [BBL+07] projected nonnegative least
square (PNLS) solutions into nonnegative quadratic space by setting negative entries in the
matrices to zero. Although this algorithm does not guarantee the convergence, it is widely
applied in real applications. In addition, Bonettini et al. [Bon11] used line search based on
Amijo rule to obtain better solutions for matrices. Theoretically, this method can achieve
optimal solutions for factor matrices as exact block coordinate descent group, but it very
slowly tends to stationary points because the line search is time-consuming.
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• Exact Block Coordinate Descent : In contrast to the first sub-group, the common charac-
teristic in this group is obtaining optimal solutions for two NNLS problems in each iteration.
Zdunek et al. [ZC06] employed second-order quasi-Newton method with inverse of Hessian
matrix to estimate the step size, aiming to a faster convergence than projected methods.
However, this algorithm may be slow and non-stable because of the line search. Subsequently,
Kim et al. [KSD07] used rank-one to Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
to approximate the inverse of Hessian matrix. Furthermore, Chih-Jen Lin [Lin07b] proposed
several algorithms based on projected gradient methods and exact line search. Theoretically,
this method can obtain more accurate solutions, however it is time-consuming because of
exact line search and the number of iterations increased by the large number of variables.
Moreover, Kim et al. [KP08a, KP08b] proposed two active-set methods based on Karush-
Kuhn-Tucker (KKT) conditions, in which the variables are divided into two sets: a free
set and an active set. Only the free set contains variables that can optimize the objective
functions. Removing the number of redundant variables makes their algorithms improve
the convergence rate significantly. However, the method still has heavy computation for
large-scale problems.
• Accelerated Block Coordinate Descent : The accelerated methods use fast solution ap-

proximations satisfying accelerated conditions to reduce the complexity and to keep fast
convergence. The accelerated conditions are different constraints in different methods to
guarantee convergence to the optimal solution in comparison with the initial value. These
accelerated methods are developed due to the limitation of inexact methods having slow
convergence, and exact methods having high complexity in each iteration. Particularly, for
inexact methods, they have slow convergence because of the high complexity of solution
approximations in each iteration or a large number of iterations that leads to the highly
expensive computation between two sequential iterations. Furthermore, the exact methods
have high complexity in each iteration, however obtaining optimal solutions in every itera-
tion is controversial because it can lead to zig-zag problems when optimizing a non-convex
function of two independent sets of variables.

Firstly, Hsieh et al. [HD11] proposed a fast coordinate descent method with the best
variable selection to reduce the objective function. The algorithm iteratively selects variables
to update the approximate solution until the accelerated stopping conditionmaxijDG

ij < εpinit

satisfied, where DG
ij is the reduction of the objective function based on the variable Gij, and

pinit is the maximum initial reduction over the matrixG. Although the greedy update method
does not have guaranteed convergence, it has the fast convergence speed in many reports.

Subsequently, Gillis and Glineur [GG12] proposed a number of accelerated algorithms
using fast approximation by fixing all variables but excepting a single column of factor matri-
ces. This framework improved significantly the effectiveness of multiplicative updates [LS01],
hierarchical alternating least squares (HALS) algorithms [CZA07] and projected gradients
[Lin07b]. These algorithms achieve the accelerated condition in each iteration such as that
||G(k,l+1)−G(k,l)||22 ≤ ε||G(k,1)−G(k,0)||22 is the stopping condition when optimizing the objec-
tive function on G if fixing F . Although these greedy algorithms does not have guaranteed
convergence, their results are highly competitive with the inexact and exact methods.
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More recently, Guan et al. [GTLY12] employed Nesterov’s optimal methods to optimize
NNLS with fast convergence rate O(1/k2) to achieve the accelerated convergence condition
|| ∂f
∂G(k,l+1)

||22 ≤ ε|| ∂f
∂G(k,0)

||22. Although Guan et al.’s method [GTLY12] has a fast convergence
rate O(1/k2), it has several drawbacks such as working on the whole factor matrices, and
less flexibility for regularized NMF variants. Furthermore, this approach does not consider
the issues of parallel and distribution, and they require numerous iterations to satisfy the
accelerated condition because the step size is limited by 1

L
, where L is Lipschitz constant.

To deal with the above issues of accelerated methods, in next section, we propose an
accelerated parallel and distributed algorithm for NMF and its regularized L1 L2 variants
with linear convergence in optimizing each factor matrix when fixing the other factor one.

