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Abstract

Complex polynomial optimization has recently gained more and more attention in both
theory and practice. In this paper, we study the optimization of a real-valued general conjugate
complex form over various popular constraint sets including the m-th roots of complex unity,
the complex unit circle, and the complex unit sphere. A real-valued general conjugate complex
form is a homogenous polynomial function of complex variables as well as their conjugates,
and always takes real values. General conjugate form optimization is a wide class of complex
polynomial optimization models, which include many homogenous polynomial optimization in
the real domain with either discrete or continuous variables, and Hermitian quadratic form
optimization as well as its higher degree extensions. All the problems under consideration are
NP-hard in general and we focus on polynomial-time approximation algorithms with worst-case
performance ratios. These approximation ratios improve previous results when restricting our
problems to some special classes of complex polynomial optimization, and improve or equate
previous results when restricting our problems to some special classes of polynomial optimization
in the real domain. These algorithms are based on tensor relaxation and random sampling. Our
novel technical contributions are to establish the first set of probability lower bounds for random
sampling over the m-th root of unity, the complex unit circle, and the complex unit sphere, and
propose the first polarization formula linking general conjugate forms and complex multilinear
forms.

Keywords: general conjugate form, complex polynomial optimization, approximation algo-
rithm, complex tensor, tensor relaxation, random sampling, probability bound.

Mathematics Subject Classification: 90C59, 90C26, 90C10, 15A69, 60E15.

1 Introduction

Polynomial optimization has been one of the main research topics in mathematical optimization
in the past decade due to its sophisticated theory in semi-algebraic geometry [20], its algorithmic
effects in both continuous optimization and discrete optimization [2], as well as its enormous appli-
cations such as biomedical engineering, control theory, graph theory, investment science, material
science, quantum mechanics, signal processing, speech recognition [21]. Most research emphasis has
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been put on polynomial optimization in the domain of real numbers. In recent years, motivated
by a large number of applications, especially in signal processing, various types of polynomial op-
timization models in the complex domain were proposed and studied. Aittomaki and Koivunen [1]
formulated the beampattern optimization problem as a complex multivariate quartic minimization
problem. Chen et al. [5] considered the joint optimization problem of waveforms and receiving
filters in multiple-input and multiple-output radar, and relaxed it to a quartic complex polynomial
optimization model. Hilling and Sudbery [11] constructed a complex polynomial optimization with
the spherical constraint in the area of quantum entanglement. Aubry et al. [3] introduced a cog-
nitive approach to design a special class of waveforms by optimizing a complex quartic polynomial
with a constant modulus constraint. Very recently, the application of complex polynomial opti-
mization to electricity transmission networks was discovered and investigated by Josz [16], and its
application in power system state estimation was studied by Madani et al. [23].

On the algorithmic aspect, the traditional sum-of-squares method by Lasserre [19] for general
polynomial optimization problems has been extended to complex polynomial optimizations; see
e.g., [6, 17]. Since polynomial optimization problems are generally NP-hard, various polynomial-
time approximation algorithms have been proposed for solving certain classes of high-degree poly-
nomial optimization models—a summary of research can be found in the monograph of Li et al. [21].
Improvements on approximation ratios of these polynomial optimization models have been recently
made by He et al. [8] and Hou and So [12]. In the context of complex polynomial optimization,
approximation algorithms are mostly proposed for the quadratic models. Complex quadratic form
optimization under the m-th roots of unity constraints and the complex unit circle constraints
have been studied in [26, 27]. Huang and Zhang [13] also discussed bilinear complex polynomial
optimization models. Beyond quadratics, Jiang et al. [14] studied approximation algorithms for
various high-degree complex polynomial optimization under the m-th roots of unity constraints,
the complex unit circle constraints, and complex spherical constraints.

In almost all the complex optimization models mentioned above, the objective function to
be optimized is the real part of a complex polynomial function rather than the function itself
since it is not real-valued. Very recently, Jiang et al. [15] provided a necessary and sufficient
condition under which complex polynomials always take real values. Based on this condition, they
proposed a very wide class of real-valued complex polynomial functions, called general conjugate
forms, which include all the complex objective functions studied in [26, 27, 13, 14] as special
cases, as well as all homogeneous polynomial functions in the real domain. In this paper, we are
primarily interested in the real-valued general conjugate form optimization under various popular
constraints in complex variables, such as the m-th roots of unity, the complex unit circle, and
the complex spherical constraints. The emphasis is to propose polynomial-time approximation
algorithms and analyze their performances. Originated from previous researches in probability
estimation of random sampling [18, 8], tensor relaxation and polarization formula [9] and feasible
solution reconstruction [14], we develop some new techniques and results on that line, which enable
us to study a new and much more general class of complex polynomial optimization models that
covers and improves many existing researches in the literature. The main contributions of the paper
are as follows:

• We propose the first polarization formula relating general conjugate forms and complex mul-
tilinear forms;

• We study random sampling over the m-th root of unity, the complex unit circle and the
complex sphere, and provide some first probability lower bounds;

• We propose new approximation algorithms for complex multilinear form optimization over
various complex constraints, whose approximation ratios improve and generalize that of [13,
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14];

• We propose some first approximation algorithms for real-valued general conjugate form opti-
mization over various complex constraints, whose approximation ratios improve that of [27,
26, 14] when restricting to some special classes of complex polynomial optimization, and
improve or equate that of [9, 25, 28, 29, 10, 8] when restricting to some special classes of
polynomial optimization in the real domain.

This paper is organized as follows. We start with preparations of various notations, definitions of
various complex functions and complex optimization models in Section 2. In Section 3, we present
a polarization formula that links general conjugate forms and complex multilinear forms, paving a
way to study general conjugate form optimization via complex multilinear form optimization. In
Section 4, we discuss some key probability bounds for random sampling over the m-th roots of
unity, the complex unit circle and the complex sphere, a fundamental step in deriving improved
approximation algorithms for complex multilinear form optimization. Polynomial-time approxi-
mation algorithms with improved approximation ratios for complex multilinear form optimization
over various types of constraint sets are proposed and analyzed in Section 5. Finally, by apply-
ing the linkage between general conjugate forms and complex multilinear forms, approximation
algorithms with guaranteed worst-case performance ratios for general conjugate form optimization
under various constraints are discussed in Section 6.

2 Preparations

Throughout this paper we use usual lowercase letters, boldface lowercase letters, capital letters,
and calligraphic letters to denote scalars, vectors, matrices, and tensors, respectively. For example,
a scalar x, a vector x, a matrix X, and a tensor X . We use subscripts to denote their components,
e.g., xi being the i-th entry of a vector x, Xij being the (i, j)-th entry of a matrix X, and Xijk

being the (i, j, k)-th entry of a third order tensor X . As usual, the field of real numbers and the
field of complex numbers are denoted by R and C, respectively.

For any complex number z = a + ib ∈ C with a, b ∈ R, its real part and imaginary part are
denoted by Re z := a and Im z := b, respectively. Its modulus is denoted by |z| :=

√
zz =

√
a2 + b2,

where z := a − ib denotes the conjugate of z. The Lp-norm (1 ≤ p ≤ ∞) of a complex vector

x ∈ C
n is defined as ‖x‖p := (

∑n
i=1 |xi|p)

1
p .

2.1 Complex multilinear forms and homogenous complex polynomials

Given a d-th order complex tensor F = (Fi1i2...id) ∈ C
n1×n2×···×nd , its associated complex multilin-

ear form F is defined as

F (x1,x2, . . . ,xd) :=

n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

Fi1i2...id x
1
i1x

2
i2 . . . x

d
id
,

where the variables xk ∈ C
nk for k = 1, 2, . . . , d. Closely related to a multilinear form is a homo-

geneous complex polynomial function, or explicitly

f(x) :=
∑

1≤i1≤i2≤···≤id≤n

ai1i2...idxi1xi2 . . . xid ,

where the variable x ∈ C
n. Associated with any homogeneous complex polynomial is a symmetric

complex tensor F ∈ C
nd
, i.e., its entries Fi1i2...id ’s are invariant under permutations of their indices
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{i1, i2, . . . , id}. In this sense,

Fi1i2...id =
ai1i2...id

|Π(i1i2 . . . id)|
∀ 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n,

where Π(i1i2 . . . id) is the set of all distinct permutations of the indices {i1, i2, . . . , id}. In light
of a multilinear form F associated with a symmetric tensor F , homogeneous polynomial f(x) is
obtained by letting x1 = x2 = · · · = xd = x, i.e., f(x) = F (x,x, . . . ,x

︸ ︷︷ ︸

d

). We call such an F to be

the tensor representation of the homogeneous complex polynomial f(x).

2.2 General conjugate forms and their tensor representations

A multivariate conjugate complex polynomial c(x) is a polynomial function of variables x,x ∈ C
n.

Without conjugate terms, real-valued complex polynomial functions are meaningless as otherwise
they become constant functions. Restricting to homogeneous ones, Jiang et al. [15] proposed general
conjugate forms.