3 Proposed Algorithm
To read easily, this section hierarchically presents our proposed algorithm. First, an iter-
ative multiplicative update accelerated algorithm is introduced. Then, a transformational
technique fully decomposes the objective functions of NMF into basic computation units
as nonnegative quadratic programming (NQP) problems. After that, a modified version
of the algorithm is proposed to deal with the issues of parallel and distributed systems.
Subsequently, a combinational method of an anti-lopsided algorithm and a fast coordinate
descent algorithm is developed to effectively solve NQP problems. Finally, extensions for
L1L2 regularized NMF is discussed.

3.1 Iterative multiplicative update accelerated algorithm

For solving NMF, we employ an iterative multiplicative update accelerated algorithm, like
expectation-maximization (EM ) algorithm, presented in Algorithm 1. This algorithm con-
sists of two main steps: one for finding F+ (F+ is updated F in the iteration) when fixing G
and the other for finding G+ when fixing F . In the first step called E-step, we find F+, each
column of which F+

i is the new representation of a data instance Vi in the new space of latent
components G. Meanwhile, the other one, called M-step, learns new latent components.

Algorithm 1: Iterative Multiplicative Update Accelerated Algorithm
Input: Data matrix V = {Vi}mi=1 ∈ Rn×m

+ and r.
Output: Latent components G = {Gk}rk=1.

1 begin
2 Randomize r nonnegative latent components ∈ Rn×r

+ ;
3 repeat
4 E-step: Fixing G to find F+ such that the accelerated condition is satisfied;
5 M-step: Fixing F to find G+ such that the accelerated condition is satisfied;
6 until Convergence condition is satisfied ;

7



3.2 Full decomposition for NMF

This section discusses decomposing the objective function of NMF into non-negative quadratic
programming (NQP) problems, which aims to fully parallelize and distribute the NMF com-
putation. Particularly, in Algorithm 1, the E-step is to find new coordinates of data in-
stances in the space of latent components G by minimizing J(V ||GF ) = ||V − GF ||22 =∑m

i=1 ||Vi −GFi||22. Hence, minimizing J(V ||GF ) is equivalent to independently minimizing
||Vi − GFi||22 for each instance i since G is fixed. Similarly, the M-step is also equivalent to
independently minimizing ||V T

j − F TGT
j ||22 for each feature j, where F is fixed. Hence, the

basic computation units are nonnegative least-squares (NNLS) problems [LH74].
For large datasets n,m � r, we equivalently turn these problems into nonnegative

quadratic programmings (NQP):

minimize
x

1

2
||Ax− b||22

subject to x � 0 ∈ Rr

where A ∈ Rnr
+ , b ∈ Rn

+

(1)

equivalent to

minimize
x

f(x) =
1

2
xTHx+ hTx

subject to x � 0.

where H = ATA, h = −AT b

(2)

Hence, finding new coefficients F+ and new latent components G+ can be fully paralleled
and distributed into basic computation units as solving NQP problems.

3.3 Parallel and distributed algorithm using limited internal mem-
ory

In this section, we design a parallel and distributed algorithm using limited internal memory
for learning NMF model G, see Fig. 1, which is a modified version of Algorithm 1.

For large datasets, the computation can be untimely performed in a single process, so
parallel and distributed algorithm environments are employed to speed up the computation.
For parallel and distributed systems, we often face two major issues: dependency of com-
putation units and limited internal memory computing nodes. In particular, computation
units must be independently conducted as much as possible, since any dependency of com-
puting elements will increase the complexity of implementation and the delay of data transfer
over the network that reduces the performance of system. Furthermore, for these parallel
distributed systems, computation units are executed on computing nodes within a limited
internal memory. In addition, accessing external memory will increase the complexity and
reduce the performance.

For our proposed approach, the computation can be fully paralleled and distributed, and
use limited internal memory in computing nodes because the objective function is properly

8



Algorithm 2: Parallel and Distributed Algorithm
Input: Data matrix V = {Vm}mi=1 ∈ Rnm

+ and r.
Output: Latent components G = {gk}rk=1.

1 begin
2 Randomize r nonnegative latent components G ∈ Rnr

+ ;
3 repeat
4 Y = 0 ∈ Rnr /* Y = FV T*/;
5 H = 0 ∈ Rrr /* H = FF T /*;
6 Q = GGT ;
7 maxStop = 0;
8 /*Parallel and distributed*/
9 for i = 1 to m do

10 /*call Algorithm 3*/;
11 Fi = Minimizing

x∈Rr�0
(xTQx/2− V T

mG
Tx);

12 Y = Y + FiV
T
i ;

13 H = H + FiF
T
i ;

14 /*Parallel and distributed*/
15 for j = 1 to n do
16 /*call Algorithm 3*/;
17 Gj = Minimizing

x∈Rr�0
(xTHx/2− YnTx) ;

18 until Convergence condition is satisfied ;