Definition 2.1 (General conjugate form [15]) A general conjugate form of the variable x ∈
C
n is defined as

g(x) =

d∑

k=0

∑

1≤i1≤i2≤···≤ik≤n

∑

1≤j1≤j2≤···≤jd−k≤n

ai1i2...ik,j1j2...jd−k
xi1xi2 . . . xikxj1xj2 . . . xjd−k

. (1)

Essentially, it is the summation of all the possible d-th degree monomials, allowing any number of
conjugate variables as well as usual variables in each monomial. This, however, does not require the
number of conjugate variables being the same as the number of usual variables in any monomial,
a special type of general conjugate forms called symmetric conjugate forms defined in [15]. Jiang
et al. [15] proved that a general conjugate form taking real values for all x ∈ C

n if and only if the
coefficients of each pair of conjugate monomials are conjugate to each other, i.e., ai1i2...ik ,j1j2...jd−k

=
aj1j2...jd−k,i1i2...ik in (1). It worth mentioning that restricting to the quadratic case, real-valued
general conjugate forms include Hermitian quadratic forms (which are also real-valued) as a subclass
since the latter one requires exact one conjugate variable and one usual variable in any monomial.

The tensor representation for a real-valued general conjugate form is interesting, which is ex-
plicitly characterized as follows.

Definition 2.2 (Conjugate super-symmetric tensor [15]) An even dimensional tensor G ∈
C
(2n)d is called conjugate super-symmetric if

(i) G is symmetric, i.e., Gi1i2...id = Gj1j2...jd for all (j1j2 . . . jd) ∈ Π(i1i2 . . . id), and
(ii) Gi1i2...id = Gj1j2...jd holds for all 1 ≤ i1, i2, . . . , id, j1, j2, . . . , jd ≤ 2n with |ik − jk| = n for
k = 1, 2, . . . , d.

There is one-to-one correspondence between n-dimensional d-th degree real-valued general conju-
gate forms and 2n-dimensional d-th order conjugate super-symmetric tensors [15]. In particular, for

any conjugate super-symmetric G ∈ C
(2n)d , the corresponding real-valued general conjugate form

can be obtained by

g(x) = G

((
x

x

)

,

(
x

x

)

, . . . ,

(
x

x

)

︸ ︷︷ ︸

d

)

. (2)

A simple example of a complex quadratic polynomial (matrix case) is shown below.
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Example 2.3 Given a conjugate super-symmetric second order tensor (matrix) G =

(
i 0 1 2
0 0 2 0
1 2 −i 0
2 0 0 0

)

∈

C
42 , the corresponding general conjugate form is

g(x) = (x1, x2, x1, x2)G(x1, x2, x1, x2)
T = ix1

2 + 2x1x1 + 4x1x2 + 4x2x1 − ix1
2,

which always takes real values for any x1, x2 ∈ C.

2.3 Complex constraint sets

The following commonly encountered constraint sets for complex polynomial optimization are con-
sidered in this paper:

• The m-th roots of unity: Ωm =
{
1, ωm, . . . , ωm−1

m

}
, where ωm = ei

2π
m = cos 2π

m + i sin 2π
m .

Denote Ωn
m = {x ∈ C

n : xi ∈ Ωm, i = 1, 2, . . . , n}.
• The complex unit circle: Ω∞ = {z ∈ C : |z| = 1}. Denote Ωn

∞ = {x ∈ C
n : xi ∈ Ω∞, i =

1, 2, . . . , n}.
• The complex sphere: Sn = {x ∈ C

n : ‖x‖2 = 1} .
Throughout this paper, we assume m ≥ 3, to ensure that the decision variables being considered
are essentially complex.

2.4 Complex polynomial optimization models

This main purpose of this paper is to study approximation algorithms for real-valued general con-
jugate form optimization over three types of constraint sets mentioned in Section 2.3. Specifically,
given a real-valued general conjugate form g(x) associated with a conjugate super-symmetric tensor
G, we study the following optimization models,

(Gm) max g(x)
s.t. x ∈ Ωn

m;
(G∞) max g(x)

s.t. x ∈ Ωn
∞;

(GS) max g(x)
s.t. x ∈ Sn.

As g(x) = G

((
x

x

)

,

(
x

x

)

, . . . ,

(
x

x

)

︸ ︷︷ ︸

d

)

where x ∈ C
n, the tensor relaxation approach [9] is

applied to study these models, i.e., relaxing the objective function g(x) to G(x1,x2, . . . ,xd) where
xk ∈ C

2n for k = 1, 2, . . . , d. Therefore, we first study the following optimization models,

(Lm) max ReF (x1,x2, . . . ,xd)
s.t. xk ∈ Ωnk

m , k = 1, 2, . . . , d;
(L∞) max ReF (x1,x2, . . . ,xd)

s.t. xk ∈ Ωnk∞ , k = 1, 2, . . . , d;
(LS) max ReF (x1,x2, . . . ,xd)

s.t. xk ∈ Snk , k = 1, 2, . . . , d.

where F is a complex multilinear form associated with a complex tensor F ∈ C
n1×n2×···×nd . The

real-part operator has to be put in the objective function as a complex multilinear form cannot
always take real values.
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2.5 Polynomial-time approximation algorithms

For any maximization problem (P ) : maxx∈X p(x) studied in this paper, we denote vmax(P ) to be
the optimal value and vmin(P ) to be the optimal value of its minimization counterpart minx∈X p(x).

Definition 2.4 (i) A maximization problem (P ) : maxx∈X p(x) admits a polynomial-time approx-
imation algorithm with approximation ratio ρ ∈ (0, 1], if vmax(P ) ≥ 0 and a feasible solution z ∈ X
can be found in polynomial time, such that p(z) ≥ ρ vmax(P ).
(ii) A maximization problem (P ) : maxx∈X p(x) admits a polynomial-time approximation algorithm
with relative approximation ratio ρ ∈ (0, 1], if a feasible solution z ∈ X can be found in polynomial
time, such that p(z)− vmin(P ) ≥ ρ (vmax(P )− vmin(P )).

There is no evidence that one type of approximation ratios is better than or implies the other.
Whether a usual approximation ratio is obtainable or it has to be a relative approximation ratio is
really depend on the nature of the optimization model. For some problems, such as the objective
function is always negative implying that vmax(P )) ≤ 0, only a relative approximation ratio can be
obtained.

All the optimization models considered in this paper are NP-hard in general, even restricted
to the real domain. Polynomial-time randomized algorithms with worst-case approximation ratios
are proposed for these models, when the degree of these complex polynomial functions, d, is fixed.
These approximation ratios depend only on the dimensions of the problems, or in other words, they
are data-independent.

3 Polarization identity of general conjugate forms

As mentioned in Section 2.4, complex multilinear form relaxations are applied to study real-valued
general conjugate form optimization models. This section is devoted to establishing an identity
linking these two complex polynomial functions. In the literature, such identities are usually called
polarization identities. He et al. [9] first established a polarization identity linking multilinear forms
to homogenous polynomials. So [25] proposed a polarization identity for multiquadratic forms and
He et al. [10] further extended such identity to mixed forms. These identities can be applied to both
the real and the complex domains. In the complex domain specifically, Jiang et al. [14] established
a polarization identity liking complex multilinear forms to symmetric conjugate forms, a special
class of general conjugate forms. Our main result in this section is as follows.

Theorem 3.1 Let m ≥ 3 be an integer or m = ∞. Suppose g(x) with x ∈ C
n is a real-valued gen-

eral conjugate form associated with a conjugate super-symmetric tensor G ∈ C
(2n)d . If ξ1, ξ2, . . . , ξd

are i.i.d. uniformly on Ωm, then for any x1,x2, . . . ,xd,y1,y2, . . . ,yd ∈ C
n

E

[(
d∏

i=1

ξi

)

g

(
d∑

k=1

(

ξkxk + ξky
k
)
)]

= d!G

((
x1

y1

)

,

(
x2

y2

)

, . . . ,

(
xd

yd

))

.
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Proof. According to (2), we have

E

[(
d∏

i=1

ξi

)

g

(
d∑

k=1

(

ξkxk + ξky
k
)
)]

= E

[(
d∏

i=1

ξi

)

G

((∑d
k=1(ξkx

k + ξkyk)
∑d

k=1(ξkx
k + ξkyk)

)

,

(∑d
k=1(ξkx

k + ξkyk)
∑d

k=1(ξkx
k + ξkyk)

)

, . . . ,

(∑d
k=1(ξkx

k + ξkyk)
∑d

k=1(ξkx
k + ξkyk)

))]

= E

[(
d∏

i=1

ξi

)

G

(
d∑

k=1

(

ξk

(
xk

yk

)

+ ξk

(
yk

xk

))

,

d∑

k=1

(

ξk

(
xk

yk

)

+ ξk

(
yk

xk

))

, . . . ,

d∑

k=1

(

ξk

(
xk

yk

)

+ ξk

(
yk

xk

)))]

= E

[(
d∏

i=1

ξi

)

G

(
2d∑

k=1

ηkz
k,

2d∑

k=1

ηkz
k, . . . ,

2d∑

k=1

ηkz
k

)]

= E





2d∑

k1=1

2d∑

k2=1

· · ·
2d∑

kd=1

(
d∏

i=1

ξi

)



d∏

j=1

ηkj



G(zk1 ,zk2 , . . . ,zkd)



 ,

where the last equality is due to the multilinearity of G,

zk :=

(
xk

yk

)

for k = 1, 2, . . . , d and zk :=

(
yk−d

xk−d

)

for k = d+ 1, d + 2, . . . , 2d,

and
ηk = ξk for k = 1, 2, . . . , d and ηk = ξk−d for k = d+ 1, d+ 2, . . . , 2d.