Finding new coefficient 
�� ; and computing 
�����and �����

Control Node

Reduce Node
<���, ���>

Reduce Node
<���, ���>

Map 
Node

…

Map 
Node

…

data 
instances

Map 
Node

Map 
Node

…

data 
instances

data 
instances

data 
instances

Finding update model �
for NMF

Figure 1: Distributed System Diagram for NMF
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decomposed to NQP problems. Particularly, Algorithm 2 presents a modified version of
iterative multiplicative update algorithms, in which computation units are fully paralleled
and distributed. In addition, Q = GGT is precomputed to reduce the complexity, and finding
new coefficients Fi can be independently computed and distributed. Remarkably, the most
heavy computation of Y = FV T and H = FF T is divided into computing FiV

T
i and FiF

T
i

to be parallel and distributed.
Particularly, the distributed system using MapReduce is described in Fig. 1. In this

computing model, data instances and the instance projection are parallel and distributed
over the Map nodes. The Reduce nodes sum up the results FiF

T
i and FiV

T
i of the Map

nodes. Subsequently, in the M-step, the results FF T and FV T are employed to compute
latent components G. This M-step computation can be conducted by a single machine
or a distributed system, which depends on the dimension of problem because the time to
distribute this computation over the network is usually considerable.

In comparison with the previous algorithms, this computing model is much more effective
than the previous models [GNHS11, LYF+10, SLR10] by the following reasons:
• The necessary memory used in computing nodes is O(size(G, Y,H)) = O(r(r + n)).

The necessary memory used in the controlled node is O(size(G, Y, H,Q)) = O(r(r+n)). In
practice, approximate solutions of NQP problems should be cached in hard disks in order to
increase accuracy and reduce the number of iterations.
• At each distributed iteration, the computation is fully decomposed into basic computa-

tions units, which enhances the convergence speed to the optimal solution because the size
of optimization is significantly reduced. Furthermore, the expensive computation FV T and
FF T is fully parallelized and distributed over the computing nodes.
• The computational model is conveniently implemented because computing NMF model

is divided into basic computation units as NQP problems that are independently solved, and
the optimization is carried out on vectors instead of matrices.

In the next section, we propose a novel algorithm, Algorithm 3, to solve approximately
NQP problems, which is robust and effective because it only uses the first derivative and
does not consider the ill-condition of matrix inverse.

3.4 Fast algorithm for nonnegative quadratic programming

In this section, we briefly review the literature before proposing the novel algorithm to solve
NQP Problem 2 for real large-scale NMF applications.

Regarding algorithms for NNLS and its equivalent problem NQP, numerous algorithms
are proposed to deal with high dimension [CP09]. Generally, methods for solving NNLS can
divided into two groups: active-set and iterative methods [CP09]. Active-set methods are
traditional to solve accurately [BDJ97, LH74]. However, they require heavy computation
in repeatedly computing (ATA)−1 with different set of passive variables. Hence, iterative
methods that can handle multiple active constraints in each iteration have more poten-
tial for fast NMF algorithms [CP09, KSD06, KDD13]. Hence, iterative methods can deal
with more large-scale problems. Among the fast iterative methods, the coordinate descent
method [FHN05] has fast approximation, but has the zip-zag problem when the solution
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requires high accuracy. In addition, accelerated methods [Nes83] has a fast convergence
O(1/k2) [GTLY12], which only require the first order derivative. However, one major dis-
advantage of the methods is that they require a big number of iterations because their step
size is limited by 1

M
that can be very small for large-scale problems; where M is Lipschitz

constant. More recently, the anti-lopsided algorithm [NH15] re-scale variables to obtain a
linear convergence in the sub-space of passive variables. Unfortunately, the passive variables
are unknown in advance, so several iterations are required to determine them. In addition,
the complexity of each iteration is considerable about O(r2).

Therefore, we propose a combinational algorithm of the anti-lopsided algorithm [NH15]
and the greedy coordinate block descent algorithm [HD11] to reduce the number of iterations
as well as complexity. Particularly, the proposed algorithm, Algorithm 3, contains two main
steps: The first step, from Line 4 to Line 7, rescales variables to avoid rescaling problems of
the first order methods by replacing y = x. ∗

√
diag(H), we have:

f(x) =
1

2
xTHx+ hTx =

1

2
yTQy + qTy (3)

where Q = H√
diag(H)diag(H)T

and q = h√
diag(H)

such that ∂2f
∂2yi

= Qii = Hii√
HiiHii

= 1 for ∀i.
By the way, the rate of change of a quantity through variables equals to a constant and
the exact line search can converge at an exponential rate of (1 − 1

||Q||2 )r [NH15] in the sub-
space of passive variables. The passive variables are variables belongs the set P = {xi|xi >
0 or ∇fi < 0} that changes through iterations.

The second step contains a loop of iterations, from Line 9 to Line 21, each of which is
clearly divided into two parts: one part from Line 11 to Line 14 inherited from the anti-
lopsided algorithm [NH15] and the other from Line 16 to Line 20 based on the fast coordinate
descent algorithm [HD11]. The anti-lopsided algorithm guarantees the linear convergence
(1− 1

||Q||22
)k (||Q||22 ≤ r) in the sub-space of passive variables to avoid the zip-zag problem of

the fast coordinate descent algorithm, while the coordinate block descent algorithm speeds
up the convergence to the final optimal set of passive variables. In addition, the complexity
of each part is still kept in O(r2). As a result, the proposed algorithm will utilize advantages
of both algorithms to attain a fast convergence, while retaining the same low complexity
O(r2) of each iteration.

To comprehend the proposed algorithm’s effectiveness, we consider optimizing Function 4:

f(x) =
1

2
xT
[

1 0.1
0.1 10

]
x+ [−80− 100]x (4)

The exact search gradient algorithm, from Line 11 to Line 14, starting with x0 = [200 20]T

performs 59 iterations to reach the optimal solution, see Fig. 2. However, the proposed
algorithm only needs 1 iterations to reach the optimal solution, see Fig. 3 because we optimize
Function 5 instead of Function 4; where Function 5 is equivalently obtained by applying the
steps from Line 11 to Line 14. The exact search gradient algorithm becomes much faster
because the shape of Function 5 become more sphere, and its derivative is more effective to

11



optimize the objective function.

f(y) =
1

2
yT

[
1 0.1√

10
0.1√

10
1

]
y + [

−80√
10

−100√
10

]y (5)

Algorithm 3: Fast Combinational Algorithm for NQP
Input: H ∈ Rr×r and h ∈ Rr and x0

Output: x minimizing 1
2
xTHx+ hTx

subject to: x � 0
1 begin
2 /*Having a variable maxStop = 0 for each thread of computation */;
3 /*Re-scaling variables*/;
4 Q = H√

diag(H)diag(H)T
;

5 q = h√
diag(H)

;

6 /*Solving NQP: minimizingf(x) = 1
2
xTQx+ qTx*/;

7 x = x0. ∗
√
diag(H);

8 ∇f = Qx+ q;
9 repeat

10 /*Exact Line Search*/;
11 ∇f̄ = ∇f [x > 0 or ∇f < 0];
12 α = argminαf(xk − α∇f̄) =

||∇f̄ ||22
∇f̄TQ∇f̄ ;

13 xk = [xk−1 − α∇f̄ ]+;
14 ∇fk = ∇fk +Q(xk − xk−1);
15 /*Block Coordinate Descent*/;
16 for t=1 to n do
17 4xi = max(0, [xk]i − fi

Qii
)− [xk]i ∀i;

18 p = argmax i|f(xk)− f(xk +4xi)|;
19 ∇fk = ∇fk +Qp4xp;
20 [xk]p = [xk]p +4xp;

21 until (||f̃k||22 ≤ ε||f̃0||22) or (||f̃k||22 ≤ maxStop);
22 maxStop = max(maxStop, ||f̃k||22);
23 return xk√

diag(H)

Moreover, Algorithm 3 only attains approximate solutions because achieving the optimal
solution is controversial for the reasons that its computation is expensive and it can leads
to the zig-zag problem in optimizing a non-convex function. In addition, it is necessary to
control and balance the quality of the convergence to the optimal solution. Hence, we employ
an accelerated condition (||f̃k||22 ≤ ε||f̃0||22) to regulate the quality of the convergence to the

12
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optimal solutions of the NQP problems in comparison with initial values and a fast-break
condition (||f̃k||22 ≤ maxStop) to balance the quality of the convergence among variables in
each thread of the computation. As a result, the objective function converges faster through
iterations; and the complexity and average of the iteration number are reduced significantly.