Let us take a close look at E
[(
∏d

i=1 ξi

)(
∏d

j=1 ηkj

)]

for all the possible kj ’s. Since m ≥ 3 or

m = ∞, it is obvious that

E ξi = 0, E ξ2i = 0, E ξi
2
= 0, and ξiξi = 1 for i = 1, 2, . . . , d. (3)

Consider d sets of index couples {k, d + k} for k = 1, 2, . . . , d, and we discuss the distribution of
{k1, k2, . . . , kd} in these index couples via three cases.

(i) None of the two kj ’s belongs to the same index couple and max1≤j≤d{kj} ≤ d. In this case,
(k1, k2, . . . , kd) ∈ Π(1, 2, . . . , d), i.e., a permutation of {1, 2, . . . , d}. We have

E





(
d∏

i=1

ξi

)



d∏

j=1

ηkj







 = E





(
d∏

i=1

ξi

)



d∏

j=1

ηj







 = E





(
d∏

i=1

ξi

)



d∏

j=1

ξj







 =

d∏

i=1

E [ξiξi] = 1.

(ii) None of the two kj’s belongs to the same index couple and max1≤j≤d{kj} > d. If we pick
any ℓ with kℓ > d, then ηkℓ = ξkℓ−d and none of the other kj ’s belongs to {kℓ − d, kℓ}. We have

E





(
d∏

i=1

ξi

)



d∏

j=1

ηkj







 = E ξkℓ−d
2
E








∏

1≤i≤d, i 6=kℓ−d

ξi








∏

1≤j≤d, j 6=ℓ

ηkj







 = 0.

(iii) There exists an ℓ (1 ≤ ℓ ≤ d) such that none of kj ’s belongs to {ℓ, ℓ+ d}. We have

E





(
d∏

i=1

ξi

)



d∏

j=1

ηkj







 = E ξℓ E








∏

1≤i≤d, i 6=ℓ

ξi









d∏

j=1

ηkj







 = 0.
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Therefore, E
[(
∏d

i=1 ξi

)(
∏d

j=1 ηkj

)]

6= 0 if and only if (k1, k2, . . . , kd) ∈ Π(1, 2, . . . , d). As the

number of different permutations in Π(1, 2, . . . , d) is d!, by taking into account of the symmetricity
of G, it follows that

E





2d∑

k1=1

2d∑

k2=1

· · ·
2d∑

kd=1

(
d∏

i=1

ξi

)



d∏

j=1

ηkj



G(zk1 ,zk2 , . . . ,zkd)



 = d!G(z1,z2, . . . ,zd)

= d!G

((
x1

y1

)

,

(
x2

y2

)

, . . . ,

(
xd

yd

))

,

proving the identity. �

4 Main probability bounds

This section is devoted to some key probability inequalities that will be used in deriving approxima-
tion algorithms in Section 5. In particular, we consider the inner product between a fixed complex
vector and a random complex vector, and establish a nontrivial lower bound on the event that such
inner product is larger than a certain threshold. In the real domain, such inequalities are extremely
useful in designing randomized approximation algorithms, see e.g., [18, 8]. Although the main idea
in the proof of the inequality originates from [18], the case for a random complex vector has a more
sophisticated structure leading to more general and useful results.

In the real domain, Khot and Naor [18] proved that for every δ ∈ (0, 12), there is a constant
c(δ) > 0 such that if ξ ∈ R

n whose entries are i.i.d. symmetric Bernoulli random variables (taking
±1 with equal probability), then for any a ∈ R

n,

Prob

{

aTξ ≥
√

δ lnn

n
‖a‖1

}

≥ c(δ)

nδ
.

In another setting, Brieden et al. [4] showed that if ξ ∈ R
n is drawn uniformly on the unit sphere

{x ∈ R
n : ‖x‖2 = 1}, then for any a ∈ R

n,

Prob

{

aTξ ≥
√

lnn

n
‖a‖2

}

≥ 1

10
√
lnn

(

1− lnn

n

)n−1
2

.

A refinement of the above result and extensions to polynomial functions were discussed by He et
al. [8]. In the complex domain, the symmetric Bernoulli random variable obviously extends to
the uniform distribution on Ωm, and the unform distribution on the unit sphere extends to the
uniform distribution over the complex unit sphere. Our results are presented in Theorem 4.4 and
Theorem 4.5, respectively. Before deriving these inequalities, let us first review a useful inequality.

Lemma 4.1 (Berry-Esseen inequality [7, 24]) Let η1, η2, . . . , ηn be independent real random
variables with E ηi = 0, E η2i = σ2

i > 0 and E |ηi|3 = κi < ∞ for i = 1, 2, . . . , n. Denote sn =
∑n

i=1 ηi

/√
∑n

i=1 σ
2
i to be the normalized n-th partial sum and Sn to be the cumulative distribution

function of sn. It follows that

sup
x∈R

|Sn(x)−N(x)| ≤ c0
∑n

i=1 κi
(∑n

i=1 σ
2
i

) 3
2

,

where c0 ∈ (0.4097, 0.56) is a constant and N(t) :=
∫ t
−∞

1√
2π
e−

x2

2 dx is the cumulative distribution

function of the standard normal distribution.
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The following moments’ estimation will be used frequently in this section.

Lemma 4.2 Let m ≥ 3 be an integer or m = ∞. Let ξ = (ξ1, ξ2, . . . , ξn)
T ∈ C

n whose entries are
i.i.d. uniformly on Ωm and a ∈ C

n be fixed. If we define η = Re (aTξ), then

E η = 0,

E η2 =
1

2

n∑

i=1

|ai|2,

E η4 =

{ 1
16

∑n
i=1(a

4
i + ai

4) + 3
8

∑n
i=1 |ai|4 + 3

2

∑

1≤i<j≤n |ai|2|aj|2 m = 4
3
8

∑n
i=1 |ai|4 + 3

2

∑

1≤i<j≤n |ai|2|aj|2 m 6= 4.

Proof. Let ηi = Re (aiξi) = 1
2(aiξi + aiξi) for i = 1, 2, . . . , n, and so η =

∑n
i=1 ηi. The first two

moments of ηi are

E ηi =
1

2

(
aiE ξi + aiE ξi

)
= 0, (4)

E η2i = E

[
(aiξi + aiξi)

2

4

]

= E

[

a2i ξ
2
i

4
+

aiaiξiξi

2
+

ai
2ξi

2

4

]

=
a2i
4
E ξ2i +

|ai|2
2

+
ai

2

4
E ξi

2
=

|ai|2
2

,

(5)

where the last equality is due to (3). Since all the ηi’s are independent to each other, we have

E η = E

[
n∑

i=1

ηi

]

=

n∑

i=1

E ηi = 0,

E η2 = E

(
n∑

i=1

ηi

)2

= E





n∑

i=1

η2i + 2
∑

1≤i<j≤n

ηiηj



 =
n∑

i=1

E η2i + 2
∑

1≤i<j≤n

E ηiE ηj =
1

2

n∑

i=1

|ai|2.

Moreover, the fourth moment of ηi is

E η4i = E

[
1

16
(aiξi + aiξi)

4

]

=
1

16
E
[

a4i ξ
4
i + 4a3i ξ

3
i aiξi + 6a2i ξ

2
i ai

2ξi
2
+ 4aiξiai

3ξi
3
+ ai

4ξi
4
]

=
1

16
a4iE ξ4i +

1

16
ai

4E ξi
4
+

1

4
|ai|2a2iE ξ2i +

1

4
|ai|2ai2E ξi

2
+

3

8
|ai|4

=

{
1
16 (a

4
i + ai

4) + 3
8 |ai|4 m = 4

3
8 |ai|4 m 6= 4.

9



Therefore,

E η4

= E

(
n∑

i=1

ηi

)4

= E





n∑

i=1

η4i + 4
∑

1≤i 6=j≤n

ηiη
3
j + 6

∑

1≤i<j≤n

η2i η
2
j + 12

∑

1≤i<j≤n, k 6=i,j

ηiηjη
2
k + 24

∑

1≤i<j<k<ℓ≤n

ηiηjηkηℓ





=

n∑

i=1

E η4i + 6
∑

1≤i<j≤n

E η2i E η2j +

n∑

i=1

E [ηi] E [pi(η1, . . . , ηi−1, ηi+1, . . . , ηn)]

=

{ 1
16

∑n
i=1(a

4
i + ai

4) + 3
8

∑n
i=1 |ai|4 + 3

2

∑

1≤i<j≤n |ai|2|aj |2 m = 4
3
8

∑n
i=1 |ai|4 + 3

2

∑

1≤i<j≤n |ai|2|aj |2 m 6= 4,

where pi(η1, . . . , ηi−1, ηi+1, . . . , ηn) is a cubic polynomial function of (η1, . . . , ηi−1, ηi+1, . . . , ηn) for
i = 1, 2, . . . , n. �

The following lemma follows straightforwardly from the Berry-Esseen inequality.

Lemma 4.3 Let m ≥ 3 be an integer or m = ∞. If ξ = (ξ1, ξ2, . . . , ξn)
T ∈ C

n whose entries are
i.i.d. uniformly on Ωm, then for any a ∈ C

n

∣
∣
∣
∣
∣
Prob

{√
2Re (aTξ)

‖a‖2
≤ x

}

−N(x)

∣
∣
∣
∣
∣
≤ 2

√
2 c0‖a‖∞
‖a‖2

.

Proof. Without loss of generality, we assume ai 6= 0 for i = 1, 2, . . . , n since otherwise we may
delete all the zero entries of a while keeping values of both sides of the inequality unchanged. Let
ηi = Re (aiξi) for i = 1, 2, . . . , n. According to (4) and (5) in the proof of Lemma 4.2, we have

E ηi = 0 and E η2i =
1

2
|ai|2 > 0 for i = 1, 2, . . . , n.

Moreover, for i = 1, 2, . . . , n,

E |ηi|3 = E |Re (aiξi)|3 ≤ |ai|3E |ξi|3 = |ai|3.

By applying Lemma 4.1, we get
∣
∣
∣
∣
∣
Prob

{√
2Re (aTξ)

‖a‖2
≤ x

}

−N(x)

∣
∣
∣
∣
∣
≤ 2

√
2 c0

∑n
i=1 |ai|3

‖a‖32

≤ 2
√
2 c0 max1≤i≤n{|ai|}

∑n
i=1 |ai|2

‖a‖32

=
2
√
2 c0‖a‖∞
‖a‖2

.

�

We are now ready to present the main probability inequality. The result can be taken as
a generalization of [18, Lemma 3.2] where the case of symmetric Bernoulli random variables is
discussed, while ours is the uniform distribution on Ωm or Ω∞.
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Theorem 4.4 Let m ≥ 3 be an integer or m = ∞. If ξ = (ξ1, ξ2, . . . , ξn)
T ∈ C

n whose entries are
i.i.d. uniformly on Ωm, then for any a ∈ C

n and δ ∈
(
0, 1

16

)
, there exists a constant c1(δ) > 0 such

that

Prob

{

Re (aTξ) ≥
√

δ lnn

n
‖a‖1

}

≥ c1(δ)

c2(m)n5δ
,

where c2(m) := min{k ≥ 2 : k is a divisor of m} ≤ m, in particular, c2(∞) = 2.

Proof. Denote η = Re (aTξ). We first prove that there is a constant n0(δ) > 0, depending only on
δ, such that the inequality holds when n ≥ n0(δ) in the following two cases.

In the first case we assume that

‖a‖1 ≤ n4δ+ 1
4‖a‖2. (6)

By Lemma 4.2, it is straightforward to verify that

3(E η2)2 =
3

4

(
n∑

i=1

|ai|2
)2

≥ max

{

1

16

n∑

i=1

(a4i + ai
4), 0

}

+
3

8

n∑

i=1

|ai|4 +
3

2

∑

1≤i<j≤n

|ai|2|aj |2 ≥ E η4.

By the Paley-Zygmund inequality, for any t ∈ (0, 1), we have

Prob
{
η2 ≥ tE η2

}
≥ (1− t)2

(E η2)2

E η4
≥ (1− t)2

3
. (7)

Given any t ≥ 0, consider the event
{
η2 ≥ t2

}
= {η ≥ t} ∪ {−η ≥ t}. If m is even or m = ∞, Ωm

is central symmetric and so η = Re (aTξ) is also symmetric, leading to

Prob
{
η2 ≥ t2

}
= 2Prob {η ≥ t} ≤ 3Prob

{

η ≥ t

2

}

. (8)

Ifm is odd, it is obvious that both ω
m+1

2
m ξ and ω

m−1
2

m ξ have the same distribution to ξ as ω
m±1

2
m ∈ Ωm,

and so both Re (aT(ω
m+1

2
m ξ)) and Re (aT(ω

m−1
2

m ξ)) have the same distribution to η. By noticing

Re (aT(ω
m+1

2
m ξ))+Re (aT(ω

m−1
2

m ξ)) = Re ((ω
m+1

2
m +ω

m−1
2

m )aTξ) = Re
((

−2 cos
π

m

)

aTξ
)

= −2η cos
π

m

and cos π
m ≥ cos π

3 = 1
2 , we have

Prob {−η ≥ t} ≤ Prob
{

−2η cos
π

m
≥ t
}

= Prob

{

Re (aT(ω
m+1

2
m ξ)) + Re (aT(ω

m−1
2

m ξ)) ≥ t

}

≤ Prob

{

Re (aT(ω
m+1

2
m ξ)) ≥ t

2

}

+ Prob

{

Re (aT(ω
m−1

2
m ξ)) ≥ t

2

}

= 2Prob

{

η ≥ t

2

}

.

Together with the obvious fact that Prob {η ≥ t} ≤ Prob
{
η ≥ t

2

}
, we arrive at

Prob
{
η2 ≥ t2

}
= Prob {η ≥ t}+ Prob {−η ≥ t} ≤ 3Prob

{

η ≥ t

2

}

.

11



We conclude that (8) holds when m ≥ 3 is an integer or m = ∞. As δ ∈ (0, 1
16 ), we can define

n1(δ) := min
{

n > 0 : 8δ lnn

n
1
2−8δ

≤ 1
2

}

. Therefore, when n ≥ n1(δ), it follows from (8) that

Prob

{

η ≥
√

δ lnn

n
‖a‖1

}

≥ 1

3
Prob

{

η2 ≥ 4δ lnn

n
‖a‖21

}

≥ 1

3
Prob

{

η2 ≥ 4δ lnn

n
1
2
−8δ

‖a‖22
}

=
1

3
Prob

{

η2 ≥ 8δ lnn

n
1
2
−8δ

E η2
}

≥ 1

3
Prob

{

η2 ≥ 1

2
E η2

}

≥ 1

3
· 1
3
·
(

1− 1

2

)2

=
1

36
,

where the second inequality is due to (6) and the last inequality is due to (7).
In the second case we assume that

‖a‖1 > n4δ+ 1
4‖a‖2. (9)

Let I =
{

i ∈ {1, 2, . . . , n} : |ai| ≤ 2‖a‖22
‖a‖1

}

and define ζ := Re
(∑

i∈I aiξi
)
. It holds that

‖a‖1 =
∑

i/∈I

|ai|2
|ai|

+
∑

i∈I
|ai| ≤

‖a‖1
2‖a‖22

∑

i/∈I
|ai|2 +

√

|I|
∑

i∈I
|ai|2 ≤

‖a‖1
2

+

√

n
∑

i∈I
|ai|2,

implying that
‖a‖1
2
√
n

≤
√
∑

i∈I
|ai|2 =

√

2E ζ2. (10)

As c2(m) ≥ 2 is a divisor of m, ω0 := e
i

2π
c2(m) ∈ Ωm and

∑c2(m)
k=1 ωk

0 = 0, implying that

c2(m)
∑

k=1

Re

(

ωk
0

∑

i/∈I
aiξi +

∑

i∈I
aiξi

)

= c2(m)Re

(
∑

i∈I
aiξi

)

+Re









c2(m)
∑

k=1

ωk
0




∑

i/∈I
aiξi



 = c2(m)ζ.

For any t ∈ R, if
∑c2(m)

k=1 Re
(
ωk
0

∑

i/∈I aiξi +
∑

i∈I aiξi
)
≥ c2(m)t, then there must exist some

k ∈ {1, 2, . . . , c2(m)} such that Re
(
ωk
0

∑

i/∈I aiξi +
∑

i∈I aiξi
)
≥ t. Therefore

Prob {ζ ≥ t} = Prob







c2(m)
∑

k=1

Re

(

ωk
0

∑

i/∈I
aiξi +

∑

i∈I
aiξi

)

≥ c2(m)t







≤
c2(m)
∑

k=1

Prob

{

Re

(

ωk
0

∑

i/∈I
aiξi +

∑

i∈I
aiξi

)

≥ t

}

= c2(m)Prob {η ≥ t} ,

where the last equality holds because Re
(
ωk
0

∑

i/∈I aiξi +
∑

i∈I aiξi
)
has the exact same distribution

to η as ωk
0 ∈ Ωm for k = 1, 2, . . . , c2(m). By letting t =

√
δ lnn
n ‖a‖1 in the above, we arrive at
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Prob

{

η ≥
√

δ lnn

n
‖a‖1

}

≥ 1

c2(m)
Prob

{

ζ ≥
√

δ lnn

n
‖a‖1

}

=
1

c2(m)
Prob

{

ζ
√

E ζ2
≥
√

δ lnn

n

‖a‖1
√

E ζ2

}

≥ 1

c2(m)
Prob

{

ζ
√

E ζ2
≥

√
8δ lnn

}

≥ 1

c2(m)

(

1−N
(√

8δ lnn
)

− 2
√
2c0 maxi∈I |ai|
√∑

i∈I |ai|2

)

≥ 1

c2(m)

(
∫ √

8δ lnn+1

√
8δ lnn

1√
2π

e−
x2

2 dx− 8c0
√
2n‖a‖22

‖a‖21

)

≥ 1

c2(m)

(

1√
2π

e−
(
√

8δ lnn+1)2

2 − 8
√
2c0

n8δ

)

≥ 1

c2(m)

(

1√
2πn5δ

− 8
√
2c0

n8δ

)

≥ 1

3c2(m)n5δ

for n ≥ n2(δ) := min
{

n > 0 : (
√
8δ lnn+1)2

2 ≤ 5δ lnn, 1√
2πn5δ

− 8
√
2c0

n8δ ≥ 1
3n5δ

}

, where the second,

third, fourth and fifth inequalities are due to (10), Lemma 4.3, (10) and (9), respectively.
To conclude the proof, it remains to settle the case for n ≤ n0(δ) = max{n1(δ), n2(δ)}. For

i ∈ {1, 2, . . . , n}, consider the set Θi =
{
z ∈ Ω∞ : | arg z − arg ai| ≤ π

3

}
. We have

Prob {ξi ∈ Θi} ≥
{ ⌊m/3⌋

m ≥ 1
5 m ≥ 3

1
3 m = ∞,

and ξi ∈ Θi implies that Re (aiξi) ≥ |ai| cos π
3 = |ai|

2 . Therefore Prob
{

Re (aiξi) ≥ |ai|
2

}

≥ 1
5 . By

the independence of ξi’s, we have

Prob

{

η ≥
√

δ lnn

n
‖a‖1

}

≥ Prob

{

η ≥ ‖a‖1
2

}

≥
n∏

i=1

Prob

{

Re (aiξi) ≥
|ai|
2

}

≥ 1

5n
≥ 1

5n0(δ)
.