3.5 Extensions for L1 L2 regularized NMF

In this section, we consider solutions for L1 L2 regularized NMF variants to control the
quality of NMF. L1 regularized NMF [Hoy02] aims to achieve sparse solutions in optimiza-
tion problems. Usually, only the coefficient matrix F is penalized to control its sparsity.
Meanwhile, concerning L2 regularized NMF, the penalty terms of F and G are added to
control smoothness of solutions in NMF [PPP06]. Fortunately, the objective functions of L1

L2 regularized NMF can be turned into NQP problems, of which solutions are completely
similar to the general NMF. Particularly, in the most general variant, the objective function
J(X||GF ) is formulated by:

||X −GF ||22 + µ1||F ||1 + β1||G||1 + µ2||F ||22 + β2||G||22 (6)

where ||.||1 is the L1-norm, ||.||2 is the L2-norm, and µ1, µ2, β1, β2 are regularized parameters
that tradeoff the sparsity and the smoothness of the information loss. Obviously, both the
E-step and the M-step need to solve the same NNLS problems when one of the two matrices
is fixed. For example, in a E-step, we can minimize the objective function by independently
solving NQP problems when fixing G:

J(X||GF ) =
1

2
||X −GF ||22 + µ1||F ||1 + µ2||F ||22 + C

=
M∑

m=1

(
1

2
||Xm −GFm||22 + µ1(1K)TFm + µ2F

T
mIFm) + C

=
M∑

m=1

(
1

2
F T
mQFm + qTFm) + C

(7)

where Q = GTG+ 2µ1I, qT = −XT
mG

T + µ21K and C is a constant.
This transformation from minimizing the objective functions into solving NQP problems

independently is comprehensive to understand and simplify the variants of NMF problems as
much as possible. As a result, we can conveniently implement NMF and its L1 L2 regularized
variants in parallel distributed systems as in sub-section 3.3.

In comparison with the previous algorithms that optimizing the objective function works
on the whole of matrices, this approach decomposing the objective function is easier to
parallelize and distribute the computation. Additionally, it is faster to reach the solutions
because it only performs on a smaller set of variables.
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4 Theoretical Analysis
In this section, we investigate the convergence of Algorithm 3 and the complexity of Algo-
rithm 2 using Algorithm 3

4.1 Convergence

In this section, we only consider the convergence rate of Algorithm 3 by the general NMF for
the two following reasons. Firstly, L1 regularized coefficients do not affect on the complexity.
Secondly, L2 regularized coefficients are often small, and they change Lipschitz constants m
and M by adding a small positive value, where m and M are positive Lipschitz constants
of strongly convex function f(x) satisfying mI � ∂2f

∂2x
� MI and I is the identity matrix.

Hence, L2 regularized coefficients slightly change the convergence rate because it depends
on m

M
.

Based on [NH15], consider the complexity of Algorithm 3, we have:

Theorem 4.1. Algorithm 3 linearly converges at the rate of O(1− 1
||Q||2 )k in the sub-space

of passive variables, where
√
r ≤ ||Q||2 ≤ r, r is the dimension of solutions or the number of

latent factors, and k is the number of iterations.

Proof. From [NH15], we have:
Remark 1: After (k + 1) iterations, f(xk+1) − f ∗ ≤ (1 − m

M
)k(f(x0) − f ∗), where

mI � ∇2f � MI, f ∗ is the minimum value of f(x), and f(x) is a strongly convex function
of the passive variables.

We have ∇2f = Q, and
xT Ix ≤

∑r
i=1

∑r
j=1Qijxixj = xTQx since x ≥ 0, Q ≥ 0, and Qii = 1. ⇒ I � Q.

Moreover, based on Cauchy-Schwarz inequality, we have:

(
r∑

i=1

r∑
j=1

Qijxixj)
2 ≤ (

r∑
i=1

r∑
j=1

Q2
ij)(

r∑
i=1

r∑
j=1

(xixj)
2)

⇒
r∑

i=1

r∑
j=1

Qijxixj ≤

√√√√||Q||22(
r∑

i=1

xi2)2

⇔xTQx ≤ ||Q||2xT Ix (∀x) ⇔ Q � ||Q||2I

Finally,
√
r =

√∑r
i=1Q

2
ii ≤ ||Q||2 =

√∑r
i=1

∑r
j=1Q

2
ij ≤

√
r2 = r since −1 ≤ Qij =

cos(Hi, Hj) ≤ 1. Therefore, we have:
Remark 2: I � ∇2f = Q � ||Q||2I; where

√
r ≤ ||Q||2 ≤ r.

From Remark 2 setting m = 1 andM = ||Q||2 ≤ r, and Remark 1, we have Theorem 4.2.

Actually, the exact line search step, from Line 11 to Line 14 in Algorithm 3, guarantees
linear convergence of O(1 − 1

||Q||2 )k in the sub-space of passive variables. However, the set
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of passive variables changes through iterations. Hence, we employ the fast block coordinate
descent steps, from Line 16 to Line 20 in Algorithm 3, that rapidly restrict the domain
of solution to converge to the final optimal sub-space of passive variables of the solution.
Therefore, the proposed algorithm linearly converges and requires very few iterations.