To summarize, for any δ ∈
(
0, 1

16

)
, there exists n0(δ) > 0, such that

Prob

{

η ≥
√

δ lnn

n
‖a‖1

}

≥
{

min
{

1
3c2(m)n5δ ,

1
36

}

n ≥ n0(δ)
1

5n0(δ)
n < n0(δ).

Define c1(δ) :=
1

36·5n0(δ)
and the lower bound c1(δ)

c2(m)n5δ holds for all n. �

Theorem 4.4 provides a lower bound for the random sampling on Ωn
m. For the random sampling

on the complex sphere Sn, we have the following inequality, which is analogous to Theorem 4.4.

Theorem 4.5 If ξ is a uniform distribution on Sn, then for any a ∈ C
n and γ > 0 with γ lnn < n,

there exists a constant c3(γ) > 0, such that

Prob

{

Re (aTξ) ≥
√

γ lnn

n
‖a‖2

}

≥ c3(γ)

n2γ
√
lnn

.

The proof is similar to that of [8, Lemma 2.5], and is left to interested readers.
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5 Complex multilinear form optimization

In this section, we study approximation algorithms for the following complex multilinear form
optimization models,

(Lm) max ReF (x1,x2, . . . ,xd)
s.t. xk ∈ Ωnk

m , k = 1, 2, . . . , d;
(L∞) max ReF (x1,x2, . . . ,xd)

s.t. xk ∈ Ωnk∞ , k = 1, 2, . . . , d;
(LS) max ReF (x1,x2, . . . ,xd)

s.t. xk ∈ Snk , k = 1, 2, . . . , d,

where F is a complex multilinear form associated with a complex tensor F ∈ C
n1×n2×···×nd . Without

loss of generality, we assume that n1 ≤ n2 ≤ · · · ≤ nd in this section.
All these models were studied by Jiang et al. [14]. However, the algorithms in this section

improve that in [14] in terms of approximation ratios. The main ingredients of our algorithms are
recursions on the degree of the multilinear form and random sampling on the constraint sets.

5.1 Multilinear form in the m-th roots of unity or the complex unit circle

In this subsection, we discuss the discrete optimization model (Lm) and the continuous one (L∞)
together as the main ideas are similar. When d = 2, both (Lm) and (L∞) are already NP-hard.
Huang and Zhang [13] studied these two models for d = 2 via semidefinite program relaxation and
proposed polynomial-time randomized algorithms with constant worst-case approximation ratios
c4(m) := 0.7118 cos2 π

m for (Lm) and 0.7118 for (L∞) which coincides that of (Lm) when m →
∞. For d ≥ 3, Jiang et al. [14] applied some decomposition routines and proposed randomized

algorithms with approximation ratios
(
m2

2π sin2 π
m − 1

)(
m2

4π sin2 π
m

)d−2 (∏d−2
k=1 nk

)− 1
2
for (Lm) and

c4(∞)
(
π
4

)d−2
(
∏d−2

k=1 nk

)− 1
2
for (L∞). With the help of Theorem 4.4, we manage to provide an

improved randomized approximation algorithm, which can be applied to both (Lm) and (L∞).

Algorithm 5.1 A polynomial-time randomized algorithm of (Lm) when m ≥ 3 is an integer or
m = ∞:

1. Randomly generate ξk ∈ Ωnk
m for k = 1, 2, . . . , d − 2, where all ξki ’s are i.i.d. uniformly on

Ωm;

2. Apply the approximation algorithm in [13] to solve the bilinear form optimization problem

max ReF (ξ1, ξ2, . . . , ξd−2,xd−1,xd)
s.t. xd−1 ∈ Ω

nd−1
m , xd ∈ Ωnd

m ,

and get its approximate solution (ξd−1, ξd);

3. Compute an objective value ReF (ξ1, ξ2, . . . , ξd);

4. Repeat the above procedures independently ln 1
ǫ

(
c2(m)
c1(δ)

)d−2∏d−2
k=1 n

5δ
k times for any given ǫ > 0

and δ ∈ (0, 1
16), and choose a solution with the largest objective value.
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Theorem 5.2 If m ≥ 3 is an integer or m = ∞, Algorithm 5.1 solves (Lm) with an approxima-

tion ratio c4(m)δ
d−2
2

(
∏d−2

k=1
lnnk

nk

) 1
2
, i.e., for any given ǫ > 0 and δ ∈ (0, 1

16 ), a feasible solution

(y1,y2, . . . ,yd) can be generated in polynomial time with probability at least 1− ǫ, such that

ReF (y1,y2, . . . ,yd) ≥ c4(m)δ
d−2
2

(
d−2∏

k=1

lnnk

nk

) 1
2

vmax(Lm).

Proof. Suppose (ξ1, ξ2, . . . , ξd) is an approximate solution generated by the first three steps of
Algorithm 5.1, i.e., without repeated sampling and choosing the best one. For any t (2 ≤ t ≤ d),
we treat (ξ1, ξ2, . . . , ξd−t) as given parameters and define the following problem

(Ft) max ReF (ξ1, ξ2, . . . , ξd−t,xd−t+1,xd−t+2 . . . ,xd)
s.t. xk ∈ Ωnk

m , k = d− t+ 1, d− t+ 2, . . . , d.

By applying the first three steps of Algorithm 5.1 to (Ft), we get a randomly generated feasible
solution (ξd−t+1, ξd−t, . . . , ξd) of (Ft) to update the previous ξk’s for d − t + 1 ≤ k ≤ d. In the
remaining, we prove by induction on t that for each t = 2, 3, . . . , d,

Prob
(ξd−t+1,ξd−t+2,...,ξd)






ReF (ξ1, ξ2, . . . , ξd) ≥ c4(m)δ

t−2
2

(
d−2∏

k=d−t+1

lnnk

nk

) 1
2

vmax(Ft)







≥ (c1(δ))
t−2

(c2(m))t−2
∏d−2

k=d−t+1 n
5δ
k

. (11)

In other words, (ξd−t+1, ξd−t+2, . . . , ξd) is a c4(m)δ
t−2
2

(
∏d−2

k=d−t+1
lnnk

nk

) 1
2
-approximate solution of

(Ft) with a nontrivial probability.
For the base case t = 2, the algorithm by Huang and Zhang [13] (the second step of Al-

gorithm 5.1) guarantees a constant ratio c4(m), i.e., ReF (ξ1, ξ2, . . . , ξd) ≥ c4(m) vmax(F2), im-
plying (11). Suppose now (11) holds for t − 1. To prove that (11) holds for t, we notice that
(ξ1, ξ2, . . . , ξd−t) are given fixed parameters. Denote (zd−t+1,zd−t+2, . . . ,zd) to be an optimal
solution of (Ft), and define the following two events

Φ1 =

{

ξd−t+1 ∈ Ω
nd−t+1
m : ReF (ξ1, . . . , ξd−t, ξd−t+1,zd−t+2, . . . ,zd) ≥

√

δ lnnd−t+1

nd−t+1
vmax(Ft)

}

,

Φ2 =

{

ξd−t+1 ∈ Φ1, ξ
d−t+2 ∈ Ω

nd−t+2
m , . . . , ξd ∈ Ωnd

m :

ReF (ξ1, ξ2, . . . , ξd) ≥ c4(m)δ
t−3
2

(
d−2∏

k=d−t+2

lnnk

nk

) 1
2

ReF (ξ1, . . . , ξd−t, ξd−t+1,zd−t+2, . . . ,zd)

}

.

Clearly we have

Prob
(ξd−t+1,ξd−t+2,...,ξd)






ReF (ξ1, ξ2, . . . , ξd) ≥ c4(m)δ

t−2
2

(
d−2∏

k=d−t+1

lnnk

nk

) 1
2

vmax(Ft)







≥ Prob
(ξd−t+1,ξd−t+2,...,ξd)

{

(ξd−t+1, ξd−t+2, . . . , ξd) ∈ Φ2

∣
∣
∣ ξ

d−t+1 ∈ Φ1

}

· Prob
ξd−t+1

{

ξd−t+1 ∈ Φ1

}

. (12)
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To lower bound (12), first we notice that (zd−t+2,zd−t+3, . . . ,zd) is a feasible solution of (Ft−1),
and so ReF (ξ1, . . . , ξd−t, ξd−t+1,zd−t+2, . . . ,zd) ≤ vmax(Ft−1), which leads to

Prob
(ξd−t+1,ξd−t+2,...,ξd)

{

(ξd−t+1, ξd−t+2, . . . , ξd) ∈ Φ2

∣
∣
∣ ξ

d−t+1 ∈ Φ1

}

≥ Prob
(ξd−t+1,ξd−t+2,...,ξd)






ReF (ξ1, ξ2, . . . , ξd) ≥ c4(m)δ

t−3
2

(
d−2∏

k=d−t+2

lnnk

nk

) 1
2

vmax(Ft−1)

∣
∣
∣
∣
∣
ξd−t+1 ∈ Φ1







≥ (c1(δ))
t−3

(c2(m))t−3
∏d−2

k=d−t+2 n
5δ
k

,

where the last inequality is due to the induction assumption on t− 1. Second, we have

Prob
ξd−t+1

{

ξd−t+1 ∈ Φ1

}

= Prob
ξd−t+1

{

ReF (ξ1, . . . , ξd−t+1,zd−t+2, . . . ,zd) ≥
√

δ lnnd−t+1

nd−t+1
ReF (ξ1, . . . , ξd−t,zd−t+1, . . . ,zd)

}

≥ Prob
ξd−t+1

{

ReF (ξ1, . . . , ξd−t+1,zd−t+2, . . . ,zd) ≥
√

δ lnnd−t+1

nd−t+1

∥
∥
∥F (ξ1, . . . , ξd−t, •,zd−t+2, . . . ,zd)

∥
∥
∥
1

}

≥ c1(δ)

c2(m)n5δ
d−t+1

,

where first inequality is due to the fact that

ReF (ξ1, . . . , ξd−t,zd−t+1,zd−t+2, . . . ,zd) ≤
∥
∥
∥F (ξ1, . . . , ξd−t, •,zd−t+2, . . . ,zd)

∥
∥
∥
1

and the last inequality is due to Theorem 4.4. With the above two bounds, we can lower bound
the right hand side of (12), and conclude

Prob
(ξd−t+1,ξd−t+2,...,ξd)






ReF (ξ1, ξ2, . . . , ξd) ≥ c4(m)δ

t−2
2

(
d−2∏

k=d−t+1

lnnk

nk

) 1
2

vmax(Ft)







≥ (c1(δ))
t−3

(c2(m))t−3
∏d−2

k=d−t+2 n
5δ
k

· c1(δ)

c2(m)n5δ
d−t+1

=
(c1(δ))

t−2

(c2(m))t−2
∏d−2

k=d−t+1 n
5δ
k

.

Since (Fd) is exactly (Lm), the first three steps of Algorithm 5.1 can generate an approximate

solution of (Lm) with approximation ratio c4(m)δ
d−2
2

(
∏d−2

k=1
lnnk

nk

) 1
2
and with probability at least

(c1(δ))d−2

(c2(m))d−2
∏d−2

k=1 n
5δ
k

:= θ. By applying the last step of Algorithm 5.1, if we independently draw

ln
1

ǫ

(
c2(m)

c1(δ)

)d−2 d−2∏

k=1

n5δ
k =

ln 1
ǫ

θ

trials and choose a solution with the largest objective value, then the probability of success is at

least 1− (1− θ)
ln 1

ǫ
θ ≥ 1− ǫ. �
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5.2 Multilinear form with the spherical constraint

Let us now consider the model (LS). This problem is also known to be the largest singular value of
a high order complex tensor [22]. When the order of a tensor, d = 2, (LS) is to compute the largest
singular value of a complex matrix, which can be done in polynomial-time via the singular value
decomposition. For general order d, Jiang et al. [14] introduced a deterministic polynomial-time

algorithm with approximation ratio
(
∏d−2

k=1 nk

)− 1
2
via tensor relaxation, a complex extension of the

method proposed in [9]. With the help of Theorem 4.5, we now propose a random sampling based
polynomial-time algorithm with improved approximation ratio, comparable to Algorithm 5.1.

Algorithm 5.3 A polynomial-time randomized algorithm of (LS):

1. Randomly and independently generate ξk uniformly on Snk for k = 1, 2, . . . , d− 2;

2. Find the left singular vector ξd−1 ∈ Snd−1 and the right singular vector ξd ∈ Snd corresponding
to the largest singular value of the complex matrix F (ξ1, ξ2, . . . , ξd−2, •, •), i.e., obtain an
optimal solution (ξd−1, ξd) of the bilinear form optimization problem

max ReF (ξ1, ξ2, . . . , ξd−2,xd−1,xd)
s.t. xd−1 ∈ Snd−1 , xd ∈ Snd ;

3. Compute an objective value ReF (ξ1, ξ2, . . . , ξd);

4. Repeat the above procedures independently
ln 1

ǫ

(c3(γ))d−2

∏d−2
k=1 n

2γ
k

√
lnnk times for any given ǫ > 0

and γ ∈ (0, n1
lnn1

), and choose a solution with the largest objective value.

We have the following approximation result for the problem (LS), which improves the approx-
imation ratio studied in [14]. Its proof is similar to that of Theorem 5.2 by applying a recursive
procedure. The main difference to that of Theorem 5.2 is that the probability bound in Theorem 4.5
replaces the one in Theorem 4.4. We left the exercise to interested readers.

Theorem 5.4 Algorithm 5.3 solves (LS) with an approximation ratio γ
d−2
2

(
∏d−2

k=1
lnnk

nk

) 1
2
, i.e., for

any given ǫ > 0 and γ ∈ (0, n1
lnn1

), a feasible solution (y1,y2, . . . ,yd) can be generated in polynomial
time with probability at least 1− ǫ, such that

ReF (y1,y2, . . . ,yd) ≥ γ
d−2
2

(
d−2∏

k=1

lnnk

nk

) 1
2

vmax(LS).

We remark that the approximation ratio in Theorem 5.4 is the same as that of [8, Theorem 4.3]
for the real case of (LS). For a general complex model (LS), it is an obvious but tedious way to
rewrite (LS) as a real model by doubling its decision variables, and directly apply the result of [8,

Theorem 4.3] to get an approximation ratio γ
d−2
2

(
∏d−2

k=1
ln 2nk

2nk

) 1
2
, which is obviously worse than

that of Theorem 5.4 where a complex random sampling approach is applied directly.
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6 General conjugate form optimization

With all the preparations ready, we are now able to study general conjugate form optimization
models,

(Gm) max g(x)
s.t. x ∈ Ωn

m;
(G∞) max g(x)

s.t. x ∈ Ωn
∞;

(GS) max g(x)
s.t. x ∈ Sn.

In the above models,

g(x) = G

((
x

x

)

,

(
x

x

)

, . . . ,

(
x

x

)

︸ ︷︷ ︸

d

)

(13)

is a real-valued general conjugate form of x ∈ C
n associated with a conjugate super-symmetric

tensor G ∈ C
(2n)d .

These complex optimization problems were studied by Jiang et al. [14] for a special class of
g(x) where the number of conjugate variables is equal to the number of usual variables in every
monomial, i.e., symmetric conjugate forms. When applying the approximation algorithms in this
section to this special class of g(x), the obtained approximation ratios actually improve that of
Jiang et al. [14].

6.1 Conjugate form in the m-th roots of unity or the complex unit circle

Due to similarity, we discuss approximation algorithms of (Gm) and (G∞) together. First, by
noticing (13) and applying the tensor relaxation method, (Gm) and (G∞) can be relaxed to

(LGm) max ReG(x1,x2, . . . ,xd)
s.t. xk ∈ Ω2n

m , k = 1, 2, . . . , d,
(LG∞) max ReG(x1,x2, . . . ,xd)

s.t. xk ∈ Ω2n
∞ , k = 1, 2, . . . , d,

respectively, which are special cases of (Lm) and (L∞) studied in Section 5, respectivly. Let m ≥ 3
be an integer or m = ∞. According to Theorem 5.2, for any given δ ∈ (0, 1

16 ), z
1,z2, . . . ,zd ∈ Ω2n

m

can be generated in polynomial time, such that

ReG(z1,z2, . . . ,zd) ≥ c4(m)

(
δ ln(2n)

2n

) d−2
2

vmax(LGm) ≥ c4(m)

(
δ ln(2n)

2n

) d−2
2

vmax(Gm),

where the last inequality holds because (LGm) is a relaxation of (Gm). Let zk =
(
xk

yk

)
for k =

1, 2, . . . , d, by the polarization identity in Theorem 3.1,

E

[(
d∏

i=1

ξi

)

g

(
d∑

k=1

(

ξkxk + ξky
k
)
)]

= d!G

((
x1

y1

)

,

(
x2

y2

)

, . . . ,

(
xd

yd

))

= d!G(z1,z2, . . . ,zd),

where ξ2, ξ2, . . . , ξd are i.i.d. uniformly on Ωm. By dividing (2d)d and taking the real part,

E

[

Re

(
d∏

i=1

ξi

)

g

(

1

2d

d∑

k=1

(

ξkxk + ξky
k
)
)]

=
d!

(2d)d
ReG(z1,z2, . . . ,zd). (14)
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Let us define

uξ :=
1

2d

d∑

k=1

(

ξkxk + ξky
k
)

. (15)

Therefore, (14) leads to

E

[

Re

(
d∏

i=1

ξi

)

g(uξ)

]

=
d!

(2d)d
ReG(z1,z2, . . . ,zd) ≥ c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

vmax(Gm). (16)

Observing that ξk’s and the components of xk’s and yk’s belong to Ωm, every component of uξ is
a convex combination of elements in Ωm implying that the components of uξ belong to conv (Ωm).

Our next step is to construct a randomized approximate solution of (Lm) from uξ’s. Before
randomization and showing its solution quality, we first present some properties of real-valued
general conjugate forms.