4.2 Complexity

In this section, we analyze the complexity of Algorithm 2 using Algorithm 3 to solve NQP
problems. If we assume that the complexity for each iteration contains O(nr2) in computing
Q = GTG , O(mnr) in computing Y = V F T , O(mr2) in computing H = FF T , O(kmr2)
in computing F and O(knr2) in computing G, where k is the number of iterations, then we
have the following Lemma 3:

Theorem 4.2. The complexity of each iteration in Algorithm 2 using Algorithm 3 to solve
NQP problems is O((m + n)r2 + mnr + k(m + n)r2). In addition, it is O((m + n)r2 +
rS(mn) + k(m+ n)r2) for sparse data, where S(mn) is the number of non-zero elements in
data matrix V .

Theorem 4.2 is significant for big data, because the data is usually big and sparse. In other
words, mn is actually large, but S(mn) is small; so mn� (m+n)r2 +rS(mn)+ k̄(m+n)r2.
Hence, in experimental evaluation Section 5, we prove that our algorithm can run on large
high-dimension sparse datasets such as Nytimes for an acceptable time. In that dataset,
mnr � rS(mn)� (m+ n)r2, so the running time T (m,n, r) ≈ rS(mn) since m,n� r.

Moreover, Table 2 shows a comparison of the complexity in an iteration of our proposed
algorithms (Alo) with other state-of-the-art algorithms’ in the literature: Multiplicative Up-
date Rule (MUR) [LS01], Projected Nonnegative Least Squares (PrN) [BBL+07], Projected
Gradient (PrG) [Lin07b], Projected Quasi-Newton (PQN) [ZC06], Active Set (AcS) [KP08a],
Block Principal Pivoting (BlP) [KP08b], Accelerated Hierarchical Alternating Least Squares
(AcH) , Fast Coordinate Descent Methods with Variable Selection (FCD) [HD11], and Nes-
terov’s Optimal Gradient Method (Nev) [GTLY12]. It can be seen that the complexity of
our proposed algorithm is highly comparable with that of other algorithms, and the speed
of algorithms depend on the number of iterations. In the experimental evaluation, we will
show that the iteration number of our algorithm is highly competitive with other algorithms’.
Remarkably, moreover, our proposed algorithm has the following properties that other algo-
rithms has yet considered:

• Exploit the sparseness of datasets,

• Runnable for big datasets in limited internal memory systems,

• Convenient to implement in fully paralleled and distributed systems.
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Table 2: Complexity of an iteration in NMF solvers
Solver Complexity (O)

MUR [LS01] mnr + (m+ n)r2

PrN [BBL+07] mnr + (m+ n)r2 + r3

PrG [Lin07b] (m+ n)r2 + rmn+ kt(m+ n)r2

PQN [ZC06] k(mnr +m3r3 + n3r3)

BlP [KP08b] (m+ n)r2 +mnr + k(m+ n)r2

AcS [KP08a] (m+ n)r2 + rmn+ k(m+ n)r2

FCD [HD11] (m+ n)r2 + rS(mn) + k(m+ n)r2

AcH [GG12] (m+ n)r2 + rS(mn) + k(m+ n)r2

Nev [GTLY12] (m+ n)r2 +mnr + k(m+ n)r2

Alo (m+ n)r2 + rS(mn) + k(m+ n)r2

where m,n is the matrix size, r is the number of latent components, k is the average number of iter-
ations, t is the average number of internal iterations, and S(mn) is the number of non-zero elements
of data matrix V . To easily compare among the algorithms, we consider r update times for Algo-
rithm FCD as one iteration because the complexity of one update is O(r), while the complexity of
one iteration in other accelerated algorithms is O(r2).

5 Experimental evaluation
In this section, we investigate the effectiveness of the proposed algorithm Alo by comparing
it to 7 carefully selected state-of-the-art NMF solvers belongs to different approaches:

• MUR: Multiplicative Update Rule [LS+99],

• PrG: Projected Gradient Methods [Lin07b],

• BlP: Block Principal Pivoting method [KP08b],

• AcS: Fast Active-set-like method [KP08a],

• FCD: Fast Coordinate Descent methods with variable selection [HD11],

• AcH: Accelerated Hierarchical Alternating Least Squares [GG12],

• Nev: Nesterov’s optimal gradient method [GTLY12].

Test cases: In this experiment, we design two tests using four datasets shown in Table
3. In the first test, 3 typical datasets with different sizes are used: Faces1, Digits2 and Tiny

1http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html
2http://yann.lecun.com/exdb/mnist/

17

http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html
http://yann.lecun.com/exdb/mnist/


Table 3: Dataset Information
Data-sets m n r MaxIter

Faces 6977 361 60 300
Digits 6.104 784 80 300
Tiny Images 5.104 3,072 100 300
Nytimes 3.105 102,660 100,...,200 300

Images 3. For these tests, the algorithms are compared in terms of convergence, optimality,
and average of the iteration number to investigate their performance and effectiveness. Addi-
tionally, average of the the iteration number k̄ for approximate solutions of the sub-problems
as NNLS or NQP is to compare the complexity of algorithms. In the second test, a large
dataset containing tf-idf values computed from the text dataset Nytimes4 is used to verify
the performance and the feasibility of our parallel algorithms on sparse large datasets.

Environment settings: To be fair in comparison, for the first test, the programs of
compared algorithms are written in the same language Matlab 2013b, run by the same
computer Mac Pro 8-Core Intel Xeon E5 3 GHz RAM 32 GB, and initialized by the same
factor matrices G0 and F0. The maximum number of threads is set to 10 while keeping 2
threads for other tasks in the operation system. For the second test, the proposed algorithm
is written in Java programming language to utilize the data sparseness.

Source code: The source codes of MUR, PrG, BlP, AcS, FCD, AcH, and Nev are
downloaded from 5, 6, 7, 8, and 9. For convenient comparison in the future, we publish all
the source codes and datasets in 10.

5.1 Convergence

In this experiment, we investigate the convergence of algorithms by information loss 1
2
||X −

GF ||22 in terms of time and the iteration number. In terms of time, see Fig. 4, the proposed
algorithm Alo is remarkably faster than the other algorithms for the three different-size
datasets: Faces, Digits and Tiny Images. Especially, for the largest dataset Tiny Images,
the distinction between the proposed algorithm and the runner-up algorithm AcH is easily
recognized. Furthermore, in terms of the iteration number, see Fig. 5, the proposed algorithm
converges to the stationary point of solutions faster than the others. This observation is clear
for large datasets as Digits and Tiny Images. The results are significant in learning NMF
models for big data because the proposed algorithm not only converges faster but also uses

3http://horatio.cs.nyu.edu/mit/tiny/data/index.html
4https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
5http://www.cs.toronto.edu/~dross/code/nnmf.m
6https://github.com/kimjingu/nonnegfac-matlab
7http://www.csie.ntu.edu.tw/~cjlin/nmf/
8http://dl.dropboxusercontent.com/u/1609292/Acc_MU_HALS_PG.zip
9https://sites.google.com/site/nmfsolvers/

10https://bitbucket.org/[aaa-zzz]/alnmf
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Figure 4: Objective function values ||V −GF ||22/2 versus CPU seconds for datasets:
Faces, Digits, and Tiny Images

100 101 102

108.5

109

iterators

ob
je
ct
iv
e
va
lu
es

Faces

100 101 102

1010.2

1010.4

1010.6

1010.8

1011

iterators

Digits

100 101 102
1010.5

1011

1011.5

iterators

Tiny Images

MUR
PrG
BlP
AcS
FCD
AcH
Nev
Alo

1

Figure 5: Objective function values ||V −GF ||22/2 in terms of the iteration number
for datasets: Faces, Digits, and Tiny Images

a less number of iterations, and the time of reading and optimization through a big dataset
is actually considerable.

5.2 Optimality

After more a decade of rapid development, numerous algorithms have been proposed for
solving NMF as a fundamental problem in dimension reduction and learning representation.
Currently, the difference of the final loss information ||V −WH||22 among the state-of-the-
art methods is inconsiderable in comparison to the square of information ||V ||22. However,
the small difference represents the effectiveness of the optimization methods because NMF
algorithms often slowly converge when the approximate solution is close to the optimal local
solution. Hence, in Table 4, the final values of the objective function 1

2
||V −WH||22 investigate

the optimality and the effectiveness of the optimization methods. Noticeably, Algorithm AcH
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Table 4: Optimal Values of NMF solvers
Dataset MUR PrG BlP AcS FCD AcH Nev Alo

Faces (×108) 3.142 2.003 1.975 1.975 1.983 2.058 2.003 1.966
Digits (×1010) 4.659 1.639 1.641 1.641 1.644 1.640 1.646 1.638
Tiny Images (×1010) 6.925 3.483 3.472 3.472 3.474 3.484 3.513 3.468

Table 5: Average of Iteration Number k̄
Dataset MUR PrG BlP AcS FCD AcH Nev Alo

Faces 1.00 321.12 1116.96 102.09 1.54 1.11 29.21 1.29
Digits 1.00 36.70 12503.75 305.94 1.00 1.05 23.36 1.00
Tiny Images 1.00 767.45 12869.12 1086.51 1.38 2.52 29.32 1.27

fast converges over time and has a low average of the iteration number, but it has the optimal
values much higher than the proposed algorithm because it uses a time-break technique to
interrupt the optimization algorithm. In addition, the proposed algorithm achieves the best
optimality for all three datasets. This result additionally represents the robustness of the
proposed method, which is highly competitive with the state-of-the-art methods.