Proposition 6.1 Let m ≥ 3 be an integer or m = ∞. Suppose g(x) is a real-valued general
conjugate form and x ∈ C

n with xi ∈ conv (Ωm) for i = 1, 2, . . . , n.
(i) If g(x) is square-free, i.e., the sum of the powers of xi and xi is less than two for every 1 ≤ i ≤ n

in every monomial, then y,z ∈ Ωn
m can be found in polynomial time, such that g(y) ≤ g(x) ≤ g(z).

(ii) If g(x) is convex, then z ∈ Ωn
m can be found in polynomial time, such that g(x) ≤ g(z).

Proof. If g(x) is square-free, by fixing x2, x3, . . . , xn as constants and taking x1 as the only variable,
we may write

g(x) = x1p1(x2, x3, . . . , xn) + x1p2(x2, x3, . . . , xn) + p3(x2, x3, . . . , xn) := p(x1).

As p(x1) = g(x) is real-valued, p3(x2, x3, . . . , xn) ∈ R and p2(x2, x3, . . . , xn) = p1(x2, x3, . . . , xn),
and we have

p(x1) = x1p1(x2, x3, . . . , xn) + x1p1(x2, x3, . . . , xn) + p3(x2, x3, . . . , xn)

= 2Re (x1p1(x2, x3, . . . , xn)) + p3(x2, x3, . . . , xn).

Therefore, p(x1) is a linear function of x1, whose optimal value over conv (Ωm) is attained at one
of its vertices, i.e., z1 ∈ Ωm can be found easily such that p(z1) ≥ p(x1). Now, repeat the same
procedures for x2, x3, . . . , xn, and let them be replaced by z2, z3, . . . , zn, respectively. Then z ∈ Ωn

m

satisfies g(z) ≥ g(x). Using the same argument, we may find y ∈ Ωn
m in polynomial time, such

that g(y) ≤ g(x). The case that g(x) is convex can be proven similarly. �

Proposition 6.2 If a real-valued general conjugate form is convex, then it is nonnegative.

Proof. Let the real-valued general conjugate form be g(x) associated with a conjugate super-

symmetric tensor G ∈ C
(2n)d . Define px,y : R → R where px,y(t) = g(x+ ty). Since g(x) is convex,

it is well know in convex analysis that px,y(t) is a convex function of t ∈ R for all x,y ∈ C
n. From

the tensor representation (13),

px,y(t) = g(x+ ty) = G

((
x+ ty

x+ ty

)

,

(
x+ ty

x+ ty

)

, . . . ,

(
x+ ty

x+ ty

)

︸ ︷︷ ︸

d

)

.
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Since G is symmetric, direct computation shows that

p′x,y(t) = dG

((
y

y

)

,

(
x+ ty

x+ ty

)

, . . . ,

(
x+ ty

x+ ty

)

︸ ︷︷ ︸

d−1

)

,

and furthermore

p′′x,y(t) = d(d− 1)G

((
y

y

)

,

(
y

y

)

,

(
x+ ty

x+ ty

)

, . . . ,

(
x+ ty

x+ ty

)

︸ ︷︷ ︸

d−2

)

≥ 0

for all t ∈ R and x,y ∈ C
n. In particular, by letting t = 0 and y = x we get

p′′x,x(0) = d(d− 1)G

((
x

x

)

,

(
x

x

)

, . . . ,

(
x

x

)

︸ ︷︷ ︸

d

)

= d(d− 1) g(x) ≥ 0

for all x ∈ C
n, proving the nonnegativity of g(x). �

We are now able to present our main results in this subsection. The approximation bounds
of (Lm) cannot be guaranteed in general without additional conditions of the real-valued general
conjugate form g(x). Our results below are presented when g(x) is either convex or square-free.

Theorem 6.3 Let m ≥ 3 be an integer or m = ∞. If g(x) is convex, then (Gm) admits a

polynomial-time randomized algorithm with approximation ratio c4(m)d!
(2d)d

(
δ ln(2n)

2n

) d−2
2
.

Proof. According to (16), by randomization, we are able to find η1, η2, . . . , ηd ∈ Ωm in polynomial
time, such that

Re

(
d∏

i=1

ηi

)

g(uη) ≥
c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

vmax(Gm). (17)

Since the components of uη belong to conv (Ωm) and g(x) is convex, by Proposition 6.1, z ∈ Ωn
m

can be found in polynomial time, such that g(z) ≥ g(uη). Finally, by Proposition 6.2, g(uη) ≥ 0
since g(x) is convex, and we get

g(z) ≥ g(uη) =

∣
∣
∣
∣
∣

d∏

i=1

ηi

∣
∣
∣
∣
∣
g(uη) ≥ Re

(
d∏

i=1

ηi

)

g(uη) ≥
c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

vmax(Gm).

�

Theorem 6.4 Suppose g(x) is square-free.
(i) If m ≥ 3 is an integer or m = ∞, then (Gm) admits a polynomial-time randomized algorithm

with relative approximation ratio c4(m)d!
(2d)d

(
δ ln(2n)

2n

) d−2
2
, i.e., for any given δ ∈ (0, 1

16 ), a feasible

solution z ∈ Ωn
m can be generated in polynomial time, such that

g(z)− vmin(Gm) ≥ c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

(vmax(Gm)− vmin(Gm)) .

(ii) If d is odd and m ≥ 4 is an even integer or m = ∞, then (Gm) admits a polynomial-time

randomized algorithm with approximation ratio c4(m)d!
(2d)d

(
δ ln(2n)

2n

) d−2
2
.
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Proof. Let us first prove the second part which is similar to that of Theorem 6.3. According to (17),
we can generate uα whose components belong to conv (Ωm), such that

Re

(
d∏

i=1

αi

)

g(uα) ≥
c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

vmax(Gm).

Since m ≥ 4 is an even integer or m = ∞, conv (Ωm) is central-symmetric. The components of −uα

belong to conv (Ωm), and so as to uη := argmax{g(uα), g(−uα)}. As d is odd, g(−uα) = −g(uα)
and so

g(uη) = |g(uα)| ≥ Re

(
d∏

i=1

αi

)

g(uα) ≥
c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

vmax(Gm).

Finally, as g(x) is square-free and the components of uη belong to conv (Ωm), by Proposition 6.1,
we can find z ∈ Ωn

m such that g(z) ≥ g(uη), proving the approximation guarantee for the second
part.

Let us now prove the first part in two cases. In the first case we assume that

vmax(Gm) ≥ 2

3
(vmax(Gm)− vmin(Gm)). (18)

Let uξ be defined in (15). Since the components of any uξ belong to conv (Ωm) and g(x) is square-
free, by Proposition 6.1, we can find yξ ∈ Ωn

m such that g(uξ) ≥ g(yξ) ≥ vmin(Gm). Moreover, as

ξi’s are i.i.d. uniformly on Ωm, it is easy to see that
∏d

i=1 ξi is also a uniform distribution on Ωm,

implying that E
[
∏d

i=1 ξi

]

= 0 and

Prob

{

Re

(
d∏

i=1

ξi

)

> 0

}

≤
m+1
2

m
≤ 2

3
. (19)

Therefore, by noticing g(uξ)− vmin(Gm) ≥ 0, we have

E

[

Re

(
d∏

i=1

ξi

)

g(uξ)

]

= E

[

Re

(
d∏

i=1

ξi

)

(g(uξ)− vmin(Gm))

]

= E

[

Re

(
d∏

i=1

ξi

)

(g(uξ)− vmin(Gm))

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

Prob

{

Re

(
d∏

i=1

ξi

)

> 0

}

+ E

[

Re

(
d∏

i=1

ξi

)

(g(uξ)− vmin(Gm))

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

≤ 0

]

Prob

{

Re

(
d∏

i=1

ξi

)

≤ 0

}

≤ E

[

Re

(
d∏

i=1

ξi

)

(g(uξ)− vmin(Gm))

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

Prob

{

Re

(
d∏

i=1

ξi

)

> 0

}

≤ 2

3
E

[

g(uξ)− vmin(Gm)

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

.
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By randomization of ξi’s satisfying Re
(
∏d

i=1 ξi

)

> 0, we can find uβ whose components belong to

conv (Ωm), such that

g(uβ)− vmin(Gm) ≥ E

[

g(uξ)− vmin(Gm)

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

≥ 3

2
E

[

Re

(
d∏

i=1

ξi

)

g(uξ)

]

≥ 3

2
· c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

vmax(Gm)

≥ c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

(vmax(Gm)− vmin(Gm)) ,

where the last two inequalities are due to (16) and (18), respectively.
In the second case when (18) does not hold, we have vmax(Gm) < 2

3 (vmax(Gm) − vmin(Gm)),
which implies that −vmin(Gm) > 1

3(vmax(Gm)− vmin(Gm)). As g(0) = 0, we get

g(0)− vmin(Gm) >
1

3
(vmax(Gm)− vmin(Gm)) ≥ c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

(vmax(Gm)− vmin(Gm)) .

Combining these two cases, by letting uζ = argmax{g(0), g(uβ)}, we uniformly have

g(uζ)− vmin(Gm) ≥ c4(m)d!

(2d)d

(
δ ln(2n)

2n

) d−2
2

(vmax(Gm)− vmin(Gm)) .

Finally, as g(x) is square-free and the components of uζ belong to conv (Ωm), by Proposition 6.1,
we can find z ∈ Ωn

m such that g(z) ≥ g(uζ), proving the approximation guarantee for the first
part. �

6.2 Conjugate form with the spherical constraint

Our final complex polynomial optimization model is (GS) : maxx∈Sn g(x), the maximization of
a real-valued general conjugate form with the complex spherical constraint. The problem is also
called the largest eigenvalue/eigenvector problem of a conjugate super-symmetric tensor [15]. Once
again, we provide polynomial-time randomized approximation algorithms with guaranteed worst-
case performance ratios. Instead of a discussable flavor presented in Section 6.1, here we propose
a whole theorem with a complete picture of the proof.

Theorem 6.5 (i) If d is even, then (GS) admits a polynomial-time randomized algorithm with

relative approximation ratio d!
(2d)d

(
γ ln(2n)

2n

) d−2
2
, i.e., for any given γ ∈ (0, 2n

ln(2n)), a feasible solution

z ∈ Sn can be generated in polynomial time, such that

g(z)− vmin(GS) ≥
d!

(2d)d

(
γ ln(2n)

2n

) d−2
2

(vmax(GS)− vmin(GS)) .

(ii) If d is odd, then (GS) admits a polynomial-time randomized algorithm with approximation ratio

d!
(
√
2d)d

(
γ ln(2n)

2n

) d−2
2
.
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Proof. When d = 2, (GS) is to find the largest eigenvalue/engenvector of a conjugate super-
symmetric tensor G, which is solvable in polynomial time. Therefore in the following proof we
assume that d ≥ 3.

When d is even, we first choose any feasible solution y ∈ Sn and discuss (GS) in two cases
depending on g(y). In the first case we assume that

g(y)− vmin(GS) ≤
2−

d
2 τ

6
(vmax(GS)− vmin(GS)), (20)

where τ :=
(
γ ln(2n)

2n

) d−2
2 ≤ 1. Define h(x) = (xTx)

d
2 = ‖x‖d2, a real-valued general conjugate form

associated with a super-symmetric conjugate tensor H ∈ C
(2n)d . Consider the following complex

multilinear form optimization model

(LHS) max Re
(
G(x1,x2, . . . ,xd)− g(y)H(x1,x2, . . . ,xd)

)

s.t. xk ∈ S2n, k = 1, 2, . . . , d,

Applying Theorem 5.4, we can obtain z1,z2, . . . ,zd ∈ S2n in polynomial-time, such that

Re
(

G(z1,z2, . . . ,zd)− g(y)H(z1,z2, . . . ,zd)
)

≥ τvmax(LHS).

Let x∗ ∈ Sn be an optimal solution of (GS). Noticing that
(

1√
2

(
x∗
x∗

)
, 1√

2

(
x∗
x∗

)
, . . . , 1√

2

(
x∗
x∗

))

is a

feasible solution of (LHS)

vmax(LHS)

≥ G

(
1√
2

(
x∗
x∗

)

,
1√
2

(
x∗
x∗

)

, . . . ,
1√
2

(
x∗
x∗

))

− g(y)H

(
1√
2

(
x∗
x∗

)

,
1√
2

(
x∗
x∗

)

, . . . ,
1√
2

(
x∗
x∗

))

= 2−
d
2 g(x∗)− 2−

d
2 g(y)h(x∗)

= 2−
d
2 (vmax(GS)− g(y))

By the definition of h(x), it is easy to see that |H(z1,z2, . . . ,zd)| ≤ 1, and we have

Re
(

G(z1,z2, . . . ,zd)− vmin(GS)H(z1,z2, . . . ,zd)
)

= Re
(

G(z1,z2, . . . ,zd)− g(y)H(z1,z2, . . . ,zd)
)

+ (g(y)− vmin(GS))Re
(

H(z1,z2, . . . ,zd)
)

≥ τvmax(LHS)− (g(y)− vmin(GS))

≥ 2−
d
2 τ(vmax(GS)− g(y))− (g(y)− vmin(GS))

≥ 2−
d
2 τ

(

1− 2−
d
2 τ

6

)

(vmax(GS)− vmin(GS))−
2−

d
2 τ

6
(vmax(GS)− vmin(GS))

≥ 2

3
· 2− d

2 τ(vmax(GS)− vmin(GS)),

where the second last inequality is due to (20). Choose any integer m ≥ 3 or m = ∞ and let

ξ1, ξ2, . . . , ξd be i.i.d. uniformly on Ωm. Denote zk =
(
xk

yk

)
for k = 1, 2, . . . , d and define

vξ :=
d∑

k=1

(

ξkxk + ξky
k
)

. (21)
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For any vξ, as
vξ

‖vξ‖2 is a feasible solution of (GS), g
(

vξ

‖vξ‖2

)

− vmin(GS) ≥ 0, implying that

g(vξ)− vmin(GS)‖vξ‖d2 ≥ 0.

By applying the polarization identity in Theorem 3.1 to the real-valued general conjugate form
g(x)− vmin(GS)h(x) and taking the real part, we have

d! Re
(

G(z1,z2, . . . ,zd)− vmin(GS)H(z1,z2, . . . ,zd)
)

= E

[

Re

(
d∏

i=1

ξi

)

(g(vξ)− vmin(GS)h(vξ))

]

= E

[

Re

(
d∏

i=1

ξi

)
(

g(vξ)− vmin(GS)‖vξ‖d2
)
∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

Prob

{

Re

(
d∏

i=1

ξi

)

> 0

}

+ E

[

Re

(
d∏

i=1

ξi

)
(

g(vξ)− vmin(GS)‖vξ‖d2
)
∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

≤ 0

]

Prob

{

Re

(
d∏

i=1

ξi

)

≤ 0

}

≤ E

[

Re

(
d∏

i=1

ξi

)
(

g(vξ)− vmin(GS)‖vξ‖d2
)
∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

Prob

{

Re

(
d∏

i=1

ξi

)

> 0

}

≤ 2

3
E

[

g(vξ)− vmin(GS)‖vξ‖d2

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

,

where the last inequality is due to (19). By randomization of ξi’s satisfying Re
(
∏d

i=1 ξi

)

> 0, we

can find vβ , such that

g(vβ)− vmin(GS)‖vβ‖d2 ≥ E

[

g(vξ)− vmin(GS)‖vξ‖d2

∣
∣
∣
∣
∣
Re

(
d∏

i=1

ξi

)

> 0

]

≥ 3d!

2
Re
(

G(z1,z2, . . . ,zd)− vmin(GS)H(z1,z2, . . . ,zd)
)

≥ d! 2−
d
2 τ(vmax(GS)− vmin(GS)).

By noticing that ‖vβ‖2 ≤
∑d

k=1

(
‖xk‖2 + ‖yk‖2

)
≤
∑d

k=1

√
2‖zk‖2 =

√
2d, we get

g

(
vβ

‖vβ‖2

)

− vmin(GS) =
1

‖vβ‖d2

(

g(vβ)− vmin(GS)‖vβ‖d2
)

≥ (
√
2d)−dd! 2−

d
2 τ(vmax(GS)− vmin(GS))

=
d!

(2d)d

(
γ ln(2n)

2n

) d−2
2

(vmax(GS)− vmin(GS)).

In the second case when (20) does not hold, as d ≥ 3, we have

g(y)− vmin(GS) >
2−

d
2 τ

6
(vmax(GS)− vmin(GS)) ≥

d!

(2d)d

(
γ ln(2n)

2n

) d−2
2

(vmax(GS)− vmin(GS)).

Finally, by combining these two cases and letting z = argmax
{

g(y), g
(

vβ

‖vβ‖2

)}

∈ Sn, the relative

approximation ratio of g(z) is guaranteed.
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When d is odd, applying the tensor relaxation method, (GS) can be relaxed to

(LGS) max ReG(x1,x2, . . . ,xd)
s.t. xk ∈ S2n, k = 1, 2, . . . , d.

By Theorem 5.4, z1,z2, . . . ,zd ∈ S2n can be generated in polynomial time such that

ReG(z1,z2, . . . ,zd) ≥
(
γ ln(2n)

2n

) d−2
2

vmax(LGS) ≥
(
γ ln(2n)

2n

) d−2
2

vmax(GS).

Choose any integer m ≥ 3 or m = ∞ and let ξ1, ξ2, . . . , ξd be i.i.d. uniformly on Ωm. Denote

zk =
(
xk

yk

)
for k = 1, 2, . . . , d and define vξ as that in (21). By the polarization identity in

Theorem 3.1

E

[

Re

(
d∏

i=1

ξi

)

g(vξ)

]

≥ d! ReG(z1,z2, . . . ,zd) ≥ d!

(
γ ln(2n)

2n

) d−2
2

vmax(GS).

By randomization, we may find α1, α2, . . . , αd ∈ Ωm such that

Re

(
d∏

i=1

αi

)

g(vα) ≥ E

[

Re

(
d∏

i=1

ξi

)

g(vξ)

]

≥ d!

(
γ ln(2n)

2n

) d−2
2

vmax(GS).

Noticing that ‖vα‖2 ≤
∑d

k=1

(
‖xk‖2 + ‖yk‖2

)
≤
∑d

k=1

√
2‖zk‖2 =

√
2d and g(−x) = −g(x) as d

is odd, and letting z = argmax
{

g
(

vα

‖vα‖2

)

, g
(

− vα

‖vα‖2

)}

∈ Sn, we finally get

g(z) =

∣
∣
∣
∣
g

(
vα

‖vα‖2

)∣
∣
∣
∣
=

|g(vα)|
‖vα‖d2

≥ 1

(
√
2d)d

Re

(
d∏

i=1

αi

)

g(vα) ≥
d!

(
√
2d)d

(
γ ln(2n)

2n

) d−2
2

vmax(GS).
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