5.3 Average of iteration number

In this section, we investigate the complexity of the NMF solvers by average of the iteration
number k̄ = number of internal iteration

MaxIter(m+n)
for approximate solutions of sub-problems as NNLS or

NQP because the complexity of algorithms mainly depends on this number, see Table 2. Ex-
cept for the original algorithm MUR with one update having the worst result, the proposed
algorithm Alo employs at least average of the iteration number, see Table 5, especially for
large datasets. In addition, the proposed algorithm does not employ any tricks to timely
interrupt before one of the stopping conditions is satisfied, while the highly competitive algo-
rithm AcH uses. Therefore, this result clearly represents the fast convergence of Algorithm 3
as it is verified by a large number of NQP problems.

5.4 Running on large datasets

In this section, we verify the feasibility of the proposed algorithm in learning NMF model
for large datasets. Particularly, the proposed algorithm is implemented by Java program-
ming language to exploit the data sparseness. Additionally, it runs on the large sparse text
dataset Nytimes with different numbers of latent components, see Table 3. Interestingly, the
proposed algorithm can run with hundreds of latent components by a single computer in an
acceptable time.

Fig. 6 shows the performance of our algorithm running on the large sparse dataset Ny-
times. Remarkably, the proposed algorithm only uses about 1 iteration on average to sat-
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in learning NMF model for the dataset Nytimes within the different

numbers of latent components

isfy the accelerated condition of approximate solutions. Furthermore, the average of it-
eration time in learning NMF model linearly increases through the different numbers of
latent components. This result totally fits the complexity analysis when rnm� rS(mn)�
(m+n)r2+k̄(m+n)r2, so the complexity T (m,n, r) ≈ rS(mn) sincem,n� r. Additionally,
the objective function converges to the stationary point at about the 100th iteration within
the different numbers of latent components r, which is the same with the previous datasets.

5.5 Regularized NMF extensions

In this section, we investigate the convergence of algorithms for regularized NMF extensions
on three datasets: Faces, Digits, and Tiny Images. Due to the lack of available codes and
the L1 L2 generalization of the other algorithms, only three algorithms AcS, Nev and Alo
are compared within two regularized cases: µ2 = 10−2 and µ2 = β2 = 10−2, see Fig. 7. In
comparison with other algorithms for regularized NMF extensions, the proposed algorithm
Alo converges much faster than algorithms AcS and Nev.

6 Conclusion
In summary, our work has two major contributions:

Regarding nonnegative matrix factorization, we propose a flexible algorithm in an unified
framework for NMF and its L1 L2 regularized variants based on full decomposition and a fast
combinational algorithm of the anti-lopsided algorithm [NH15] and the greedy coordinate
block descent algorithm [HD11]. The proposed algorithm has linear convergence rate of
O(1− 1

r
)k in optimizing each matrix factor in the sub-space of passive variables when fixing

the other matrix, where r is the number of latent components. The proposed algorithm is
an advanced version of fast block coordinate descent methods and accelerated methods. In
theory and practice, the proposed algorithm resolve some current major issues of NMF: fast
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Figure 7: Convergence of regularized NMF Extensions for algorithms AcS, Nev and
Alo within two regularized cases: µ2 = 10−2 and µ2 = β2 = 10−2

learning algorithm, data sparseness exploit-ability, and parallel distributed feasibility using
limited internal memory. Furthermore, the proposed algorithm flexibly adapts with all the
variants of L1 L2 NMF regularizations.

In experimental comparative evaluation, our algorithm overcomes 7 of the most art-the-
state algorithms in large datasets about three significant aspects of convergence, average of
the iteration number and optimality. In addition, it can fully be parallelized and distributed
because the computation using limited internal memory is decomposed into basic computa-
tion units as NQP problems. Concerning the feasibility in real applications, the proposed
algorithm exploits the data sparseness to learn the huge sparse dataset Nytimes in an ac-
ceptable time by a single machine. Finally, the convergence of the proposed algorithm for
L1L2regularized NMF variants is much faster than that of the existing algorithms.

Concerning the optimization techniques for alternating least squares methods, we propose
a fast algorithm, Algorithm 3 for NQP problems, which not only has a linear convergence in
theory but also is verified in practice about the three significant aspects by a large number
of NQP problems conducted inside the NMF framework. Hence, we strongly believe that
the algorithm can be effectively employed for alternating least square methods as the key
problem in factorization methods.
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